

1 Article

2

Fault Detection and Classification of Shunt 3 Compensated Transmission line using Discrete 4 Wavelet Transform and Naive Bayes Classifier

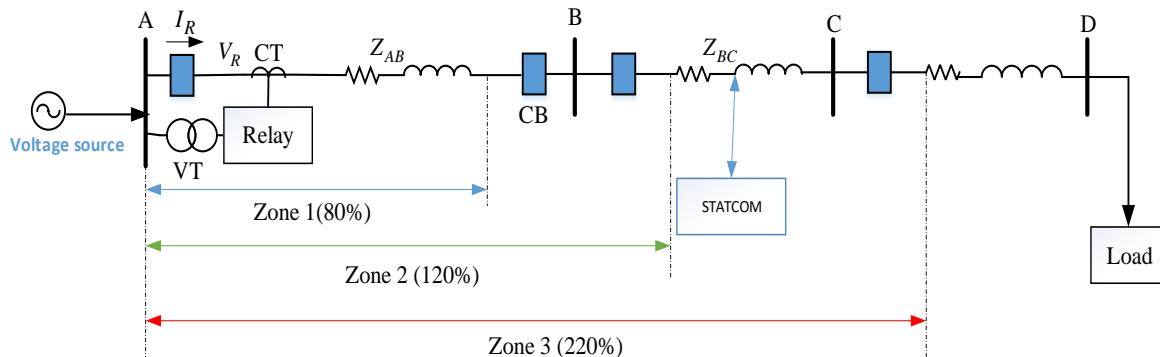
5 Elhadi Aker¹, Mohammad Lutfi Othman¹, Veerapandiyan Veerasamy¹, Ishak Aris¹, Noor Izzri
6 Abdul Wahab¹ and Hashim Hizam¹7 ¹Advanced Lightning and Power Energy Research (ALPER), Department of Electrical and Electronics
8 Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor,
9 Malaysia; hadi.aker@yahoo.com(E.A); lutfi@upm.edu.my(M.L.O); veerapandian220@gmail.com(V.V);
10 ishak_ar@upm.edu.my (I.A); izzri@upm.edu.my(N.I.A.W); hhizam@upm.edu.my (H.H).11 *Correspondence: hadi.aker@yahoo.com; Tel.: (+601110836907); lutfi@upm.edu.my (M.L.O);
12 Tel(+060192755209).13 **Abstract:** This paper presents the methodology to detect and identify the type of fault that occurs in
14 shunt connected static synchronous compensator (STATCOM) transmission line using a
15 combination of Discrete Wavelet Transform (DWT) and Naive Bayes classifier. To study this, the
16 network model is designed using Mat-lab/Simulink. The different faults such as Line to Ground
17 (LG), Line to Line (LL), Double Line to Ground (LLG) and three-phase (LLLG) fault are applied at
18 different zones of system with and without STATCOM considering the effect of varying fault
19 resistance. The three-phase fault current waveforms obtained are decomposed into several levels
20 using daubechies mother wavelet of db4 to extract the features such as standard deviation and
21 Energy values. The extracted features are used to train the classifiers such as Multi-Layer
22 Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier to classify the type of
23 fault that occurs in the system. The results reveal that the proposed NB classifier outperforms in
24 terms of accuracy rate, misclassification rate, kappa statistics, mean absolute error (MAE), root
25 mean square error (RMSE), relative absolute error (RAE) and root relative square error (RRSE) than
26 MLP and Bayes classifier.27 **Keywords:** static synchronous compensator (STATCOM), Discrete Wavelet Transform (DWT),
28 Multi-Layer Perceptron Neural Network (MLP), Bayes and Naive Bayes (NB) classifier.
2930

1. Introduction

31 Restructuring and deregulation of power system with increase in energy demand,
32 environmental hurdles, economic factors and right of way forces the utilities to use the transmission
33 lines to its thermal limit. Also, some developed countries that have surplus power generation
34 supplies the load demand through large number of distribution companies leading to transmission
35 line overloading. On the other hand, the connection of renewable energies into the grid causes
36 unbalance in the system voltage. The utilities resolve all these problems economically by enhancing
37 the thermal stability of the line through placement of flexible AC transmission systems (FACTS)
38 device into the system [1]. The shunt compensation device like static compensator (STATCOM) is
39 widely used FACTS device for increasing the transmission line capability of the system. STATCOM
40 is a parallel connected device which controls one or more AC system parameters such as system
41 stability, power quality and voltage control via injection and absorption of reactive power from the
42 system by adjusting its control action [2-4]. The reliability of power system operation is affected by
43 occurrence of fault in transmission line leading to equipment damage. In order to ensure the secure
44 and safe operation of the power system network, it is essential to implement an effective protection
45 scheme within shortest time span to avoid the cascading failure of the system. This is achieved

46 through an advanced fault classification technique that supports an effective, reliable, fast and
47 secured way of relaying operation in the protective system [4]. A numerous study were made for
48 location of fault in transmission lines in the literature, only some of the study involves effect of
49 FACTS compensated line and other fails to consider their effects [5-10]. The problem of over-reach
50 and under reach conditions due to the injection and absorption of reactive power by STATCOM into
51 the system leads to false tripping of relay [11]. Therefore, identification of fault in the presence of
52 FACTS device is a crucial issue in power system protection.

53 Distance relay based transmission line protection schemes were adapted for secure and reliable
54 operation of system [12-14]. But, the presence of series/shunt FACTS device leads to mal-operation
55 of conventional relay to detect and locate the fault [15, 16]. Moreover, the fault signal is
56 non-stationary in nature and the analysis of such signal is a cumbersome process. Therefore,
57 researches proposed the numerical relays based on signal processing techniques namely Fourier
58 Transform (FT), Fast FT, discrete FT and short time FT that are extensively used in the initial stage
59 for analysis of fault signal. It is observed through rigorous analysis that FTs are not suitable for
60 locating time-varying fault transient signal and also the information on time of occurrence of
61 transients cannot be obtained. To cater this limitation S-transform based fault location were used for
62 locating the time and frequency information of fault signal. But it involves large number of
63 mathematical computation and calculation time that results in degrading the performance of
64 numerical relay [17-20].


65 The aforementioned drawback are overcome by the time-frequency based discrete wavelet
66 transform (DWT) approach and is broadly used for classification and location of faults, power
67 quality mitigation problems such as sag and swell in the system [21]. One of the major issues with
68 DWT is selection of mother wavelets and many works in the literature on analysis of power system
69 transients claimed that Daubechies 4 (db4) is best suited for fault analysis [22]. Because of fast
70 filtering with less processing time makes the DWT analysis than other methods for extracting the
71 features to train the Artificial Intelligence (AI) or machine learning (ML) classifiers in the proposed
72 work. Also, numerous computational intelligence classifiers were proposed for location of fault in
73 the system such as multilayer perceptron (MLP) neural network, support vector machine (SVM),
74 fuzzy logic, particle swarm optimization(PSO) and so on. The ANN and SVM classifiers consume
75 large time for training and the efficacy of fuzzy depends on rules framed by the expertise [6, 7, 13 23,
76 24.]. Also, many different methods of classifier are proposed in the literature ranging from heuristic
77 rule of thumb to formal mathematics [24]. Despite of all, the proposed work uses a simple, efficient
78 and sensitive type of probabilistic neural network based Naive Bayes (NB) approach for selection of
79 features to classify the type of fault in the system.

80 The remainder of the paper is organized as follows: Section 2 deals with the system model
81 studied and section 3 portrays the proposed method of fault classifications with detailed explanation
82 about extraction of features using DWT analysis. Section 4 describes the MLP neural network and
83 probabilistic network based classifiers such as Bayes and NB method to classify the fault occurs in
84 the system. Section 5 presents the results and discussion of proposed work of fault classification with
85 conclusion and future work made in the last part of the paper.

86 2. System Model Studied

87 To validate the proposed method of fault detection scheme, it is necessary to acquire the field
88 data from the real time power system network. As the real time data acquisition is quite tedious and
89 cumbersome process. Therefore, the system under study for fault application considers a real time
90 Libya power system data for simulation and the possibility of occurrence of numerous faults are
91 simulated using Mat lab/Simulink. Figure 1 depicts the shunt STATCOM compensated power
92 system model and the parameters for simulation are as follows: Generator rating – 300 MVA, 400kV,
93 60Hz and line length of 300 km with each zones (Z1, Z2 and Z3) of line is assumed to be 100 km and

94 load rating of 260 MVA. The detailed explanation of simulation parameters and STATCOM are
 95 presented in [11]. The dataset for training of neural networks (NN) are obtained by introducing the
 96 various fault considering effect of fault resistance and with/without STATCOM at different locations
 97 like 100km, 200km and 300 km of mid-point compensated power system.

98

99 **Figure 1.** Libya Power System Model

100 The power system model is protected from fault by different zones of protection scheme Z1, Z2 and
 101 Z3. Thus, the relay responds to various zones of protection and the trip signal is obtained from the
 102 intelligence relaying scheme developed using a NB classifier. In the proposed work, the percentage
 103 of distance protection relay by different zones such as Z1, Z2 and Z3 are assumed to be 80%, 120%
 104 and 220% of total line length respectively. .

105 *2. 1. Proposed Method of Fault Detection*

106 This section presents the steps for detection of fault in power system using NB method of
 107 classification. The detailed steps is illustrated in Figure 2 and also presented as follows:

108 **Step-1 Data Acquisition** - The shunt compensated power system model is simulated using Mat
 109 lab/Simulink under various cases of disturbances and the current signal is obtained for extracting the
 110 features to train the NN.

111 **Step-2 Feature Extraction** – The data for training are obtained by sampling the current signal using
 112 advanced signal processing techniques like DWT and the features such as standard deviation (SD)
 113 and energy values are obtained for the system with and without shunt compensation to study the
 114 effect of STATCOM compensation.

115 **Step-3 Training Phase** – In this phase, the obtained SD and energy values are acquired for different
 116 location of faults and various values of fault resistance.

117 **Step-4 Fault detection** – Here, the trained NN is tested for occurrence of different faults in the system
 118 and this process repeats for every cycle of operation.

119

120

121

122

123

124

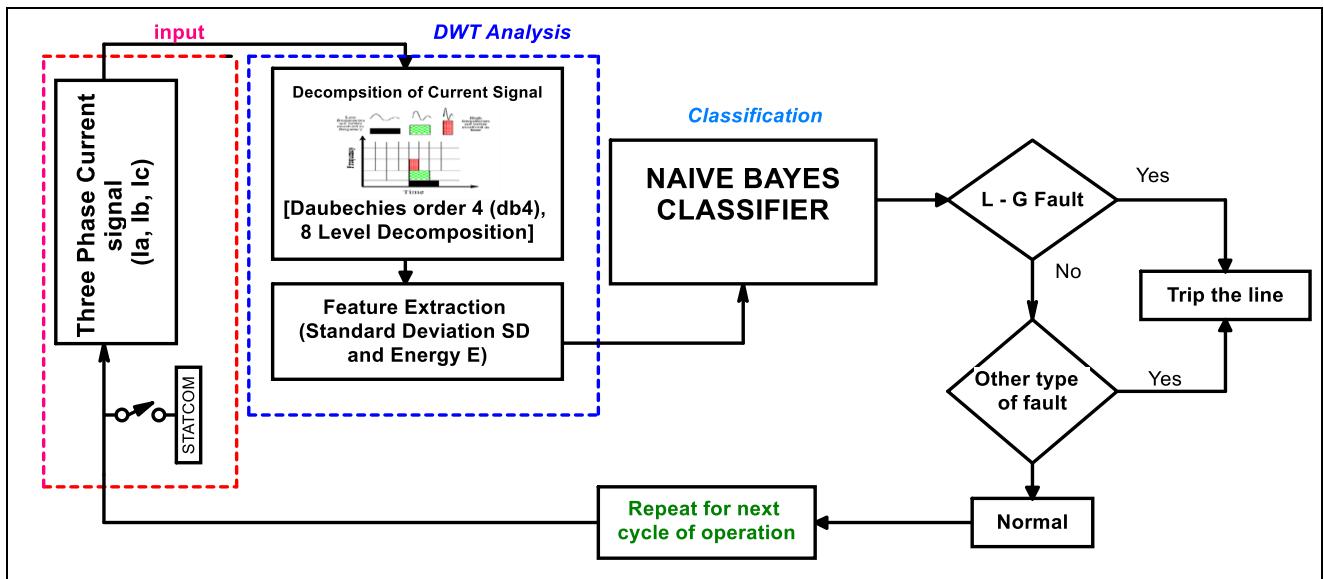

125
126

Figure 2. Proposed method of fault classification

127 3. Feature Extraction using Discrete Wavelet Transform

128 Wavelet transform (WT) have been widely used for analyzing the transient signal in ample
 129 number of applications like mechanical vibrations, image processing and also electrical power
 130 system fault detection. As wavelet analysis overcome the limitations of FT by localizing the fault
 131 signal both in time and frequency domains. As Fourier analysis, does not provide information about
 132 the time of occurrence of fault/disturbance in non-stationary current/voltage waveform of power
 133 system. In general WT exists in two forms: continuous and discrete method. The later is extensively
 134 used in the literature, due to its resolution and its applicability in real time. The detailed explanation
 135 on application of WT in power system is discussed in [21,22].

136 DWT is a significant tool that analyzes the time varying, transient signal like faults by
 137 decomposing it into an approximation (A) and detailed coefficients (D) through successive filtering
 138 of high-pass and low-pass signal as depicted in Figure 3.

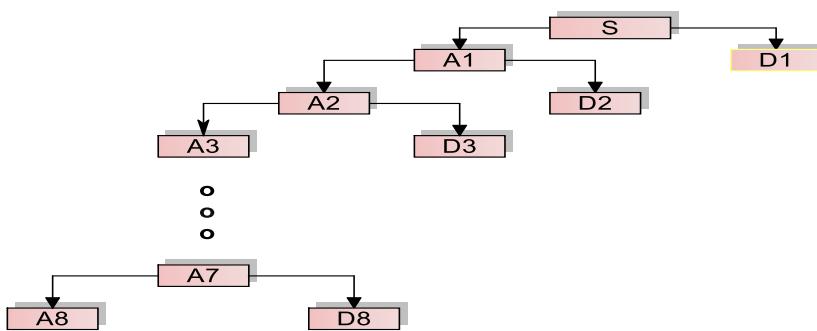

139
140

Figure 3. DWT Decomposition at eight levels

141 As the number of decomposition level increases, the DC noise present in the fault signal can be
 142 suppressed. In this work, an mother wavelet of Db4 with 8-level is used to extract the features by
 143 sampling the current signal of one cycle with the sampling frequency of 20 kHz and 333 samples per
 144 cycle of current waveform. Among various mother wavelets exist in literature, Daubechies (Db4)
 145 have been broadly used in power system fault locations because of its ability to locate the fast

146 transients in low frequency sinusoidal signal. The bandwidth of each levels of decomposition is
 147 presented in Table 1.

Table 1. Detailed Coefficient Levels Frequency Band kHz

Detailed Coefficient Levels	Frequency Band in kHz
D1	20 to 10
D2	10 to 5
D3	5 to 2.5
D4	2.5 to 1.25
D5	1.25 to 0.625
D6	0.625 to 0.3125
D7	0.3125 to 0.15625
D8	0.15625 to 0.0781

148 *3.1 Feature Extractions*

149 The main aim of feature extraction is to provide the significant information for the classifier to
 150 classify the type of event through the features calculated using standard deviation (SD) and energy
 151 values. The detailed information of this is discussed as follows,

152 *3.1.1 Standard Deviation (SD)*

153 The SD is statistical measure of how much variation or dispersion that exists in the original signal
 154 and is defined in terms of wavelet coefficient as,

$$155 \quad SD = \sqrt{\left\{ \frac{\sum_{i=1}^8 (A_8 + D_i)^2}{n} - \left(\frac{\sum_{i=1}^8 (D_8 + D_i)}{n} \right)^2 \right\}} \quad (1)$$

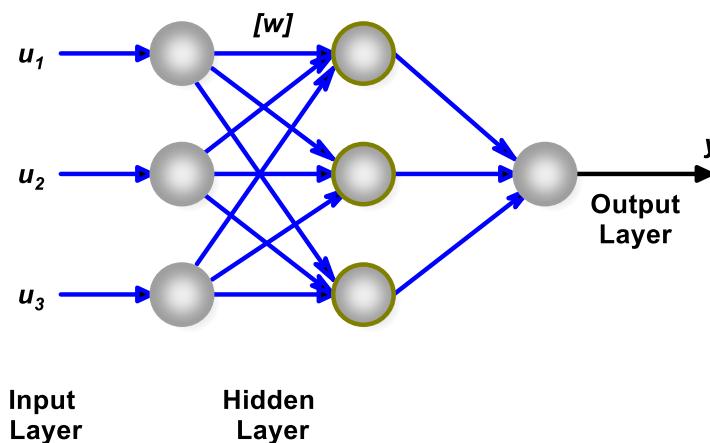
156 where n represents the number of data samples.

157 *3.1.2 Energy Value (E)*

158 To test the effectiveness of the proposed classifier, this work uses another approach to calculate
 159 features based on energy of the decomposed current signal. The spectral energy of the decomposed
 160 signal can be obtained using Equation (2),

$$161 \quad E = \sum_{i=1}^k [|D_i|^2] + |A_8|^2 \quad (2)$$

163 where k is the number of detailed coefficient levels. To calculate the features, a moving window of
 164 one cycle of current wavelet coefficient is passed and the features are extracted for training the
 165 classifiers [26].


166 **4. Fault Classifiers**

167 This section presents Bayesian based fault classifiers to identify and classify the type of fault that
 168 occurs in the shunt compensated STATCOM devices. The comparative study is made with the
 169 conventional MLP neural network for the system with and without STATCOM. Here in this work,
 170 each fault that occurs in the system is considered as classes and the same is used for training neural
 171 network. The assumed classes for classifications are: C₁-Normal, C₂-LG fault, C₃-LL fault, C₄-LLG
 172 fault and C₅-LLLG fault. Moreover, the effectiveness of the method is also tested for occurrence of
 173 fault at different location of transmission lines.

174

175 *4.1 Multi-Layer Perceptron (MLP) Network*

176 Multi-Layer Perceptron (MLP) is the most widely used neural network for identification and
 177 detection type of fault in power system in the literature. MLP is a supervised feed forward network,
 178 as it requires learning the desired output to be classified. Figure 4 represents the MLP network that
 179 consists of input (u_1 , u_2 and u_3), hidden and output layer.

180

181 **Figure 4.** MLP neural network182 The output [y] of the network is weighted sum of input neurons and is defined as,

183
$$y_i = W_{i0} + \sum_{j \in pred(i)} (W_{ij} a_j) \quad (3)$$

184 where a_j represents the output of previous layer neuron, W_{ij} is the weight between i^{th} and j^{th} neuron and W_{i0} is
 185 input bias of neuron. In this work, the MLP network is trained using back propagation method and the detailed
 186 explanation is presented in [27, 28].

187 *4.2 Bayes and Naive Bayes Classifiers*

188 The conventional MLP neural network minimizes the error of the system by adjusting the
 189 weight of the network through small penalty factor that leads to overfitting. This is avoided for any
 190 complex network through a principle approach called Bayes theorem by the Bayesian neural
 191 network (BNN). BNN is invented by Judea Pearl in 1980s, a statistical based supervised classifier
 192 that determines the variable to be classified in more relevant to the class by evaluating the
 193 probability of how likely its occurrence in that class with the prior information that takes the form
 194 prior probability density function [29]. Thus the Bayes theorem can be defined as

195
$$\text{Posterior probability} = \frac{\text{Class prior probability} * \text{likelihood}}{\text{Predictor prior probability}} \quad (4)$$

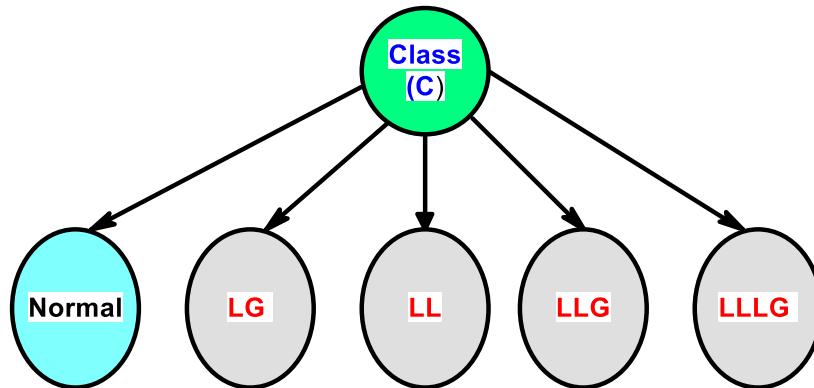
197 The simplified form can be expressed as,

198
$$P(C|L_1, L_2, \dots, L_n) = \frac{P(C)P(L_1, L_2, \dots, L_n|C)}{P(L_1, L_2, \dots, L_n)} \quad (5)$$

199
$$P(C|L) = \frac{P(C)P(L|C)}{P(L)} \quad (6)$$

200

201 Where $P(C)$ is the class probability and $P(L|C)$ represents the likelihood of datasets $\{L_1, L_2, \dots, L_n\}$ of
202 variables in class $C = [C_1, C_2, \dots, C_5]$. The classification problem can be defined as,


$$203 \quad \arg \left[\max \left[P(C|L) = \frac{P(C)P(L|C)}{P(L)} \right] \right] \\ 204 \quad (7)$$

205 Here the attributed $P(L)$ doesn't vary with the class and can be assumed as constant and the above
206 equation is approximated as,

$$207 \quad \arg \left[\max [P(C|L) = P(C)P(L|C)] \right] \\ 208 \quad (8)$$

209 The computation burden of BNN is increases as the number of likelihood term in the class raises
210 exponentially with the attributes $L = \{L_1, L_2, \dots, L_n\}$. To overcome this limitation, all features in a class
211 are assumed to be independent that results in the Naive Bayes (NB) classifier that reduces the
212 number of parameter to be estimated from $2(2n-1)$ to $2n$ [25, 30, 31]. NB is a linear classifier that
213 divides the input data set into training and prediction step for identifying the type of class using
214 Bayes' theorem. In training phase, the classifier determines the probability distribution pertaining to
215 the features of any given class is independent. During the prediction phase, classifier estimates the
216 posterior probability of test sample data belonging to respective class. Then, the method classifies
217 the samples based on maximum likelihood of posterior probability. NB classifier has been used
218 widely because of its simplicity, easy to implement accuracy and sound theoretical basis that
219 guarantees the optimized results. The probability function defined in (8), can be rewritten with the
220 assumption of independent feature as,

$$221 \quad P(C|L_1, L_2, \dots, L_n) = \frac{P(C)P(L_1|C)P(L_2|C)\dots P(L_n|C)}{P(L)} \quad (9)$$

222

223 **Figure 5.** NB classifier of proposed work

224 *4.2.1 Performance Indices of classifier*

225 **Kappa Statistic (K)** is the statistical measure of classifiers that compute the constancy among
226 the predicted type of fault and actual type of fault and is defined as follows,

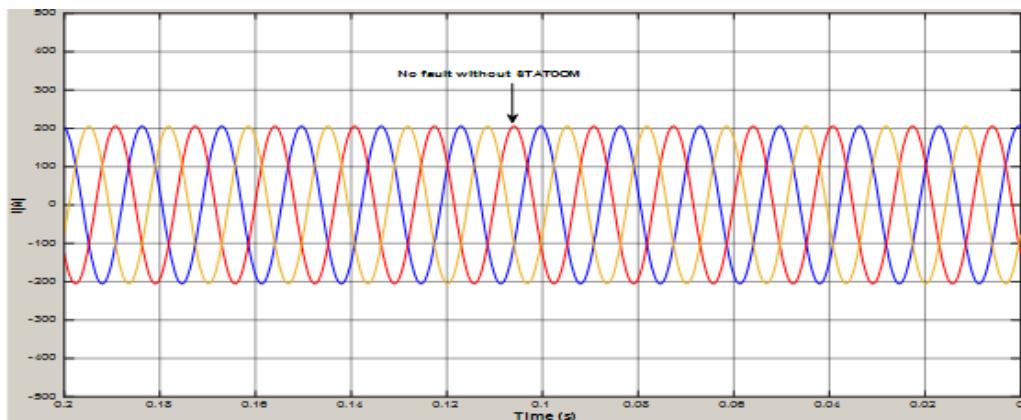
$$227 \quad K = \frac{P(OF) - P(EF)}{(1 - P(EF))} \quad (10)$$

228 where $P(OF)$ is the probability of observed fault, $P(EF)$ is the probability of predicted type of fault.
229 It ranges between 0 and 1.

230 **Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)** - MAE is the absolute mean of
 231 error calculated between the predicted and observed value and is depicted as follows [21, 38, 39],

$$232 \quad MAE = \frac{|\sum_{i=1}^n (E_P - E_O)|}{n} \quad (11)$$

233 RMSE is the square root of mean of variance, between the predicted and observed type of fault
 234 detected by the classifiers and is given by,


$$235 \quad RMSE = \sqrt{\frac{\sum_{i=1}^n (E_P - E_O)^2}{n}} \quad (12)$$

236 where E_P is the predicted type of fault and E_O is the expected type of fault.

237

238 5. Results and Discussion

239 This section describes the simulation of proposed probabilistic NB based classifier to classify the
 240 fault and location of fault in transmission line. The effect of probabilistic classifier is studied for the
 241 transmission line with and without compensations. The simulation is carried out for power system
 242 model depicted in Figure 1 and various plausible faults such as LG, LL, LLG and LLLG fault in the
 243 system considering the variation in fault resistances. The simulation is carried out for time period of
 244 one cycle and the fault is applied during 0.1 to 0.12 s. Figure 6 and 7 depicts the three phase current
 245 waveform of the system without and with STATCOM respectively. The minimum and maximum of
 246 peak magnitude of three phase current signal are captured for the system with and without
 247 compensation that are illustrated in Table 2 and 3. It is seen the magnitude of current signal increases
 248 for the system with STATCOM device and the same is presented in the form waveform for case of
 249 LG fault in the system with and without STATCOM are portrayed in Figures 10 and 11 respectively.
 250 Then, the current signal obtained for various cases of fault are analyzed using db4 mother wavelet of
 251 DWT analysis with eight level coefficients to extract the features such as SD and energy values for
 252 training the classifiers. Figures 8 and 9 represent the DWT analysis of current waveform under
 253 normal operation of the system without and with STATCOM respectively. In general, the
 254 coefficients are high for the compensated system compare to the uncompensated system. Figures 12
 255 and 13 portray the DWT analysis of LG fault current waveform considering without and with
 256 STATCOM respectively. Also, it is observed that the coefficients of detailed coefficient is low when
 257 fault occurs after the location of STATCOM (at 150 km) device. This effect is due to the STATCOM,
 258 the system fault current reduces as the distance of fault increase from, the fault location point. Table
 259 4 and 5 represents the extracted features (SD and energy values) for training the classifiers. The
 260 trained classifiers are tested with the test data and the type of fault that occurs in the system is
 261 detected by the classifiers. The performance of classifier for classification of various faults in the
 262 system for cases with and without STATCOM using the features of SD and energy values are
 263 presented as different cases as discussed in forthcoming subsections.

265

Figure 6. Three phase current waveform under normal condition without STATCOM compensation

266

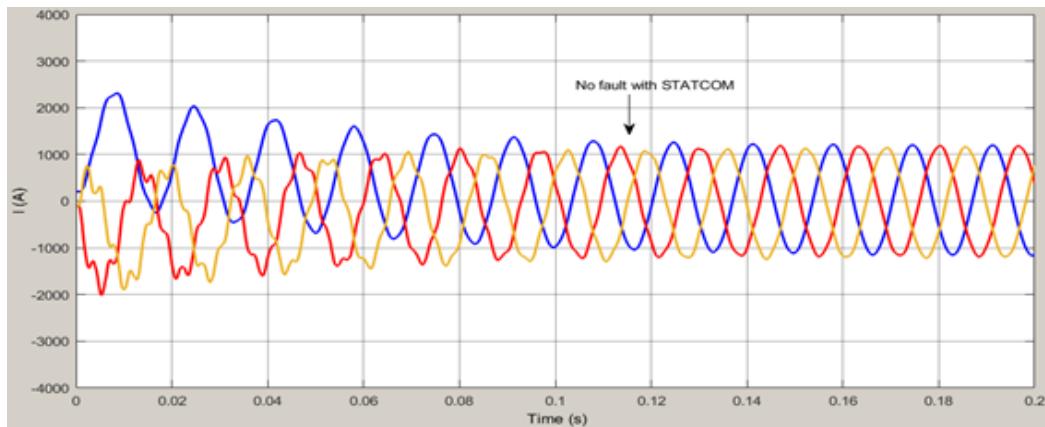
267

268

269

Table 2. Normal and LG faults at Different Locations without STATCOM compensation

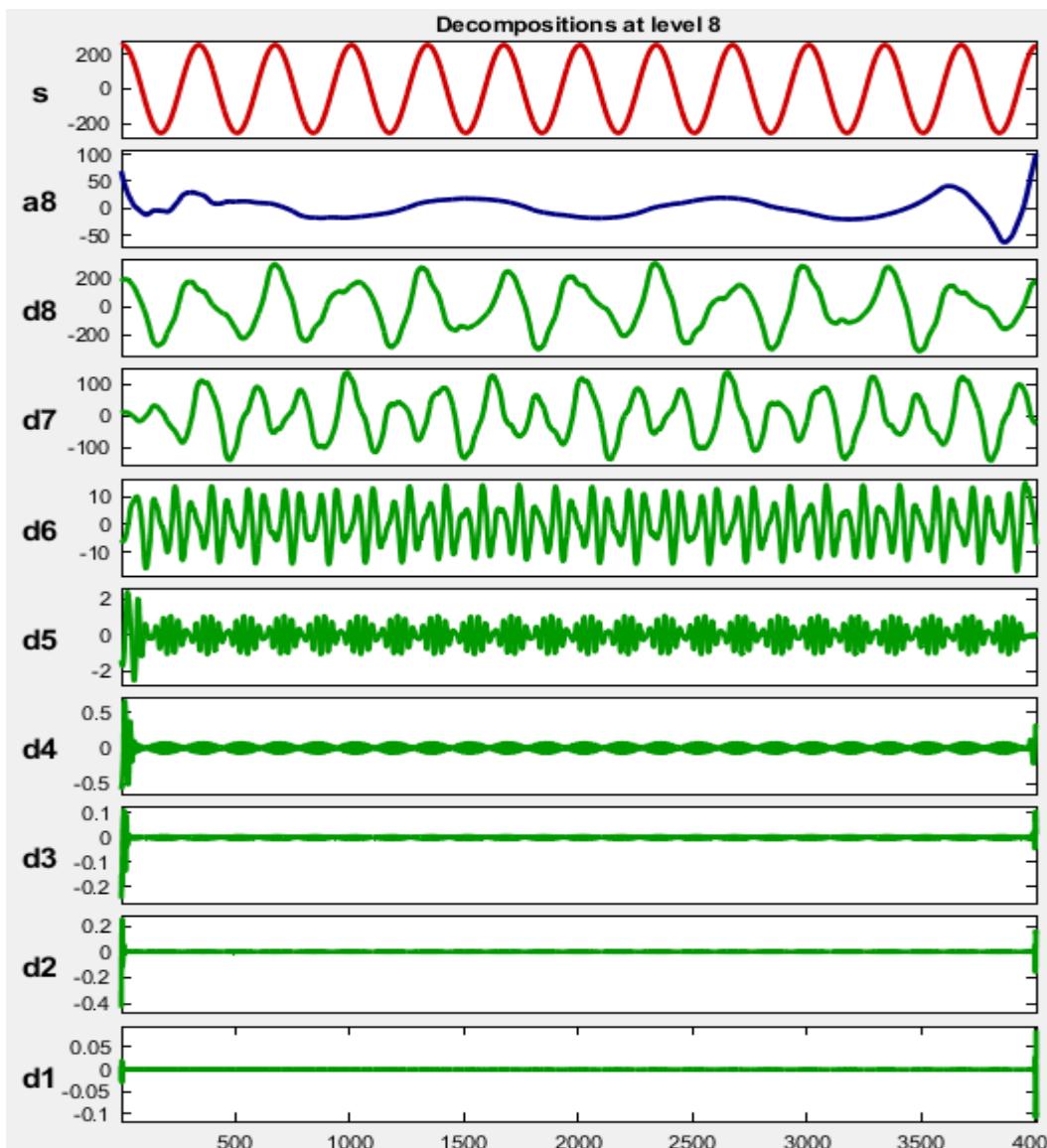
Fault Distance	Type of fault	Without STATCOM					
		Minimum current			Maximum current		
		Ia (10 ³)	I b(10 ³)	I c(10 ³)	Ia(10 ³)	I b(10 ³)	I c(10 ³)
100 km	No fault	-0.25	-0.25	-0.25	0.25	0.25	0.25
	LG	-2.57	-0.34	-0.46	6.95	0.28	0.25
	LL	-4.11	-12.5	-0.25	12.6	4.05	0.25
	LLG	-4.19	-12	-0.71	1.34	4.3	0.65
	LLL	-3.88	-12	-12.4	1.52	6.76	4.3
	LG	-1.23	-0.27	-0.39	3.67	0.19	0.18
200 km	LL	-2.19	-7.01	-0.25	7.06	2.16	0.25
	LLG	-2.1	-6.78	-0.45	7.56	2.34	0.38
	LLL	-1.97	-7.06	-7.16	8.32	3.78	2.82
	LG	-0.78	-0.294	-0.37	2.49	0.185	0.19
300 km	LL	-1560	-4.78	-0.25	4.93	1.47	0.25
	LLG	-1.51	-4.85	-0.51	5.08	1.62	0.37
	LLL	-1.31	-5.17	-4.97	5.72	2.62	2.16


270

271

Table 3. Normal and SLG faults at Different Locations with STATCOM compensation

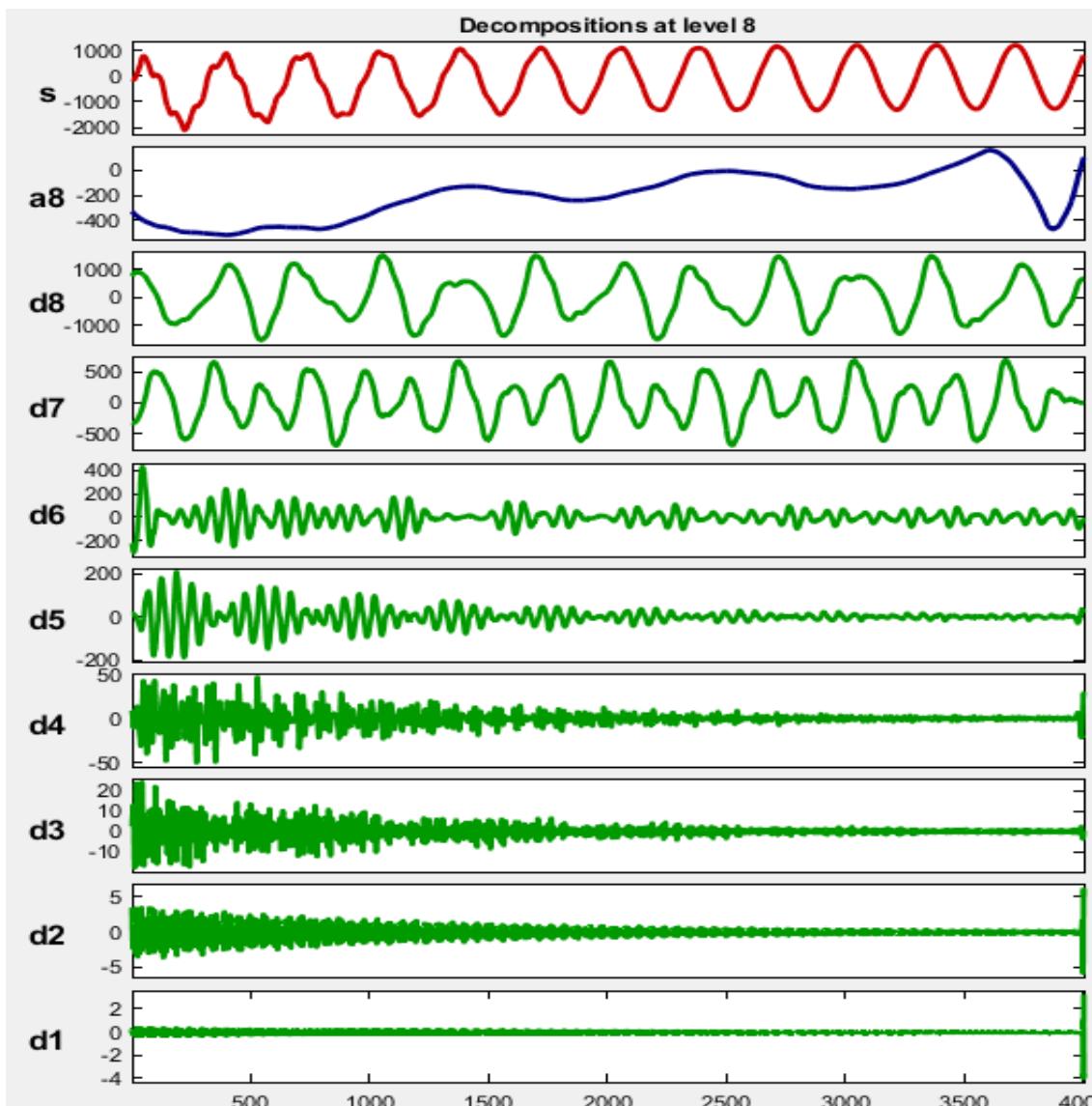
Fault Distance	Type of fault	With STATCOM					
		Minimum current			Maximum current		
		Ia(10 ³)	I b(10 ³)	I c(10 ³)	I a(10 ³)	I b (10 ³)	I c (10 ³)
100 km	No f	1.11	-1.24	-1.32	1.4	1.2	1.11
	LG	3.36	-1.04	1.17	6.95	1.23	0.8
	LL	-4.57	-11.7	-1.24	11.8	4.58	1.07
	LLG	-4.74	-11.4	-1.3	1.2.6	4.82	1.18
	LLL	-4.57	-11.5	-1.1.9	1.4.3	7.02	4.91
	LG	-2.2	-1.12	-1.23	3.97	1.23	1.08
200 km	LL	-2.8	-6.3	-1.25	6.38	2.71	1.07
	LLG	-2.85	-6.25	-1.36	6.76	2.99	1.09
	LLL	-2.72	-6.47	-6.46	4.49	4.06	3.3
	LG	-1.85	-1.19	-1.28	3.18	1.22	0.84
300 km	LL	-2.22	-4.56	-1.27	4.61	2.22	1.07
	LLG	-2.33	-4.61	-1.38	4.88	2.41	1.17
	LLL	-2.22	-4.84	-4.79	5.32	3.24	2.68


272

273

274 Figure 7. Three phase current waveform under normal condition with midpoint compensation

275



276

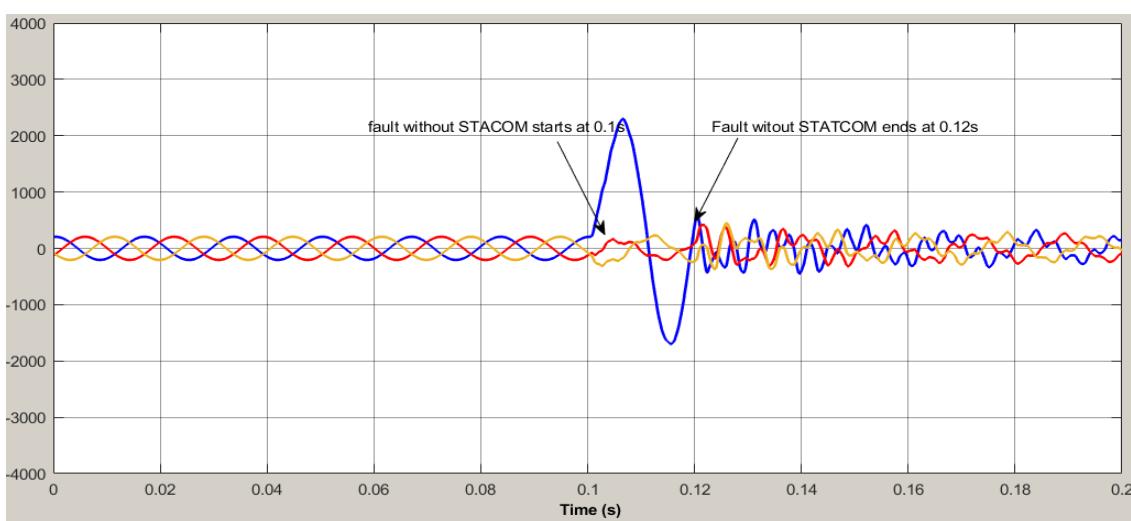
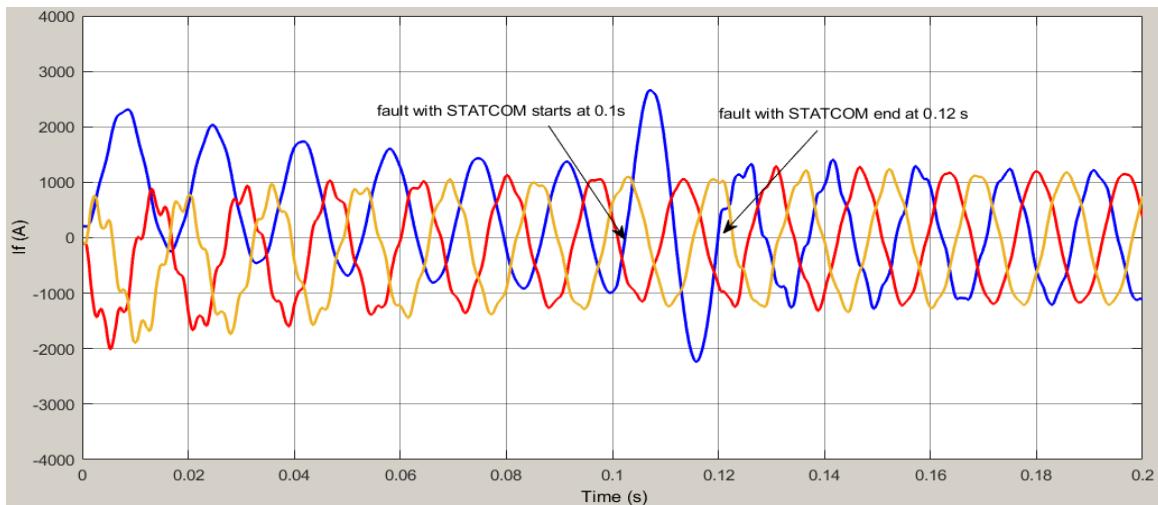
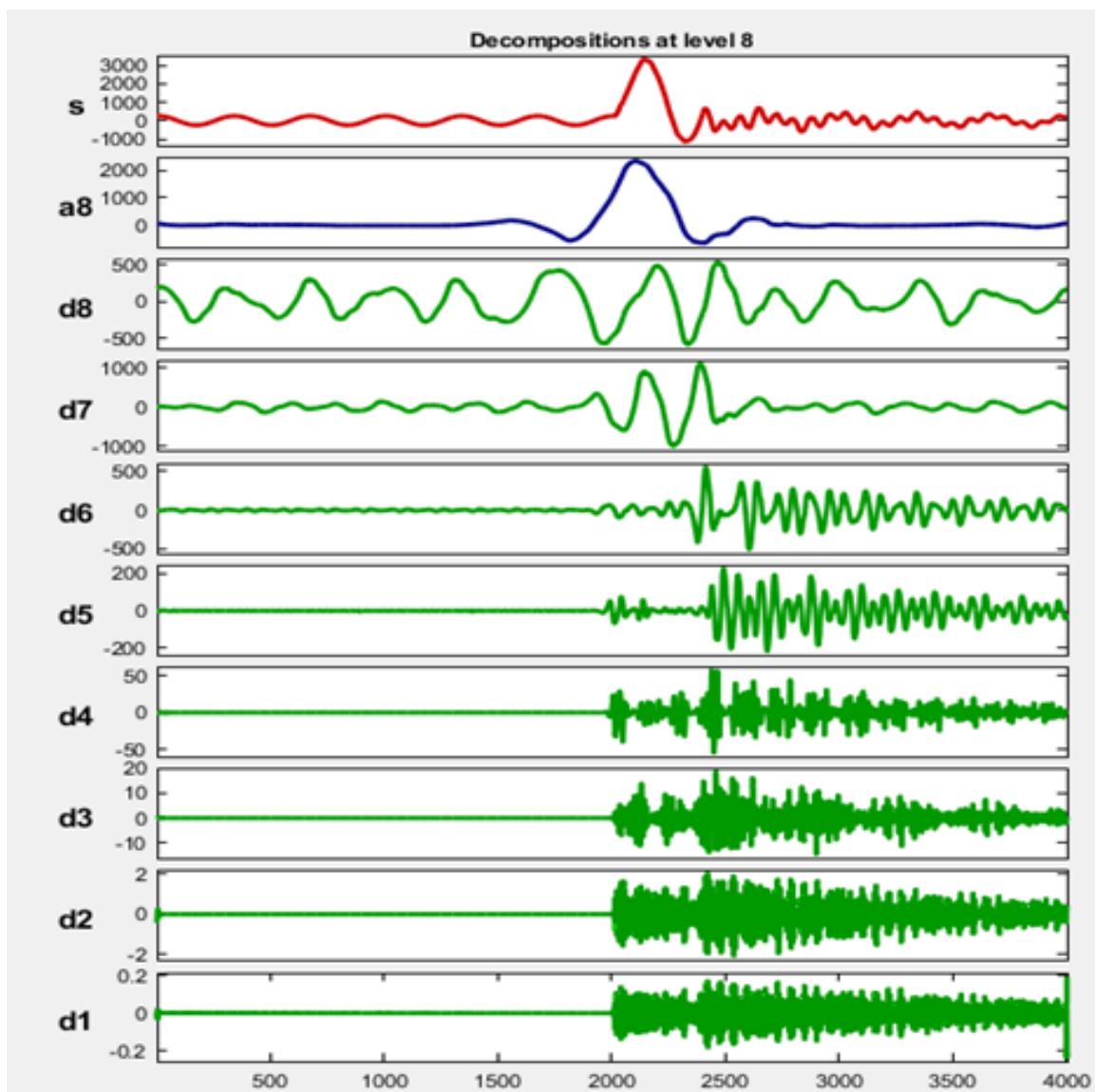

277

Figure 8. DWT analysis of Phase A under normal condition without compensation


278

280


Figure 9. DWT analysis of Phase A under normal condition with STATCOM compensation

282

Figure 10. Three phase current during LG fault in Phase A without compensation

283

284

Figure 11. Three phase current during LG fault in Phase A with compensation

285

286

Figure 12. DWT analysis of Phase A during LG fault without compensation

287

288

Table 4. SD based feature values for classification

Condition	Type of fault	Location km	Without STATCOM			With STATCOM		
			SD- A ($\times 10^3$)	SD-B ($\times 10^3$)	SD- C ($\times 10^3$)	SD- A ($\times 10^3$)	SD-B ($\times 10^3$)	SD- C ($\times 10^3$)
Normal	No fault	100	0.177	0.177.1	0.177	0.875	0.877	00.866.1
		200	0.177	0.177.1	0.177	0.875	0.877	0866.1
		300	0.177	0.177.1	.0177	0.875.1	0.877	0.866.1
		100	3.087	0.166	0.204	3.394	0.800	0.866.1
	AG	200	1.582	0.154	0.196	2.046	0.825	0.797.4
		300	1.058	0.145	0.190	1.674.7	0.851	0.817.5
		100	0.300	3.170	0.267	0.793.1	3.49	0.835.9
		200	0.245	1.630	0.198	0.821	2.11	0.836
	LG	300	0.238	1.100	0.196	0.838	1.72	0.859
		100	0.263	29.9	2.66	0.854	0.811	0.3057.4
		200	0.193	24.30	1.37	0.852	0.831	1.888.6
		300	0.193	23.80	92.1	0.874	0.849	1.569
LG	BG	100	5.865	5.65	28.2	5.810	5.690	76.600
		200	3.158	3.03	20.6	3.188	3.140	80.300
		300	2.140	2.05	20.5	2.357	2.330	83.200
		100	0.188	5.65	4.99	0.755	5.67	5.120
	BCG	200	0.170	3.06	2.71	0.799	3.14	2.870
		300	0.161	2.09	1.84	0.834	2.35	2.160
		100	5.108	28.70	5.15	5.247	0.759	5.210
		200	2.749	20.30	2.79	2.932	0.794	2.900
	CAG	300	1.842	20.20	1.87	2.202	0.833	2.170
		100	5.723	5.67	17.7	5.633	5.67	83.800
		200	3097	3.04	17.7	3.085	3.11	84.200
		300	2105.6	2.05	17.70	2.279	2.30	84.900
LL	AB	100	177.3	5255.5	5.691	0.851	5.281	5245
		200	177.3	2868.9	2.832	0.856	2.944	2905
		300	177.3	1964	1.929	0.860	2.204	2164.5
		100	4998	1.77	5.06	5.112	0.846	5.04
	CA	200	2693.5	1.77	2.75	2.850	0.852	2.80
		300	1800.5	1.77	1.86	2.131	0.858	2.09
		100	6254	6.48	5.69	6.224	6.430	5.75
		200	3368.6	3.51	3.10	3.397	3.370	3.19
LLLG	ABCG	300	2263.6	2.39	2.10	2.493	2.580	2.36

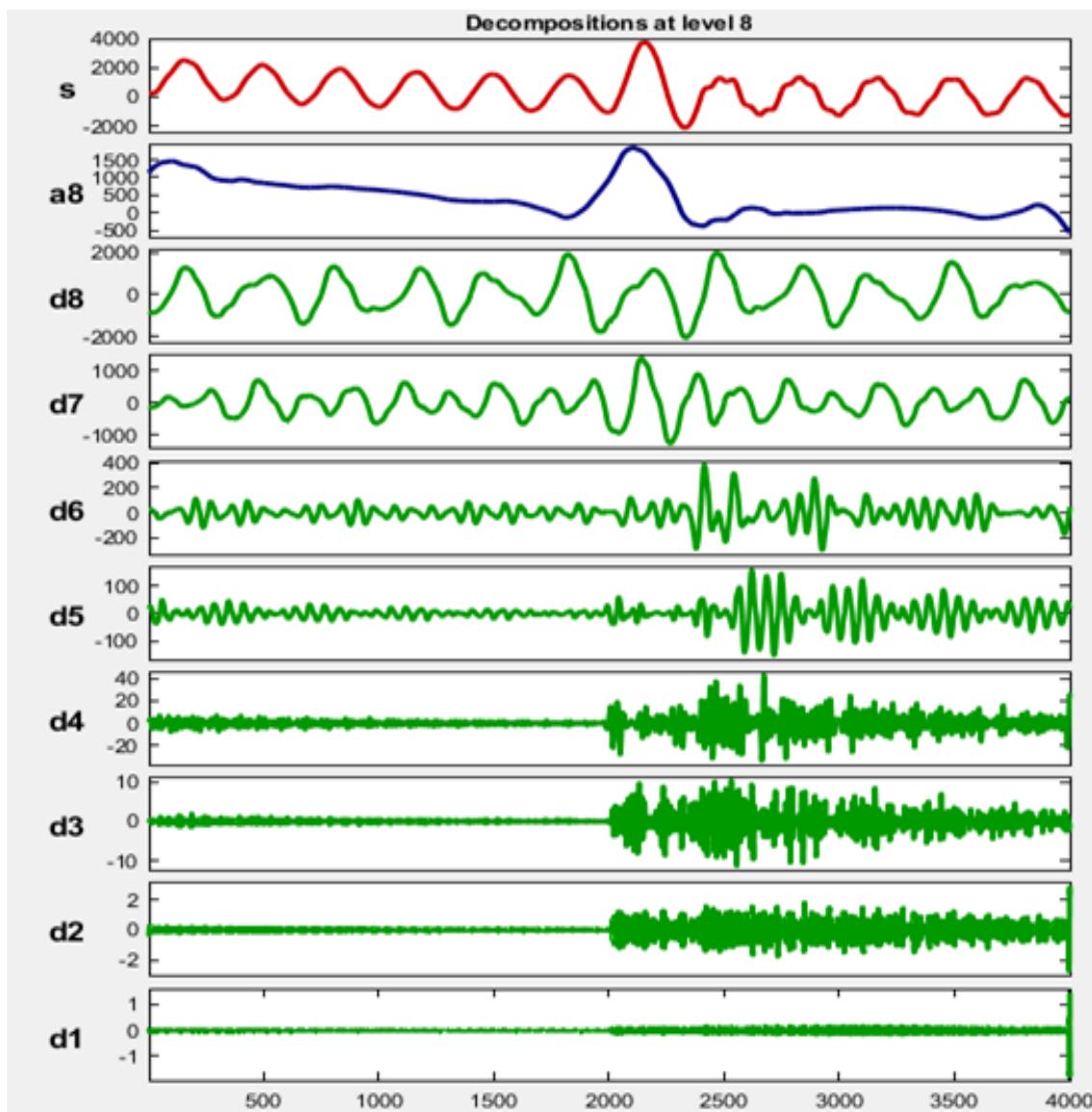
289

290

291

292

Table 5. Energy based feature values for classification


Condition	Type of fault	Location Km	Without STATCOM			With STATCOM		
			E- A ($\times 10^8$)	E-B ($\times 10^8$)	E- C ($\times 10^8$)	E-A ($\times 10^8$)	E- B ($\times 10^8$)	E-C ($\times 10^8$)
Normal	No fault	100	1.25	0.49	0.4	22.7	6.26	13.1
		200	1.25	0.49	0.4	22.7	6.26	13.1
		300	1.25	0.49	0.4	22.7	6.26	13.1
	AG	100	96.4	0.56	0.51	128	5.36	11.4
		200	25.9	0.56	0.51	56.5	5.62	12.1
		300	12	0.51	0.46	42.7	5.85	12.3
LG	BG	100	1.64	57.1	0.51	21.3	70.7	13.2
		200	1.44	15.3	0.41	25.8	27.5	12.3
		300	1.5	7.08	0.37	22.3	18.8	13
	CG	100	1.39	0.76	72.9	21.7	5.74	97.1
		200	1.33	0.6	18.8	21.2	6.22	38.6
		300	1.18	0.63	8.47	22.1	6.11	28.8
	ABG	100	3.01.0	223	0.71	307	214	11.3
		200	87.1	65	0.5	105	64	12.8
		300	41.8	30.4	0.45	63.8	34.3	13.6
LLG	BCG	100	1.36	184	179	20.8	185	200
		200	1.2	54.6	53.4	21.3	58.1	670
		300	1.18	25	22.7	22.1	32.80	44.4
	CAG	100	318	0.73	313	326	5.17	305
		200	94.6	0.51	93	106	5.09	94.9
		300	41.6	0.52	41.2	66.9	5.53	56.5
	AB	100	255	254	4.05	265	234	12.8
		200	74.7	73.9	0.4	92.6	68.3	12.9
		300	35.6	35	0.4	56.8	35.8	12.9
LL	BC	100	1.24	174	169	22.4	170	18.6
		200	1.24	53	50.2	22.4	49.5	62.4
		300	1.24	23.5	22.3	22.4	30.2	40.8
	CA	100	308	0.5	312	314	5.8	300
		200	91.5	0.49	93.4	103	5.87	91.7
		300	40.50	0.49	41.3	65.5	5.98	54.3
	ABCG	100	42.5	241	315	414	236	315
		200	125	70.5	94.7	1.30E+10	71.9	97
		300	57.5	33.3	40.7	76.6	38.6	5.91

293

294

295

296

297

298

Figure 13. DWT analysis of Phase A during LG fault with compensation

299

Table 6. Confusion Matrix for Classification

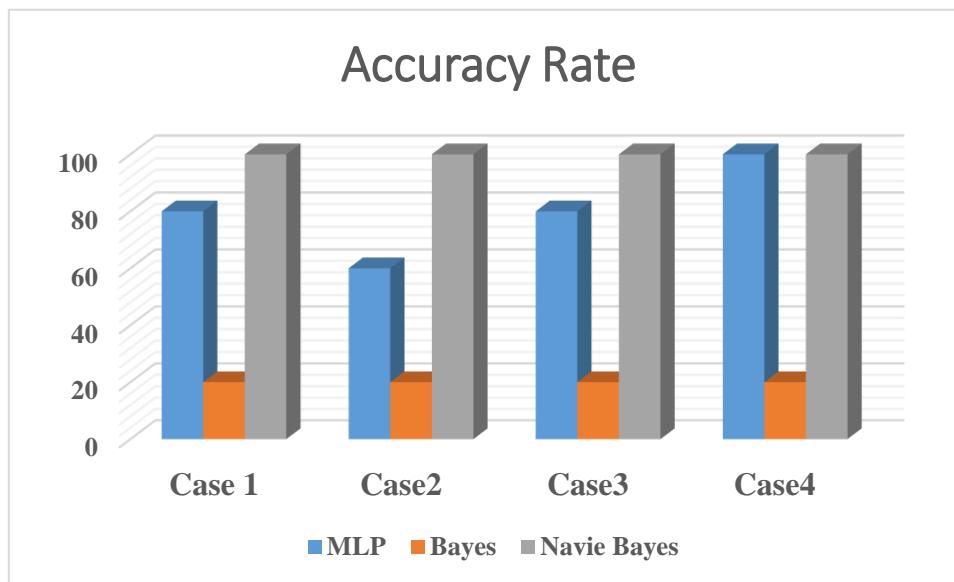
Classes	C1	C2	C3	C4	C5	System State
C1	1	0	0	0	0	Normal
C2	0	1	0	0	0	LG
C3	0	0	1	0	0	LLG
C4	0	0	0	1	0	LL
C5	0	0	0	0	1	LLLG

300

301
302

Case-1: In this study, the transmission fault classification and identification in a transmission network is done without STATCOM. Table 6 presents the confusion matrix for classification of

303 different state of the system such as Normal, LG, LLG, LL and LLLG fault. Here, the fault in the
 304 system is classified using the SD values obtained by the DWT analysis for different types of fault
 305 occurring at the distance of 100 km, 200km and 300 km of an overhead transmission line is given in
 306 Table 4. Then these data's are used for training the neural network and the classification results
 307 obtained are presented in the Table 7. The result shows that the proposed Naive Bayes (NB) method
 308 of classifier is more accurate compared to the MLP and Bayes method of classification. Moreover, the
 309 % misclassification rate of the proposed method is 0%, whereas the rate is 20% and 80 % for MLP
 310 and Bayes approach of classification respectively. The MLP method of classification fails to detect
 311 the LLG type of fault and on the other hand, the Bayes method fails to classify all type of fault and
 312 whose performance is inferior compared to other methods. It is inferred from the Fig.. and Table..
 313 that the NB classifier is the mostsignificant method, to classify the various type of fault in the system
 314 compared to all other methods.


315 **Case-2:** Here in this study, the classification and identification offault is done without STATCOM as
 316 like case-1. But in this case, instead of SD values the energy values obtained from DWT analysis for
 317 different types of faults occurring at various distances of 100 km, 200 km and 300 km has been taken
 318 for the training the network and which is illustrated in the Table5. The results obtained reveals that
 319 NB method of classification is better than the other two methods such as MLP and Bayes classifiers.
 320 Figure 14 represents the % accuracy rate of the proposed method is 100%, whereas is 60 % and 20 %
 321 for MLP and Bayes network respectively. The MLP method of classification fails to detect LG and
 322 LLG faults whilst Bayes classifier unable to detect all type of faults. It is seen that the propounded
 323 NB has 0% misclassification rate, the MLP has 40% and Bayes method has 80% of misclassification
 324 rate as depicted in Table 7.

325 **Case-3:** This case is similar to case-1, but in this study the STATCOM is connected at the midpoint of
 326 the transmission line and the occurrence of faults at different location such as 100 km, 200 km and
 327 300 km are studied. The SD values obtained are used to train the network as like the case-1 and the
 328 results for classification are shown in Table 4. It is observed from the results that the proposed NB
 329 classifier performance is more predominant in terms of accuracy and % misclassification rate
 330 compared to the MLP and Bayes method of classification and is shown in Figure 14. The Bayes
 331 method fails to identify all type of fault expect when the system is operating in normal condition and
 332 MLP method fails to detect the LLG type of fault as like case-1. It is inferred from the results, both
 333 the MLP and Bayes classifier performance is same for transmission line involving with and without
 334 STATCOM and the proffered NB method classifier outperforms compared to these approaches.

335 **Table7.** ClassifiersAccuracy andMisclassification Rate

Cases	Accuracy Rate			Misclassification Rate					
	MLP	Bayes	Naïve Bayes	MLP		Bayes		Naïve Bayes	
				% Rate	Type of faul	Rate	Type of Fault	Rate	Type of Fault
Case-1	80	20	100	2	C3	80	C2-C5	0	0
Case-2	60	20	100	40	C2-C3	80	C2-C5	0	0
Case-3	80	20	100	20	C3	80	C2-C5	0	0
Case-4	100	20	100	0	0	80	C2-C5	0	0

336 **Case-4:** This case is analogous to case-2 with the incorporation of STATCOM connected at the
 337 midpoint of the transmission line for supporting the reactive power and to improve the voltage
 338 profile of the system performance. In this context, the energy values obtained from DWT analysis for
 339 different types of faults at various distances of 100 km, 200 km and 300 km has been used for training
 340 the network and which is portrayed in Table 5. Figure 14 represents the proposed NB classifier is
 341 very efficient compared to the MLP and Bayes method. The % accuracy of NB and MLP are 100%
 342 MLP, but the Bayes method is only 20 % accurate. On the flipside, the % misclassification rate is 0%
 343 for NB and MLP method and it is 80% for Bayes approach. It is deduced from the results, the
 344 proffered NB classifier gives accurate results for all cases and its performance is significantly
 345 predominant than the MLP and Bayes method as depicted in Table 7.

346

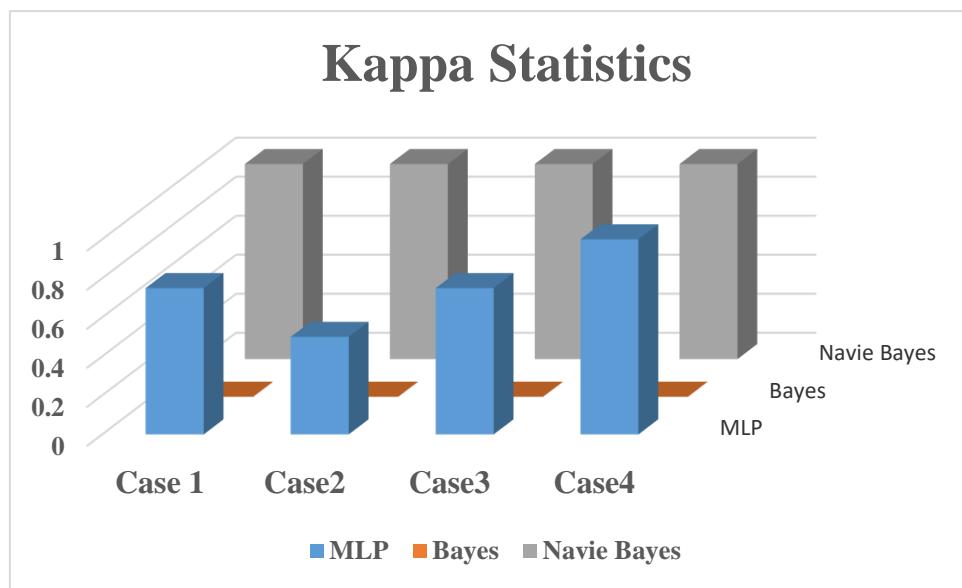
347

Figure 14. Comparison of Accuracy rate of classifiers

348 5.1 Performance Evaluation of Classifiers

349 The robustness of the classifier are evaluated by various performance indices such as Kappa
 350 Statistics (KS), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Percentage Relative
 351 Absolute Error (% MAE) and Percentage Root Relative Square Error (%RRSE) for classifiers namely
 352 Bayes, MLP and NB approach. Firstly, the KS index for various classifier is presented in Table 8 and
 353 Figure 15. The result shows that the indices is '1' for the proposed NB classifier for all the cases and
 354 the values lies in the range of 0.5-1 for MLP classifier (for various cases) and is almost '0' for Bayes
 355 method of classification. It is inferred from the KS index, the proffered method of classifier
 356 outperforms for various cases compared to the other classifiers. Secondly, the MAE is less than 0.1
 357 for the proposed classifier whereas the value lies in the range of 0.1-0.3 for MLP method and it is
 358 greater than 0.3 for Bayes approach under various cases. Moreover, the RMSE is also less than 0.1 for
 359 the NB method and the value lies in the range of 0.2-0.4 for MLP and it is almost 0.4 for Bayes
 360 classifier for case-1 to case-4. It is seen that the indices such as MAE and RMSE are comparatively
 361 very low as shown in Figures 16 and 17 for the intended NB method of classifier than other
 362 approaches presented, proves that the proposed classifier is more robust and efficient.

363 Lastly, the % RAE and %RRSE is proven to be significantly less for the propounded NB method
 364 compared to MLP and Bayes classifier as depicted in Table 9 and Figure 18. It is observed the results
 365 outperforms for all the cases by the NB approach rather than the MLP and Bayes classifier method.


366

367

Tabl 8. Performance comparison of various Classifiers

	Kappa Statistics			MAE			RMSE		
	Naive		Naive	Naive			Naive		
	MLP	Bayes	MLP	Bayes	MLP	Bayes			
Case-1	0.75	0	1	0.1596	0.32	0.0251	0.2369	0.4	0.0888
Case-2	0.5	0	1	0.2012	0.32	0	0.2929	0.4	0
Case-3	0.75	0	1	0.172	0.32	0.033	0.248	0.4	0.0979
Case-4	1	0	1	0.1551	0.32	0	0.2276	0.4	0

368

369

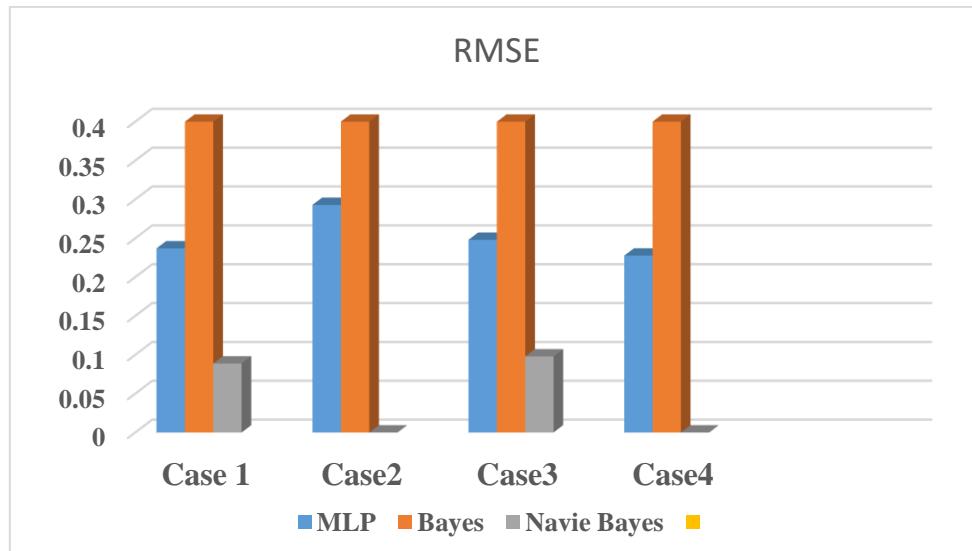
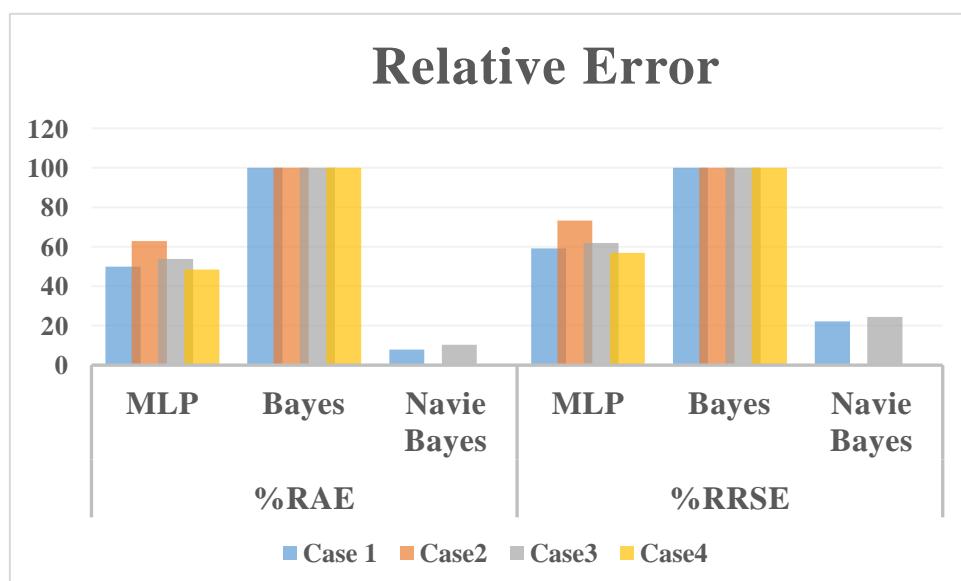

370

Figure 15. Kappa Statics comparison of various classifiers

371

372


Figure 16. MAE comparison of various classifiers

373

374

375

Figure 17. RMSE comparison of various classifiers

376

377

378

379

Figure 18. %RAE comparison of various classifiers**Table 9.** %RAE and %RRSE comparison of various classifiers

Cases	%RAE			%RRSE		
	MLP	Bayes	Naive Bayes	MLP	Bayes	Naive Bayes
Case-1	49.89	100	7.85	59.23	100	22.21
Case-2	62.8627	100	0	73.2233	100	0
Case-3	53.7439	100	10.2998	62.0026	100	24.46
Case-4	48.4605	100	0	56.8981	100	0

380

381

382

383 **6. Conclusion**

384 This paper presents a novel probabilistic based Navie Bayes approach to locate the fault in shunt
385 STATCOM compensated transmission line. In this work, a high voltage power system model of 400
386 kV has been simulated using MATLAB/Simulink and various faults such as LG, LL, DLG and LLG
387 are applied. The current waveform obtained under different cases of normal and fault cases are
388 analyzed using DWT to extract the features for locating the type of fault. The fault current signal are
389 sampled with different band of frequencies that depicts 1st, 2nd, 3rd, 4th, 5th, 6th , 7th and 8th level
390 of detailed coefficient and its approximation coefficient at 8th level. The SD and Energy values have
391 been obtained for different faults with various fault resistance. The obtained features are used to
392 train the classifiers to classify the type of fault. The results obtained showed that the proposed NB
393 classifier outperforms with 100% accuracy rate in the case of with and without STATCOM. On the
394 flipside, the MLP method gives an average accuracy rate of 80% with Bayes of 20%. It also inferred
395 from the performance indices such as kappa statistics, MAE, %RAE and %RRSE, the proffered NB
396 approach gives the predominant result compared to the MLP and Bayes classifier method.

397 **Author Contributions:** E.A. and M.L.O proposed the main idea and performs the simulation of the work; V.V
398 and N.I.A.W provided sources and assisted to write paper; proof reading and final drafting was done by I.A
399 and H.H.

400 **Funding:** This research received no external funding

401 **Acknowledgment:** The authors are thankful to Center for Advanced Lightning Power and Energy Research
402 (ALPER) and Universiti Putra Malaysia to carry out this research.

403 **Conflicts of Interest:** The authors declare no conflict of interest.

404 **References**

1. Singh, A.R.; Patne, N.R.; Kale, V.S. Synchronized measurement based an adaptive distance relaying scheme for STATCOM compensated transmission line. *Meas. J. Int. Meas. Confed.* **2018**, *116*, 96–105.
2. Mirzaei, M.; Vahidi, B.; Hosseini, S.H. Accurate fault location and faulted section determination based on deep learning for a parallel-compensated three-terminal transmission line. *IET Gener. Transm. Distrib.* **2019**, *13*, 2770–2778.
3. Ghazizadeh-Ahsaee, M.; Sadeh, J. Accurate fault location algorithm for transmission lines in the presence of shunt-connected flexible AC transmission system devices. *IET Gener. Transm. Distrib.* **2012**, *6*, 247.
4. Mishra, S.K.; Tripathy, L.N.; Swain, S.C. DWT approach based differential relaying scheme for single circuit and double circuit transmission line protection including STATCOM. *Ain Shams Eng. J.* **2019**, *10*, 93–102.
5. Chen, K.; Huang, C.; He, J. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. *High Volt.* **2016**, *1*, 25–33.
6. Veerasamy, V.; Abdul Wahab, N.I.; Ramachandran, R.; Thirumeni, M.; Subramanian, C.; Othman, M.L.; Hizam, H. High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers. *Neural Comput. Appl.* **2019**, *0123456789*.
7. Veerasamy, V.; Abdul Wahab, N.I.; Ramachandran, R.; Mansoor, M.; Thirumeni, M.; Othman, M.L. High impedance fault detection in medium voltage distribution network using discrete wavelet transform and adaptive neuro-fuzzy inference system. *Energies* **2018**, *11*.
8. Gupta, O.H.; Tripathy, M. An innovative pilot relaying scheme for shunt-compensated line. *IEEE Trans. Power Deliv.* **2015**, *30*, 1439–1448.
9. Mehrjerdi, H.; Ghorbani, A. Adaptive algorithm for transmission line protection in the presence of UPFC. *Int. J. Electr. Power Energy Syst.* **2017**, *91*, 10–19.

426 10. Albasri, F.A.; Sidhu, T.S.; Varma, R.K. Performance comparison of distance protection schemes for shunt-FACTS
427 compensated transmission lines. *IEEE Trans. Power Deliv.* **2007**, *22*, 2116–2125.

428 11. Aker, E.E.; Othman, M.L.; Aris, I.; Wahab, N.I.A.; Hizam, H.; Emmanuel, O. Adverse impact of STATCOM on the
429 performance of distance relay. *Indones. J. Electr. Eng. Comput. Sci.* **2017**, *6*, 528–536.

430 12. Othman, M.L.; Aris, I.; Wahab, N.I.A. Modeling and simulation of the industrial numerical distance relay aimed at
431 knowledge discovery in resident event reporting. *Simulation* **2014**, *90*, 660–686.

432 13. Othman, M.L.; Aris, I.; Othman, M.R.; Osman, H. Rough-Set-and-Genetic-Algorithm based data mining and Rule
433 Quality Measure to hypothesize distance protective relay operation characteristics from relay event report. *Int. J. Electr.*
434 *Power Energy Syst.* **2011**, *33*, 1437–1456.

435 14. Othman, M.L.; Aris, I.; Othman, M.R.; Osman, H. Rough-Set-based timing characteristic analyses of distance
436 protective relay. *Appl. Soft Comput. J.* **2012**, *12*, 2053–2062.

437 15. Hussain, S.; Osman, A.H. Fault location on series and shunt compensated lines using unsynchronized measurements.
438 *Electr. Power Syst. Res.* **2014**, *116*, 166–173.

439 16. Kumar, B.; Yadav, A.; Pazoki, M. Impedance differential plane for fault detection and faulty phase identification of
440 FACTS compensated transmission line. *Int. Trans. Electr. Energy Syst.* **2019**, *29*, 1–21.

441 17. Megahed, A.I.; Moussa, A.M.; Bayoumy, A.E. Usage of wavelet transform in the protection of series-compensated
442 transmission lines. *IEEE Trans. Power Deliv.* **2006**, *21*, 1213–1221.

443 18. Patel, B. A new FDOST entropy based intelligent digital relaying for detection, classification and localization of faults
444 on the hybrid transmission line. *Electr. Power Syst. Res.* **2018**, *157*, 39–47.

445 19. Krishnanand, K.R.; Dash, P.K. A new real-time fast discrete S-transform for cross-differential protection of
446 shunt-compensated power systems. *IEEE Trans. Power Deliv.* **2013**, *28*, 402–410.

447 20. Dash, P.K.; Das, S.; Moirangthem, J. Distance protection of shunt compensated transmission line using a sparse
448 S-transform. *IET Gener. Transm. Distrib.* **2015**, *9*, 1264–1274.

449 21. Wilkinson, W.A.; Cox, M.D. Discrete wavelet analysis of power system transients. *IEEE Trans. Power Syst.* **1996**, *11*,
450 2038–2044.

451 22. Osman, A.H.; Malik, O.P. Protection of Parallel Transmission Lines Using Wavelet Transform. *IEEE Trans. Power*
452 *Deliv.* **2004**, *19*, 49–55.

453 23. Devasahayam, V.; Veluchamy, M. An enhanced ACO and PSO based fault identification and rectification approaches
454 for FACTS devices. *Int. Trans. Electr. Energy Syst.* **2017**, *27*, 1–11.

455 24. Dash, P.K.; Samantaray, S.R.; Panda, G. Fault classification and section identification of an advanced
456 series-compensated transmission line using support vector machine. *IEEE Trans. Power Deliv.* **2007**, *22*, 67–73.

457 25. Zhang, N.; Wu, L.; Yang, J.; Guan, Y. Naive bayes bearing fault diagnosis based on enhanced independence of data.
458 *Sensors (Switzerland)* **2018**, *18*, 1–17.

459 26. Hindarto; Muntas, A. Wavelet sub-band energy for feature extraction of electro encephalo graph (EEG) signals. *J.*
460 *Eng. Sci. Technol.* **2019**, *14*, 578–588.

461 27. Patil, K.; Jadhav, N. Multi-Layer Perceptron Classifier and Paillier Encryption Scheme for Friend Recommendation
462 System. *2017 Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2017* **2018**, 1–5.

463 28. Deep, K.; Nagar, A.; Pant, M.; Bansal, J.C. *Proceedings of the Second International Conference on Soft Computing for*
464 *Problem Solving (SocProS 2012), December 28-30, 2012; 2014; Vol. 236; ISBN 978-81-322-1601-8.*

465 29. Youn, E.; Jeong, M.K. Class dependent feature scaling method using naive Bayes classifier for text datamining.
466 *Pattern Recognit. Lett.* **2009**, *30*, 477–485.

467 30. Addin, O.; Sapuan, S.M.; Mahdi, E.; Othman, M. A Naïve-Bayes classifier for damage detection in engineering
468 materials. *Mater. Des.* **2007**, *28*, 2379–2386.

469 31. Muralidharan, V.; Sugumaran, V. A comparative study of Naïve Bayes classifier and Bayes net classifier for fault
470 diagnosis of monoblock centrifugal pump using wavelet analysis. *Appl. Soft Comput. J.* **2012**, *12*, 2023–2029.