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Abstract: 

Topology optimization is a pioneering design method that can provide various candidates 

with high mechanical properties. However, the high-resolution for the optimum structures is 

highly desired, normally in turn leading to computationally intractable puzzle, especially for the 

famous Solid Isotropic Material with Penalization (SIMP) method. In this paper, an efficient and 

high-resolution topology optimization method is proposed based on the Super-Resolution 

Convolutional Neural Network (SRCNN) technique in the framework of SIMP. The SRCNN 

includes four processes, i.e. refining, path extraction & representation, non-linear mapping, and 

reconstruction. The high computational efficiency is achieved by a pooling strategy, which can 

balance the number of finite element analysis (FEA) and the output mesh in optimization process. 

To further reduce the high computational cost of 3D topology optimization problems, a combined 

treatment method using 2D SRCNN is built as another speeding-up strategy. A number of typical 

examples justify that the high-resolution topology optimization method adopting SRCNN has 

excellent applicability and high efficiency for 2D and 3D problems with arbitrary boundary 

conditions, any design domain shape, and varied load.  
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1  Introduction 

The work of Bendsøe and Kikuchi (1988) plays a vital role in the development of topology 

optimization, followed by a number of excellent topological optimization methods to solve 

material distribution problems under given goals and constraints, e.g. SIMP (Bendsøe 1989; 

Rozvany et al. 1992; Sigmund 2001), Evolutionary Structural Optimization (ESO)/Bi-directional 

Evolutionary Structural Optimization (BESO) (Xie and Steven 1993; Querin et al. 1998; Huang 

and Xie 2007; Rozvany 2009), level-set (Wang et al. 2003; Wei et al. 2018) method, Moving 

Morphable Components/ Void (MMC/V) (Guo et al. 2014; Zhang et al. 2017; Lei et al. 2019), and 

so on. As topology optimization approaches mature and gradually shift from mathematical theory 

to practical engineering applications (Zhu et al. 2015), there is a growing desire for developing 

existed topological optimization method to hold the capacity for dealing with large-scale, e.g. 

buildings, aerospace (Zhu et al. 2015; Chin and Kennedy 2016; Liu et al. 2019) or high-precision, 

e.g. bionic bones (Sutradhar et al. 2016), convection radiators (Alexandersen et al. 2016), etc.) 

structures. All these structural designs are in desire need for having detail features, i.e. 

high-resolution, which will lead to prohibitively computational cost, especially for element-based 

topology optimization methods, therefore restricting the application of these methods. 

A number of articles have explored the route to improve the resolution of topology 

optimization designs, and proposed a variety of methods with acceptable computational efficiency. 

For the density-based topology optimization method, there are mainly the following mainstream 

processing methods. 

(1) Designing microstructure of elements: Groen and Sigmund (2018) and Wu et al. (2019) used 

the homogenization method to design the microstructure, while Zhu et al. (2017) utilized the 

pre-designed microstructure for topology optimization. This method does improve the resolution 

final layouts, but it failed to change the jagged boundaries brought by the coarse element. 

(2) Adaptive adjustment of discretized mesh: For the tetrahedral mesh, Christiansen et al. (2015) 

moved the cell nodes to obtain a satisfactory model. Later, Wang et al. (2019a) extended the 

method to the case with hexahedral meshes. This is a low-cost and high-efficient post-processing 

method, which is easy to implement in common CAD/CAE software, However, this method is 

severely dependent on the mesh. In addition, the quality of the final configuration relies on the 

selected node adjustment criteria. 

(3) Multi-resolution topology optimization: This idea was first proposed by Nguyen (2010), who 

separated design variable mesh from displacement mesh and refined it. Subsequent studies were 

divided into two main directions. Nguyen-Xuan (2017) used a hierarchical data structure called 

polytree to selectively refine boundary elements, which improved the quality of the boundary. 

Leader et al. (2019) and Chin et al. (2019) interpolated the node design variables under coarse 

mesh to obtain a refined displacement mesh, which solved the multi-material and frequency 

response optimization problems in large-scale designs. In these methods, the resolution of the 

finite element mesh (displacement mesh) is not less than the design variable mesh, which means 
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that FEA takes lot of time in the optimization. On the other hand, there are some studies that 

choose to increase the resolution of the design variable mesh and maintain a coarser finite element 

mesh. Based on the work of Nguyen (2010), the high-order finite elements were used to improve 

the accuracy and efficiency of the algorithm (Groen et al. 2017). An adaptive 

refinement/coarsening criterion was used to further accelerate the multi-resolution topology 

optimization method (Gupta et al. 2018).  In addition, the isogeometric analysis method was 

utilized to map the design variables and the finite element mesh (Lieu and Lee 2017; Xu et al. 

2019). Most recently, our group have proposed a novel high-resolution topology optimization 

method in the framework of BESO and with the use of XFEM (Wang et al. 2019b). In this method, 

we only refined the design variable mesh with a small cost of FEA but the error caused by the 

coarse finite element mesh cannot be avoided. 

(4) Adaptive refinement of mesh: Kim and Yoon (2000) used this idea to continuously improve the 

mesh resolution during the optimization process, which can reduce initial calculation amount. 

Stainko (2006) improved the method by increasing the mesh resolution only for the boundary. 

Recently, Liao et al. (2019) designed a partial update rule that it concentrated all computational 

power on the elements where the model was prone to change. 

The above excellent research studies can make some contributions at the algorithmic level to 

the goal of maximizing design resolution at the acceptable cost. Nowadays, with the rapid 

development of computer hardware, there are some studies that use the GPU or supercomputer to 

achieve the required high-resolution design (Suresh 2013; Challis et al. 2014; Aage et al. 2017). 

Of course, the development of algorithms and the update of hardware are not contradictory but 

complementary. The excellent algorithm and the efficient hardware can present more pleasing 

results. Referring to the development of algorithms and hardware, the author has to mention a 

currently very popular computer technology: machine learning. Machine learning is a kind of 

method for extracting implicit rules from a large amount of historical data, and its excellent 

generality comes from training objectives that contain implicit laws about unknown data. At 

present, machine learning has a wide range of applications, such as data mining, computer vision, 

medical diagnosis and so on (Sun 2006). Deep learning, belonging to machine learning, has 

become very popular in recent years due to its high efficiency, plasticity and universality. 

At present, many scholars have tried to introduce machine learning methods into the field of 

topology optimization. Sosnovik and Oseledets (2017) inputted the configuration during the 

optimization process and the corresponding gradient information into the neural network to obtain 

the final optimized configuration directly. This method can effectively improve the optimization 

speed. Banga et al. (2018) uses a 3D encoder-decoder convolutional neural network to perform the 

3D topology optimization process, which is more efficient than the usual convolutional neural 

network. The number of design variables in this study is 12*24*12. Zhang et al. (2019) directly 

obtained the final configuration by inputting the displacement and stress information of the initial 

design into the neural network at a fixed mesh resolution. This method has very good versatility at 
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a given mesh resolution, but requires retraining the neural network for other structures with 

different resolution. Li et al. (2019) implemented a set of topology optimization process without 

iteration using the Generative Adversarial Networks (GAN), and used another GAN as a 

post-processing method to improve the resolution of the final configuration.  

However, the traditional multi-resolution topology optimization method normally has two 

shortcomings, i.e. arbitrary mapping and computational efficiency problems. It is critical to build 

the mapping between the FEA mesh and the design variable mesh in the multi-resolution topology 

optimization method. Since the mapping from low-resolution to high-resolution should be 

different for distinguished structural features, it is difficult to artificially design mappings for 

different features. Deep learning can intelligently extract structural features. In addition, in the 

subsequent process of extracting structural features, different structural features possess different 

mappings. Nonetheless, most neural networks have a fixed amount of input layer data, which will 

directly affect the versatility of topology optimization methods.  

Therefore, this study selects the SRCNN framework (Dong et al. 2016) with better 

applicability to achieve the goal of enhancing the resolution of topology optimization design. 

Moreover, to release the computational burden in the high-resolution topology optimization 

method, two strategies are developed, i.e. the pooling strategy for mesh balance and a combined 

treatment method using 2D SRCNN. The proposed method has great versatility for 2D and 3D 

problems with any design domain shape, arbitrary boundary conditions, and any load cases.  

The remainder of this paper is organized as follows. Section 2 describes the density-based 

topology optimization method. Section 3 introduces the super-resolution convolutional neural 

networks. Section 4 presents the implementation of the proposed methodology. Section 5 

discusses the optimization results, and the conclusions are drawn in Section 6. 

 

2  Density-based topology optimization methods  

The work of this paper is done in the framework of density-based topology optimization 

methods. In this section, under the guidance of the classic SIMP method (Bendsøe 1989, 2009; 

Sigmund 2001), the mathematical description of the topology optimization problem and the entire 

topology optimization process will be established, forming the basis for subsequent work. 

Density-based topology optimization is a method for solving the 0/1 value of the relative 

density ρ  of each element in a given design domain Ω  that has been discretized into finite 

elements. The most classic problem is the topology optimization of the minimum structural 

compliance under the target volume constraints. The mathematical description of the problem is as 

follows: 
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where U  and F  are the global displacement and force vectors, respectively, K  is the global 

stiffness matrix, x  is the design variable, minx  is the minimum relative density, ( )V x  and *V  

are the material volume and the target volume, respectively. The following penalty interpolation 

method of SIMP (Sigmund 2001) is used in the optimization process of this paper to combine the 

cell stiffness matrix into a global stiffness matrix. 

 0
p

i iE x E=   (2) 

where iE  and 0E  are the Young’s modules of element i  and basic material, respectively. The 

penalization exponent is usually chosen as 3p =  in order to push the median value of design 

variable closer to the 0-1 solution. 

 1
( )

N

i i
i

E
=

= ∑K k
  (3) 

where N  represents the total number of elements within the design domain. ik  refers to the 

stiffness matrix of thi  element. Sensitivity can be obtained by deriving the objective function to 

the design variables of each element. In order to ensure that the configuration always has the 

characteristics of mesh independence during optimization, we employed a filer scheme that 

proposed by Sigmund (2001). Then the optimality criteria (OC) method is used to solve this 

topological optimization problem. This is a classical topology optimization process. Next, we will 

show the basic concepts of SRCNN and how it will be implemented to the proposed topology 

optimization framework. 

 

3  Super-resolution convolutional neural network (SRCNN) 

The SRCNN framework of the present work, a large number of topological optimization 

configurations should be used as training samples, and a reasonable convolutional neural network 

is obtained. This section will focus on the network architecture and training process. The 

implementation of SRCNN combined with topology optimization will be detailed in the next 

section. 

3.1  SRCNN 

A complete process of increasing resolution requires four steps, i.e. refining, path extraction 

and representation, non-linear mapping, reconstruction. Refining is a pre-processing process that 

uses the quadratic interpolation to upscale the original low-resolution image. The processed image 

has reached the targeted pixel value, but its quality is still not good enough, so we still regard it as 

a low-resolution image, marked as L. It will then participate in the SRCNN as an input sample. 

Such a step can improve the versatility of the algorithm. Next, there is a series of convolutional 

neural network operations. Path extraction and representation is a process of extracting features 

from low-resolution images using multiple convolution kernels. Then non-linear mapping 

combines the features and maps them to the next maps. Finally, Reconstruction process 

reconstructs the mapped features into the high-resolution image as expected, which is highlighted 
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by H. The relative position and connection state of each operations are shown in Fig.1. Their 

structural components will be specified separately in the subsequent subsections. Refining, as a 

pre-processing method, is not the focus of neural networks. Therefore, its operation is no longer 

described separately. 

 

Fig. 1 The relative position and connection state of SRCNN operations. nely×nelx are pixels of 
topology optimization design domain. USF is upscaling factor, and the selection of other parameters is 

referenced from the comparative data in reference (Dong et al. 2016). (In this paper, 
1 1 2 2 39, 64, 5, 32, 5f n f n f= = = = = ) 

 
3.1.1  Patch extraction and representation 

The main role of this part is to extract features from the low-resolution image L . Here, the 

convolution kernels are like a set of filters. Each of these filters corresponds to a feature and they 

are independent of each other. These features together make up the low-resolution feature maps 

( )1F L  of SRCNN. The above operation can be expressed as follows:  

 1 1 1( ) max(0, )F L W L B= ∗ +   (4) 

where 1W  and 1B  are convolution kernels (or filter groups) and biases, respectively. In this 

paper, 1W contains 1n  convolution kernels, and their overall spatial size is 1 1f f× . Each of them 

is independently convolved with L . At the same time, 1B  is a vector of length 1n , which 

corresponds one-to-one with 1W  in order. It should be noted that the operator ∗   represents the 

same type convolution operation, which needs to pa d ( )1 1 2f −  circles ( 1f  generally takes an 

odd number) on the outer side of L . This ensures that the dimensions of maps in next process are 

not reduced. Unless otherwise specified in the subsequent operations, the operator ∗   defaults to 

the ‘same’ type convolution operation. Finally, the rectified linear unit (ReLU, ( )max 0, x ) is used 

as an activation function to map the calculation result to the low-resolution feature maps. 

3.1.2  Non-linear mapping 

After the first convolution layer has extracted 1n  features from the low-resolution image. 

The next second convolution layer maps the 1n  low-resolution feature maps 1( )F L  to 2n  

high-resolution feature maps 2 ( )F L . SRCNN provides convolution kernels 2W  of three sizes of 

1 1× ,  3 3× , and 5 5×  for mapping. According to Dong et al. (2016), we select 2W  with a size 

of 5 5× . The operational formula for this layer is expressed as follows: 

 2 2 1 2( ) max(0, ( ) )F L W F L B= ∗ +   (5) 
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where 2W  contains 2n  convolution kernels, and all of their sizes are 2 2 1f f n× × . 2B  is a 

biases vector with a length of 2n . The nonlinearity of this convolutional layer is significantly 

strong, resulting in costing much more time to train neural networks. 

3.1.3  Reconstruction 

In order to get the final high-resolution configuration from the high-resolution feature map 

2 ( )F L , we also need a convolutional layer to reconstruct these features. Then the operation 

formula of the last layer is as follows: 

 3 2 3min(1,max(0, ( ) ))H W F L B= ∗ +   (6) 

where 3W  is a convolution kernel of size 3 3 2f f n× × , and 3B  is a biases value of size 1 1× . In 

order to match the results to the topology-optimized design variable range, modifications have 

been made to the ReLU activation function, as shown in Eq. 7. The reconstructed map value range 

is limited to between 0 and 1. 

 ( )( )ReLU( ) min 1,max 0,x x=   (7) 

3.2  Training 

With the network architecture, it is necessary to train the neural network to learn the entire 

process from low resolution to high resolution. Training is the process of estimating and adjusting 

network parameters { }1 2 3 1 2 3, , , , , ,W W W B B B . In order to distinguish between reconstructed and real 

high-resolution configurations, we take different design domain sizes and employ random load 

positions for four classical topological optimization problems, i.e. cantilever beam (Fig. 2(a)), 

L-bracket (Fig. 2(b)), T-bracket (Fig. 2(c)) and MBB beam (Fig. 2(d)). A large number of high and 

low-resolution training samples are obtained by the traditional topology optimization method, with 

their corresponding initial design conditions shown in Fig. 2. It should be noted that, although 

only these four models are used as the base samples, this does not affect the versatility of the 

SRCNN architecture. It still works for any size and dimension model. 

With the training sample, the mean square error (MSE) is chosen as the loss function to 

characterize the difference between the reconstructed configuration and the real configuration: 

 ( ) 2

1

1 , ,
n

real
N l l N

N
Loss H L W B H

n =

= −∑   (8) 

where n  is the number of training samples selected for each iteration, the value of l  is 1, 2 and 

3, H is the high-resolution configuration of L reconstructed by SRCNN, and realH is the 

high-resolution training sample matched with L. The random gradient descent method is used to 

minimize the loss value during standard backpropagation. The formula for updating each 

convolution kernel weight and biases is as follows: 

 
. 1 , , 1 . . 1

,

. 1 , , 1 . . 1
,

0.9 ,         

0.9 ,           

l i l i l i l i l i
l i

l i l i l i l i l i
l i

LossW W W W W
W

LossB B B B B
B

η

η

+ + +

+ + +

∂∆ = ×∆ − × = + ∆ ∂
 ∂ ∆ = ×∆ − × = + ∆
 ∂

  (9) 
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where η  is the learning rate, which takes 410−  to ensure network convergence.
.l i

Loss
W

∂
∂

 and 

.l i

Loss
B

∂
∂

 are the derivatives of the loss for each member of the convolution kernel W  and the 

biases B , respectively. l  and i  are the number of layers and the iteration step, respectively. 

The convolution kernel and biases of each layer take a random number between 1−  and 1  as 

an initialization value. 

 

 

Fig. 2 Presentation of some training samples. In this illustration, there are four types of models: (a) 
cantilever beam, (b) MBB beam, (c) L-bracket and (d) T-bracket. The same type models have similar 
boundary conditions with the low-resolution on the left and the high-resolution on the right. But their 

design domain size, target volume, filter radius, and load position are different. 
 

The above is the network architecture and training process of SRCNN. Although SRCNN is a 

short neural network, it is enough to establish a link between high and low resolution after training. 

Therefore, it has high efficiency and good results. After we have obtained the SRCNN for 

topology optimization, in next section, we will focus on combining the convolutional neural 
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network with the topology optimization process. The 2D super-resolution convolutional neural 

network will be extended to solve 3D high-resolution topology optimization. 

 

4  Implementation 

The earlier two sections mainly introduce the classical topology optimization method and the 

network architecture and training method of SRCNN. This section will embed the SRCNN in the 

topology optimization process, but there are some details that needed to discuss in advance. One is 

to distinguish the difference between high precision and large scale. The other is to achieve a 

transformation between a small-scale configuration mesh and a large-scale finite element analysis 

mesh. Finally, a 2D to 3D transformation method for SRCNN is proposed, which will help us to 

extend 2D high resolution topology optimization to 3D ones. 

4.1  Filter of High-resolution 

As mentioned in the section of density-based topology optimization methods, there is a 

sensitivity filter in topology optimization defined by the filter radius minr . For ease of explanation, 

this article uses the element number as the unit of filter radius, and defines the actual radius length 

as the true radius. The filter radius links the mesh size to the model size. Both large-scale and 

high-precision are closely related to the increase in resolution (i.e. high-resolution), but the model 

size, element size and filter radius vary differently. Compared with the low-resolution model, the 

large-scale model only increases the model size, and the element size and filter radius are 

maintained. The high-precision model size is unchanged and the element size becomes smaller, 

and the filter radius is increased.  

 

Fig. 3 Filter region and filtered elements of different high-resolution transformations.  
 
 

Table 1 Model data of different high-resolution transformations 
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USF = 4 Model 
size 

FEM 
mesh 

Filter 
radius 

Output 
resolution 

Low-resolution Basic model 200*100 200*100 3 200*100 

Conventional Large-scale 800*400 800*400 3 800*400 
High-precision 200*100 800*400 12 800*400 

Training set Large-scale 800*400 800*400 3 800*400 
High-precision 200*100 800*400 15 800*400 

 

For the specific case, Table 1 shows a base model with a mesh of 200*100 and a filter radius 

of 3 (the number of elements is used as the unit of the filter radius). When the USF is used to 

increase the resolution with a value of 4, the parameter changes of large-scale and high-precision 

are displayed. In Fig. 3, the blue circular area and the blue large element represent the filter region 

and the filtered element of the low-resolution base model, respectively. We can observe from the 

Table 1 that in the conventional method, when dealing with large-scale models, the model size and 

finite element mesh are increased to 800*400, and the filter radius is kept at 3, corresponding to 

the yellow area in Fig. 3. For high-precision models, the model size remains at 200*100, while the 

finite element mesh is increased to 800*400 and the filter radius is increased to 12, corresponding 

to the red area in the Fig. 3. 

We have found that the high-precision filter region of the conventional method in Fig. 3 does 

not include all of the filtered elements in low-resolution. SRCNN is a method that relies on data. 

Therefore, in order to ensure that the training set of the neural network can contain all the 

necessary data information, we use the following filter radius conversion formula for the SRCNN 

training set. 

 ( )
( )

min min

min min

1 1

1 1

H L

L H

r r USF

r r USF

 = + × −


= + −

  (10) 

where min
Hr  and min

Lr  are the filter radius of high and low-resolution mesh, and USF  is the 

upscaling factor. As can be seen from Table 1, the training set using the filter radius conversion 

formula has a high-precision filter radius of 15, corresponding to the green area in Fig 3. In this 

way, the filter area contains all the necessary data information. 

4.2  Pooling 

Pooling is a concept in convolutional neural networks that aims to reduce network dimension. 

Inspired by this concept, we attempt to balance the number of FEA and output mesh in 

optimization process. The pooling of convolutional neural networks considers reverse operations 

and generally uses average pooling or maximum pooling. Topology optimization does not require 

pooling reverse operations, so there are more options for pooling. In this paper, we use the mean 

of the fine elements corresponding to the corners of the coarse cells as the pooling value, as shown 

in Figure 4. The computational cost can be controlled well by this pooling method. 
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Fig. 4 The pooling strategy with corner mean sampling 
4.3  Numerical implementation 

Now a high-resolution topology optimization method (HRTO) is established by 

implementing SRCNN and Pooling strategies as shown in Fig.5. HRTO separates the output 

configuration mesh from finite element mesh through SRCNN, and Pooling connects them. 

Therefore, the high-resolution information obtained by SRCNN can still have an impact on finite 

element analysis while maintaining efficient computation. In HRTO process, the stabilizer and 

convergence criteria used in the BESO method (Huang and Xie 2007) were introduced in order to 

improve convergence. If the filter scheme (Sigmund 2001) can smooth the sensitivity in space, 

then the stabilizer makes the sensitivity smooth in time. 

The procedure of the present high-resolution topology optimization method is given as 

follows: 

(1) Define the FEA mesh of the design domain and its load and boundary conditions, and then 

assign the initial design variable value (0 or 1) to each element. 

(2) Analyze the design with FEA method. 

(3) Calculated the sensitivity of individual elements with the data obtained from FEA. 

(4) Use a filter (Sigmund 2001) to smooth the sensitivity spatially and the stabilizer 

( )1ˆ 2i i i−= +α α α  (Huang and Xie 2007) to smooth the sensitivity temporally.  

(5) Update design variables with OC method. 

(6) Increase the resolution of design variables with SRCNN. 

(7) Determine whether the optimization design satisfies the convergence condition 

( )1 11

11

N
k i k N ii

N
k ii

C C
error

C
τ

− + − − +=

− +=

−
= ≤
∑

∑
. If not, pooling will be executed to reduce the design 

resolution.  

(8) Repeat steps 2-7 until the convergence condition is satisfied. 

4.4 The combination treatment of 3D models 

We try to extend the proposed strategy to handle 3D design problems. Mathematically, a 3D 

convolutional neural network is achievable. But in fact, the huge training set and high 

computational cost are the biggest obstacles to its application. Therefore, we used 2D SRCNN to 

process 3D elements from three directions instead of 3D SRCNN operations. Fig. 6 shows the 

refining process for an element in a 3D model with the USF of 4, where the blue arrow represents 

the normal direction of the 2D SRCNN processing plane. After one processing has been performed 
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in each of three directions, an element of 1*1*1 is gradually shifted to 16*16*16 elements. The 

location of SRCNN in the topology optimization and the different processing methods of the 2D 

and 3D models have been determined. The next section will show how it works in some numerical 

examples. 

SRCNN

Start

Finite element 
analysis

Finish

Element updating

Sensitivity analysis

Filter & stabilizer

No

Define design 
domains, loads and 
boundary conditions

Refining

Convergence ?

Yes

Pooling

ReconstructionNon-linear mapping

Path extraction & 
representation

 

Fig. 5 High-Resolution Topology Optimization Method. The part inside the dotted box is the 
high-resolution process introduced by HRTO method in traditional topology optimization. 

 

 

Fig. 6 The combination treatment of 3D models using 2D SRCNN 
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5  Numerical examples 

This section uses the HRTO method to solve topology optimization problem. We use the 

efficient topology optimization code, released by Andreassen et al. (2011), as the base program. 

All examples are operated on the same computer, and their hardware includes an Inter(R) Xeon(R) 

CPU E5-2689 v4 @ 3.10Ghz and 256g RAM. None of them uses GPU parallelism. 

5.1  2D numerical examples 

Fig. 7 shows several results of numerical examples with the network we trained using the 

topology optimization dedicated training set. The case ① is a MBB beam model with the 

low-resolution mesh of 240 100× . And its target volume and filter radius are 0.4  and 15  

respectively. Its load is applied to a random location on the upper part of design domain. For case 

②, it is a cantilever beam model with the low-resolution mesh of 240 120× . And the position of 

the load is at a random point on the right side of the design domain. The target volume and filter 

radius are 0.4  and 15  respectively. Another MBB beam model as case ③  has the 

low-resolution mesh of 260 120× , the target volume of 0.3 and the filter radius of 11. A random 

point to the left of the design domain is loaded. The high-resolution USF of the above models are 

4. The optimization parameters of these several examples and the loaded nodes numbers are 

random values. These examples were isolated from the training set, so the possibility of data 

leakage was eliminated. 

 

Fig. 7 The comparison of optimization results of three random cases ①, ②, and③. (a) is the 
low-resolution optimization result, and (b) and (c) are high-resolution optimization results using the 

conventional method and the HRTO method, respectively. 
 

It can be seen from Fig. 7 that the results of the HRTO method have anti-aliasing effect as 
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case ①, which is in line with our research expectations. And its ability to identify and correct 

gray elements as the case ② is an unexpected performance. The case ③ shows the mesh 

independent characteristics of the HRTO method, and its design retains characteristics of the 

low-resolution model, which ensures the reliability of the results. 

In order to investigate the influence of each optimization parameter on HRTO efficiency, we 

choose an MBB beam as the base model, half of which is used as an optimization model in Fig. 8. 

Its 1E = , load 2F = , and its optimization parameters include a base resolution of 140*70, a 

target volume of 0.5, a filter radius of 3, and a upscaling factor of 4. Therefore, the output 

resolution will reach 560*280. Table 2 lists alternative optimization parameters for parametric 

analysis. 

 
Fig. 8 MBB beam basic model 

 

Table 2 Alternative optimization parameters 

 Basic 
resolution 

Target 
volume 

Filter 
radius 

Upscaling 
factor 

 100*50 0.3 1 2 
 120*60 0.4 2 3 

Basic model 140*70 0.5 3 4 
 160*80 0.6 4  
 180*90 0.7 5  

 

According to Table 2, we test the influence of each alternative parameter on the compliance 

using the control variable method. Fig. 9(a)-(d) are the effects of each optimization parameter on 

design compliance under the high-precision model. Correspondingly, the effects of each 

optimization parameter on design compliance under the large-scale model are shown in Fig. 

9(e)-(h). The optimization parameters shown in Fig. 9 are the number of elements, volume fraction, 

filter radius, and upscaling factor, from top to bottom. As we can see in Fig. 9(a)-(d), the FEA 

compliance of HRTO high-precision model has a deviation from the conventional method, but this 

error can be corrected and optimized by the SRCNN. The objective function of HRTO’s design is 

about 0.5% better than the conventional method. Only one large deviation occurs in Fig. 9(c) 

where the filter radius min 1r = . The performance of HRTO is good under other high-precision 

conditions. In contrast, the HRTO method is not good enough in large-scale models. The error of 
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the objective function decreases with increasing individual optimization parameters Fig. 9(e), (f), 

and (h) (except for the filter plate radius minr  in Fig. 9(g)), but it is only reduced to around 5%. It 

can also be observed in Fig. 9(a)-(h) that the high-resolution design sacrifices about 5% 

performance compared to the low-resolution design not processed by SRCNN. 

 
Fig. 9 The influence of each optimization parameter of 2D designs on objective 

 

An MBB beam whose design domain shape, boundary conditions and load position are 

similar to Fig. 8 is selected to test the efficiency of the HRTO method. Half of the base model size 

is 200×100, target volume is 50%, filter radius is 3, Young s modulus is 1, external load is 2, and 

SRCNN upscaling factor is 4. We calculate large-scale and high-precision models using traditional 

methods and HRTO methods. Fig. 10 shows the convergence history of the base model and the 

two types of high-resolution models calculated by the conventional method and the HRTO method. 

The black solid line is the basic model convergence history. The high-resolution and large-scale 

models of the conventional method are represented by dash line and short dash line, respectively. 

The high-resolution and large-scale models of the HRTO method are indicated by dash dot line 

and dash double-dot line, respectively. It is worth noting that the curve in Fig. 10 represents the 
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compliance calculated by FEA. According to the test of Fig. 9, the output compliance of the 

HRTO method is about 5% higher than that of FEA. In Fig. 10, the convergence of the HRTO 

method is significantly better than the conventional method. And Table 3 shows several specific 

data on the convergence history of Figure 10. As can be seen further from Table 3, HRTO is a very 

efficient method. For high-precision models, because of the lower resolution of FEM mesh and the 

smaller filter radius, HRTO only needs to add a small amount of memory required for neural 

network operations, which can reduce the Initial Time (I.T.) by 99.95% and the Step Time (S.T.) 

by 86.18%. In addition, SRCNN includes filter characteristics, so the iteration number (It.) is also 

reduced, which is about 86.64%. For large-scale models, the computational efficiency is also 

improved. For the above three data, the Initial Time (I.T.), the Step Time (S.T.), and the iteration 

number (It.) were reduced by 98.45%, 88.80% and 63.44%, respectively. These improved 

performances combine to save users a lot of time and computing costs. The conventional method 

requires a large amount of running memory in the high-precision case, and HRTO method requires 

less. By comparing with the large-scale case of the two methods, it can be found that the 

conventional method requires a large memory space to calculate the filter of high-precision case, 

and the peak of memory of HRTO occur in neural network computation. 

 

Fig. 10 The MBB beam convergence history of the conventional method and the HRTO method. The 
compliance curves associated with the HRTO method are calculated from the FEA mesh rather than 

output designs. After testing, the compliance of HRTO output designs is about 5% larger than the value 
in this figure. 

 
Table 3 The MBB beam efficiency of the conventional methods and the HRTO methods 

USF = 4 Output 
Resolution 

I.T.  
(s) It. S.T.  

(s) 
Max RAM 

(Gb) 
Low-resolution Basic model 200*100 0.0994 606 0.3328 0.0100 

Conventional High-precision 800*400 209.40 8174 20.026 2.5303 
Large-scale 800*400 1.6530 4231 7.5468 0.1529 

HRTO 

High-precision 800*400 0.1138 1092 2.7686 0.1621 
Reduction ratio % — 99.95 86.64 86.18 93.59 

Large-scale 800*400 0.0256 474 2.7592 0.1621 
Reduction ratio % — 98.45 88.80 63.44 -6.08 

 

Table 4 lists the efficiencies of the HRTO method at different resolutions. The design domain 

shape, boundary conditions, and load position of the basic model of the data in Table 4 are similar 
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to the MBB beam of Fig. 8. In addition to the change in resolution, the unlisted optimization 

parameters include a target volume equal to 0.5, a filter radius of 3, and an upscaling factor of 4 

are constants. The data in the table shows that HRTO has a stable ability to accelerate 

high-precision models, and the acceleration capability of large-scale models increases with 

resolution. 

 

Table 4 The efficiencies of the HRTO method at different resolutions 

Basic 
Resolution 

Output 
Resolution 

Conventional HRTO 
I.T. 
(s) 

S.T. 
(s) 

I.T. 
(s) 

Reduction 
ratio % 

S.T. 
(s) 

Reduction 
ratio % 

High-precision 
100*50 400*200 15.19 4.591 0.023 99.85 0.660 85.63 
120*60 480*240 24.89 7.166 0.039 99.84 0.905 87.37 
140*70 560*280 37.55 7.068 0.054 99.86 1.254 82.25 
160*80 640*320 58.13 9.790 0.073 99.88 1.719 82.44 
180*90 720*360 121.0 14.14 0.088 99.93 2.115 85.04 
200*100 800*400 209.4 20.03 0.114 99.95 2.769 86.18 

Large-scale 
100*50 400*200 0.539 1.710 0.006 98.85 0.695 59.37 
120*60 480*240 0.731 2.607 0.007 99.00 0.899 65.51 
140*70 560*280 0.746 2.794 0.010 98.66 1.230 56.00 
160*80 640*320 1.015 3.935 0.014 98.66 1.631 58.54 
180*90 720*360 1.342 5.089 0.021 98.41 2.015 60.40 
200*100 800*400 1.653 7.547 0.026 98.45 2.759 63.44 

 

5.2  3D numerical examples 

 
Fig. 11 Design domain and HRTO topology solution of a 3D cantilever beam 
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Fig. 11 shows the computing power of the HRTO method in 3D models. The base resolution 

of this cantilever beam is 100*20*10, volume fraction 0.35vol = , filter radius 2rmin = , 

upscaling factor 4USF = . With the help of the combination treatment of 3D models, the output 

resolution was increased to 16 times in all three dimensions, i.e. 1600*320*160, and the output 

designs included a total of 81,920,000 elements. This example doesn’t require strong hardware 

support, and it can be performed on a typical computer. This computer includes Intel(R) Core (TM) 

i5-7500 CPU @ 3.40Ghz and 4Gb RAM. It requires only 0.57s for initialization and 651.41s for a 

single step. Under the same hardware conditions, conventional methods are difficult to run, so the 

design of conventional method can’t be shown here. Again, the high computational efficiency of 

the proposed method is highlighted.  

 
6  Conclusions and Remarks 

This paper proposes an efficient high-resolution topology optimization method using SRCNN. 

In this framework, the two strategies are developed, i.e. the pooling strategy for mesh balance and 

a combined treatment method using 2D SRCNN. This method allows 3D HRTO to eliminate 

significant computational costs. From a comprehensive comparison, the following conclusions can 

be drawn: 

(1) In terms of resolution, the data used in this paper increases the resolution of the 2D model from 

200*100 to 800*400, and the resolution of the 3D model from 100*20*10 to 1600*320*160. By 

flexibly combining SRCNN and Pooling modules, the HRTO method can make the design reach 

any resolution. 

(2) Regarding to efficiency, HRTO is much more efficient than traditional algorithms. In a 

high-precision design, the iteration number is reduced from 8174 to 1092, and the step time is 

reduced from 20.026 seconds to 2.7686 seconds. After further testing, the acceleration effect 

becomes more and more apparent as the number of meshes in the design domain increases. 

(3) From the perspective of versatility, HRTO benefits from the wide application scenarios of 

SRCNN, and it is more versatile than other topology optimization methods using neural networks. 

HRTO can be selected for any design domain, any number of meshes, arbitrary boundary 

conditions and loads. However, it should be noted that the number of FEA meshes should reach 

the mesh independent threshold to ensure reasonable design. 
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