

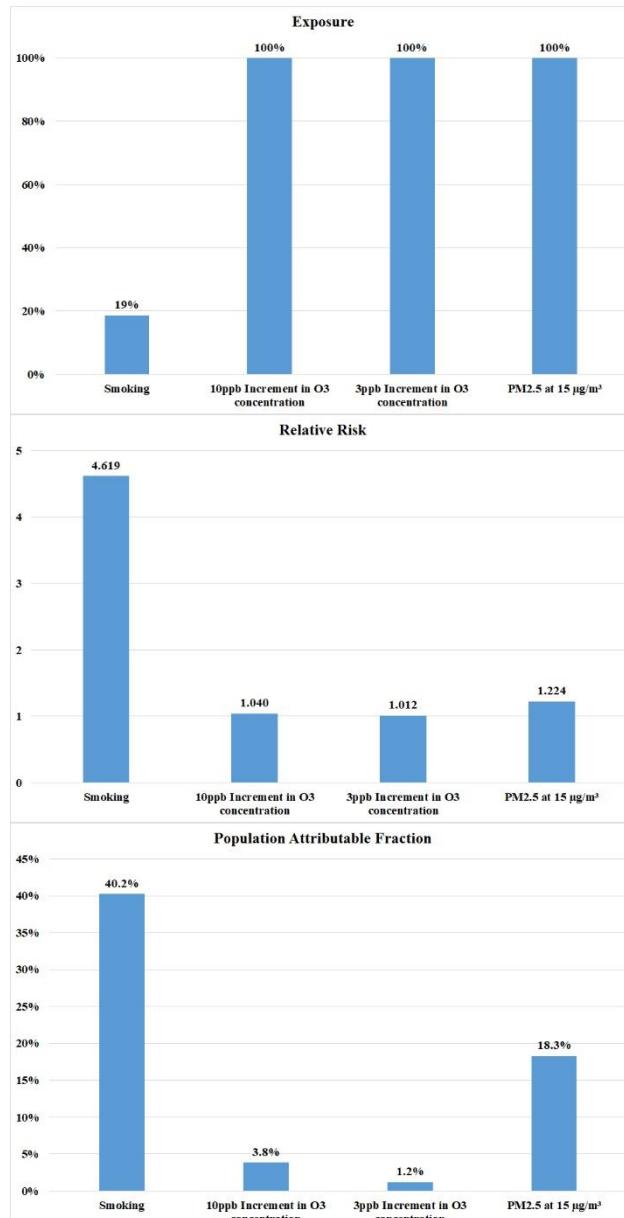
1 *Communication*2 **Smoking, Air Pollution and Emphysema/COPD in six
3 US cities 2000-2018: Contextualizing statistical
4 association in health communication**5 **Wayne Gao ^{1,*}, Mattia Sanna ¹ and Chi Pang Wen ^{2,3},**6 ¹ Master's Program in Global Health and Development, Taipei Medical University - No. 172-1, Section 2,
7 Keelung Road, Da'an District, Taipei City, 106, Taiwan; waynegao@tmu.edu.tw (W.G.);
8 msanna@tmu.edu.tw (M.S.)9 ² Institute of Population Health Science, National Health Research Institutes – No. 35 Keyan Road, Zhunan,
10 Miaoli County, 350 Taiwan; cwengood@nhri.edu.tw (C.P.W.)11 ³ China Medical University Hospital - No. 2, Yude Road, North District, Taichung City, 404, Taiwan;
12 cwengood@nhri.edu.tw (C.P.W.)

13 * Correspondence: waynegao@tmu.edu.tw

14 **Abstract:** A recent study found that a 3 ppb increase in O₃ ambient concentration was associated
15 with an increased progression of 0.18 percentage points in percent emphysema and that such
16 increase was equal to smoking 20 cigarettes per day for 29 years. A simple estimation of population
17 attributable fraction shows that COPD diagnoses due to smoking are actually 30 times more than
18 those attributed to a 3 ppb increment in O₃ concentration. Labelling ozone pollution as the new
19 smoking may distort perception of the risks and hinder proper response to real life threatening risk
20 such as smoking.21 **Keywords:** smoking; air pollution; health communication; population attributable fraction; COPD;
22 emphysema; relative risks24 **1. Introduction**25 In the last years, air pollution has become a hot topic in the media and, as already happened to
26 other public health issues that gained special (but momentary) attention, has been quickly labelled as
27 the new smoking [1].28 A recent study by Meng Wan and colleagues on the association between long-term exposure to
29 O₃ and percent emphysema [2] (i.e. the percentage of emphysema-like lung on computed
30 tomographic scan) got an enormous media attention with 195 news outlets from more than a dozen
31 countries in August alone [3]. The Authors analyzed a population of 7,000 individuals aged around
32 60 years old and found that, “a 3 ppb-higher long-term mean O₃ exposure [...] was significantly
33 associated with an increased progression of 0.18 percentage points in percent emphysema over 10
34 years” and that, “This increase is equal to the association of 29 pack-years of smoking”. Such scary
35 equivalence was immediately reported by media with shocking titles like, “Exposure to polluted air
36 is like smoking a pack a day, study says”, “Air Pollution May Be As Harmful To Your Lungs As
37 Smoking Cigarettes, Study Finds”, “Breathing polluted air at levels present in Louisiana is like
38 smoking a pack per day: study”, and so on [3].39 As these news titles clearly show, there is plenty of reasons to be concerned that these results
40 could be misinterpreted, eventually leading to unintended negative consequences. For instance,
41 among the six US cities taken into account the highest annual mean O₃ concentration was around 25
42 ppb (Winston-Salem), which is way below the ozone standard of 70 ppb proposed by EPA's current
43 national ambient air quality standards; nonetheless, some smokers may fallaciously believe that if
44 breathing ambient air with such O₃ levels is the same as smoking 20 cigarettes per day for 29 years,
45 than there is no reason to quit since smoking is just as bad as being exposed to urban air.

46 In actuality, smoking is still the leading cause of chronic obstructive pulmonary disease (COPD),
47 including emphysema, followed by fine particulate matter (PM_{2.5}) [4]. To put things in perspective,
48 we calculated the population attributable fraction (PAF) of COPD for smoking, PM_{2.5}, and O₃
49 exposure in Chicago, where the authors found the highest increase in O₃ concentration (3 ppb from
50 18.3 to 21.4) and where PM_{2.5} decreased from 16.2 µg/m³ to 13.6 µg/m³.

51 **2. Materials and Methods**


52 We calculated PAF using the standard formula [5]

$$\text{PAF} = \frac{\text{Exposure} \cdot (\text{RR} - 1)}{\text{Exposure} \cdot (\text{RR} - 1) + 1} \quad (1)$$

53 We retrieved from literature relative risks (RR) of COPD from 30 pack-years of smoking (4.69)
54 [6], PM_{2.5} at 15 µg/m³ (1.224) [6], 10 ppb (1.04) [7] and 3 ppb increment in O₃ (1.012, assuming a linear
55 risk-outcome curve). Exposure to air pollution was considered ubiquitous (100%) and smoking rate
56 for Chicago in 2017 was extracted from Chicago Health Atlas [8].

57 **3. Results**

58 Forty percent of COPD diagnoses are due to smoking, which is 2.2 times more than those
59 attributed to a PM_{2.5} concentration of 15 µg/m³, 10 times more than those attributed to a 10 ppb
60 increment in O₃ (4%), and 30 times more than those attributed to a 3 ppb increment (1.2%) in Chicago
61 (Figure 1). Furthermore, since the mean percent emphysema at baseline was 5.37 in Chicago, thus a
62 progression of 0.18 percentage points over 10 years equals to an increase of 0.3% per year, which is
63 far lower than the 1.12% yearly progression estimated for current smokers by Mohamed Hoesein et
64 al. [9].

65

66
67

Figure 1. Exposures, Relative Risks and Population Attributable Fractions for smoking, O₃, and PM2.5 as causes of COPD in Chicago.

68 4. Conclusions

69 We believe researchers should be concerned about the possible over-interpretation of the finding
 70 of a statistical association between a small variation in air quality and natural disease progression
 71 over time as a causal relationship. Analogizing this finding as comparable to the harms of life-long
 72 heavy smoking may distort perception of the risks and hinder proper response to real life threatening
 73 risk such as smoking.

74 **Author Contributions:** W.G. conceived the idea, and drafted the manuscript. M.S. organized and analyzed the
 75 data, and critically reviewed and revised the manuscript. C.P.W. conceived the idea and critically reviewed and
 76 revised the manuscript. All the authors approved the final manuscript as submitted, and agreed to be
 77 accountable for all aspects of the work.

78 **Funding:** This research received no external funding.

79 **Conflicts of Interest:** The authors declare no conflict of interest.

80 References

81 1. Gao, W.; Sanna, M.; Hefler, M.; Wen, C.-P. Air pollution is not “the new smoking” – Comparing the disease
82 burden of air pollution and smoking across the globe, 1990-2017. *Tob. Control* **2019**, [in press].

83 2. Wang, M.; Aaron, C.P.; Madrigano, J.; Hoffman, E.A.; Angelini, E.; Yang, J.; Laine, A.; Vetterli, T.M.;
84 Kinney, P.L.; Sampson, P.D., *et al.* Association Between Long-term Exposure to Ambient Air Pollution and
85 Change in Quantitatively Assessed Emphysema and Lung Function. *JAMA* **2019**, 322, 546-556.

86 3. Altmetric. Association Between Long-term Exposure to Ambient Air Pollution and Change in
87 Quantitatively Assessed Emphysema and Lung Function - Attention Score.
88 <https://jamanetwork.altmetric.com/details/64927651/news> Accessed September, 2019.

89 4. Global Burden of Disease Study 2017. Global Burden of Disease Study 2017 (GBD 2017) Results.
90 <https://vizhub.healthdata.org/gbd-compare/> Accessed April, 2019.

91 5. Miettinen, O.S. Proportion of disease caused or prevented by a given exposure, trait or intervention. *Am. J.*
92 *Epidemiol.* **1974**, 99, 325-332.

93 6. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Burden
94 by Risk 1990–2017. Institute for Health Metrics and Evaluation (IHME): Seattle, Washington (United States
95 of America), 2018.

96 7. Jerrett, M.; Burnett, R.T.; Pope III, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-
97 Term Ozone Exposure and Mortality. *N. Engl. J. Med.* **2009**, 360, 1085-1095.

98 8. Chicago Department of Public Health. Chicago Health Atlas - Adult Smoking Year 2017.
99 <https://www.chicagohealthatlas.org/indicators/adult-smoking> Accessed August, 2019.

100 9. Mohamed Hoessein, F.A.A.; Zanen, P.; de Jong, P.A.; van Ginneken, B.; Boezen, H.M.; Groen, H.J.M.;
101 Oudkerk, M.; de Koning, H.J.; Postma, D.S.; Lammers, J.-W.J. Rate of progression of CT-quantified
102 emphysema in male current and ex-smokers: a follow-up study. *Respir. Res.* **2013**, 14, 55.

103