
 

Article 1 

Fault Detection and Classification of Shunt 2 

Compensated Transmission line using Discrete 3 

Wavelet Transform and Naive Bayes Classifier 4 

Elhadi Aker1, Mohammad Lutfi Othman1, Veerapandiyan Veerasamy1, Ishak Aris1, Noor Izzri 5 
Abdul Wahab1 and Hashim Hizam1 6 

1Advanced Lightning and Power Energy Research (ALPER), Department of Electrical and Electronics 7 
Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, 8 
Malaysia; hadi.aker@yahoo.com(E.A); lutfi@upm.edu.my(M.L.O); veerapandian220@gmail.com(V.V); 9 
ishak_ar@upm.edu.my (I.A) ; izzri@upm.edu.my(N.I.A.W); hhizam@upm.edu.my (H.H). 10 
*Correspondence: hadi.aker@yahoo.com; Tel.: (+601110836907); lutfi@upm.edu.my (M.L.O); 11 

Tel(+060192755209). 12 

Abstract: This paper presents the methodology to detect and identify the type of fault that occurs in 13 
shunt connected static synchronous compensator (STATCOM) transmission line using a 14 
combination of Discrete Wavelet Transform (DWT) and Naive Bayes classifier. To study this, the 15 
network model is designed using Mat-lab/Simulink. The different faults such as Line to Ground 16 
(LG), Line to Line (LL), Double Line to Ground (LLG) and three-phase (LLLG) fault are applied at 17 
different zones of system with and without STATCOM considering the effect of varying fault 18 
resistance. The three-phase fault current waveforms obtained are decomposed into several levels 19 
using daubechies mother wavelet of db4 to extract the features such as standard deviation and 20 
Energy values. The extracted features are used to train the classifiers such as Multi-Layer 21 
Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier to classify the type of 22 
fault that occurs in the system. The results reveal that the proposed NB classifier outperforms in 23 
terms of accuracy rate, misclassification rate, kappa statistics, mean absolute error (MAE), root 24 
mean square error (RMSE), relative absolute error (RAE) and root relative square error (RRSE) than 25 
MLP and Bayes classifier. 26 

Keywords: static synchronous compensator (STATCOM), Discrete Wavelet Transform (DWT), 27 
Multi-Layer Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier. 28 

 29 

1. Introduction 30 

Restructuring and deregulation of power system with increase in energy demand, 31 
environmental hurdles, economic factors and right of way forces the utilities to use the transmission 32 
lines to its thermal limit. Also, some developed countries that have surplus power generation 33 
supplies the load demand through large number of distribution companies leading to transmission 34 
line overloading. On the other hand, the connection of renewable energies into the grid causes 35 
unbalance in the system voltage. The utilities resolve all these problems economically by enhancing 36 
the thermal stability of the line through placement of flexible AC transmission systems (FACTS) 37 
device into the system [1]. The shunt compensation device like static compensator (STATCOM) is 38 
widely used FACTS device for increasing the transmission line capability of the system. STATCOM 39 
is a parallel connected device which controls one or more AC system parameters such as system 40 
stability, power quality and voltage control via injection and absorption of reactive power from the 41 
system by adjusting its control action [2-4]. The reliability of power system operation is affected by 42 
occurrence of fault in transmission line leading to equipment damage. In order to ensure the secure 43 
and safe operation of the power system network, it is essential to implement an effective protection 44 
scheme within shortest time span to avoid the cascading failure of the system. This is achieved 45 
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through an advanced fault classification technique that supports an effective, reliable, fast and 46 
secured way of relaying operation in the protective system [4]. A numerous study were made for 47 
location of fault in transmission lines in the literature, only some of the study involves effect of 48 
FACTS compensated line and other fails to consider their effects [5-10]. The problem of over-reach 49 
and under reach conditions due to the injection and absorption of reactive power by STATCOM into 50 
the system leads to false tripping of relay [11]. Therefore, identification of fault in the presence of 51 
FACTS device is a crucial issue in power system protection.  52 

Distance relay based transmission line protection schemes were adapted for secure and reliable 53 
operation of system [12-14]. But, the presence of series/shunt FACTS device leads to mal-operation 54 
of conventional relay to detect and locate the fault [15, 16]. Moreover, the fault signal is 55 
non-stationary in nature and the analysis of such signal is a cumbersome process. Therefore, 56 
researches proposed the numerical relays based on signal processing techniques namely Fourier 57 
Transform (FT), Fast FT, discrete FT and short time FT that are extensively used in the initial stage 58 
for analysis of fault signal. It is observed through rigorous analysis that FTs are not suitable for 59 
locating time-varying fault transient signal and also the information on time of occurrence of 60 
transients cannot be obtained. To cater this limitation S-transform based fault location were used for 61 
locating the time and frequency information of fault signal. But it involves large number of 62 
mathematical computation and calculation time that results in degrading the performance of 63 
numerical relay [17-20].  64 

The aforementioned drawback are overcome by the time-frequency based discrete wavelet 65 
transform (DWT) approach and is broadly used for classification and location of faults, power 66 
quality mitigation problems such as sag and swell in the system [21]. One of the major issues with 67 
DWT is selection of mother wavelets and many works in the literature on analysis of power system 68 
transients claimed that Daubechies 4 (db4) is best suited for fault analysis [22]. Because of fast 69 
filtering with less processing time makes the DWT analysis than other methods for extracting the 70 
features to train the Artificial Intelligence (AI) or machine learning (ML) classifiers in the proposed 71 
work. Also, numerous computational intelligence classifiers were proposed for location of fault in 72 
the system such as multilayer perceptron (MLP) neural network, support vector machine (SVM), 73 
fuzzy logic, particle swarm optimization(PSO) and so on. The ANN and SVM classifiers consume 74 
large time for training and the efficacy of fuzzy depends on rules framed by the expertise [6, 7, 13 23, 75 
24.]. Also, many different methods of classifier are proposed in the literature ranging from heuristic 76 
rule of thumb to formal mathematics [24]. Despite of all, the proposed work uses a simple, efficient 77 
and sensitive type of probabilistic neural network based Naive Bayes (NB) approach for selection of 78 
features to classify the type of fault in the system.    79 

The remainder of the paper is organized as follows: Section 2 deals with the system model 80 
studied and section 3 portrays the proposed method of fault classifications with detailed explanation 81 
about extraction of features using DWT analysis. Section 4 describes the MLP neural network and 82 
probabilistic network based classifiers such as Bayes and NB method to classify the fault occurs in 83 
the system. Section 5 presents the results and discussion of proposed work of fault classification with 84 
conclusion and future work made in the last part of the paper.  85 

2. System Model Studied 86 

To validate the proposed method of fault detection scheme, it is necessary to acquire the field 87 
data from the real time power system network. As the real time data acquisition is quite tedious and 88 
cumbersome process. Therefore, the system under study for fault application considers a real time 89 
Libya power system data for simulation and the possibility of occurrence of numerous faults are 90 
simulated using Mat lab/Simulink. Figure 1 depicts the shunt STATCOM compensated power 91 
system model and the parameters for simulation are as follows: Generator rating – 300 MVA, 400kV, 92 
60Hz and line length of 300 km with each zones (Z1, Z2 and Z3) of line is assumed to be 100 km and 93 
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load rating of 260 MVA. The detailed explanation of simulation parameters and STATCOM are 94 
presented in [11]. The dataset for training of neural networks (NN) are obtained by introducing the 95 
various fault considering effect of fault resistance and with/without STATCOM at different locations 96 
like 100km, 200km and 300 km of mid-point compensated power system.  97 
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Figure 1. Libya Power System Model 99 

The power system model is protected from fault by different zones of protection scheme Z1, Z2 and 100 
Z3. Thus, the relay responds to various zones of protection and the trip signal is obtained from the 101 
intelligence relaying scheme developed using a NB classifier. In the proposed work, the percentage 102 
of distance protection relay by different zones such as Z1, Z2 and Z3 are assumed to be 80%, 120% 103 
and 220% of total line length respectively.  . 104 

2. 1. Proposed Method of Fault Detection 105 

This section presents the steps for detection of fault in power system using NB method of 106 
classification.  The detailed steps is illustrated in Figure 2 and also presented as follows: 107 

Step-1 Data Acquisition - The shunt compensated power system model is simulated using Mat 108 
lab/Simulink under various cases of disturbances and the current signal is obtained for extracting the 109 
features to train the NN. 110 

Step-2 Feature Extraction – The data for training are obtained by sampling the current signal using 111 
advanced signal processing techniques like DWT and the features such as standard deviation (SD) 112 
and energy values are obtained for the system with and without shunt compensation to study the 113 
effect of STATCOM compensation. 114 

Step-3 Training Phase – In this phase, the obtained SD and energy values are acquired for different 115 
location of faults and various values of fault resistance.  116 

Step-4 Fault detection – Here, the trained NN is tested for occurrence of different faults in the system 117 
and this process repeats for every cycle of operation. 118 

 119 

 120 

 121 

 122 

 123 
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 124 

125 
Figure 2. Proposed method of fault classification 126 

3.  Feature Extraction using Discrete Wavelet Transform 127 

Wavelet transform (WT) have been widely used for analyzing the transient signal in ample 128 
number of applications like mechanical vibrations, image processing and also electrical power 129 
system fault detection. As wavelet analysis overcome the limitations of FT by localizing the fault 130 
signal both in time and frequency domains. As Fourier analysis, does not provide information about 131 
the time of occurrence of fault/disturbance in non-stationary current/voltage waveform of power 132 
system. In general WT exists in two forms: continuous and discrete method. The later is extensively 133 
used in the literature, due to its resolution and its applicability in real time. The detailed explanation 134 
on application of WT in power system is discussed in [21,22]. 135 

DWT is a significant tool that analyzes the time varying, transient signal like faults by 136 
decomposing it into an approximation (A) and detailed coefficients (D) through successive filtering 137 
of high-pass and low-pass signal as depicted in Figure 3. 138 

 139 

Figure 3. DWT Decomposition at eight levels 140 

As the number of decomposition level increases, the DC noise present in the fault signal can be 141 
suppressed. In this work, an mother wavelet of Db4 with 8-level is used to extract the features by 142 
sampling the current signal of one cycle with the sampling frequency of 20 kHz and 333 samples per 143 
cycle of current waveform. Among various mother wavelets exist in literature, Daubechies (Db4) 144 
have been broadly used in power system fault locations because of its ability to locate the fast 145 
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transients in low frequency sinusoidal signal. The bandwidth of each levels of decomposition is 146 
presented in Table 1. 147 

Table 1. Detailed Coefficient Levels Frequency Band kHz 

Detailed Coefficient Levels Frequency Band in kHz 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

20  to 10 

10  to 5 

5 to 2.5 

2.5 to 1.25 

1.25 to 0.625 

0.625 to 0.3125 

0.3125 to  0.15625 

0.15625  to 0.0781 

3.1 Feature Extractions 148 

The main aim of feature extraction is to provide the significant information for the classifier to 149 
classify the type of event through the features calculated using standard deviation (SD) and energy 150 
values. The detailed information of this is discussed as follows, 151 

3.1.1 Standard Deviation (SD) 152 

The SD is statistical measure of how much variation or dispersion that exists in the original signal 153 
and is defined in terms of wavelet coefficient as, 154 

                                𝐒𝐃 = √{
∑ (𝐀𝟖+𝐃𝐢)𝟐𝟖

𝐢=𝟏

𝐧
− (

∑ (𝐃𝟖+𝐃𝐢)𝟖
𝐢=𝟏

𝐧
)

𝟐

}                (1) 155 

where n represents the number of data samples.  156 

3.1.2 Energy Value (E) 157 

To test the effectiveness of the proposed classifier, this work uses another approach to calculate 158 
features based on energy of the decomposed current signal. The spectral energy of the decomposed 159 
signal can be obtained using Equation (2),  160 

                                    𝐄 = ∑ [|𝐃𝐢|
𝟐] + |𝐀𝟖|𝟐𝐤

𝐢=𝟏                               161 
(2) 162 

where k is the number of detailed coefficient levels. To calculate the features, a moving window of 163 
one cycle of current wavelet coefficient is passed and the features are extracted for training the 164 
classifiers [26]. 165 

4. Fault Classifiers  166 

   This section presents Bayesian based fault classifiers to identify and classify the type of fault that 167 
occurs in the shunt compensated STATCOM devices. The comparative study is made with the 168 
conventional MLP neural network for the system with and without STATCOM. Here in this work, 169 
each fault that occurs in the system is considered as classes and the same is used for training neural 170 
network. The assumed classes for classifications are:  C1 -Normal, C2 -LG fault, C3 -LL fault, C4 -LLG 171 
fault and C5 -LLLG fault. Moreover, the effectiveness of the method is also tested for occurrence of 172 
fault at different location of transmission lines. 173 
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 174 

4.1 Multi-Layer Perceptron (MLP) Network 175 

Multi-Layer Perceptron (MLP) is the most widely used neural network for identification and 176 
detection type of fault in power system in the literature. MLP is a supervised feed forward network, 177 
as it requires learning the desired output to be classified. Figure 4 represents the MLP network that 178 
consists of input (u1, u2 and u3), hidden and output layer. 179 

 180 

Figure 4. MLP neural network 181 

The output [y] of the network is weighted sum of input neurons and is defined as, 182 

𝑦𝑖 = 𝑊𝑖𝑜
+ ∑ (𝑊𝑖𝑗𝑎𝑗)𝑗∈𝑝𝑟𝑒𝑑(𝑖)                                                                              (3) 183 

where aj represents the output of previous layer neuron, Wij is the weight between ith and jth neuron and Wio is 184 
input bias of neuron. In this work, the MLP network is trained using back propagation method and the detailed 185 
explanation is presented in [27, 28]. 186 

4.2 Bayes and Naive Bayes Classifiers 187 

The conventional MLP neural network minimizes the error of the system by adjusting the 188 
weight of the network through small penalty factor that leads to overfitting. This is avoided for any 189 
complex network through a principle approach called Bayes theorem by the Bayesian neural 190 
network (BNN). BNN is invented by Judea Pearl in 1980s, a statistical based supervised classifier 191 
that determines the variable to be classified in more relevant to the class by evaluating the 192 
probability of how likely its occurrence in that class with the prior information that takes the form 193 
prior probability density function [29]. Thus the Bayes theorem can be defined as 194 

𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝑪𝒍𝒂𝒔𝒔 𝒑𝒓𝒊𝒐𝒓 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚∗𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓 𝒑𝒓𝒊𝒐𝒓 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚
            195 

(4) 196 

The simplified form can be expressed as, 197 

P(C|𝐋𝟏, 𝑳𝟐, … . , 𝐋𝐧) =
 𝐏(𝐂)𝐏(𝐋𝟏,𝑳𝟐,….,𝐋𝐧| 𝐂).

 𝐏(𝐋𝟏,𝑳𝟐,….,𝐋𝐧)
                                    (5) 198 

𝑷(𝑪|𝑳) =
𝑷(𝑪)𝑷(𝑳|𝑪)

𝑷(𝑳)
                                                 (6) 199 

 200 
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Where P(C) is the class probability and P(L|C) represents the likelihood of datasets {L1, L2, …Ln} of 201 
variables in class C=[C1, C2,…C5]. The classification problem can be defined as, 202 

𝐚𝐫𝐠 [𝐦𝐚𝐱 [𝑷(𝑪|𝑳) =
𝑷(𝑪)𝑷(𝑳|𝑪)

𝑷(𝑳)
]]                                 203 

(7) 204 

Here the attributed P(L) doesn’t vary with the class and can be assumed as constant and the above 205 
equation is approximated as, 206 

𝐚𝐫𝐠 [𝐦𝐚𝐱[𝑷(𝑪|𝑳) = 𝑷(𝑪)𝑷(𝑳|𝑪)]]                                                                207 
(8) 208 

The computation burden of BNN is increases as the number of likelihood term in the class raises 209 
exponentially with the attributes L= {L1, L2, … Ln }. To overcome this limitation, all features in a class 210 
are assumed to be independent that results in the Naive Bayes (NB) classifier that reduces the 211 
number of parameter to be estimated from 2(2n-1) to 2n [25, 30, 31]. NB is a linear classifier that 212 
divides the input data set into training and prediction step for identifying the type of class using 213 
Bayes’ theorem. In training phase, the classifier determines the probability distribution pertaining to 214 
the features of any given class is independent. During the prediction phase, classifier estimates the 215 
posterior probability of test sample data belonging to respective class. Then, the method classifies 216 
the samples based on maximum likelihood of posterior probability. NB classifier has been used 217 
widely because of its simplicity, easy to implement accuracy and sound theoretical basis that 218 
guarantees the optimized results. The probability function defined in (8), can be rewritten with the 219 
assumption of independent feature as, 220 

𝐏(𝐂|𝐋𝟏, 𝑳𝟐, … . , 𝐋𝐧)  =
 𝐏(𝐂)𝐏(𝐋𝟏|𝐂)𝐏(𝐋𝟐| 𝐂)...𝐏(𝐋𝐧| 𝐂)

 𝐏(𝐋)
                           (9) 221 

 222 

Figure 5. NB classifier of proposed work 223 

4.2.1 Performance Indices of classifier 224 

Kappa Statistic (K) is the statistical measure of classifiers that compute the constancy among 225 
the predicted type of fault and actual type of fault and is defined as follows, 226 

 𝐾 =
𝑃(𝑂𝐹)−𝑃(𝐸𝐹)

(1−𝑃(𝐸𝐹))
                    (10) 227 

where P(OF) is the probability of observed fault,  P(EF) is the probability of predicted type of fault. 228 
It ranges between 0 and 1.  229 
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Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) - MAE is the absolute mean of 230 
error calculated between the predicted and observed value and is depicted as follows [21, 38, 39], 231 

𝑀𝐴𝐸 =
|∑ (𝐸𝑃

𝑛
𝑖=1 −𝐸𝑂)|

𝑛
                                                   (11) 232 

RMSE is the square root of mean of variance, between the predicted and observed type of fault 233 

detected by the classifiers and is given by, 234 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑃

𝑛
𝑖=1 −𝐸𝑂)2

𝑛
                                                                          (12) 235 

where EP is the predicted type of fault  and EO is the expected type of fault. 236 
 237 
5. Results and Discussion 238 

This section describes the simulation of proposed probabilistic NB based classifier to classify the 239 
fault and location of fault in transmission line. The effect of probabilistic classifier is studied for the 240 
transmission line with and without compensations. The simulation is carried out for power system 241 
model depicted in Figure 1 and various plausible faults such as LG, LL, LLG and LLLG fault in the 242 
system considering the variation in fault resistances. The simulation is carried out for time period of 243 
one cycle and the fault is applied during 0.1 to 0.12 s.  Figure 6 and 7 depicts the three phase current 244 
waveform of the system without and with STATCOM respectively. The minimum and maximum of 245 
peak magnitude of three phase current signal are captured for the system with and without 246 
compensation that are illustrated in Table 2 and 3. It is seen the magnitude of current signal increases 247 
for the system with STATCOM device and the same is presented in the form waveform for case of 248 
LG fault in the system with and without STATCOM are portrayed in Figures 10 and 11 respectively. 249 
Then, the current signal obtained for various cases of fault are analyzed using db4 mother wavelet of 250 
DWT analysis with eight level coefficients to extract the features such as SD and energy values for 251 
training the classifiers. Figures 8 and 9 represent the DWT analysis of current waveform under 252 
normal operation of the system without and with STATCOM respectively. In general, the 253 
coefficients are high for the compensated system compare to the uncompensated system. Figures 12 254 
and 13 portray the DWT analysis of LG fault current waveform considering without and with 255 
STATCOM respectively. Also, it is observed that the coefficients of detailed coefficient is low when 256 
fault occurs after the location of STATCOM (at 150 km) device. This effect is due to the STATCOM, 257 
the system fault current reduces as the distance of fault increase from, the fault location point. Table 258 
4 and 5 represents the extracted features (SD and energy values) for training the classifiers. The 259 
trained classifiers are tested with the test data and the type of fault that occurs in the system is 260 
detected by the classifiers. The performance of classifier for classification of various faults in the 261 
system for cases with and without STATCOM using the features of SD and energy values are 262 
presented as different cases as discussed in forthcoming subsections. 263 

 264 
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Figure 6. Three phase current waveform under normal condition without STATCOM compensation 265 

 266 

 267 

Table 2. Normal and LG faults at Different Locations without STATCOM compensation 268 
  269 

  Without STATCOM 

Fault 

Distance 

Type of 

fault  
Minimum current Maximum current 

  Ia (103) I b(103) I c(103) Ia(103) I b(103) I c(103) 

 No fault 

LG 

LL 

LLG 

LLLG 

LG 

LL 

LLG 

LLLG 

LG 

LL 

LLG 

LLLG 

-0.25 

-2.57 

-4.11 

-4.19 

-3.88 

-1.23 

-2.19 

-2.1 

-1.97 

-0.78 

-1560 

-1.51 

-1.31 

-0.25 

-0.34 

-12.5 

-12 

-12 

-0.27 

-7.01 

-6.78 

-7.06 

-0.294 

-4.78 

-4.85 

-5.17 

-0.25 

-0.46 

-0.25 

-0.71 

-12.4 

-0.39 

-0.25 

-0.45 

-7.16 

-0.37 

-0.25 

-0.51 

-4.97 

0.25 

6.95 

12.6 

1.34 

1.52 

3.67 

7.06 

7.56 

8.32 

2.49 

4.93 

5.08 

5.72 

0.25 

0.28 

4.05 

4.3 

6.76 

0.19 

2.16 

2.34 

3.78 

0.185 

1.47 

1.62 

2.62 

0.25 

0.25 

0.25 

0.65 

4.3 

0.18 

0.25 

0.38 

2.82 

0.19 

0.25 

0.37 

2.16 

100 km 

200 km 

300 km 

 270 

Table 3. Normal and SLG faults at Different Locations with STATCOM compensation 271 

Fault 

Distance 

 Type of 

 fault 

With STATCOM 

Minimum current Maximum current 

    Ia(103) I b(103) I c(103) I a(103) I b (103) I c (103) 
 No f 

LG 

LL 

LLG 

LLLG 

LG 

LL 

LLG 

LLLG 

LG 

LL 

LLG 

LLLG 

1.11 

3.36 

-4.57 

-4.74 

-4.57 

-2.2 

-2.8 

-2.85 

-2.72 

-1.85 

-2.22 

-2.33 

-2.22 

-1.24 

-1.04 

-11.7 

-11.4 

-11.5 

-1.12 

-6.3 

-6.25 

-6.47 

-1.19 

-4.56 

-4.61 

-4.84 

-1.32 

1.17 

-1.24 

-1.3 

-1.1.9 

-1.23 

-1.25 

-1.36 

-6.46 

-1.28 

-1.27 

-1.38 

-4.79 

1.4 

6.95 

11.8 

1.2.6 

1.4.3 

3.97 

6.38 

6.76 

4.49 

3.18 

4.61 

4.88 

5.32 

1.2 

1.23 

4.58 

4.82 

7.02 

1.23 

2.71 

2.99 

4.06 

1.22 

2.22 

2.41 

3.24 

1.11 

0.8 

1.07 

1.18 

4.91 

1.08 

1.07 

1.09 

3.3 

0.84 

1.07 

1.17 

2.68 

100 km 

200 km 

300 km 
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 272 

 273 

Figure 7. Three phase current waveform under normal condition with midpoint compensation 274 

 275 

 276 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0148.v1

Peer-reviewed version available at Energies 2020, 13, 243; doi:10.3390/en13010243

https://doi.org/10.20944/preprints201910.0148.v1
https://doi.org/10.3390/en13010243


 11 of 22 

 

Figure 8. DWT analysis of Phase A under normal condition without compensation 277 

 278 

 279 

Figure 9. DWT analysis of Phase A under normal condition with STATCOM compensation 280 

 281 
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Figure 10.Three phase current during LG fault in Phase A without compensation 282 

 283 

Figure 11. Three phase current during LG fault in Phase A with compensation 284 

285 
Figure 12. DWT analysis of Phase A during LG fault without compensation 286 
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 287 

Table 4. SD based feature values for classification 288 

   Without STATCOM With STATCOM 



Condition 

Type of 

fault 

Location SD- A 

(×103) 

SD-B 

(×103) 

SD- C 

(×103) 

SD- A 

(×103) 

SD-B 

(×103) 

SD- C 

(×103) 
 km 

Normal 
No 

fault 

100 

200 

300 

0.177 

0.177 

0.177 

3.087 

1.582 

1.058 

0.300 

0.245 

0.238 

0.263 

0.193 

0.193 

5.865 

3.158 

2.140 

0.188 

0.170 

0.161 

5.108 

2.749 

1.842 

5.723 

3097 

2105.6 

177.3 

177.3 

177.3 

4998 

2693.5 

1800.5 

6254 

3368.6 

2263.6 

0.177.1 

0.177.1 

0.177.1 

0.166 

0.154 

0.145 

3.170 

1.630 

1.100 

29.9 

24.30 

23.80 

5.65 

3.03 

2.05 

5.65 

3.06 

2.09 

28.70 

20.30 

20.20 

5.67 

3.04 

2.05 

5255.5 

2868.9 

1964 

1.77 

1.77 

1.77 

6.48 

3.51 

2.39 

0.177 

0.177 

.0177 

0.204 

0.196 

0.190 

0.267 

0.198 

0.196 

2.66 

1.37 

92.1 

28.2 

20.6 

20.5 

4.99 

2.71 

1.84 

5.15 

2.79 

1.87 

17.7 

17.7 

17.70 

5.691 

2.832 

1.929 

5.06 

2.75 

1.86 

5.69 

3.10 

2.10 

0.875 

0.875 

0.875.1 

3.394 

2.046 

1.674.7 

0.793.1 

0.821 

0.838 

0.854 

0.852 

0.874 

5.810 

3.188 

2.357 

0.755 

0.799 

0.834 

5.247 

2.932 

2.202 

5.633 

3.085 

2.279 

0.851 

0.856 

0.860 

5.112 

2.850 

2.131 

6.224 

3.397 

2.493 

0.877 

0.877 

0.877 

0.800 

0.825 

0.851 

3.49 

2.11 

1.72 

0.811 

0.831 

0.849 

5.690 

3.140 

2.330 

5.67 

3.14 

 

2.35 

0.759 

0.794 

0.833 

5.67 

3.11 

2.30 

5.281 

2.944 

2.204 

0.846 

0.852 

0.858 

6.430 

3.370 

2.580 

00.866.1 

0866.1 

0.866.1 

0.797.4 

0.817.5 

0.835.9 

0.835 

0.836 

0.859 

0.3057.4 

1.888.6 

1.569 

76.600 

80.300 

83.200 

5.120 

2.870 

2.160 

5.210 

2.900 

2.170 

83.800 

84.200 

84.900 

5245 

2905 

2164.5 

5.04 

2.80 

2.09 

5.75 

3.19 

2.36 

LG 

AG 

100 

200 

300 

BG 

100 

200 

300 

CG 

100 

200 

300 

 

LLG 

ABG 

100 

200 

300 

BCG 

100 

200 

300 

CAG 

100 

200 

300 

LL 

AB 

100 

200 

300 

BC 

100 

200 

300 

CA 

100 

200 

300 

LLLG 

  

ABCG 

  

100 

200 

300 

 289 

 290 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0148.v1

Peer-reviewed version available at Energies 2020, 13, 243; doi:10.3390/en13010243

https://doi.org/10.20944/preprints201910.0148.v1
https://doi.org/10.3390/en13010243


 14 of 22 

 

 291 

Table 5. Energy based feature values for classification  292 

   Without STATCOM With STATCOM 

Condition 
Type of 

fault 

Location 

Km 

E- A 

(×108) 

E-B 

(×108) 

E- C 

(×108)  

E-A 

 (×108) 

E- B 

(×108)  

E-C 

(×108) 

Normal 
No 

fault 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

100 

200 

300 

1.25 

1.25 

1.25 

96.4 

25.9 

12 

1.64 

1.44 

1.5 

1.39 

1.33 

1.18 

3.01.0 

87.1 

41.8 

1.36 

1.2 

1.18 

318 

94.6 

41.6 

255 

74.7 

35.6 

1.24 

1.24 

1.24 

308 

91.5 

40.50 

42.5 

125 

57.5 

0.49 

0.49 

0.49 

0.56 

0.56 

0.51 

57.1 

15.3 

7.08 

0.76 

0.6 

0.63 

223 

65 

30.4 

184 

54.6 

25 

0.73 

0.51 

0.52 

254 

73.9 

35 

174 

53 

23.5 

0.5 

0.49 

0.49 

241 

70.5 

33.3 

0.4 

0.4 

0.4 

0.51 

0.51 

0.46 

0.51 

0.41 

0.37 

72.9 

18.8 

8.47 

0.71 

0.5 

0.45 

179 

53.4 

22.7 

313 

93 

41.2 

4.05 

0.4 

0.4 

169 

50.2 

22.3 

312 

93.4 

41.3 

315 

94.7 

40.7 

22.7 

22.7 

22.7 

128 

56.5 

42.7 

21.3 

25.8 

22.3 

21.7 

21.2 

22.1 

307 

105 

63.8 

20.8 

21.3 

22.1 

326 

106 

66.9 

265 

92.6 

56.8 

22.4 

22.4 

22.4 

314 

103 

65.5 

414 

1.30E+10 

76.6 

6.26 

6.26 

6.26 

5.36 

5.62 

5.85 

70.7 

27.5 

18.8 

5.74 

6.22 

6.11 

214 

64 

34.3 

185 

58.1 

32.80 

5.17 

5.09 

5.53 

234 

68.3 

35.8 

170 

49.5 

30.2 

5.8 

5.87 

5.98 

236 

71.9 

38.6 

13.1 

13.1 

13.1 

11.4 

12.1 

12.3 

13.2 

12.3 

13 

97.1 

38.6 

28.8 

11.3 

12.8 

13.6 

200 

670 

44.4 

305 

94.9 

56.5 

12.8 

12.9 

12.9 

18.6 

62.4 

40.8 

300 

91.7 

54.3 

315 

97 

5.91 

LG 

AG 

BG 

CG 

LLG 

ABG 

BCG 

CAG 

LL 

AB 

BC 

CA 

LLLG 

  

ABCG 
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 296 

 297 

Figure 13. DWT analysis of Phase A during LG fault with compensation 298 

Table 6. Confusion Matrix for Classification 299 

Classes C1 C2 C3 C4 C5 System State 

C1 

C2 

C3 

C4 

C5 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

Normal 

LG 

LLG 

LL 

LLLG 

 300 

Case-1: In this study, the transmission fault classification and identification in a transmission 301 
network is done without STATCOM. Table 6 presents the confusion matrix for classification of 302 
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different state of the system such as Normal, LG, LLG, LL and LLLG fault. Here, the fault in the 303 
system is classified using the SD values obtained by the DWT analysis for different types of fault 304 
occurring at the distance of 100 km, 200km and 300 km of an overhead transmission line is given in 305 
Table 4. Then these data’s are used for training the neural network and the classification results 306 
obtained are presented in the Table 7. The result shows that the proposed Naive Bayes (NB) method 307 
of classifier is more accurate compared to the MLP and Bayes method of classification. Moreover, the 308 
% misclassification rate of the proposed method is 0%, whereas the rate is 20% and 80 % for MLP 309 
and Bayes approach of classification respectively. The MLP method of classification fails to detect 310 
the LLG type of fault and on the other hand, the Bayes method fails to classify all type of fault and 311 
whose performance is inferior compared to other methods. It is inferred from the Fig.. and Table.. 312 
that the NB classifier is the mostsignificant method, to classify the various type of fault in the system 313 
compared to all other methods. 314 

Case-2: Here in this study, the classification and identification offault is done without STATCOM as 315 
like case-1. But in this case, instead of SD values the energy values obtained from DWT analysis for 316 
different types of faults occurring at various distances of 100 km, 200 km and 300 km has been taken 317 
for the training the network and which is illustrated in the Table5. The results obtained reveals that 318 
NB method of classification is better than the other two methods such as MLP and Bayes classifiers. 319 
Figure 14 represents the % accuracy rate of the proposed method is 100%, whereas is 60 % and 20 % 320 
for MLP and Bayes network respectively. The MLP method of classification fails to detect LG and 321 
LLG faults whilst Bayes classifier unable to detect all type of faults. It is seen that the propounded 322 
NB has 0% misclassification rate, the MLP has 40% and Bayes method has 80% of misclassification 323 
rate as depicted in Table 7. 324 

Case-3: This case is similar to case-1, but in this study the STATCOM is connected at the midpoint of 325 
the transmission line and the occurrence of faults at different location such as 100 km, 200 km and 326 
300 km are studied. The SD values obtained are used to train the network as like the case-1 and the 327 
results for classification are shown in Table 4. It is observed from the results that the proposed NB 328 
classifier performance is more predominant in terms of accuracy and % misclassification rate 329 
compared to the MLP and Bayes method of classification and is shown in Figure 14. The Bayes 330 
method fails to identify all type of fault expect when the system is operating in normal condition and 331 
MLP method fails to detect the LLG type of fault as like case-1. It is inferred from the results, both 332 
the MLP and Bayes classifier performance is same for transmission line involving with and without 333 
STATCOM and the proffered NB method classifier outperforms compared to these approaches. 334 

Table7.ClassifiersAccuracy andMisclassification Rate 335 

 Accuracy Rate Misclassification Rate 

 

Cases 

 

MLP 

 

Bayes 

 

Naïve 

Bayes 

MLP Bayes Naive Bayes 

% Rate  Type of 

faul 

Rate Type of 

Fault 

Rate Type of 

Fault 

Case-1 

Case-2 

Case-3 

Case-4 

80 

60 

80 

100 

20 

20 

20 

20 

100 

100 

100 

100 

2 

40 

20 

0 

C3 

C2-C3 

C3 

0 

80 

80 

80 

80 

C2-C5 

C2-C5 

C2-C5 

C2-C5 

0 

0 

0 

0 

0 

0 

0 

0 
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Case-4: This case is analogous to case-2 with the incorporation of STATCOM connected at the 336 
midpoint of the transmission line for supporting the reactive power and to improve the voltage 337 
profile of the system performance. In this context, the energy values obtained from DWT analysis for 338 
different types of faults at various distances of 100 km, 200 km and 300 km has been used for training 339 
the network and which is portrayed in Table 5. Figure 14 represents the proposed NB classifier is 340 
very efficient compared to the MLP and Bayes method. The % accuracy of NB and MLP are 100% 341 
MLP, butthe Bayes method is only 20 % accurate. On the flipside, the % misclassification rate is 0% 342 
for NB and MLP method and it is 80% for Bayes approach. It is deduced from the results, the 343 
proffered NB classifier gives accurate results for all cases and its performance is significantly 344 
predominant than the MLP and Bayes method as depicted in Table 7. 345 

 346 

Figure 14. Comparision of Accuracy rate of classifiers 347 

5.1 Performance Evaluation of Classifiers 348 

The robustness of the classifier are evaluated by various performance indices such as Kappa 349 
Statistics (KS), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Percentage Relative 350 
Absolute Error (% MAE) and Percentage Root Relative Square Error (%RRSE) for classifiers namely 351 
Bayes, MLP and NB approach. Firstly, the KS index for various classifier is presented in Table 8 and 352 
Figure 15. The result shows that the indices is ‘1’ for the proposed NB classifier for all the cases and 353 
the values lies in the range of 0.5-1 for MLP classifier (for various cases) and is almost ‘0’ for Bayes 354 
method of classification. It is inferred from the KS index, the proffered method of classifier 355 
outperforms for various cases compared to the other classifiers. Secondly, the MAE is less than 0.1 356 
for the proposed classifier whereas the value lies in the range of 0.1-0.3 for MLP method and it is 357 
greater than 0.3 for Bayes approach under various cases. Moreover, the RMSE is also less than 0.1 for 358 
the NB method and the value lies in the range of 0.2-0.4 for MLP and it is almost 0.4 for Bayes 359 
classifier for case-1 to case-4. It is seen that the indices such as MAE and RMSE are comparatively 360 
very low as shown in Figsures 16 and 17 for the intended NB method of classifier than other 361 
approaches presented, proves that the proposed classifier is more robust and efficient. 362 

Lastly, the % RAE and %RRSE is proven to be significantly less for the propounded NB method 363 
compared to MLP and Bayes classifier as depicted in Table 9 and Figure 18. It is observed the results 364 
outperforms for all the cases by the NB approach rather than the MLP and Bayes classifier method. 365 

 366 

0

20

40

60

80

100

Case 1 Case2 Case3 Case4

Accuracy Rate

MLP Bayes Navie Bayes
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Tabl 8. Performance comparison of various Classifiers 367 

 368 

 369 

Figure 15. Kappa Statics comparison of various classifiers 370 

 371 

Figure 16. MAE comparison of various classifiers 372 

MLP

Bayes

Navie Bayes

0

0.2

0.4

0.6

0.8

1

Case 1 Case2 Case3 Case4

Kappa Statistics

MLP Bayes Navie Bayes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Case 1 Case2 Case3 Case4

MAE

MLP Bayes Navie Bayes

 

Kappa Statistics MAE RMSE 

MLP Bayes 

Naive 

Bayes MLP Bayes 

Naive 

Bayes MLP Bayes 

Naive 

Bayes 

Case-1 

Case-2 

Case-3 

Case-4 

0.75 

0.5 

0.75 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0.1596 

0.2012 

0.172 

0.1551 

0.32 

0.32 

0.32 

0.32 

0.0251 

0 

0.033 

0 

0.2369 

0.2929 

0.248 

0.2276 

0.4 

0.4 

0.4 

0.4 

0.0888 

0 

0.0979 

0 
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 373 

Figure 17. RMSE comparison of various classifiers 374 

 375 

 376 

Figure 18. %RAE comparison of various classifiers 377 

 378 

Table 9. %RAE and %RRSE comparison of various classifiers 379 

 Cases 

%RAE %RRSE 

MLP Bayes Naive Bayes MLP Bayes Naive Bayes 

Case-1 

Case-2 

Case-3 

Case-4 

49.89 

62.8627 

53.7439 

48.4605 

100 

100 

100 

100 

7.85 

0 

10.2998 

0 

59.23 

73.2233 

62.0026 

56.8981 

100 

100 

100 

100 

22.21 

0 

24.46 

0 

 380 
 381 
 382 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Case 1 Case2 Case3 Case4

RMSE

MLP Bayes Navie Bayes

0

20

40

60

80

100

120

MLP Bayes Navie 

Bayes

MLP Bayes Navie 

Bayes

%RAE %RRSE

Relative Error

Case 1 Case2 Case3 Case4
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6. Conclusion 383 

    This paper presents a novel probabilistic based Navie Bayes approach to locate the fault in shunt 384 
STATCOM compensated transmission line. In this work, a high voltage power system model of 400 385 
kV has been simulated using MATLAB/Simulink and various faults such as LG, LL, DLG and LLLG 386 
are applied. The current waveform obtained under different cases of normal and fault cases are 387 
analyzed using DWT to extract the features for locating the type of fault. The fault current signal are 388 
sampled with different band of frequencies that depicts 1st, 2nd, 3rd, 4th, 5th, 6th , 7th and 8th level 389 
of detailed coefficient and its approximation coefficient at 8th level. The SD and Energy values have 390 
been obtained for different faults with various fault resistance. The obtained features are used to 391 
train the classifiers to classify the type of fault. The results obtained showed that the proposed NB 392 
classifier outperforms with 100% accuracy rate in the case of with and without STATCOM. On the 393 
flipside, the MLP method gives an average accuracy rate of 80% with Bayes of 20%. It also inferred 394 
from the performance indices such as kappa statistics, MAE, %RAE and %RRSE, the proffered NB 395 
approach gives the predominant result compared to the MLP and Bayes classifier method. 396 
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