Supporting Information
For

Effect of heterointerface on NO$_2$ sensing properties of in-situ formed TiO$_2$ QDs-decorated NiO nanosheets

Congyi Wu,a,b Jian Zhang,a Xiaoxia Wang,a Changsheng Xie,a Songxin Shi,*,b and Dawen Zeng,*,ac

aState Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China

bNational Engineering Research Center of Manufacturing Equipment Digitization, HUST, No. 1037, Luoyu Road, Wuhan 430074, China

cHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, P. R. China

*Corresponding author.

*E-mail: shisx@mail.hust.edu.cn (Songxin Shi) & dwzeng@mail.hust.edu.cn (Dawen Zeng)
Fig. S1. Schematic illustration of the synthesis procedure of the TiO$_2$-NiO nanocomposites.

Fig. S2. The schematic diagram of sensor substrate.
Fig. S3. (a) The responses of the 5TiO₂QDs-NiO towards various gases (5 ppm for NO₂, 100 ppm for the rest). (b) The repeatability of the 5TiO₂QDs-NiO towards 60 ppm NO₂.

Fig. S4. (a) XRD patterns of the NiO nanosheets and the TiO₂QDs-NiO nanohybrids; (b) Atomic concentration of Ti 2p of the TiO₂QDs-NiO nanohybrids; XRD patterns of (c) the 20TiO₂15-NiO and (d) the 50TiO₂30-NiO.
Fig. S5. O 1s spectra of (a) the bare mesoporous NiO, (b) 1TiO₂QDs-NiO, (c) 2TiO₂QDs-NiO, (d) 5 TiO₂QDs-NiO, (e) 10 TiO₂QDs-NiO from XPS.
Fig. S6. O 1s spectra of (a) 50TiO$_2$30-NiO, (b) 20TiO$_2$15-NiO, (c) 5 TiO$_2$QDs-NiO from XPS.

Fig. S7. With the increase of TiO$_2$ nanoparticle size, comparison between the variation of the maximum responses to 60 ppm NO$_2$ and the variation of the peak area ratio of Ni-O-Ti.
Fig. S8. Dynamic sensitivity-recovery curves of TiO$_2$ QDs to 100ppm NO$_2$.

Fig. S9. The Resistance of the nanohybrids with different addition quantity of TiO$_2$ QDs.