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13 Abstract: This paper presents the methodology to detect and identify the type of fault that occurs in
14 shunt connected static synchronous compensator (STATCOM) transmission line using a
15 combination of Discrete Wavelet Transform (DWT) and Naive Bayes classifier. To study this, the
16 network model is designed using Mat-lab/Simulink. The different faults such as Line to Ground
17 (LG), Line to Line (LL), Double Line to Ground (LLG) and three-phase (LLLG) fault are applied at
18 different zones of system with and without STATCOM considering the effect of varying fault
19 resistance. The three-phase fault current waveforms obtained are decomposed into several levels
20 using daubechies mother wavelet of db4 to extract the features such as standard deviation and
21 Energy values. The extracted features are used to train the classifiers such as Multi-Layer
22 Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier to classify the type of
23 fault that occurs in the system. The results reveal that the proposed NB classifier outperforms in
24 terms of accuracy rate, misclassification rate, kappa statistics, mean absolute error (MAE), root
25 mean square error (RMSE), relative absolute error (RAE) and root relative square error (RRSE) than
26 MLP and Bayes classifier.

27 Keywords: static synchronous compensator (STATCOM), Discrete Wavelet Transform (DWT),
28 Multi-Layer Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier.
29

30 1.Introduction

31 Restructuring and deregulation of power system with increase in energy demand,
32  environmental hurdles, economic factors and right of way forces the utilities to use the transmission
33  lines to its thermal limit. Also, some developed countries that have surplus power generation
34 supplies the load demand through large number of distribution companies leading to transmission
35  line overloading. On the other hand, the connection of renewable energies into the grid causes
36  unbalance in the system voltage. The utilities resolve all these problems economically by enhancing
37  the thermal stability of the line through placement of flexible AC transmission systems (FACTS)
38  device into the system [1]. The shunt compensation device like static compensator (STATCOM) is
39  widely used FACTS device for increasing the transmission line capability of the system. STATCOM
40  is a parallel connected device which controls one or more AC system parameters such as system
41  stability, power quality and voltage control via injection and absorption of reactive power from the
42  system by adjusting its control action [2-4]. The reliability of power system operation is affected by
43 occurrence of fault in transmission line leading to equipment damage. In order to ensure the secure
44 and safe operation of the power system network, it is essential to implement an effective protection
45  scheme within shortest time span to avoid the cascading failure of the system. This is achieved
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46  through an advanced fault classification technique that supports an effective, reliable, fast and
47  secured way of relaying operation in the protective system [4]. A numerous study were made for
48  location of fault in transmission lines in the literature, only some of the study involves effect of
49  FACTS compensated line and other fails to consider their effects [5-10]. The problem of over-reach
50  and under reach conditions due to the injection and absorption of reactive power by STATCOM into
91  the system leads to false tripping of relay [11]. Therefore, identification of fault in the presence of
52 FACTS device is a crucial issue in power system protection.

53 Distance relay based transmission line protection schemes were adapted for secure and reliable
54 operation of system [12-14]. But, the presence of series/shunt FACTS device leads to mal-operation
95  of conventional relay to detect and locate the fault [15, 16]. Moreover, the fault signal is
56  non-stationary in nature and the analysis of such signal is a cumbersome process. Therefore,
57  researches proposed the numerical relays based on signal processing techniques namely Fourier
58  Transform (FT), Fast FT, discrete FT and short time FT that are extensively used in the initial stage
59  for analysis of fault signal. It is observed through rigorous analysis that FTs are not suitable for
60 locating time-varying fault transient signal and also the information on time of occurrence of
61 transients cannot be obtained. To cater this limitation S-transform based fault location were used for
62  locating the time and frequency information of fault signal. But it involves large number of
63  mathematical computation and calculation time that results in degrading the performance of
64  numerical relay [17-20].

65 The aforementioned drawback are overcome by the time-frequency based discrete wavelet
66  transform (DWT) approach and is broadly used for classification and location of faults, power
67  quality mitigation problems such as sag and swell in the system [21]. One of the major issues with
68  DWT is selection of mother wavelets and many works in the literature on analysis of power system
69 transients claimed that Daubechies 4 (db4) is best suited for fault analysis [22]. Because of fast
70  filtering with less processing time makes the DWT analysis than other methods for extracting the
71 features to train the Artificial Intelligence (Al) or machine learning (ML) classifiers in the proposed
72 work. Also, numerous computational intelligence classifiers were proposed for location of fault in
73 the system such as multilayer perceptron (MLP) neural network, support vector machine (SVM),
74 fuzzy logic, particle swarm optimization(PSO) and so on. The ANN and SVM classifiers consume
75  large time for training and the efficacy of fuzzy depends on rules framed by the expertise [6, 7, 13 23,
76 24.]. Also, many different methods of classifier are proposed in the literature ranging from heuristic
77 rule of thumb to formal mathematics [24]. Despite of all, the proposed work uses a simple, efficient
78  and sensitive type of probabilistic neural network based Naive Bayes (NB) approach for selection of
79  features to classify the type of fault in the system.

80 The remainder of the paper is organized as follows: Section 2 deals with the system model
81  studied and section 3 portrays the proposed method of fault classifications with detailed explanation
82  about extraction of features using DWT analysis. Section 4 describes the MLP neural network and
83  probabilistic network based classifiers such as Bayes and NB method to classify the fault occurs in
84  the system. Section 5 presents the results and discussion of proposed work of fault classification with
85  conclusion and future work made in the last part of the paper.

86 2. System Model Studied

87 To validate the proposed method of fault detection scheme, it is necessary to acquire the field
88  data from the real time power system network. As the real time data acquisition is quite tedious and
89  cumbersome process. Therefore, the system under study for fault application considers a real time
90 Libya power system data for simulation and the possibility of occurrence of numerous faults are
91  simulated using Mat lab/Simulink. Figure 1 depicts the shunt STATCOM compensated power
92  system model and the parameters for simulation are as follows: Generator rating — 300 MVA, 400kV,
93  60Hz and line length of 300 km with each zones (Z1, Z2 and Z3) of line is assumed to be 100 km and
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94 load rating of 260 MVA. The detailed explanation of simulation parameters and STATCOM are
95  presented in [11]. The dataset for training of neural networks (NN) are obtained by introducing the
96 various fault considering effect of fault resistance and with/without STATCOM at different locations
97  like 100km, 200km and 300 km of mid-point compensated power system.
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99 Figure 1. Libya Power System Model

100  The power system model is protected from fault by different zones of protection scheme Z1, Z2 and
101  Z3. Thus, the relay responds to various zones of protection and the trip signal is obtained from the
102  intelligence relaying scheme developed using a NB classifier. In the proposed work, the percentage
103  of distance protection relay by different zones such as Z1, Z2 and Z3 are assumed to be 80%, 120%
104  and 220% of total line length respectively.

105  2.1. Proposed Method of Fault Detection

106  This section presents the steps for detection of fault in power system using NB method of
107  classification. The detailed steps is illustrated in Figure 2 and also presented as follows:

108  Step-1 Data Acquisition - The shunt compensated power system model is simulated using Mat
109  lab/Simulink under various cases of disturbances and the current signal is obtained for extracting the
110  features to train the NN.

111  Step-2 Feature Extraction — The data for training are obtained by sampling the current signal using
112 advanced signal processing techniques like DWT and the features such as standard deviation (SD)
113 and energy values are obtained for the system with and without shunt compensation to study the
114 effect of STATCOM compensation.

115  Step-3 Training Phase — In this phase, the obtained SD and energy values are acquired for different
116  location of faults and various values of fault resistance.

117  Step-4 Fault detection — Here, the trained NN is tested for occurrence of different faults in the system
118  and this process repeats for every cycle of operation.

119
120
121
122

123
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126 Figure 2. Proposed method of fault classification
127 3. Feature Extraction using Discrete Wavelet Transform
128 Wavelet transform (WT) have been widely used for analyzing the transient signal in ample

129  number of applications like mechanical vibrations, image processing and also electrical power
130  system fault detection. As wavelet analysis overcome the limitations of FT by localizing the fault
131  signal both in time and frequency domains. As Fourier analysis, does not provide information about
132 the time of occurrence of fault/disturbance in non-stationary current/voltage waveform of power
133 system. In general WT exists in two forms: continuous and discrete method. The later is extensively
134  used in the literature, due to its resolution and its applicability in real time. The detailed explanation
135  onapplication of WT in power system is discussed in [21,22].

136 DWT is a significant tool that analyzes the time varying, transient signal like faults by
137  decomposing it into an approximation (A) and detailed coefficients (D) through successive filtering
138  of high-pass and low-pass signal as depicted in Figure 3.

139 [ D8 |
140 Figure 3. DWT Decomposition at eight levels
) p g

141  As the number of decomposition level increases, the DC noise present in the fault signal can be
142 suppressed. In this work, an mother wavelet of Db4 with 8-level is used to extract the features by
143 sampling the current signal of one cycle with the sampling frequency of 20 kHz and 333 samples per
144 cycle of current waveform. Among various mother wavelets exist in literature, Daubechies (Db4)
145  have been broadly used in power system fault locations because of its ability to locate the fast
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146  transients in low frequency sinusoidal signal. The bandwidth of each levels of decomposition is
147  presented in Table 1.

Table 1. Detailed Coefficient Levels Frequency Band kHz

Detailed Coefficient Levels Frequency Band in kHz
D1 20 to10
D2 10 to5
D3 5t02.5
D4 25t01.25
D5 1.25 to 0.625
D6 0.625 to 0.3125
D7 0.3125to 0.15625
D8 0.15625 to 0.0781

148 3.1 Feature Extractions

149  The main aim of feature extraction is to provide the significant information for the classifier to
150  classify the type of event through the features calculated using standard deviation (SD) and energy
151  values. The detailed information of this is discussed as follows,

152  3.1.1 Standard Deviation (SD)

153  The SD is statistical measure of how much variation or dispersion that exists in the original signal
154  andis defined in terms of wavelet coefficient as,

155 SD = \]{Z?=1(A:+Di)2 _ (Z?:l(D8+Di)>Z} )

n

156  where n represents the number of data samples.
157  3.1.2 Energy Value (E)

158  To test the effectiveness of the proposed classifier, this work uses another approach to calculate
159  features based on energy of the decomposed current signal. The spectral energy of the decomposed
160  signal can be obtained using Equation (2),

161 E =YK, [ID;|?] + |Ag|?
162 (2

163  where k is the number of detailed coefficient levels. To calculate the features, a moving window of
164  one cycle of current wavelet coefficient is passed and the features are extracted for training the
165  classifiers [26].

166 4. Fault Classifiers

167 This section presents Bayesian based fault classifiers to identify and classify the type of fault that
168  occurs in the shunt compensated STATCOM devices. The comparative study is made with the
169  conventional MLP neural network for the system with and without STATCOM. Here in this work,
170  each fault that occurs in the system is considered as classes and the same is used for training neural
171 network. The assumed classes for classifications are: Ci-Normal, C2-LG fault, C3-LL fault, C+-LLG
172  fault and Cs-LLLG fault. Moreover, the effectiveness of the method is also tested for occurrence of
173 fault at different location of transmission lines.
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174
175 4.1 Multi-Layer Perceptron (MLP) Network
176 Multi-Layer Perceptron (MLP) is the most widely used neural network for identification and

177  detection type of fault in power system in the literature. MLP is a supervised feed forward network,
178  as it requires learning the desired output to be classified. Figure 4 represents the MLP network that
179 consists of input (ul, u2 and u3), hidden and output layer.

w]
u, >
y
u, —» > >
Output
Layer
u, >
Input Hidden
Layer Layer
180 Y Y
181 Figure 4. MLP neural network
182 The output [y] of the network is weighted sum of input neurons and is defined as,
183  y; =W, + Xjepreacy Wija;) 3)
184 where aj represents the output of previous layer neuron, Wi is the weight between i and j*» neuron and Wio is

185 input bias of neuron. In this work, the MLP network is trained using back propagation method and the detailed
186 explanation is presented in [27, 28].

187 4.2 Bayes and Naive Bayes Classifiers

188 The conventional MLP neural network minimizes the error of the system by adjusting the
189  weight of the network through small penalty factor that leads to overfitting. This is avoided for any
190  complex network through a principle approach called Bayes theorem by the Bayesian neural
191  network (BNN). BNN is invented by Judea Pearl in 1980s, a statistical based supervised classifier
192  that determines the variable to be classified in more relevant to the class by evaluating the
193  probability of how likely its occurrence in that class with the prior information that takes the form
194  prior probability density function [29]. Thus the Bayes theorem can be defined as

Class prior probabilityxlikelihood

195  Posterior probability =
196 @)

Predictor prior probability

197  The simplified form can be expressed as,

P(C)P(L1,L2,...Ly| C).

198  P(C|Ly, Ly, ..., Ly) = L ) (5)

199  P(C|L) = % (6)

200
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201  Where P(C) is the class probability and P(L|C) represents the likelihood of datasets {L1, L2, ...Ls} of
202  variables in class C=[C1, Cz,...Cs]. The classification problem can be defined as,
__ poP(L|C)
203 arg [max [P(ClL) =0 ”
204 ()

205  Here the attributed P(L) doesn’t vary with the class and can be assumed as constant and the above
206  equation is approximated as,

207  arg[max[P(C|L) = P(C)P(L|C)]]
208  (8)

209  The computation burden of BNN is increases as the number of likelihood term in the class raises
210 exponentially with the attributes L= {Li, L2, ... Ln}. To overcome this limitation, all features in a class
211  are assumed to be independent that results in the Naive Bayes (NB) classifier that reduces the
212  number of parameter to be estimated from 2(2n-1) to 2n [25, 30, 31]. NB is a linear classifier that
213  divides the input data set into training and prediction step for identifying the type of class using
214  Bayes' theorem. In training phase, the classifier determines the probability distribution pertaining to
215  the features of any given class is independent. During the prediction phase, classifier estimates the
216  posterior probability of test sample data belonging to respective class. Then, the method classifies
217  the samples based on maximum likelihood of posterior probability. NB classifier has been used
218  widely because of its simplicity, easy to implement accuracy and sound theoretical basis that
219  guarantees the optimized results. The probability function defined in (8), can be rewritten with the
220  assumption of independent feature as,

P(O)P(L1|C)P(L2| €)..P(Ly| ) ©)
P(L)

221  P(C|Ly, Ly ..., Ly) =

223 Figure 5. NB classifier of proposed work

222

224 4.2.1 Performance Indices of classifier

225 Kappa Statistic (K) is the statistical measure of classifiers that compute the constancy among
226  the predicted type of fault and actual type of fault and is defined as follows,

227 K = POF)-P(EF) (10)
(1—P(EF))

228  where P(OF) is the probability of observed fault, P(EF) is the probability of predicted type of fault.
229  Itranges between 0 and 1.
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230  Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) - MAE is the absolute mean of
231  error calculated between the predicted and observed value and is depicted as follows [21, 38, 39],

232 MAE = EZzCrro) (11)

233  RMSE is the square root of mean of variance, between the predicted and observed type of fault
234 detected by the classifiers and is given by,

235  RMSE = /W“Enﬂ (12)

236  where Er is the predicted type of fault and Eo is the expected type of fault.
237
238 5. Results and Discussion

239 This section describes the simulation of proposed probabilistic NB based classifier to classify the
240  fault and location of fault in transmission line. The effect of probabilistic classifier is studied for the
241  transmission line with and without compensations. The simulation is carried out for power system
242  model depicted in Figure 1 and various plausible faults such as LG, LL, LLG and LLLG fault in the
243  system considering the variation in fault resistances. The simulation is carried out for time period of
244 one cycle and the fault is applied during 0.1 to 0.12's. Figure 6 and 7 depicts the three phase current
245  waveform of the system without and with STATCOM respectively. The minimum and maximum of
246  peak magnitude of three phase current signal are captured for the system with and without
247  compensation that are illustrated in Table 2 and 3. It is seen the magnitude of current signal increases
248  for the system with STATCOM device and the same is presented in the form waveform for case of
249 LG fault in the system with and without STATCOM are portrayed in Figures 10 and 11 respectively.
250  Then, the current signal obtained for various cases of fault are analyzed using db4 mother wavelet of
251  DWT analysis with eight level coefficients to extract the features such as SD and energy values for
252  training the classifiers. Figures 8 and 9 represent the DWT analysis of current waveform under
253  normal operation of the system without and with STATCOM respectively. In general, the
254 coefficients are high for the compensated system compare to the uncompensated system. Figures 12
255  and 13 portray the DWT analysis of LG fault current waveform considering without and with
256  STATCOM respectively. Also, it is observed that the coefficients of detailed coefficient is low when
257  fault occurs after the location of STATCOM (at 150 km) device. This effect is due to the STATCOM,
258  the system fault current reduces as the distance of fault increase from, the fault location point. Table
259 4 and 5 represents the extracted features (SD and energy values) for training the classifiers. The
260  trained classifiers are tested with the test data and the type of fault that occurs in the system is
261  detected by the classifiers. The performance of classifier for classification of various faults in the
262  system for cases with and without STATCOM using the features of SD and energy values are
263  presented as different cases as discussed in forthcoming subsections.

Mo fEult without STATDOM

264
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Figure 6. Three phase current waveform under normal condition without STATCOM compensation

Table 2. Normal and LG faults at Different Locations without STATCOM compensation

Without STATCOM
Fault Type of L. .
Distance fault Minimum current Maximum current
Ia (103) I'b(10%) Ic(10%) Ta(10%) Ib(10°) Ic(10%)
No fault -0.25 -0.25 -0.25 0.25 0.25 0.25
LG -2.57 -0.34 -0.46 6.95 0.28 0.25
100 km LL -4.11 -12.5 -0.25 12.6 4.05 0.25
LLG -4.19 -12 -0.71 1.34 4.3 0.65
LLLG -3.88 -12 -12.4 1.52 6.76 4.3
LG -1.23 -0.27 -0.39 3.67 0.19 0.18
200 km LL -2.19 -7.01 -0.25 7.06 2.16 0.25
LLG -2.1 -6.78 -0.45 7.56 2.34 0.38
LLLG -1.97 -7.06 -7.16 8.32 3.78 2.82
LG -0.78 -0.294 -0.37 2.49 0.185 0.19
300 km LL -1560 -4.78 -0.25 4.93 1.47 0.25
LLG -1.51 -4.85 -0.51 5.08 1.62 0.37
LLLG -1.31 -5.17 -4.97 5.72 2.62 2.16
Table 3. Normal and SLG faults at Different Locations with STATCOM compensation
Fault Type of With STATCOM
Distance fault Minimum current Maximum current
Ta(103) Ib(10%) Ic(109) I'a(10%) I'b (103) Ic(10%)
No f 1.11 -1.24 -1.32 14 1.2 1.11
LG 3.36 -1.04 1.17 6.95 1.23 0.8
100 km LL -4.57 -11.7 -1.24 11.8 4.58 1.07
LLG -4.74 -114 -1.3 1.2.6 4.82 1.18
LLLG -4.57 -11.5 -1.1.9 143 7.02 491
LG -2.2 -1.12 -1.23 3.97 1.23 1.08
200 km LL -2.8 -6.3 -1.25 6.38 2.71 1.07
LLG -2.85 -6.25 -1.36 6.76 2.99 1.09
LLLG -2.72 -6.47 -6.46 4.49 4.06 3.3
LG -1.85 -1.19 -1.28 3.18 1.22 0.84
300 km LL -2.22 -4.56 -1.27 4.61 222 1.07
LLG -2.33 -4.61 -1.38 4.88 241 1.17
LLLG -2.22 -4.84 -4.79 5.32 3.24 2.68
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Figure 8. DWT analysis of Phase A under normal condition without compensation
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287
288 Table 4. SD based feature values for classification
Without STATCOM With STATCOM
Typeof Location SD-A SD-B SD-C SD- A SD-B SD-C
Condition fault km (x103) (x103) (x109) (x103) (x109) (x109)
100 0.877
No 0.177 0.177.1 0.177 0.875 00.866.1
Normal 200 0.877
fault 0.177 0.177.1 0.177 0.875 0866.1
300 0.877
0.177 0.177.1 .0177 0.875.1 0.866.1
100 0.800
3.087 0.166 0.204 3.394 0.797.4
AG 200 0.825
1.582 0.154 0.196 2.046 0.817.5
300 0.851
1.058 0.145 0.190 1.674.7 0.835.9
100 3.49
0.300 3.170 0.267 0.793.1 0.835
LG BG 200 2.11
0.245 1.630 0.198 0.821 0.836
300 1.72
0.238 1.100 0.196 0.838 0.859
100 0.811
0.263 299 2.66 0.854 0.3057.4
CG 200 0.831
0.193 24.30 1.37 0.852 1.888.6
300 0.849
0.193 23.80 92.1 0.874 1.569
100 5.690
5.865 5.65 28.2 5.810 76.600
ABG 200 3.140
3.158 3.03 20.6 3.188 80.300
300 2.330
2.140 2.05 20.5 2.357 83.200
100 5.67
0.188 5.65 4,99 0.755 5.120
BCG 200 3.14
LLG 300 0.170 3.06 2.71 0.799 2.870
0.161 2.09 1.84 0.834 2.160
100 2.35
5.108 28.70 5.15 5.247 5.210
CAG 200 0.759
2.749 20.30 2.79 2.932 2.900
300 0.794
1.842 20.20 1.87 2.202 2.170
100 0.833
5.723 5.67 17.7 5.633 83.800
AB 200 5.67
3097 3.04 17.7 3.085 84.200
300 3.11
2105.6 2.05 17.70 2.279 84.900
100 2.30
177.3 5255.5 5.691 0.851 5245
LL BC 200 5.281
177.3 2868.9 2.832 0.856 2905
300 2.944
177.3 1964 1.929 0.860 2164.5
100 2.204
4998 1.77 5.06 5.112 5.04
CA 200 0.846
2693.5 1.77 2.75 2.850 2.80
300 0.852
1800.5 1.77 1.86 2.131 0.858 2.09
100 6254 6.48 5.69 6.224 5.75
LLLG ABCG 6.430
200 3368.6 3.51 3.10 3.397 3.370 3.19
300 2263.6 2.39 2.10 2.493 2.36
2.580
289

290
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291
292 Table 5. Energy based feature values for classification
Without STATCOM With STATCOM
. Type of Location E-A E-B E-C E-A E-B E-C
Condition
fault Km (x108)  (x10%) (x108) (x108) (x10%)  (x10%)
No 100 1.25 0.49 0.4 22.7 6.26 13.1
Normal faut 200 1.25 0.49 0.4 22.7 6.26 13.1
300 1.25 0.49 0.4 22.7 6.26 13.1
100 96.4 0.56 0.51 128 5.36 114
AG 200 25.9 0.56 0.51 56.5 5.62 12.1
300 12 0.51 0.46 427 5.85 123
- G 100 1.64 57.1 0.51 21.3 70.7 132
200 1.44 153 0.41 25.8 27.5 123
300 15 7.08 0.37 22.3 18.8 13
e 100 1.39 0.76 72.9 21.7 5.74 97.1
200 133 0.6 188 21.2 6.22 38.6
300 118 0.63 8.47 22.1 6.11 28.8
ABG 100 3.01.0 223 0.71 307 214 113
200 87.1 65 05 105 64 12.8
300 41.8 30.4 0.45 63.8 34.3 13.6
LLG BCG 100 1.36 184 179 20.8 185 200
200 12 54.6 53.4 21.3 58.1 670
CAG 300 1.18 25 22.7 22.1 32.80 444
100 318 0.73 313 326 5.17 305
200 94.6 0.51 93 106 5.09 94.9
AB 300 41.6 0.52 41.2 66.9 5.53 56.5
100 255 254 4.05 265 234 12.8
200 74.7 73.9 0.4 92.6 68.3 12.9
LL BC 300 35.6 35 0.4 56.8 35.8 12.9
100 1.24 174 169 224 170 18.6
200 1.24 53 50.2 224 495 62.4
CA 300 1.24 23.5 22.3 224 30.2 40.8
100 308 05 312 314 5.8 300
200 91,5 0.49 93.4 103 5.87 91.7
LLLG  ABCG 300 40.50 0.49 41.3 65.5 5.98 54.3
100 425 241 315 414 236 315
200 125 70.5 947  130E+10 719 97
300 57.5 33.3 40.7 76.6 38.6 5.91
293
294

295
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297
298 Figure 13. DWT analysis of Phase A during LG fault with compensation
299 Table 6. Confusion Matrix for Classification
Classes C1 C2 C3 C4 C5 System State
C1 1 0 0 0 0 Normal
2 0 1 0 0 0 LG
C3 0 0 1 0 0 LLG
C4 0 0 0 1 0 LL
c5 0 0 0 0 1 LLLG
300

301 Case-1: In this study, the transmission fault classification and identification in a transmission
302  network is done without STATCOM. Table 6 presents the confusion matrix for classification of
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different state of the system such as Normal, LG, LLG, LL and LLLG fault. Here, the fault in the
system is classified using the SD values obtained by the DWT analysis for different types of fault
occurring at the distance of 100 km, 200km and 300 km of an overhead transmission line is given in
Table 4. Then these data’s are used for training the neural network and the classification results
obtained are presented in the Table 7. The result shows that the proposed Naive Bayes (NB) method
of classifier is more accurate compared to the MLP and Bayes method of classification. Moreover, the
% misclassification rate of the proposed method is 0%, whereas the rate is 20% and 80 % for MLP
and Bayes approach of classification respectively. The MLP method of classification fails to detect
the LLG type of fault and on the other hand, the Bayes method fails to classify all type of fault and
whose performance is inferior compared to other methods. It is inferred from the Fig.. and Table..
that the NB classifier is the mostsignificant method, to classify the various type of fault in the system
compared to all other methods.

Case-2: Here in this study, the classification and identification offault is done without STATCOM as
like case-1. But in this case, instead of SD values the energy values obtained from DWT analysis for
different types of faults occurring at various distances of 100 km, 200 km and 300 km has been taken
for the training the network and which is illustrated in the Table5. The results obtained reveals that
NB method of classification is better than the other two methods such as MLP and Bayes classifiers.
Figure 14 represents the % accuracy rate of the proposed method is 100%, whereas is 60 % and 20 %
for MLP and Bayes network respectively. The MLP method of classification fails to detect LG and
LLG faults whilst Bayes classifier unable to detect all type of faults. It is seen that the propounded
NB has 0% misclassification rate, the MLP has 40% and Bayes method has 80% of misclassification
rate as depicted in Table 7.

Case-3: This case is similar to case-1, but in this study the STATCOM is connected at the midpoint of
the transmission line and the occurrence of faults at different location such as 100 km, 200 km and
300 km are studied. The SD values obtained are used to train the network as like the case-1 and the
results for classification are shown in Table 4. It is observed from the results that the proposed NB
classifier performance is more predominant in terms of accuracy and % misclassification rate
compared to the MLP and Bayes method of classification and is shown in Figure 14. The Bayes
method fails to identify all type of fault expect when the system is operating in normal condition and
MLP method fails to detect the LLG type of fault as like case-1. It is inferred from the results, both
the MLP and Bayes classifier performance is same for transmission line involving with and without
STATCOM and the proffered NB method classifier outperforms compared to these approaches.

Table7.ClassifiersAccuracy andMisclassification Rate

d0i:10.20944/preprints201910.0148.v1

Accuracy Rate Misclassification Rate

MLP Bayes Naive Bayes

Cases MLP Bayes  Naive

Bayes % Rate  Type of Rate Type of Rate  Type of

faul Fault Fault
Case-1 80 20 100 2 C3 80 C2-C5 0 0
Case-2 60 20 100 40 C2-C3 80 C2-C5 0 0
Case-3 80 20 100 20 C3 80 C2-C5 0 0

Case-4 100 20 100 0 0 80 C2-C5 0 0
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336  Case-4: This case is analogous to case-2 with the incorporation of STATCOM connected at the
337  midpoint of the transmission line for supporting the reactive power and to improve the voltage
338  profile of the system performance. In this context, the energy values obtained from DWT analysis for
339  different types of faults at various distances of 100 km, 200 km and 300 km has been used for training
340  the network and which is portrayed in Table 5. Figure 14 represents the proposed NB classifier is
341  very efficient compared to the MLP and Bayes method. The % accuracy of NB and MLP are 100%
342  MLP, butthe Bayes method is only 20 % accurate. On the flipside, the % misclassification rate is 0%
343  for NB and MLP method and it is 80% for Bayes approach. It is deduced from the results, the
344  proffered NB classifier gives accurate results for all cases and its performance is significantly
345  predominant than the MLP and Bayes method as depicted in Table 7.

Accuracy Rate

100
80
60
40
20
0
Case 1 Case2 Case3 Case4
EMLP mBayes mNavie Bayes
346
347 Figure 14. Comparision of Accuracy rate of classifiers

348 5.1 Performance Evaluation of Classifiers

349 The robustness of the classifier are evaluated by various performance indices such as Kappa
350  Statistics (KS), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Percentage Relative
351  Absolute Error (% MAE) and Percentage Root Relative Square Error (%RRSE) for classifiers namely
352  Bayes, MLP and NB approach. Firstly, the KS index for various classifier is presented in Table 8 and
353  Figure 15. The result shows that the indices is ‘1" for the proposed NB classifier for all the cases and
354 the values lies in the range of 0.5-1 for MLP classifier (for various cases) and is almost ‘0" for Bayes
355  method of classification. It is inferred from the KS index, the proffered method of classifier
356  outperforms for various cases compared to the other classifiers. Secondly, the MAE is less than 0.1
357  for the proposed classifier whereas the value lies in the range of 0.1-0.3 for MLP method and it is
358  greater than 0.3 for Bayes approach under various cases. Moreover, the RMSE is also less than 0.1 for
359  the NB method and the value lies in the range of 0.2-0.4 for MLP and it is almost 0.4 for Bayes
360  classifier for case-1 to case-4. It is seen that the indices such as MAE and RMSE are comparatively
361  very low as shown in Figsures 16 and 17 for the intended NB method of classifier than other
362  approaches presented, proves that the proposed classifier is more robust and efficient.

363 Lastly, the % RAE and %RRSE is proven to be significantly less for the propounded NB method
364  compared to MLP and Bayes classifier as depicted in Table 9 and Figure 18. It is observed the results
365  outperforms for all the cases by the NB approach rather than the MLP and Bayes classifier method.

366
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367 Tabl 8. Performance comparison of various Classifiers
Kappa Statistics MAE RMSE
Naive Naive Naive
MLP Bayes Bayes MLP Bayes Bayes MLP Bayes Bayes
Case-1 075 0 1 0.1596 0.32 0.0251 0.2369 0.4  0.0888
Case-2 0.5 0 1 0.2012 0.32 0 0.2929 0.4 0
Case-3 075 0 1 0.172 0.32 0.033 0.248 0.4 0.0979
Case-4 1 0 1 0.1551 0.32 0 0.2276 0.4 0
368
Kappa Statistics
1
0.8
0.6 .
0.4 i Navie Bayes
0.2 ayes
MLP
0
Casel  Case2 Case3 Case4
EMLP mBayes = Navie Bayes
369
370 Figure 15. Kappa Statics comparison of various classifiers
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
Case 1 Case2 Case3 Case4
mMLP mBayes ® Navie Bayes
371
372 Figure 16. MAE comparison of various classifiers

d0i:10.20944/preprints201910.0148.v1
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RMSE

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Case 1 Case?2 Case3 Cased
m MLP mBayes = Navie Bayes

373
374 Figure 17. RMSE comparison of various classifiers
375
Relative Error
120
100
80
60 [ |
: ﬂ
20
0 || .
MLP Bayes Navie MLP Bayes Navie
Bayes Bayes
%RAE %RRSE
mCasel mCase2 mCase3 © Cased
376
377 Figure 18. %RAE comparison of various classifiers
378
379 Table 9. %RAE and %RRSE comparison of various classifiers
%RAE %RRSE
Cases  MLP Bayes Naive Bayes MLP Bayes Naive Bayes
Case-1 49.89 100 7.85 59.23 100 22.21
Case-2  62.8627 100 0 73.2233 100 0
Case-3  53.7439 100 10.2998 62.0026 100 24.46
Case-4  48.4605 100 0 56.8981 100 0
380
381

382
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383 6. Conclusion

384 This paper presents a novel probabilistic based Navie Bayes approach to locate the fault in shunt
385  STATCOM compensated transmission line. In this work, a high voltage power system model of 400
386  kV has been simulated using MATLAB/Simulink and various faults such as LG, LL, DLG and LLLG
387  are applied. The current waveform obtained under different cases of normal and fault cases are
388  analyzed using DWT to extract the features for locating the type of fault. The fault current signal are
389  sampled with different band of frequencies that depicts 1st, 2nd, 3rd, 4th, 5th, 6th , 7th and 8th level
390  of detailed coefficient and its approximation coefficient at 8th level. The SD and Energy values have
391  been obtained for different faults with various fault resistance. The obtained features are used to
392  train the classifiers to classify the type of fault. The results obtained showed that the proposed NB
393  cdlassifier outperforms with 100% accuracy rate in the case of with and without STATCOM. On the
394 flipside, the MLP method gives an average accuracy rate of 80% with Bayes of 20%. It also inferred
395  from the performance indices such as kappa statistics, MAE, %RAE and %RRSE, the proffered NB
396  approach gives the predominant result compared to the MLP and Bayes classifier method.
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