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drawn, but the readers is invited to judge the cases from the presented situations. Radical conclusions by
the writer would have finished the investigations.

The Yang—Baxter equation is also related to the theory of universal quantum gates, to quantum
computers, big data, etc. The explosion of data generated by the digital age led to very skillful and
powerful / quantum computers. So, apparently, in order to deal with big data, there are two choices:
teaching computers to be more effective or building stronger / quantum computers. However, there
exists a third option: developing smarter hybrid multi-agent systems (cf. [6]).

The Yang—Baxter equation has many applications in quantum groups and knot theory. Many Yang-
Baxter operators lead to knot invariants (see [7]). We will consider a generalization of this equation,
called the Modified Yang-Baxter equation, in the next section.

The third section deals with Euler’s formula, ¢®* = cosx + isinz. Voted the most famous formula
by students, Euler’s identity, ¢™ = —1, contains the transcendental numbers e and 7 and the imaginary
number ¢. The Euler’s formula is more general than the the Euler’s identity. We have previously obtained
an Euler’s formula for hyperbolic functions. Now we will refer to Euler’s formulas for dual numbers
(which can be related to the Yang—Baxter equation).

There is also a section on non-associative structures. Mathematics was in the beginning associative
and commutative, but it then became non-commutative, and afterwards it became non-associative also
(see [8—13]). There are two important classes of non-associative structures: Lie structures and Jordan
structures. Various Jordan structures play an important role in quantum group theory and in fundamental
physical theories. In recent years, several attempts to unify non-associative structures have led to
interesting results. The UJLA structures are not the only structures which realize such a unification.
Associative algebras and Lie algebras can be unified at the level of Yang—Baxter structures.

We also present a section on the unification of means and their inequalities. Thus, for example, the
classical means inequalities can be unified. More inequalities will follow from our approach.

The motivations for this work are multiple. Finding solutions to the coloured Yang—Baxter equation
is a very important and difficult problem. After proposing the Modified Yang-Baxter equation in [2],
the authors of [19] have sent us their work and we would like to thank them by giving at least a simple
answer to their suggestion. Many of our results are related to concepts like transcendence ([14,15])
and transdisciplinarity ([16—18]), allowing us to step forward toward literature and philosophy. We also

propose several open problems.

We will work over the field £, when it is not otherwise specified. The tensor products will be defined
over k. As usually, we write M, (k) for the ring of all n x n-matrices over the field k. In particular we

write I for the identity matrix in M4(k) respectively I’ for the identity matrix in My (k).

2. Modified Yang-Baxter equation

For A € M,,(C)and D € M,(C) a diagonal matrix, we proposed (see [2]) the problem of finding
X € M,(C) such that

AXA+ XAX =D (1)
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Remark 2.1 The equation (1) is a type of Yang-Baxter matrix equation if D = O, and X = =Y. It is
related to the three matrix problem, and it can be interpretated as “a generalized eigenvalue problem”.
For A € Ms(C), a matrix with trace -1, and

_ [ det(A) 0
b= ( 0 det(A)) @

Remark 2.2 We think that the methods of [19] will lead to solutions for the equation (1). For example,

solving the following system

(1) has a solution X= 1.

AXA+CX =D, C=XA 3)

leads to solutions of (1).

3. Euler’s formulas for dual numbers

Following our previous study ([1,2]), an Euler’s formula for dual numbers (see [20]) could be the
following formula: 1 + az = e* , where a? = 0. The applications of this formula could be of the

following type. If we consider the complex valuated matrix ( ¢,d € C):

0 0 ¢ d
000
J = ‘ )
00 0O
00 0O
then,
J2 — 04 J12J23 — J23J12
So,
I+ Jr=e" = R(z) 5)
and

(RI(x)o(I'@R)(z+y)o(RRI')(y) =(I'®@R)(y)o (RRII')(x+y)o(I'® R)(z). (6)

(Formula (6) is verified because xJ'? + (z+vy) J? + yJ2 =yJ® + (v +y) J? + xJ?)

Remark 3.1 Formula (5) can be interpretated in terms of coalgebras (see [2,21]). Thus, there exists a

2
coalgebra over % = k[a], where a® = 0, generated by two generators u and i, such that A(u) = u®u,

All)=u®i+1®u e(u) =1ande(i) = 0. (5) leads to the subcoalgebra generated by u + ai.

Remark 3.2 In this case we can also consider another Euler’s formula:

. P
cosx + asinx = Zj>0(—1)J%e%+1.

Remark 3.3 It would be interesting to study a unifying theory for complex numbers, dual numbers, and
other cases (see, for example, [2]) in which k = R[a|, with a® € R (see, also, Remark 5 of [1]).
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4. Unification of non-associative structures and differential geometry

This section is related to a talk given at the 14-th International Workshop on Differential Geometry
and Its Applications, UPG Ploiesti, 2019.

Definition 4.1 For a k-space V,letn:V @V — V| a® b +— ab, be a linear map such that:
(ab)c + (be)a + (ca)b = a(be) + b(ca) + c(ab), (7)

(a®b)a = a*(ba), (ab)a® = a(ba®), (ba*)a = (ba)a®, a*(ab) = a(a’b), (8)
YV a,b,c € V. Then, (V,n) is called a UJLA structure.

Theorem 4.2 For (V,n) a UJLA structure, D(x) = Dy(z) = bx — xb is a UJLA—derivation (i.e.,
D(a*a) = D(a*)a + a*D(a) Va € V).

Proof. In formula (7) we take ¢ = a*:  (ab)a® + (ba*)a + (a*a)b = a(ba?) + b(a*a) + a*(ab).
It follows from (8) that (ba?)a + (a*a)b = b(a*a) + a*(ab).

So, (ba*)a — a*(ab) = b(a*a) — (a*a)b; so, b(a*a) — (a’a)b = (ba* — a*b)a + a*(ba — ab).
Thus, D(a?a) = D(a*)a + a?*D(a).

Definition 4.3 For the vector space V, letd : V — Vand ¢ : V@V — V @V, be a linear map which
satisfies:
¢12 o ¢23 o ¢12 — ¢23 o ¢12 o ¢23 (9)
where ¢2 =01, ¢ =1®¢, 1:V =V, a— a.
Then, (V,d, ¢) is called a generalized derivation if po (AR [+ 1 ®d) = (d®@ 1+ 1®d) o ¢.

Remark 4.4 If A is an associtive algebra, d : A — A a derivation (so, d(14)=0), and ¢ : A @ A —
ARA a®br—ab®1+1®ab—a®b, then (A,d, @) is a generalized derivation.

If C is a coalgebra, d : C' — C' a coderivation, and ) : C @ C — C Q@ C, c®d + e(d)c; ® c5 +
e(c)dy @ dy — c @ d, then (C,d, ) is a generalized derivation.

Definition 4.5 Let A is an associtive algebra, d : A — A a derivation, M an A-bimodule, and D : M —
M with the property D(am) = d(a)m + aD(m). Then, (A, d, M, D) is called a module derivation.

Theorem 4.6 ( [2]) In the above case, A X M becomes an algebra, and § : Ax M — AxM, (a, m) —

(a, D(m)) is a derivation in this algebra.

Translated into the “language” of Differential Geometry, the above theorem says that the Lie
derivative is a derivation (i.e., d(ab) = d(a)b + ad(b) ) on the product of the algebra of functions
defined on the manifold M with the set of vector fields on M (see [22]).

Remark 4.7 A dual for Theorem 4.6 (using coderivations and comodules) and the unification of module

derivation and comodule derivation are work in progress.
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5. Unification of mean inequalities

We present a family of inequaties which unify and enhance the means inequalities.

Theorem 5.1 For three real numbers a > 0, b > 0 and r > 0 the real function
1
M, :R—R, M(z)=(z%t2—)" isanincreasing function.

aﬁ?—?"+b7)—7"

Proof. One way to prove this theorem is by direct computations.
Alternatively, the proof is a particular case of the general case, which will be discussed below.

Remark 5.2 The above theorem includes the classical means inequalities (the harmonic mean is less
or equal than the geometric mean, which is less or equal than the artmetic mean) because M;(0) <
Mi(3) < Mi(1).

So, the means are unified and their inequalities are included in the property that M, is an increasing

function.

Now, the question is what are the relations between M, (z) and M,(y). A tentative answer is given
below.

Theorem 5.3 The following inequality for real numbers, where a > 0, b > 0, and x < y,

1 1
a® + b* T a¥ + bY P
M, (x) = (W) < (ayP—eryP> = My (y) (10)
holds for the following additional conditions:

(Jp=r;
(i)p=35,r=1 2=y
(iii)p=1,r=3Sandzr+ 1=y
Proof. Straightforward.

Theorem 5.4 For n pozitive real numbers aj, 1 < j < n, and for r > 0, the real function M,(x) =

Xaf \7r . . . .
(Za—zir is an increasing function.
J

Proof. One can show that the derivative of M,.(z) is positive, for a fixed .

We now present inequalities which follow directly from the above Theorem 5.3 (for a > 0, b > 0):

2 2
2 2 b b 2402
<<1 1> gvabs<ﬁ;f> <l <arp-Vabs D an
a

1 1 —
Tty \wtTw

More demanding are the inequalities given below (a > 0, b > 0):

2
e\ g
“;bg<“ ;b> <4/2 ;b <a+b—Vab. (12)
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Remark 5.5 Note also the following types of inequalities for means (a > 0, b > 0):
a+bd 2 a+b 2
b 4 Vab+ 2y 4+ 1
Vab < 2 aty 2 ats (13)

+
3 - 2
Remark 5.6 It is an open problem to prove that for p > r, M,(z) < M,(x)Vz € R.

Also we conjecture that M, (x) < M,(y) Ve —r <y —p.

Future investigations will try to extend the conditions (i-iii) in the above Theorem 5.3, and to prove
versions of the above inequalities with more variables.

Other increasing functions might be considered in order to unify the means inequalities.

According to Theorems 3.2 and 3.3 (for « = 1 and = %) from Axioms 2015, 4, 423-435, the
classical means are related to the set-theoretical Yang-Baxter equation. It follows easily that M,(x) is
also related to the set-theoretical Yang-Baxter equation. In the general case, for M, (x), the question on

this relationship this remains a reserch direction.
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