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Abstract 
 
 Prototype of a family of at least nine members, c-src tyrosine kinase is a therapeutically interesting 
target, because its inhibition might be of interest not only in a number of malignancies, but also in a 
diverse array of conditions, from neurodegenerative pathologies to certain viral infections. Computational 
methods in drug discovery are considerably cheaper than conventional methods and offer opportunities 
of screening very large numbers of compounds in conditions that would be simply impossible within the 
wet lab experimental settings. We have explored the use of global QSAR models and molecular ligand 
docking in the discovery of  new c-src tyrosine kinase inhibitors. Using a data set of 1038 compounds from 
ChEMBL and 19 blocks of molecular descriptors, we have developed over 200 QSAR classification models, 
based on six machine learning algorithms and 17 feature selection methods. We have selected 49 with 
reasonably good performance (positive predictive value and balanced accuracy higher than 70% in nested 
cross validation) and the models were assembled by stacking with a simple majority vote and used for the 
virtual screening of over the “named” ZINC data set (over 100,000 compounds). 744 compounds were 
predicted by at least 50% of the QSAR models as active, 147 compounds were within the applicability 
domain and predicted by at least 75% of the models to be active. The latter 147 compounds were 
submitted to molecular ligand docking using Vina and Ledock, and a number of 90 were predicted to be 
active based on the binding energy. External data from CHEMBL and PUBCHEM confirmed that at least 
7.83% (in the case of QSAR) or 6.67% (in the case of integrated QSAR and molecular docking) of the 
compounds are active on the c-src target. 

Keywords: c-src-tyrosine kinase, QSAR, molecular descriptors, virtual screening, drug discovery, cancer, 

molecular docking 

 
 

Introduction 

Src (c-src, pp60-src, or p60-src) is a non-receptor, cytoplasmic tyrosine kinase, the first of its kind to 

be discovered (in the 1970s) in the living world, whereas the corresponding gene has been the first 

oncogene to be uncovered (1). It is the prototype of a larger family, comprising at least nine members, 

most of them with little activity in normal cells in the absence of stimulatory signals (2). Src kinases have 

been suggested to be involved in the exacerbation of neurodegenerative pathologies, whereas their 

inhibition would diminish microgliosis and mitigate inflammation, findings that are in line with 

experimental effects seen for non-specific src inhibitors such as bosutinib or LCB-03-0110 (3). Inhibition 

of src kinases has been suggested by non-clinical evidence as a potential method of therapy for the 
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pulmonary vascular remodeling and right ventricular hypertrophy in pulmonary hypertension (4), 

although several reports indicate that dual Abl/src inhibitor dasatinib may actually induce pulmonary 

hypertension (5–7); it was more recently suggested that this dasatinib effect may in fact be independent 

of the src inhibition (7). This family of kinases has been recently shown to be involved in the subgenomic 

RNA translation and replication of alpha-viruses, their inhibition being suggested as a potentially effective 

way of treating infections with such viral particles (8). Thus, targeting src kinases opens wide doors for 

multiple therapeutic applications in a variety of pathologies and there is a constant interest for 

understanding the pharmacology of this class of compounds, as well as for developing new src inhibitors. 

The first member of this family (c-src), has been suggested to be more important than other members 

of the same family in certain pathologies or clinical contexts. For instance, c-src, but not Lyn and Fyn src 

kinases from the same family, is up-regulated by hypoxia and plays a major role in prostate cancer 

metastasis of hypoxic tumours (hypoxia is a negative prognostic factor in this malignancy) (9). Besides, c-

src tyrosin kinase has been shown to be abnormally activated or over-expressed in a number of different 

malignancies and to stimulate processes associated with tumour progression, such as proliferation, 

angiogenesis or metastasis (10). Src  tyrosin kinase inhibitors have been explored as potential new 

therapies in a variety of malignancies such as melanoma (one such inhibitor showing in vitro that is active 

on a variety of melanoma cells, including some  BRAFV600 mutant cells (11), but a report that src inhibition 

would increase induces melanogenesis in melanoma cells has also been published (12)), papillary thyroid 

carcinoma (13), clear-cell renal carcinoma (14), pancreatic (15) or ovarian cancer (16).  

The space of the universe is expanding, but so is the “chemical space”. Currently Pubchem includes 

about 96 million different chemical compounds (17), an impressive number, but minuscule when 

compared with the number of chemical compounds that might be synthesized in the coming years. GDB-

17, probably the largest database of molecules up to date, included in 2015 no less than 166 billion 

compounds, and these are limited to only a few types of atoms (C, N, O, S, and halogens) and maximum 

17 atoms per molecule (18). Theoretical calculations using constraints for circumscribing the drug-like 

chemical space have suggested that the number of molecules obeying to the Lipinsky’s rules is about 1033 

(19), an estimate intermediary between 1060 (as proposed earlier by R.S. Bohacek et al. (20)) and 1023 (as 

proposed later by P. Ertl. (21)). How to assess all these substances for their pharmacological, toxicological 

or biological effects (in all contexts, for all targets etc)? It is simply „mission: impossible” by the traditional 

route of wet lab experiments. Here the computing power of our age finds its place with surprisingly good 

results (although far from perfect).  

Built on three pillars (biological data, chemical knowledge and modeling algorithms), QSAR 

(quantitative structure-activity relationship) (22) methodologies allow the development of computational 

tools for predicting with reasonable confidence (when validated appropriately) a wide variety of biological 

activities from the molecular structure of chemical compounds. Although the QSAR approaches have not 

gained in popularity as fast as the molecular docking modeling, the field has been far from being inert in 

the last decade or so, with various new approaches with respect to the mathematical algorithms used or 

the with respect to the biological activities explored (23). The models developed and validated may then 

be applied for virtual screening purposes to a large number of compounds, allowing quick identification 

of a sizeable number of compounds of interest (with certain activities or biological properties). Such virtual 
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screening exercises may also be further coupled with other computational methods, such as ligand-target 

docking for confirmation of activity (24,25). Whereas the classical drug development process was very 

costly and tedious, computational methods have high efficiency and are inexpensive (26). In this context 

we developed a set of QSAR models with different descriptors and machine learning classification 

algorithms, integrated by stacking, to be used for virtual screening purposes of c-src tyrosin kinase 

inhibitors. A number of 49 QSAR models with reasonably good performance have been developed and 

their performance assessed by nested cross-validation. They were applied for the virtual screening of over 

100,000 chemical compounds from the ZINC database, and 147 with the highest probability of being active 

were also assessed with molecular docking, for 90 of them the docking data being consistent with a 

hypothesis of activity. Data from CHEMBL and PUBCHEM externally validated the virtual screening results 

for a number of compounds. 

Materials and methods 

Dataset  

The dataset was downloaded from CHEMBL (https://www.ebi.ac.uk/chembl) and included experimental 

data for c-src as a target (target code CHEMBL267). Only the records with Ki values expressed in nM were 

kept. Records with “=” values in the field “Relation” were kept for analysis and labeled as “active” if ki < 

1000 nM and “inactive” if ki ≥ 1000 nM; records with “>” or “<” values in the field “Relation”were kept for 

analysis only if they allowed unequivocal classification (e.g. records with ki > 5000 nM  were kept and 

labeled as “inactive”, whereas those with ki > 100 nM were discarded; similarly, records with ki < 5000 

nM were discarded). A threshold of 1000 nm for the formal discrimination between “active” and 

“inactive” compounds is usual in the field and has been used in other publications (27). We have used 

classification rather than regression, because the data come from different laboratories and experimental 

settings, and although ki values have less variability than IC50, published experimental ki values still vary 

considerably (of the 75 compounds in our data set with multiple ki values, the relative standard deviation 

(RSD) of ki varied from 0% to 103%; for the first three quartiles, RSD was relatively low, under 13.85%, but 

for the last quartile it was quite high). Inorganic compounds were removed. For the detection and removal 

of duplicate compounds we proceeded in two steps: First, canonical SMILES (available in the downloaded 

dataset) were searched for duplicates in R (v. 3.6.0) and their ki values were replaced by the average of 

the duplicates. We then used ChemAxon Standardizer v. 18.8.0 (ChemAxon, Budapest, Hungary) for the 

standardization of the molecules, and then employed the ISIDA/Duplicates software (http://infochim.u-

strasbg.fr; University of Strasbourg, France) software for the identification of potential further duplicates. 

We used Discovery Studio Visualizer v16.1.0.15350 (Dassault Systèmes BIOVIA, San Diego, CA, USA) to 

convert the standardized SMILES to 2D chemical structures (sdf). Following the removal of duplication, 

our dataset decreased from an initial number of 1151 compounds to 1038, of which 286 were labeled as 

“active” and 752 as “inactive”.  

Descriptors 

Molecular descriptors of the dataset molecules were computed using the Dragon 7 software (version 

7.0, https://chm.kode-solutions.net; Kode SRL, Milano, Italy). 19 blocks of molecular descriptors were 
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computed: constitutional descriptors (n=47), ring descriptors (n=32), topological indices (n=75), walk 

and path counts (n=46), connectivity indices (n=37),  information indices (n=50), 2D matrix-based 

descriptors (n=607), 2D-autocorrelations (n=213), Burden eigenvalues (n=96), P-VSA-like descriptors 

(n=55), ETA indices (n=23), edge adjacency indices (n=324), functional groups count (153), atom-centred 

fragments (n=115), atom-type E-state indices (n=172), CATS 2D (n=150), 2D atom pairs (n=1596), 

molecular properties (n=20), and drug-like indices (n=28). All descriptors thus computed were 3839.  

Feature selection 

Because the number of computed descriptors is very large (almost 4000), the “dimensionality curse” 

precludes optimal operation of the classification or regression algorithms, which are generally designed 

for a relatively small number of variables, and tends to result in overfitting (28). Feature selection, which 

is a process of filtering a high number of variables while keeping only the most relevant of them 

increases the performance of machine learning algorithms, reduces the computational costs and 

strengthens the generalization ability of the models built (28). Multiple algorithms of feature selection 

have been proposed in the literature, with variable performance, often depending on the nature and 

particularities of the data. We have used 17 different feature selection algorithms, implemented directly  

in the “mlr” R package (29) or through other R packages: based on an ANOVA test, on a Kruskal test, on 

the Area Under the Curve (AUC), variance, and an univariate model performance score (‘mlr’), based on 

a permutation importance of random forest (as implemented in the R package ‘party’, (30)), based on a 

chi-square test, gain ratio, information gain, OneR classifier, RELIEF algorithm, and symmetrical 

uncertainty (methods implemented in the ‘FSelector’ R package (31)), three algorithms based on 

random forest importance (as implemented in the randomForest (32) and  randomForestSRC (33) 

packages), and two algorithms based on node impurity and permutation in random forests, as 

implemented in the ‘ranger’ R package (34). The feature selection algorithms were applied after pre-

processing consisting in removal of constant and quasi-constant features (i.e. those where less than 1% 

of the observations differed from the mode value) and highly correlated features (defined as those with 

a correlation coefficient higher than 0.9). 

Machine learning algorithms and model building 

For building the models we have used the following algorithms: random forests, support vector 

machines, ada Boosting M1, Bayesian additive regression trees, binomial regression, and C5.0 decision 

trees and rule-based models.  

Based on an arbitrary number of decision trees used as an ensemble with a majority vote to decide on 

the most probable class assigned to each data point, random forests (RF) are a popular classification 

algorithm often used with very good performance in QSAR models (35–37). Each decision tree is 

constructed using bootstrap sets of the training set and subsets of descriptors that are selected in a 

random manner(38). 

The support vector machines (SVM) algorithm is able to address data sets with high number of variables 

and has often been used with very good performance in a variety of classification and regression tasks, 

including QSAR applications (39,40). It uses a variety of kernel functions (e.g. linear, polynomial, radial 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2019                   



etc) to project features in a vector space maximizing the partitioning boundary between classes and to 

identify the hyperplane that best discriminates the classes (41).  

The adaboost M1 (Adaptive Boosting) algorithms were described as “widely used in QSAR studies” (42), 

although they are probably less used than RF or SVM. AdaBoost is an iterative algorithm that uses 

weights to improve the performance of “weak” classifiers (particularly decision tress), giving higher 

weights to the trees with better performance (smaller misclassification rates) (42).   

Bayesian Additive Regression Trees (BART) is non-linear regression technique based on a Bayesian 

approach, whose performance in QSAR modelling has been stated to be competitive with that of other 

machine learning methods (43). Unlike other decision trees, where decision is taken based on a majority 

vote or with the help of empirical weights, BART makes use of prior knowledge and likelihood to 

improve the performance of the decision trees. 

Binomial regression (logistic regression), despite the term „regression” is a relatively simple algorithm 

used for classification purposes, because it linearly models the probability that an observation belongs 

to one of two categorical outcomes (44). In other words, logistic regression computes the probability 

P=1/(1+e-t), where t= a0  + a1x1  + a2x2  + ... + anxn (45).   

C5.0 decision trees and rule-based models represent an extension of a classification algorithm proposed 

by R. Quinlan in 1993, under the name “C4.5” and builds models that can take either the form of a 

decision tree or a set of rules (in simple or boosted versions) (46).  Although apparently less used in 

QSAR modeling than other machine learning algorithms, when employed, it gave excellent performance, 

comparable with that of random forests or support vector machines (47). 

All models were built and their performance was assessed in the computing and programming 

environment R, v. 3.6.0 (48), using ‘mlr’ package (29) coupled with "parallelMap" (49)  for parallel 

computing, and to a small extent, the “caret” package (50). Classification algorithms were used from the 

corresponding R packages implementing them: ‘randomForest’ (32), ‘e1071’ (51) (for SVM), ‘RWeka’ 

(52,53) (for adaboost M1), ‘bartMachine’ (54) (for BART), ‘stats’(48) (for the logistic regression), and 

‘C50’ (for the C5.0 algorithm) (46). Gower distances were computed with the “cluster” R package (55). 

Graphs were built in “ggplot2” (56) and (for the dissimilarity plot) “seriation” (57). All values were 

standardized by centering and scaling, and values larger than two standard deviations were capped to 2.  

Performance evaluation 

Nested cross-validation using 5 folds in the inner loop and 10 folds in the outer loop was used to 

evaluate the performance of the models selected, except for the Bayesian Additive Regression Trees, for 

which 5 folds were also used in the external loop (due to the long time taken by this classifier). The 

assessment of QSAR model performance should include both internal and external, and the external 

validation is generally deemed as “the gold standard” (58,59).  However, the concept of “external 

validation” has received different interpretations and most often is assumed to describe a holdout data 

set, obtained by an initial one-time split (i.e. a set that has not been seen by the model during any 

adjustments or hyperparameter optimization) (60). Despite its apparent advantages of objectivity and 
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ability to assess the generalization of the selected model(s), the use of a hold-out data set is fraught with 

thorny issues: the split may be simply fortunate leading to overestimation of performance (or of 

contrary, it may be unfortunate, leading to underestimation of performance), it requires the holdout 

sample to be large (which in practice may be costly or a requirement impossible to satisfy), and the 

sample size needed for holdout is larger than it is necessary for cross-validation to estimate the 

prediction error with a similar degree of precision (58). For these reasons, using nested cross-validation 

(also known as double cross-validation) not only does not reject the idea of external validation, but it 

extends it to the entire data set (61).  

All models were assessed by computing (within the nested cross-validation) the balanced accuracy (BA), 

mean misclassification error (MMCE), sensitivity (true positive rate, TPR), specificity (true negative rate, 

TNR), area under the Receiver Operating Characteristics curve (AUC) and positive predictive value (PPV), 

with their widely known definitions and equations (27,62). Particularly for virtual screening purposes 

PPV is important (because it indicates the likely proportion of positive values among the values 

predicted as positive). We therefore selected only models with a PPV higher than 70% and BA higher 

than 70%.   

Y‑randomization test. To ascertain that the models are not the result of chance association we applied a 

classical y-scrambling test (64) by permuting the activity label of the compounds from the data set and 

re-building the models following the same steps as for the construction of the „true“ models. This 

process was repeated ten times and the new models were evaluated for their performance in terms of 

balanced accuracy, sensitivity, specificity and positive predictive value, the expectation being that the 

performance would be (considerably) worse than that of the QSAR models based on the initial data set.  

Applicability domain 

We have used two local density-based outlier methods implemented in the DDoutlier R package (65) - 

the Kernel Density Estimation Outlier Score (KDEOS) algorithm with gaussian kernel (66), and the INFLO 

algorithm (which compares the density in the neighborhood of an observed value with the density in the  

“reverse neighborhood”) (67) -, adding each new test observation once at a time and computing 

whether it is or not an outlier in comparison with the reference (i.e. training) data set. We have also 

applied the KNN approach proposed by Sahigara et al (2013)  (68) and the method advanced by Roy et al 

(2015) (69) using R code written in house.  

Virtual screening by QSAR 

49 best-performing QSAR models were used to predict the activity of a data set consisting of 104619 

Zinc database compounds (the “named” subset, i.e. compounds that have names in the Zinc 15 

database (70)).  The 49 models were stacked using a simple majority (plurality) voting for the decision; 

the performance of the stacking was assessed by applying the same majority voting to the independent 

predictions in the nested cross-validation loops. The compounds were ranked in decreasing order, from 

those predicted by 100% of the models to those predicted by only 51% of the models.  

Molecular Docking Study 
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Crystallographic data available in the PDB database (PDB ID: 4MXO (71), PDB ID: 3QLG (72)) show that 

src-tyrosin kinase inhibitors engage the enzyme primarily at the hinge residues, a few amino acid 

residues having a particular relevance: Val281, Ala 293, Met314,  Ile 336, Met341, Leu 393 (73). We 

intended to evaluate whether the molecules ranked in our virtual screening as active with highest 

confidence bind in the back pocket of the src-tyrosin kinase in a similar way with dasatinib or bosutinib. 

Docking was performed using VINA (74) with default parameters under Yasara (version 19.7.20), and 

LeDock. Human c-src protein (PDB ID: 2src (75)) was used as a target. For Vina, the protein preparation 

was performed in Chimera (Resource for Biocomputing, Visualization, and Informatics at the University 

of California, San Francisco) using the Dock Prep module (deleting the ligand and water molecules, 

eliminating alternate locations of residues, replacing selenomethionine with methionine etc). The active 

site for the Vina docking was defined as a cubic cell of  5 Å around the selected residues (mentioned 

above). For LeDock the protein preparation was carried out using the LePrep module (with the default 

values) and the docking was run with the default values of the LeDock module. The SMILES structures 

corresponding to the ZINC codes of the compounds predicted as active in the virtual screening by at 

least 75% of the models were downloaded in Python with the help of the smilite package; they were 

then converted to sdf format in DataWarrior (adding 3D coordinates) and then to mol2 format (with 

hydrogens added) in Biovia Discovery Studio and batch split to individual mol2 files with Open Babel. 

Ligand energy minimization was performed with Marvin Sketch, v. 19.19. The mol2 files were used in the 

LeDock software for virtual screening.  

To estimate the performance of the docking a subset of the training set comprising 175 compunds (33 

with ki < 20 nM, 67 with 500 < ki < 1,000 nM, 32 with 1,500 < ki < 2,000 nM and 43 compounds with ki > 

10,000 nM) was used and "cutpointr" R package was employed to define the best cut-off point of 

computed binding energies between actives and inactives, based on the sum of sensitivity and 

specificity.  We have also computed various ligand efficiency metrics, which have been reported in the 

literature to improve the docking scoring; they are computed by dividing the free energy of binding to 

the molecular weight ( ΔG/MW), number of heavy atoms (ΔG /nHM), number of carbon atoms (ΔG/nC), 

partition coefficient (-log(ΔG /P)), and Wiener index (ΔG/Wap) (76). We also explored computing ligand 

efficiencies by dividing the free binding energy to the squared value of the partition coefficient 

(ΔG/ALOGP2), to the total surface area (P_VSA-like descriptors), McGowan volume, van der Waals 

volume from McGowan volume, and van der Waals volume from Zhao-Abraham-Zissimos equation 

(metrics not reported previously). The "cutpointr" R package (77)  was used to define the best cut-off 

point of computed binding energies between active and inactive compounds, based on the sum of 

sensitivity and specificity. For further validation we have also docked the co-crystallized ligand from the 

c-src protein (PDB ID 2csrc), namely the phosphoaminophosphonic acid-adenylate ester, and RMSD was 

computed for the first cluster of poses predicted by LeDock. RMSD computation was performed in R 

based on the well-known formula and the results were compared with those obtained with the online 

DockRMSD (78), the values obtained being identical.  

Results 

Data set analysis 
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In our study, the final data set included 1038 small organic molecules with a molecular weight varying 

from 188 to 1032 Da, a range usual in the QSAR modeling, with a median value of 390 Da and 75% of the 

values less than 440 Da.  The number of atoms per molecule varied between 14 and 143, the median 

and mean value being 46 and 46.6, respectively. All molecules had at least one ring system and 

maximum six rings (with a median of 3). Only 46 of the 1038 molecules satisfied the Lipinsky’s rule of 

five, of which 32 were labeled as “active” (ki < 1000 nM), and 14 as “inactive” (ki >= 1000nM). The 

variability of the data set illustrated by several simple constitutional descriptors or molecular properties 

is illustrated graphically in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Variability of the data set illustrated by several simple constitutional descriptors or molecular 

properties. Blue – inactive compounds; red – active compounds. 

 

To estimate the dissimilarity of the 1038 compounds, a dissimilarity matrix based on the Gower distance 

was computed (the Gowever distance is appropriate for data of a heterogeneous nature), using 783 

most relevant descriptors (remained after removing auto-correlated and quasi-constant features).  

Although Gower distance takes values between 0 and 1, because it tends to give larger weights to binary 

variables (because a distance to a categorical variables may only take values 0 or 1) (79), we rescaled the 

distance matrix and plotted it as a dissimilarity plot (Fig 2.) (before rescaling the maximum value of the 

Gower distance was 0.404, following rescaling it became 1). Examining the dissimilarity matrix showed 
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that most compounds in the data set had other very similar compounds (with scaled distances under 

0.1), but most compounds were quite dissimilar from other compounds (with scaled distances larger 

than 0.6 (Supplementary Figures S1-S3). The median (scaled) dissimilarity values were mostly around 

0.2-0.3, suggesting that the chemical diversity in the data set was rather limited.  

 

 

 

 

 

 

 

 

Performances of models in nested cross-validation 

Using a variety of classification algorithms (six), of feature selection methods (17), and numbers of 

features (between 3 and 40 - for instance, for binomial regression we used models with 3, 5, 10 and 20 

features, and thus the number of models built for this classifier was 68), a total number of over 350 

models were built and their performance was assessed by nested cross-validation. We only selected the 

models with an acceptable performance, defined as having both a balanced accuracy higher than 70% 

and a positive predictive value higher than 70% in the nested cross-validation (Table I). Where for the 

same classifier and selection algorithm several models (with different numbers of features) had good 

performance (over the threshold of 70% as explained above), we only tabulated the model we judged as 

best. 

Table I. Performance of the QSAR models selected. 

Model* BA (%) PPV (%) MMCE (%)  AUC (%) TPR (%) TNR (%) 

RF_anova_23 70.24 78.26 18.60 82.56 45.39 95.08 

RF_auc_20 70.07 78.08 18.69 82.85 45.04 95.09 

RF_cforest_13 70.07 79.39 18.60 82.96 44.80 95.34 

RF_kruskal_30 70.52 77.42 18.60 82.61 46.35 94.68 

RF_RFimp_30 71.54 80.04 17.73 86.03 47.69 95.39 

RF_RF.SRCimp_20 71.01 77.44 18.31 83.76 47.18 94.83 

RF_RF.SRCvarselect_10 72.93 78.72 17.34 86.01 51.29 94.56 

RF_impurity_15 70.67 76.43 18.69 83.72 46.91 94.43 

RF_permutation_10 71.53 80.51 17.83 83.63 47.86 95.20 

RF_univariate_30 71.48 83.49 17.44 84.31 46.80 96.16 

SVM_anova_30 71.83 71.26 19.07 82.08 51.60 92.05 

Fig. 2. Dissimilarity matrix illustrating 

the variability among the data set 

based on the Gower distances 

between the compounds. 
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Model* BA (%) PPV (%) MMCE (%)  AUC (%) TPR (%) TNR (%) 

SVM_auc_30 72.02 71.56 18.98 83.25 51.99 92.05 

SVM_cforest_30 75.11 74.96 17.05 85.60 57.65 92.57 

SVM_chi.sq_30 71.91 75.44 18.59 82.45 50.86 92.97 

SVM_gainratio_30 72.03 72.78 18.98 82.85 51.99 92.07 

SVM_information_30 72.44 73.34 18.59 83.91 52.54 92.35 

SVM_kruskal_20 72.06 72.29 18.98 82.06 52.06 92.05 

SVM_oneR_30 72.49 78.08 17.73 81.16 50.68 94.31 

SVM_RFimp_30 74.74 74.71 17.25 86.92 57.16 92.32 

SVM_RF.SRCimp_30 75.92 77.07 16.28 86.20 58.57 93.28 

SVM_RF.SRCvarselect_20 76.33 76.22 16.28 86.75 60.10 92.56 

SVM_impurity_30 73.96 73.86 17.82 84.27 55.61 92.30 

SVM_permutation_20 72.14 73.82 18.59 84.37 51.58 92.71 

SVM_relief_30 72.42 71.93 19.08 82.15 53.57 91.26 

SVM_sym.uncertain_20 71.91 73.31 18.69 83.33 50.99 92.84 

Adabm1_RFimp_30 71.06 73.50 19.08 83.49 49.11 93.00 

Adabm1_RF.SRCvarselect_20 71.15 70.36 19.56 81.96 50.36 91.95 

Adabm1_impurity_20 71.22 73.34 18.80 83.66 49.18 93.26 

Adabm1_univariate_30 70.50 74.30 19.27 82.36 47.61 93.39 

BartM_chi.sq_30 73.15 73.28 18.11 83.54 53.87 92.42 

BartM_gainratio_20 71.61 70.19 19.37 82.45 51.57 91.64 

BartM_information_20 73.56 73.52 17.92 84.08 54.68 92.44 

BartM_RFimp_25 74.24 71.45 18.02 85.28 57.13 91.36 

BartM_impurity_20 73.48 70.94 18.50 83.79 55.74 91.22 

BartM_permutation_22 74.70 71.64 17.82 85.04 58.17 91.23 

BartM_sym.uncertain_30 73.59 71.19 18.31 84.36 55.69 91.49 

C50_anova_30 75.96 72.56 17.05 84.73 60.70 91.23 

C50_auc_20 74.00 72.03 18.12 83.75 56.80 91.19 

C50_cforest_20 75.08 71.62 17.73 85.06 59.32 90.84 

C50_chi.sq_30 75.55 70.40 17.73 83.55 60.79 90.32 

C50_gainratio_30 75.26 70.85 17.82 84.43 60.08 90.45 

C50_kruskal_30 74.56 71.35 18.02 84.52 58.03 91.10 

C50_oneR_30 73.91 72.78 18.41 83.62 57.06 90.76 

C50_RFimp_30 78.56 75.39 15.32 87.24 65.23 91.89 

C50_RF.SRCimp_30 76.21 72.82 17.05 85.45 61.32 91.10 

C50_RF.SRCvarselect_20 77.64 72.08 16.76 87.84 65.43 89.86 

C50_impurity_20 76.40 76.14 16.10 86.70 60.13 92.66 

C50_permutation_30 75.93 72.28 16.96 86.29 60.51 91.36 

C50_univariate_30 75.44 70.55 17.73 85.47 60.46 90.43 

*Each model name is formed of three parts separated by an underscore: the first part of the name 

indicates the classifier, the second part the feature selection algorithm (in an abbreviated form) and the 

third part the number of features used to build the model. For instance, RF_anova_20 was a random 

forest based on features selected based on ANOVA (as implemented in “anova.test” within “mlr” R 

package) and the number of features used was 20.  
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Because in the nested cross-validation the models applied are always based on only a subset of the data, 

the estimation of performance should be conservative (i.e. applying the selected models on the whole 

data set has better performance).  

Y‑randomization test. As expected, despite following the same steps in building the models, scrambling 

the activity labels had a strong impact on the performance of the models, which was clearly inferior to 

those based on the initial (unscrambled) data: the average balanced accuracy of all 10 y-scrambling tests 

(nested cross-validation performed in the same conditions and following the same pre-processing as the 

true data) was 50.23%, with a standard deviation of 0.59% (minimum value 49.73% and maximum 

51.45%). In a similar way, the mean value of the positive predictive (PPV) was 20.38%, and its value 

varied between 0.00% and 30.00%.  

Descriptors associated with c-src inhibitory activity 

Although for all models the number of features was relatively high (in most cases betwee 20 and 30), 

the largest predictive effect could be attributed to no more than 5 features. For instance, in the case of 

random forest, using ANOVA as a feature selection (filtering) algorithm, with 23 features the AUC was 

82.56% and balanced accuracy 70.24%; however, using only the first most important five molecular 

descriptors, the AUC was 77.53%, and balanced accuracy 66.39%. Although there was an improvement 

for the larger number of features, the first five explained the largest part of the variability in the training 

and testing data sets. We therefore focused on the first five descriptors selected by each of the 17 

selection algorithms and found that most algorithms identified the same features as being the most 

important. These are shown in Table II.  

Table II. The most important molecular descriptors associated with the inhibition of the c-src tyrosine kinase  

Name Interpretation Descriptor block 
(group) 

Frequency occurring 
among the first 5 
most important 
features  

SpMax4_Bh(m) largest eigenvalue n. 4 of Burden 
matrix weighted by mass 

Burden 
eigenvalues 

14 

DECC eccentric topological index Topological 
indices 

11 

SpMax5_Bh(m) largest eigenvalue n. 5 of Burden 
matrix weighted by mass 

Burden 
eigenvalues 

8 

SpMax3_Bh(m)  largest eigenvalue n. 3 of Burden 
matrix weighted by mass 

Burden 
eigenvalues 

8 

J_D Balaban-like index from 
topological distance matrix 
(Balaban distance connectivity 
index) 

2D matrix-based 
descriptors 

6 

F06[C-N] frequency of C - N at topological 
distance 6 

2D Atom Pairs 5 
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Name Interpretation Descriptor block 
(group) 

Frequency occurring 
among the first 5 
most important 
features  

Chi1_EA(dm) connectivity-like index of order 1 
from edge adjacency mat. 
weighted by dipole moment 

Edge adjacency 
indices 

4 

P_VSA_MR_6 P_VSA-like on Molar Refractivity, 
bin 6 

P_VSA-like 
descriptors 

3 

SpMax6_Bh(m) largest eigenvalue n. 6 of Burden 
matrix weighted by mass 

Burden 
eigenvalues 

3 

N-073 Ar2NH / Ar3N / Ar2N-Al / R..N..R Atom-centred 
fragments 

2 

F05[C-N] Frequency of C - N at topological 
distance 5 

2D Atom Pairs 2 

 

19 other descriptors occurred only once among the 5 most important features identified by each of the 

17 feature selection algorithms.  

Virtual screening and external validation 

We applied the models to the 104619 Zinc compounds and ranked them based on the percentage of 

models predicting the compounds as active. Using a threshold of 50% (i.e. compounds predicted as 

„active“ by more than 50% of all models applied) a number of 744 compounds were identified. Our 

validation data (using the predictions on the test sets from the nested cross-validation) indicated that 

the PPV for this threshold was 78.57%. Increasing the decision threshold to 75% the number of 

compounds decreased to 158, but after eliminating the compounds that had been part of the training 

set and the duplicates (multiple ZINC ids may correspond to the same substance), their number 

decreased to 115 (table SI); the validation data indicated a PPV value for this threshold of 85.43%. For a 

threshold of 90% the PPV in the validation was also close to 90% (90.1%), but the number of unique 

compounds was limited to 37.   

For external validation purposes, we searched Pubchem and ChEMBL for biological data related to the 

activity of the predicted compounds on the src tyrosine kinase, so as to have at least partial 

confirmation on the accuracy of the predictions. We found that among the 115 substances predicted as 

being active, for 9 compounds (i.e. 7.83%) there is available evidence that they are active on the c-src 

tyrosine kinase; because we could not find ki values for the 9 compounds, but in most cases rather mean 

inhibition (as a percentage) at 1.0 μM or 0.1 μM, taking into account that IC50 values are always higher 

than ki values for a competitive inhibitor, and the fact that percent inhibition is dependent on both 

substrate and inhibitor concentration, we considered compounds with percentage inhibition values of at 

least 30% as active. When a compound was labeled as “active” on the src target in one of the two public 

databases without further information on the endpoint or bioassay used, we also considered that 

compound as active (that was the case for balamapimod, reported by Pubchem). Of the 9 compounds 

labeled by us as “active” three had a mean % inhibition higher than 50%, one had a ki less than 1000 nM 
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(20 nM to be precise), one was stated as “active” by Pubchem with no further information and four had 

a mean % inhibition between 30% and 42.23% at 1 μM). 34 additional substances (29.56%) predicted by 

the large majority of models as being active were in fact proven to be inactive on src-tyrosine kinase, 

whereas  72  of the substances (62.61%) predicted to be active, seems to have never been tested for 

their effect on src tyrosine kinase. If the 43 compounds that were indeed tested were representative for 

the rest, the rate of success for the predictions would be of 20.93%).  

Applicability domain 

We have used a variety of algorithms to assess the applicability domain for the predictions of the QSAR 

virtual screening by different models. According to the method advanced by Roy et al (2015) (65), none 

of the compounds predicted by more than 50% of our models to be active, were outside of the 

applicability model. This was not very surprising, because that method uses a decision tree based on 

three standard deviations (values outside three standard deviations from the mean are deemed 

outliers), whereas we capped centered and scaled values to 2. Using the KDEOS algorithm (with 

minimum 3 and maximum 10 neighbours), the number of outliers among the 744 compounds predicted 

as active by the majority of the QSAR models was small for each model, not higher than 15% of the total 

number (and a median proportion toward 5%),  and selecting the compounds after filtering them based 

on the applicability model did not change the hierarchization of the compounds predicted as active. The 

INFLO algorithm (with k=5 neighbours) and that of F. Sahigara et al (2013)  (68) identified a much larger 

proportion of compounds as outside de applicability method: for the latter, for instance, the proportion 

of outliers varied (for the different models) between 1.75% and 44.35%, with a median of 32.39% of the 

total of 744 compounds (fig. 3). A number of 147 compounds (of which 5 had been in the training data 

set) were predicted by 75% of the models as being active, after limiting the votes to those compounds 

that were within the applicability domain estimated with the F. Sahigara et al. (2013) method. All 

compounds identified by the virtual screening (before checking the applicability domain) were for at 

least some of the models within the applicability domain, but the degree of confidence in the 

predictions changed after checking for the applicability domain.  

 

 

 

 

 

 

 

 

Fig. 3. Variation of the proportion of 

compounds estimated to be outside 

the applicability domain (F. Sahigara 

et al. method) for the 49 QSAR 

models used in virtual screening. 
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Molecular docking 

In order to assess the performance of docking for the two software programs used (Vina and LeDock) we 

first compared the estimated binding energies for 175 compounds of the training set, with known 

activities on the target enzyme. With LeDock, the mean binding energy in the active compound group 

was -8.02, whereas in the inactive compound group it was -7.29 (p<10-7, Welch t-test). For the very 

active compounds (ki<20 nM), the mean binding energy was -8.43 (p<10-8 versus all inactive compounds, 

Welch t-test). Using the “cutpointr” package, an optimal cut-off was found at a binding energy of -7.17, 

which ensured an accuracy of 70.29%, with high sensitivity (90%), but low specificity (44%). In order to 

minimize the false positive, a cut-off point of -9.21 was necessary; at this level the specificity was 100% 

(i.e. none of the inactive compounds had such a low binding energy in the docking runs), but very low 

sensitivity (only 9% of the active compounds had this low estimated binding energy) (fig. 4). Because our 

interest was to minimize the false-positive rate, we docked the 147 compounds predicted by the QSAR 

models to be active and within the applicability domain and somewhat surprisingly no less than 90 of 

them (61.22%) had such a low binding energy, in other words they could be considered as active (Table 

III). Considering that in our training subset the sensitivity at this cut-off point (-9.21) was of only 9%, this 

high value does suggest that an important proportion of the compounds predicted by the QSAR models 

to be active might be indeed active, although when using docking one must be very cautious (80). The 

RMSD computed for the first cluster of poses of the ANP was 1.25, under the conventional threshold of 

2.0, which may be considered reasonably well. The visual examination of the pose indicated that the 

ring pose was very well predicted, whereas the side chain prediction was less accurate (fig. 5).  

 

 

 

 

 

 

 

 

 

 

 

 

Table III. Compounds predicted to be active by both the assembled QSAR models and ligand docking 

Fig. 4. Receiver operating characteristic curve for the performance of molecular 

docking using LeDock software on the training set (n=175 compounds, as described in 

the text).  
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Zinc Code Substance name Confirmation in wet lab 
experiments 

In the 
training 
set? 

Binding energy 

ZINC000001550477 Lapatinib ? Yes -10.07 

ZINC000034638188 Pf-562271 ? Yes -9.3 

ZINC000063298074 Ilorasertib ? Yes -10.09 

ZINC000034800096 Gw583373a 

No (6.34% at 1 uM, 1.76% 
at 0.1 uM). Active on Yes 1, 
EGFR and ERBB4 No -11.02 

ZINC000027184814 Vibriobactin ? No -9.77 

ZINC000034800093 Gw580496a 
No (6.5-6.7%). Active on 
EGFR, ERBB2, and ERBB4 No -9.33 

ZINC000150528975 Vedroprevir ? No -11.51 

ZINC000034800112 Gw576484x 
No (8.28% at 1 uM). Active 
on ERBB1 No -10.36 

ZINC000072190218 Avatrombopag ? No -9.28 

ZINC000034800091 Gw576609a 

No (8.56-10.17%). 
Reported as "active" on 
Yes1. Active on EGFR and 
ERBB4 No -11.38 

ZINC000044418656 Gw784684x 
No (13.41%-18.34%). 
Active on Yes TK No -10.77 

ZINC000042804069 Gsk-182497a 
No (3.86%-6.56%). Active 
on EGFR and ERBB4 No -9.57 

ZINC000103297739 Defactinib No. FAK inhibitor No -10.23 

ZINC000004215255 Cefpimizole ? No -10.54 

ZINC000042834127 Gsk1751853a 
No (4.53%-11.77%). Active 
on EGFR and ERBB4 No -10.34 

ZINC000014945166 Gw830365a 
No (4.5%-18.43%). Stated 
"active" on Yes1 No -9.53 

ZINC000150339466 Ciluprevir ? No -10.95 

ZINC000043195317 Golvatinib No (>30 uM). Active on LCK No -14 

ZINC000042201866 Gw566221a 

No (8.85%-10.94%). Stated 
"active" on Yes, EGFR and 
ERBB4 No -10.06 

ZINC000095615094 Patellamide G ? No -9.32 

ZINC000003604326 Vaneprim ? No -11.01 

ZINC000002007399 Gw458787a 

No. Active on Yes (42% 
inhibition at 1uM, 463 nM 
potency), EGFR and 
ERBB4 No -10.95 

ZINC000028639340 Posaconazole ? No -10.92 

ZINC000072122048 Gsk259178a 
No (8.86% at 1 uM).  Active 
on EGFR and ERBB4 No -12.44 

ZINC000068204830 Daclatasvir ? No -10.75 

ZINC000043131420 Fostamatinib ? No -10.77 

ZINC000169289453 Simeprevir ? No -11.45 
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Zinc Code Substance name Confirmation in wet lab 
experiments 

In the 
training 
set? 

Binding energy 

ZINC000042834162 Gw869810x 

No (-0.25%, 11.35%). 
Active on EGFR and 
ERBB4 No -12.11 

ZINC000049709569 Asperazine ? No -11.6 

ZINC000096928979 Deleobuvir ? No -10.2 

ZINC000042201868 Gw568377a 

No (3.56 - 4.6%). Stated 
"active" on Yes, EGFR, 
ERBB4 No -9.36 

ZINC000014945147 Gw809897x Yes (65.38% at 1 uM) No -10.44 

ZINC000014945171 Gw830263a 
Yes (42.23% at 1 uM). 
Stated "active" on Yes No -10.53 

ZINC000014945045 Gw569530a 

No (6.29-7.64%). 
Inconclusive on Yes1, 
active on EGFR No -9.52 

ZINC000003925087 Gw806742x Yes (86.65% at 1 uM) No -10.43 

ZINC000095618748 
Candesartan O-
Glucuronide ? No -9.71 

ZINC000098052868 Olcegepant ? No -9.55 

ZINC000049833405 Preulicyclamide ? No -11.13 

ZINC000034800110 Gw574782a 
No (9.13-12.49%). Active 
on EGFR, ERBB1, ERBB2 No -10.42 

ZINC000014965596 Gw683134a 
Yes (36.99% at 1 uM). 
Active on LYN and Yes1 No -10.91 

ZINC000034800112 Gw576484x 
No (8.28% at 1 uM). Active 
on ERBB1 No -9.93 

ZINC000019862646 Fedratinib Yes No -10.23 

ZINC000150377731 Bms-247243 ? No -10.42 

ZINC000003986669 Bx-795 

Yes (27-30% inhibition on 
human src, 77%-90% on 
Gallus gallus src), active on 
Yes1 No -9.28 

ZINC000095615898 Tyrokeradine A ? No -11.14 

ZINC000003919988 L-766892 ? No -9.59 

ZINC000095544067 Ulithiacyclamide F ? No -9.76 

ZINC000049889335 Edulirin A ? No -11.45 

ZINC000003995140 Gw621823a 

No (3.8% - 6.22%). Active 
on Yes1, EGFR, ERBB1, 
ERBB2, ERBB4 No -10.63 

ZINC000040379218 Gw684626b 

No (2.7%) at 1 uM. 
Inconclusive on Yes 1. 
Active on EGFR No -10.46 

ZINC000034800121 Gw567808a 

No (15.81% at 1 uM). 
Active on EGFR, ERBB1, 
ERBB2 No -10.42 

ZINC000169306513 Hydroxyitraconazole ? No -9.78 

ZINC000169368380 Kni-1039 ? No -10.13 

ZINC000150601177 Ombitasvir ? No -10.07 
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Zinc Code Substance name Confirmation in wet lab 
experiments 

In the 
training 
set? 

Binding energy 

ZINC000040404350 Gsk-969786a 
No (6.58%). Active on 
EGFR and ERBB4 No -10.2 

ZINC000150592451 Micromide ? No -12.96 

ZINC000028249631 Pd-170292 ? No -10.1 

ZINC000169366333 Porphyrin ? No -11.05 

ZINC000034800119 Gw576924a 

No (8.51%-5.28%). Active 
on Yes 1, EGFR and 
ERBB4 No -10.18 

ZINC000150362888 Lissoclinamide 2 ? No -10.23 

ZINC000100057121 Tegobuvir ? No -10.55 

ZINC000103213128 
Heptamethylene 1,7-
Bis-Imadacloprid ? No -9.58 

ZINC000169291993 Sansanmycin F ? No -9.5 

ZINC000230052516 Urobilin ? No -10.9 

ZINC000003994828 Brecanavir ? No -10.41 

ZINC000169363931 Ansacarbamitocin C ? No -10.56 

ZINC000095535868 Rwj-58259 ? No -10.09 

ZINC000003921862 Tallimustine ? No -9.76 

ZINC000150362887 Pyropheophytin B ? No -10.18 

ZINC000063933734 Rebastinib 
No (ki=5.85 uM). Active on 
Yes1, Lyn, LCK. No -9.73 

ZINC000095615652 Patellamide C ? No -9.46 

ZINC000197688172 
S-[(3e,5z)-3,5-
Octadienoate ? No -9.6 

ZINC000014965588 Gw709042a 

No (11.2%). Inconclusive 
on Yes1. Active on ABL1, 
PDGFRA, and KIT No -9.89 

ZINC000085537136 Barixibat ? No -9.72 

ZINC000169291499 Kibdelomycin ? No -10.99 

ZINC000003946578 Mitratapide ? No -10.41 

ZINC000001481922 Setipafant ? No -10.05 

ZINC000072173092 
Deoxyvobstusine 
Lactone ? No -9.66 

ZINC000006717126 Quarfloxin ? No -9.85 

ZINC000077301904 
Losartan N2-
Glucuronide ? No -10.86 

ZINC000150609364 
Pseudoceratinazole 
A ? No -11.38 

ZINC000095616246 Ulithiacyclamide E ? No -9.35 

ZINC000068151111 Narlaprevir ? No -9.96 

ZINC000150351429 Phytosulfokine B ? No -9.7 

ZINC000003989268 Ceftaroline Fosamil ? No -9.84 

ZINC000008552132 Pristinamycin ? No -11.01 
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Zinc Code Substance name Confirmation in wet lab 
experiments 

In the 
training 
set? 

Binding energy 

ZINC000095618880 
Clofazimine 
Glucuronide ? No -9.65 

ZINC000096006065 Xv638 ? No -9.56 

ZINC000169292535 Rifapentine ? No -12.81 

ZINC000150341961 Mafodotin ? No -9.32 

 

 

 

 

 

 

 

 

 

Vina performance was inferior to that of LeDock: on the same 175 compounds from the training set, the 

mean binding energy was -10.30 for the active compounds and -10.03 for the inactive (p=0.21, Welch t-

test). An optimal cut-off for the Vina compounds was at -9.26, which ensured an accuracy of only 

62.86%, with a sensitivity of 87.00 % and a specificity of only 30.67%. Because the performance of Vina 

was inferior to that of LeDock, we preferred to use only LeDock for virtual screening.  

Computing various ligand efficiency metrics did not improve the predictions in the case of LeDock 

results: the accuracy rather decreased with all ligand efficiency measured attempted. In the case of 

Vina, using different ligand efficiency measures changed the values of accuracy, sensitivity, and 

specificity, with no spectacular improvement. For instance, dividing the binding energy to the molecular 

weight decreased sensitivity (from 87% to 43%), increased specificity (from 30.67 to 81.33%), and 

slightly increased the AUC (from 56.85% to 62.87%), but it also slightly decreased the accuracy (from 

62.86% to 59.43%). Of the different ligand efficiency measures, for the Vina results the best was 

obtained by dividing the binding energy to the squared Ghose-Crippen octanol-water partition 

coefficient: 78% sensitivity, 49.33% specificity, 65.71% accuracy, and 65.05% AUC. Even with this ligand 

efficiency measure, the results were inferior to those obtained with LeDock based on the binding 

energies.  

 

 

Fig. 5. Crystallographic pose of the 

NAP ligand within  c-src tyrosine 

kinase (in red) and predicted pose by 

LeDock (in blue). It may be seen that 

the rings overlap very closely, 

whereas the free aliphatic chains do 

not overlap so well. 
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Discussions 

Several studies of QSAR models for c-src tyrosine kinase inhibitors of have been published up to date in 

the scientific literature. A number of five such studies have explored the use of 3D-QSAR, and all of them 

used relatively small number of compounds (80, 42, 156, and 39, respectively), with the same basic 

chemical structure within each study (pyrrolo-pyrimidine, quinazoline, anilinoquinazoline and 

quinolinecarbonitrile, quinolinecarbonitrile, and 4,6-substituted-(diaphenylamino)quinazolines); they 

could, therefore, be considered “local” models (81–84). In the QSAR field, the term “local” is used to 

designate models based on a data set consisting of compounds related by their chemical structure, 

unlike global models, that are based on data sets consisting of structurally diverse chemical substances 

(85). An additional paper reported on the use of 2D-QSAR for c-src inhibitors, but these models were 

also local, focused on ethynyl-3-quinolinecarbonitriles (86).Therefore, our study is the first one focused 

on global QSAR models for inhibitors targeting the c-src tyrosine kinase. It has been argued (and it 

stands to reason) that local models tend to have limited predictive power, even when their apparent 

performance indicates that they are robust (85). Our global models are expected to have a higher 

predictive power, as partially confirmed in our external validation.  

By far the most important descriptor in our work, identified by multiple feature selection algorithms, 

was SpMax4_Bh(m), the largest eigenvalue n. 4 of Burden matrix weighted by mass. This has not 

generally been reported in previous works as correlating with pharmacological activities. Other two 

Burden eigenvalues (SpMax3_Bh(m), SpMax5_Bh(m)) have also been among the most descriptors 

correlating with the inhibition of c-src. SpMax3_Bh(m) has been used in predicting depuration rate 

constants for environmental pollutants of the polychlorinated biphenyls group (87), and the less 

relevant (in our case) SpMax6_Bh(m) has been used to predict chronic toxicity of substances to 

Pseudokirchneriella subcapitata (88). The second most important descriptor for our data set was DECC 

(eccentric topologic index) has been previously reported to be important in the prediction of MAO-A 

activity (89,90) , placental barrier permeability (91), and gas chromatographic retention times (92). 

F06[C-N] was used in a model to describe the anti-proliferative effect of phenyl 4-(2-oxoimidazolidin-1-

yl)-benzenesulfonates (local QSAR model) (93), anti-malaric effect (94), or skin permeability of 

substances (95).  P_VSA_MR_6 has also been used for modeling of skin permeability (95), whereas we 

have identified the use of Chi1_EA(dm) only for the QSPR modeling of fluorescence properties of a 

number of fluorescent dyes (96). The aromatic nitrogen (N-073) has been shown to correlate positively 

with HIV-1 integrase activity inhibition (97) and negatively with the inhibition of 

the fibroblast growth factor (FGFR) (98). We found no previous reports on the use of the Balaban 

distance connectivity index (J_D) in other models in the biological field, neither of the F05[C-N]. 

Another aspect worth noting is that rarely the 49 QSAR models with similarly good performance 

converged in their predictions. Only 8 compounds were predicted by all models to be active, and half of 

them (n=4) were already in the training data set; for the large majority of compounds at least one or 

more of the models had contradictory results. This illustrates the need to avoid making decisions based 

on the results of a single or a small number of models.   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2019                   



As shown in the results section, for a number of 9 compounds (7.83% of the 115 substances with the 

best predictions) it has been confirmed from independent experiments that they are active. How good is 

such a measure for a virtual screening exercise? If we compare it with the PPV value in the nested cross-

validation, the results are rather disappointing and indicate that one should always be cautious in 

interpreting results even when using double cross-validation, because the real world data are likely to 

be different from the data set used for training and testing. For instance, it is likely that the proportion 

of actives in the available data set used for the construction of the models is higher than the proportion 

of actives in the „real world“ (i.e. the wide chemical space used for virtual screening), and this may lead 

to a decrease in the positive predictive value in the real world. However, if we compare the results of 

the virtual screening with those of the most costly high throughput screening (HTS), the results are far 

from being bad. It has been reported that the hit rate of HTS should be expected to be less than 1%  (99) 

and even less than 0.1% or 0.01% (100). In one study adding a computer-aided virtual screen was able to 

increase the screening hit proportion to 5.8% (99).Thus, our success rate of at least 7.83% is reasonably 

good. If we compute the confirmation rate against the compounds that were assessed for their effect on 

src-tyrosine kinase (20.93%), the results are even better. Our virtual screening results showed, however, 

additional interesting facts.  

16 additional false positives, were in fact reported to be active on other members of the src family 

members, particularly Yes1 tyrosine kinase. This suggests that although our virtual screening exercise 

failed in multiple cases, the failure was often not far from the true target. Thus, from a total of 43 

molecules that were tested for their effects on the src and other tyrosine kinases, 58.14% (25 

compounds) were inhibitors of one or several members of the src-tyrosine kinase family (most often 

Yes1, sometimes also LCK or LYN tyrosin kinase).  

Other false positives of the virtual screening exercise are inhibitors of proteins that src tyrosine kinase 

interacts directly, either activating them or being activated by them. It is known, for instance, that EGFR 

(epidermal growth factor receptor) can be activated by src without the presence of the EGFR ligand and 

that there is a direct correlation between EGFR overexpression and Src activation (101). Rather 

surprisingly for us, 13 compounds wrongly predicted by our models to be src tyrosine kinase inhibitors, 

are in point of fact inhibitors of EGFR, and 10 additional compounds that were inactive on src or other 

members of src family, were reported to be inhibitors of EGFR. Most of these 10 additional compounds 

(as well as most of the compounds active on src or yes1 tyrosine kinase) are also active on ERBB4, and it 

has been reported that ErbB4-derived phosphopeptides are able to interact with the SH2 domain of src 

(102), that following stimulation by EGF, c-src is rapidly recruited to ErbB receptor complexes (103) and 

that activated src binds to ERBB4s80 (E4ICD), a cleaved fragment of ERBB4 (104). Moreover, dasatinib, 

described often as a src inhibitor (105), has also shown to be one of the most potent ligands of ERBB4 

(106). Defactinib, apparently a false positive of our virtual screening is a potent FAK (focal adhesion 

kinase) inhibitor; it is known that FAK and non-receptor src tyrosin kinase are both part of a focal 

adhesion complex (together with other structural, enzymatic or adapter proteins), where they interact 

directly (107). Three false positives of the virtual screening results were KIT and PDGFR inhibitors; KIT 

promotes phosphorylation of src and is activated by src (108), while src and PDGFR interact and 

phosphorylates each other at certain Tyr positions (109).  
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Such findings tend to suggest that where the QSAR virtual screening fails is often not far from the target 

(but this is not less a failure). How could these failures been explained, considering that multiple models 

converge in predicting a certain molecule as active on the target of interest (src tyrosine kinase)? It 

seems that the models manage to predict the tyrosine kinase properties of certain compounds, without 

having sufficient specificity to always separate those active on src from those active on other tyrosine 

kinases. We hypothesize that the training set is too small and does not include (a sufficient number of) 

molecules with selective src inhibitory properties; we intend to evaluate whether extending the data set 

with additional molecules inactive on src but active on other tyrosine kinases may improve the results of 

the virtual screening. It is also worth exploring the combining of more diverse descriptor sets in the final 

assemble of models with a view of improving the performance of the virtual screening.  

Among the results produced by our virtual screening there is a sizeable number of antiviral molecules 

(vedroprevir, daclatasvir, ciluprevir, deleobuvir, ledipasvir, faldaprevir, tegobuvir, elbasvir, ombitasvir, 

narlaprevir), all of them approved or developed against hepatitis C viruses. They either target the 

NS3/NS4A (vedroprevir, ciluprevir, faldaprevir, narlaprevir) (110) or NS5A (daclatasvir, elbasvir, 

ombitasvir, ledipasvir) (111) or NS5B (deleobuvir, tegobuvir) (112) non-structural proteins of the virus. It 

is not very surprising to see inhibitors of NS5A and NS5B here, considering that is already known that 

NS5A protein binds to tyrosine kinases from the src-family (113), and c-src is an essential host protein 

involved in the formation of the HCV replication complex, together with NS5A and NS5B (114). It was 

less expected to see also inhibitors of the NS3/NS4A among the results of the virtual screening, because 

no direct interaction was reported between the Ns3/NS4A complex and src tyrosine kinase. This list of 

HCV antivirals might consist only of false positives, but it is worth testing in wet lab experiments.  

The docking applied to 147 compounds predicted with a high probability by the QSAR models to be 

active reduced their number to about 61% of the initial number. For a number (27.78%) of these 90 

compounds, predicted by both QSAR and docking to be active, data available in CHEMBLE or PUBCHEM 

(from a single wet lab test) indicate that they are inactive, and for others (6.67%), that they are active, as 

discussed for the QSAR models. This suggests that computational results have to be interpreted with 

cautious even when different models, with different methodologies and assumptions converge in their 

predictions. On the other hand, the last decade has witnessed a growing realization of what has been 

dubbed “the reproducibility crisis”, ascribed to the inappropriate quality of antibodies used as reagents 

(115), insufficiently described methodologies or simply to the biology itself (116). Whereas positive 

findings have often not been reproduced when experiments were repeated in other laboratories, it is 

not impossible that negative findings could also not be replicable and some of the compounds shown by 

databases to be inactive might as a matter of fact be active. However, in the absence of contrary 

evidence, such compounds have to be considered inactive.  

Conclusions 

A number of 49 global QSAR models have been developed, predicting the c-src tyrosine kinase inhibition 

with reasonable accuracy (> 70%) and positive predictive value (> 70%). The 49 models were assembled 

by stacking and used for the virtual screening of over 100,000 named compounds from the ZINC 

database. Several hundreds of compounds were predicted to be active, depending on the decision 
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threshold used. Those with the highest probability of being active were also subjected to molecular 

docking and for the majority (about 61%) of them the binding energies obtained were consistent with a 

hypothesis of activity. External data from CHEMBL and PUBCHEM confirmed that at least 7.83% (in the 

case of QSAR) or 6.67% (in the case of integrated QSAR and molecular docking) of the compounds are 

active on the c-src target. The proportions of active compounds are less than what was to be expected 

from the nested cross-validation data, but still better than what one should expect from high-

throughput screening experiments.  
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