Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 December 2019

Review

Integration of Abscisic Acid Signaling with Other
Signaling Pathways in Plant Stress Responses and
Development

Manu Kumar®, Mahipal Singh Kesawat?, Asjad Ali?, Sang-Choon Lee? and Sarvajeet Singh Gill5,
Hyun Uk Kim™

Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong
University, Seoul 05006, Republic of Korea.

2Seoul National University, Republic of Korea

3Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia

“Phyzen Co, Seongnam, Republic of Korea

SStress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
* Correspondence: manukumar@sejong.ac.kr (MK); hukim64@sejong.ac.kr (HUK)

Abstract: Plants are immobile, and, to overcome harsh environmental conditions, such as drought,
salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid
phytohormone, is a critical signaling mediator that regulates diverse biological processes in various
organisms. Significant progress has been made in the determination and characterization of key
ABA-mediated molecular factors involved in different stress responses, including stomatal closure
and developmental processes, such as seed germination and bud dormancy. Since ABA-signaling
is a complex signaling network that integrates with other signaling pathways, the dissection of its
intricate regulatory network is necessary to understand the function of essential regulatory genes
involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First,
the perception of the stress signal (abiotic and biotic) and the response network of ABA-signaling
components that transduce the signal to the downstream pathway to respond to stress tolerance,
regulation of stomata, and ABA signaling component ubiquitination. Second, ABA-signaling in
plant development processes, such as lateral root growth regulation, seed germination, and
flowering time regulation. Examining such diverse signal integration dynamics could enhance our
understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA
signaling networks in plants.
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1. Introduction

Abscisic acid (ABA) signaling (perception, signaling, and tolerance) in plants is a complex
response for which there are considerable knowledge gaps at the molecular level. ABA is a plant
phytohormone with a small lipophilic sesquiterpenoid (C15) structure [1]. It has a key role in stress
adaptation in addition to being critical in numerous biological processes, such as bud dormancy and
seed germination [2-6]. In the 1960s, pioneering studies on ABA (initially termed “abscisin” and
“dormin”) reported that it was accumulated in immature cotton balls that succumbed to
ethylene-triggered abscission and over-wintering buds [4,7,8]. Later, it was demonstrated that under
such conditions and developmental stages, plants were experiencing drought stress [5,9-17].
Therefore, ABA is a misnomer [18], even though it plays a role in leaf senescence and seed
dormancy, potentially via osmotic effects [19-21]. It has been observed that drought-stressed
vegetative tissues of numerous plants accumulate ABA (40-fold induction) within hours of osmotic
stress and then it decreases after rehydration. In addition, ABA has been considered a long-distance
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stress signal between shoots and roots [22]. Therefore, the study of spatiotemporal expression of
genes that control ABA metabolism rate-limiting steps is essential for understanding how plants
adapt to stress. Other than its role in adaptation to abiotic stress, ABA has been shown to be a key
regulator of pathogen-virulence [23-27], which could offer insights into the basis of the
ABA-synthesizing ability of numerous bio- and necrotrophic microbes [24,28-30].

Gene products acting in the vicinity of the cell wall or at the interface of the plasma
membrane/cytoskeleton/cell wall are considered the most likely elements to participate in initial
stress perception. For instance, gated aquaporins (PIPs, plasma membrane intrinsic proteins) and
osmo-/ion channels at the cell wall-plasma membrane interface may be implicated in the upstream
perception [31-33]. The receptor of ABA remained unknown until 2009. Before 2009, several ABA
receptors had been reported [34-40]; however, further investigations, did not substantiate any of
them. In 2009, two independent studies reported the START (steroidogenic acute regulatory protein
(StAR)-related lipid-transfer) domain of the significant Bet v1 (birch pollen allergen) superfamily of
proteins as candidate ABA receptors [41-44]. All 14 members of the protein family are named
Regulatory Component of ABA Receptor, RCAR1-RCAR14, [41], or Pyrabactin Resistance 1 and
PYR1-like 1-13 [42]. The discovery of PYRI1-like components (PYLs) laid the foundation for the
unraveling of the ABA signaling mechanism in detail. Such findings opened door for advancements
in the ABA signaling field and were appropriately recognized as scientific breakthroughs of the year
[45,46]. Multiple structure studies have clarified the interactions at molecular level comprising a
signaling cascade consisting of the PYL ABA receptors, the core ABA signaling pathway,
Snfl-related protein kinases 2 (SnRK2s), and type 2C protein phosphatases (PP2Cs). ABA binding
induces PYL protein interaction with the active site of PP2C and inhibits phosphatase activity by
blocking the PP2C catalytic site (SnRK2 substrate) [47-51]. Such findings shed light on the
ABA-signaling transduction pathway, which could facilitate the unraveling of abiotic stress
tolerance as well as various developmental processes in plants.

Numerous reviews have explored the specific aspects of ABA responses in detail [42,52-60],
including the relationship between ABA-signaling and abiotic stress responses, calcium signaling,
MAPK-signaling, and ubiquitination. In addition, abiotic-stress tolerance has been reviewed
extensively, although with less emphasis on seed development and lateral root formation, and no
reviews have focused on the overall ABA-signaling network [42,52-60]. ABA signaling is a complex
network that works in tandem with other signaling pathways. Therefore, it is important to present
an overall network taking into account recent advancements to fill the gaps that have not been
addressed to date. In this review, we have integrated signaling pathways that align with the
ABA-signaling pathway, which displays a complex network, being active during both plant abiotic
stress tolerance and plant development. We have also added recent findings to the existing
ABA-signaling network in plants.

2. Ubiquitination in ABA-Signaling

Protein post-translational modification by ubiquitination has been studied during various
aspects of stress responses, plant development and growth [61,62]. Since ABA is a major
phytohormone, and it plays a vital role in plant growth and stress responses, the regulation of its
signaling components must be subjected to ubiquitination. Reports have emerged regarding E3
ligase-mediated ubiquitination of ABA signaling components [60]. The E3 ubiquitin ligases
discussed in this review are indicated using dark red square boxes in Figure 1B and E. ABA
receptors (PYR/PYL/RCAR) in plants are regulated by degradation via the ubiquitin-26S proteasome
system. Damaged DNA Binding proteinl-Associated1(DDA1) from Cul4-based E3 ligase complexes
and a single subunit, RING-type E3 ligase Ring finger of Seed Longevityl (RSL1), are involved in the
process [63,64], which suggest that in the ABA-signaling pathway, RSL1 acts as the negative
regulator by regulating the ABA receptor through ubiquitination. Two Plant U-box protein family
members, PUB12 and PUB13, interact with ABI1. ABI1 is induced in pub12/publ3 mutants compared
within wild-types irrespective of ABA presence; however, it can ubiquitinate ABI1 only in the
presence of both PYR1 and ABA, which indicates that the interaction between PYR1 and ABI
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promotes ABI1 degradation by PUB12/13 [65]. An E3 ubiquitin ligase, PLANT-U-BOX PROTEIN10
(PUB10), modulates ABA signaling in Arabidopsis. PUB10-OX plants phenocopied myc2, whereas
the pub10 plants phenocopied MYC2-OX plants in response to ABA, indicating the regulation of
MYC2 (a JA-signaling component) by PUB10 (Figure 2) [66]. A Keep on Going (KEG) E3 ligase with
a truncated RING domain also acts as a bait for the CIPK26 interaction because it acts as the negative
regulator in ABA-signaling [67,68]. ABA also induces the degradation of KEG by self-ubiquitination
resulting in the accumulation of ABI5 [69]. KEG also ubiquitinates and degrades ABF1 and ABF3 by
interacting directly with them [70]. The results of the studies above suggested that ABF1, ABF3, and
ABI5 were the substrates for E3 ligase KEG.
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Figure 1. Overview of the ABA-signaling pathway. (A) Inactivation of SnRKs, CIPKs, and
CDPKs under normal growth conditions (light orange box). PP2C (red oval box) plays an
important role in the inactivation of SnRKs, CIPKs, and CDPKs. Inactive MAP3K17/18 (orange oval
box) and AREB/ABF (yellow oval box) undergo protein degradation. (B) Initial perception of

Stomata Open Stress Tolerance

Stomata Close

environmental and developmental cues. ABA-signaling is transduced in Ca?-independent
(light-dark box) as well as Ca?-dependent manners (light orange box). Active SnRKs, CIPKs, and
CDPKs (dark blue oval box) play important roles in downstream signal transduction. (C) Stomatal
regulation via ABA-signaling in response to stress and healthy conditions. Under stress
conditions, stomatal regulation (purple arrow —) is carried out by active SnRK2.6/OST1 (blue oval
box) through the regulation of downstream ions channel genes (green oval boxes), such as SLAH3,
SLAC1, and KATI. This regulation helps stomata remain closed to avoid loss of excessive water
under adverse conditions. Under normal conditions, SnRK2.6/OST1 inactivated by PP2C cannot
regulate the downstream genes; thus, stomata remain open.(D) Response to stress tolerance via the
ABA-signaling pathway. The stress tolerance mechanism (black arrow —) is regulated in
Ca?-independent as well as Ca?-dependent manners. The MAP kinase cascade (orange oval box)
pathway carries the signal for the response to abiotic stress tolerance. It delays ABA gene
expression. Contrarily, Signal transduction via only AREB/ABF (yellow oval box) shows early
expression of ABA related genes, resulting in an early response to stress tolerance. (E) Involvement
of ABA-signaling in the plant developmental process. Downstream ABA-signaling involved in
different developmental processes (red arrow —)such as seed germination (light green oval and
square boxes), lateral root growth (light blue oval and square boxes), and regulation of flowering
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time (yellow oval and square boxes). ABI5 emerges as a critical ABA-signaling component in the
regulation of the plant developmental process. ABA-signaling integrates with light signaling (black
dark oval box) to regulate plant development. The brown tack facing up (L) indicates the role of
ubiquitination in ABA-signaling. These E3 ubiquitin ligase elements in ABA-signaling guides the
inactive protein to undergo degradation. The question mark (?) indicates the unknown pathway.

ABD1, DWA1, and DWA2, which are associated with Cul4-based E3 ubiquitin ligases, were
reported to be responsible for ABA-signaling through the degradation of ABI5 by regulated
ubiquitination in the nucleus via the ubiquitin-26S proteasome system [71-73]. Single mutants, abd1,
dwal, and dwa2, and a double mutant, dwal/dwa2, display ABA-hypersensitive phenotypes during
seed germination and seedling growth [72,73], which indicates ABI5 acts as a target for ABDI,
DWA1, and DWA2, Cul4-based E3 ubiquitin ligases, which leads to the negative regulation of
ABA-signaling in the nucleus. ABI3 Interacting Protein2 is a functional RING-type E3 ligase that
interacts with an unstable protein, ABI3, and is degraded via the ubiquitin-26S proteasome system
[74]. Different types of E3 ligases with dual roles have been reported participating in the regulation
of ABA signaling; however, the knowledge on their substrates and studies related to its association
with ABA-signaling is ongoing process.

3. ABA-Signaling under Stress

3.1. Calcium Signaling Integration with ABA-Signaling pathway and Stomatal Regulation

In plants, abiotic-stress positivelytriggers the levels of ABA and reactive oxygen species [75]
such as H202 [76-79]. High H20:1evels trigger cytosolic calcium concentration via nitric oxide (NO)
[80,81]. Downstream signaling cascades regulate transcriptional responses to abiotic-stress tolerance
and stomatal regulation (Figure 1B, C, D) [53]. Many reports point to direct interactions between
ABA and calcium signaling systems at different levels (Table 1). For such interactions between ABA
and calcium signaling, ABI1 (clade A protein phosphatases 2Cs) appear to function as master
regulators [53,58,82]. In normal growth conditions (basal ABA level), Ca?* and SnRK2/3/6/7/8/CDPK
activity are inhibited by ABI1/PP2C. This inhibition prevents downstream signaling [83,84] (Figure
1A). In the presence of ABA (during stress or developmental stages), ABI1/PP2C activity is inhibited
by ABA, which induces RCARs and elevated levels of H202, and in turn the conversion of ABA
signals into appropriate cellular responses where SnRKs (2/3/6/7/8)/CDPK phosphorylate the
downstream targets [53]. This is the classical ABA signaling pathway; however, recent findings
suggested that it is not that simple. It is potentially integrated with multiple signaling pathways,
such as the calcium pathway. Ca?, along with ABA, represents a most versatile secondary
messenger in eukaryotes and is involved in crucial aspects of signaling [85-88]. Stress signals that
trigger cellular ABA levels can also invoke prominent cellular Ca* signals in plants, which are
perceived downstream by Calcineurin B like proteins (CBLs)/CBL Interacting Protein Kinases
(CIPKs) [89,90] (Figure 1B). The calcium sensor CBL-CIPK regulates a variety of downstream targets,
such as regulation of stomata and ion channels [91-93]. Ca?- dependent protein kinases (CDPKs)
have functions similar to those of CBL/CIPKs in ABA signaling [84,94-97]. OPEN STOMATA 1
(OST1), an SnRK2 protein, has been reported as functioning as a critical regulator in the ABA
signaling module [98]. The 0st1 mutant displays a stomatal closure defect under drought stress.
Positional cloning of OST1 revealed its similarity to SnRK2.6 [99]. The ost1/snrk2.6 double mutant
affects stomatal closure under both stress-driven ABA signaling and normal growth conditions. The
ABA signaling pathway is regulated by the direct interaction of SnRK2.6/OST1 and PP2CA/ABI1
(Figure 1C) [100].

Table 1. List of the target genes that are regulated by ABA as well as Ca?* signaling

Gene Accession ~ Main Function Regulated by Ca? Regulated by Ca?* independent Reference
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Name Number dependent ABA-Signaling
ABA-Signaling
SnRK2s phosphorylation
CIPK11/26, It activates by activation;
ABI5 AT2G36270 bZIP TF [132,196,197]
phosphorylation PP2Csdephosphorylated
inactivation
SnRK2s phosphorylation
AT1G49720
CPK4/11, It activates by activation;
ABF1/4 / bZIP TF [196,198]
phosphorylation PP2Cs dephosphorylated
AT3G19290
inactivation
CBL1/9/CIPK23,
Potassium ion HAI2 and PP2CA, It regulates
AKT1 AT2G26650 It activates by [188-190]
channel AKT1
phosphorylation
Potassium ion CBL4/CIPK6, Localized in
AKT2 AT4G22200 PP2CA It regulates AKT2 [191,192]
channel the plasma membrane
Inhibited by the SnRK2s Inhibition by SnRK2s is
Potassium
KAT1 AT5G46240 and involved in the inhibited by ABI1, involved in [203,204]
channel
Stomatal closure the Stomatal opening
CBL1/9CIPK23.
deactivates under high ABI2 involved in the
Nitrate
NPF6.3  AT1G12110 nitrate conditions and it Dephosphorylation or [193,194]
transporter
increases the nitrate deactivation of CBL1/CIPK23
sensitivity
Plasma-Membr Induced by the SnRK2s Induction by SnRK2s is
AT1G1248
SLAC1 ane Anion and involved in Stomatal ~ inhibited by ABIlinvolved in the [201,202]
0
channel closure Stomatal open
Plasma
AT1G6406 CBL1/9/IPK26 activates by OST1 involved in the
RBOHF Membrane [82,83]
0 the phosphorylation phosphorylation

superoxide
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generation
Plasma
RBOH  AT5G4791 Membrane CPKS5 activates by the
[77]
D 0 superoxide phosphorylation
generation
Calcium-indepe
CBL/CIPL/CDPK,
SnRK2.  AT4G3395 ndent SnRK2.6 involved in the
activates by the [199,200]
6/0ST1 0 ABA-activated phosphorylation
phosphorylation
protein kinase
CBL1/9/CIPK23
CPK21 involved
AT5G2403 in phosphorylated
SLAH3 Anion channel ABII involved in deactivation [76,90,195]
0 activation; CPK21 also

recruits SLAH3 on to the

membrane

The target proteins of Ca?- dependent and independent ABA signaling systems are also the
target of other signaling systems. Reactive burst oxidases (RBOHs) are phosphorylated by
SnRK2.6/0ST1, CPK5, and CBL1-CIPK26 [96,101,102]. At normal ABA levels, SnRK2.6 is inactive,
and PP2CA (ABI1) inhibits the S-type anion channel (SLAC1) and the activity of its homologs
(SLAHS3) [103]. In addition, SnRK2.6 cannot inhibit K* channel (KAT1) activity, which results in
increased turgor pressure and stomatal opening [104]. To cope with stress, plants tend to close
stomata to prevent water loss. ABA signaling would lead to the closure of stomata. Elevated ABA
levels under stress condition inhibit PP2CA activity and the phosphorylation of SnRKs (Ca?
-dependent manner), CBL, CIPK, and CDPK (Ca* - independent manner) occurs leading to the
phosphorylation of SLAC1/SLAH3 by CBL1/9-CIPK23, CPK3/6/21/23, and SnRK2.6/OST1
[84,95,105-109]. SnRK2.6/OST1 also inhibits K* channel (KAT1) activity [110] and mediates the efflux
of anions and influx of K*and decrease in turgor pressure that results in stomatal closure (Figure
1C).

3.2. Abiotic-Stress Signaling Integration with the ABA Signaling Pathway

In plants, ABA signaling is an important tool for robust stress responses to environmental
stimuli and developmental processes. Plants encounter numerous abiotic stress factors, such as
water scarcity (drought or dehydration), low temperature (cold stress), and salinity (salt stress)
[59,111]. The plant utilizes ABA to assess the stress impact and might continuously alter ABA
signaling stages based on environmental and physiological conditions to delay processes, such as
germination, development, and lateral root formation, appropriately [112]. Under stress conditions,
numerous genes are upregulated in plants via the ABA pathway. Promoter analysis of the
ABA-inducible genes indicated that they must have multiple cis-elements, such as ABREs
(PyACGTGG/TC) [113,114]. Plant gene expression analyses revealed conserved ABREs cis-acting
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elements in dehydration-inducible promoters [115]. Sequences of ABREs are also present in the
genes that are expressed in the seeds (Figure 1D) [116].

The bZIP subfamily members (AREB1/ABF2, AREB2/ABF4, and ABF3) are induced by ABA,
dehydration, and high salinity [117], and the overexpression of the factors above in transgenic plants
led to drought tolerance [117-119]. To establish the role of such AREB/ABF TFs in stress-responses in
vegetative tissues, Yoshida et al. [120] generated an arebl/areb2/abf3 triple mutant. Microarray
analysis revealed impaired stress-responsive gene expression. It also revealed many
stress-responsive genes, such as LEA proteins, group A PP2Cs, and various types of TFs that lie
downstream of AREB/ABF TFs. Most of such gene promoters contain ABRE sequences. The
arebl/areb2/abf3 triple mutant was sensitive to drought-stress and was more resistant to ABA
(primary root growth) when compared with other single and double mutants, suggesting that ABF3,
AREBI, and AREB2 are the master TFs that regulate the ABRE-dependent gene expression under
stress conditions in ABA-signaling. HD-ZIP transcription factor, HAT1, a critical regulator in
Brassinosteroid (BR) signaling, interacts with SnRK2s [121,122]. HAT1 suppresses ABA signaling
and is involved in ABA regulation of drought response [122], which also suggests the integration of
BR-signaling with ABA signaling to regulate the downstream targets of abiotic stress tolerance.

Mitogen-activated protein kinases (MAPKSs) are also involved in ABA signaling in response to
abiotic stress [57,123]. Studies on MAPK inhibitors highlighted the link between ABA and
MAPK-signaling. For example, in barley, phenyl arsine oxide inhibited ABA-induced MAPK
activation [124]. Apart from MPK3, MPK4, and MPK®, the only other MAPKSs activated in response
to ABA are MPK12 [125-127] and the C-clade MAPKs MPK1/2/7/14 [128-130]. In Arabidopsis,
MAP3K17 and MAP3K18 function upstream of the MAP3Ks to activate MKK3 and MAP2K, and,
therefore, the C-clade MAPKs (MPK1, MPK2, MPK7, and MPK14) in response to ABA signaling
(Figure 1D) [82,130,131]. BiFC and yeast 2-hybrid techniques have been used to demonstrate the
interactions between kinases in Nicotiana benthamiana [130,131]. In the mkk3 and map3k17/18
backgrounds, ABA driven activation of MPK7 was significantly reduced [130]. Genetic analysis
revealed that in ABA signaling, PYR/PYL/RCAR-SnRK2-PP2C (an ABA core signaling module)
activates the MAP3K17/18-MKK3-MPK1/2/7/14 cascade through the transcriptional regulation of
MAP3K17/18 followed by MAP3K activation [130,132]. MAP3K18 is also regulated directly by the
PYR/PYL/RCAR-SnRK2-PP2C module, suggesting that PP2C phosphatase ABI1 interacts directly
with MAP3K18 [82] (Figure 1D). MAP3K18 also controls RD29B and RAB18 expression, two known
ABA and abiotic stress-responsive genes, indicating the role of ABRE genes downstream of the
MAPK cascade for the ABA-signaling driven abiotic stress response in plants.

3.3. Biotic-Stress Signaling Integration with the ABA Signaling Pathway

Plants response to biotic and abiotic stress via crosstalk signals such as ABA, salicylic acid
(SA)/jasmonic acid (JA)/ethylene-mediated defense signaling [133]. Role of ABA in the crosstalk
between biotic and abiotic stress is very wide and it is dicussed in detailed by recently published
reviews [134,135]. A restraint function of ABA on the systemic acquired resistance pathway of SA
induction has also been reported in tobacco [136]. Elicitors/effectors secreted by Pseudomonas syringae
pv. tomato activates ABA biosynthesis along with ABA signaling, which leads to the inhibition of
biotic defense-responses [23]. However, several reports have shown the positive effect of ABA
signaling on biotic and abiotic stress. For example, treatment with ABA and SA resulted in a
short-term increase in H20: production, which induced tolerance to salinity, heat, and oxidative
stress [137]. During infection in plants, stomata can act as passive passage for bacteria. P. syringae pv.
tomato pathogen-associated molecular patterns (PAMPs) induce stomatal closure via
ABA-signaling, NO production, flagellin receptor (FLS2), indicating the integration of biotic and
abiotic signaling with ABA-signaling in the regulation of stomata [138]. p-aminobutyric acid
(BABA), a non-protein amino acid, has been reported as a link between heat tolerance, biotic stress,
and ABA-signaling. Plants treated with BABA become resistant to abiotic as well as biotic stress
[139-142]. The ibs3, a BABA-induced sterility mutant, exhibits defected regulation of ABAI,
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salt-resistance, and BABA-induced pathogen [143]. A recent study described BABA as a natural
molecule synthesized by plants under stress [144]. Therefore, it might be a new entry into the list of
plant hormones. Isolation of an activation-tagged mutant of activated disease resistance 1 (adrl)
further consolidates the link between ABA-mediated biotic and abiotic signaling. The adr]l mutant
displayed drought tolerance as well as disease resistance. Surprisingly, adr1 plants display sensitive
phenotype toward salt and heat stress, suggesting antagonism between biotic stress and abiotic
stress [145]. Recently, a study reported that PUB10 acts as a negative regulator of ABA signaling,
which could also be intermediatory in JA signaling (Figure 2) [66]. MAPKs are also reportedly
involved in plant defense response by regulating the JA, SA-signaling and down streaming
transcription factors. It is discussed in detail by recently published review [146].

In Arabidopsis, the biotic stress-inducible AP2/ERF TF family proteins are associated with
different abiotic stresses, such as cold, drought, salinity, heat, and light stress [70,147-149]. Many
ROS-inducible genes are also induced by AtERF6 for protection against both biotic and abiotic stress
[150]. Most of the ethylene response factors (ERFs) that display abiotic stress tolerance are not only
induced by ethylene but also by other biotic stress associated phytohormones, such as JA and SA.
Therefore, there is potential crosstalk between abiotic and biotic stress and responses via the ABA
signaling pathway [151-154] (Figure 2).

Figure 2. A simplified schematic diagram showing synergistic and antagonistic interactions between
the ABA-signaling pathway and other hormonal signaling pathways during abiotic and biotic stress.

4. ABA Signaling in Plant Developmental

4.1. Role of ABA-Signaling in Seeds Germination and Lateral Root formation

ABA accumulates during seed development and seed germination. In mature seeds, ABA
promotes the synthesis of LEA proteins for desiccation tolerance. ABA also inhibits germination and
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stimulates dormancy in mature seeds [55]. ABI3 and ABI4 control seed sensitivity and embryonic
gene expression in plants [155]. abi3 mutant seeds display reduced dormancy, and vivipary, caused
by the strongest alleles. To control seed maturation, ABI3/VP1 binds directly to the promoters of
Sph/RY. FUSCA3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) genes encode TFs that are structurally
related to VP1/ABI3 [156,157] and the genes interact with ABI5 [158], although VP1/ABI3 is involved
directly in ABA-signaling. A bZIP protein, ABA-INSENSITIVE5 (AB15), was identified via ABA
insensitive germination screening [155]. In addition to ABI5, three AREB/ABF-type bZIP proteins,
EEL, AREB3, and AtbZIP67/AtDPBE?2, are expressed in the nuclei of developing seeds and play vital
roles in seed germination [159,160]. During early germination and seed maturation under
stress-conditions, ABI5 regulates the direct expression of AtEml and AtEm6 (LEA class genes)
[114,159,161]. A seed expressed gene, DELAY OF GERMINATION 1 (DOG]1) is critical for dormancy
induction. During Arabidopsis seed development, DOGI interacts with ABI3 and influences ABI5
expression [162] (Figure 1E). PGIP1 and PGIP2 are associated with the process of seed germination,
and they are direct targets of ABI5 [163,164]. Overall, all the studies above highlight the key role of
ABI5 as a master regulator of seed development through the ABA signaling pathway. A negative
regulator of lateral root formation, MYB96, activates the expression of ABI5 and is involved in plant
responses to salt and drought stress [165]. MYB7 also negatively regulates ABI5 expression in seeds
[166] (Figure 1E). The above studies support the functional role of ABI5 in the ABA signaling
pathway-dependent inhibition of lateral root growth under stress conditions [167].

4.2. ABA and Light Signaling Convergence

ABA and light are the endogenous hormonal and the external environmental cues that play
vital roles in the regulation of seed germination and seed development. The ability of plants to
integrate external signals with internal regulatory pathways is crucial for their survival [168,169].
However, the crosstalk between ABA signaling and light signaling and its underlying molecular
mechanisms remains largely unclear. The involvement of TF HY5 in promoting seedling
photomorphogenesis, root development, and early seedling growth has been studied extensively. It
mediates ABA signaling responses in seed germination by binding directly to the ABI5 promoter
and regulating its expression [170]. Two major TFs in the phytochrome-A pathway, FAR-RED
IMPAIRED RESPONSE1 (FAR1) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3), positively
regulate ABA-signaling by inducing ABI5 expression directly [171]. PIL5, also known as PIF1, a
phytochrome-interacting bHLH TF, also targets ABI5 [172]. Conversely, BBX21, a transcriptional
regulator that is involved in the regulation of seedling photomorphogenesis, negatively regulates
ABI5 expression by intervening in the binding of HY5 to the ABI5 promoter [173].In addition, ABI5
can regulate its own expression while BBX21 inhibits ABI5 activation (Figure 1E). BBX21 represses
ABI5 activity by regulating the binding activities of both ABI5 and HY5 to the ABI5 promoter [173].
The findings suggest that in the light signaling pathway, multiple TFs regulate ABI5 expression in
the ABA signaling responses.

4.3. ABA-Signaling and Control of Flowering Time

A variety of ABA-signaling activities are involved in controlling meristem function or flowering
time [155,174]. In addition, the ABA inhibitory effect in floral-transition was described very well in a
study on an ABA-deficient mutant [175]. Such an inhibitory effect could be due to the modulation of
DELLA protein activity [168]. Therefore, ABA is also considered a floral repressor. FLOWERING
LOCUS C (FLC) is a key repressor integrator that tightly controls flowering signals [176]. FLC also
mediates seed germination via genes, such as SOC1, APETALA1, and FT, making FLC an effective
regulator in temperature-dependent seed germination [177]. ABFs are the bZIP TFs that are involved
in ABA-signaling during seed germination in plants [178,179]. Another bZIP protein, FD, mediates
signals from FT at the shoot apex [180]. Overexpression of another bZIP TF, ABI5, upregulates FLC
expression and delays flowering initiation. Phosphorylation of ABI5/SnRK2 during ABA-signaling
directly affects floral-transition and the inhibitory effect of ABI5 on floral transition disappears
without phosphorylation. Transactivation of FLC expression could be by direct binding of ABI5 to
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FLC promoter regions [181]. AtU2AF65b, a putative U2AF65 spliceosome, participates in
ABA-mediated flowering via the regulation of the pre-mRNA splicing of ABI5 and FLC [182], which
indicates the positive regulation of FLC activity by ABI5 during ABA-signaling, and
AtU2AF65b-mediated mRNA splicing is critical for ABA-regulated flowering transition for the
control of floral transition in plants (Figure 1E).

5. Other Aspect of ABA Signaling

ABA transporter are arlso important part of ABA signaling as it is important to transport ABA
from its sites of synthesis to its multiple sites of action within plants. In Arabidopsis, four ABA
transporters have been identified (AtABCG25, AtABCG30, AtABCG31, and AtABCG40) all four of
which are ATP-binding cassette transporter G subfamily members [183-186]. AtABCG25 is involved
in exporting ABA from the vasculature [185], while AtABCG40 is a plasma-membrane ABA-uptake
transporter in guard cells, and is necessary for timely closure of stomata in response to drought
stress and seed germination [183,184]. AtABCG30 mediates ABA-uptake into the embryo, while
AtABCG31 brings about ABA secretion from the endosperm [184]. A recent study reported ABA
transporter-like 1 (AhATL1) gene from peanut (Arachis hypogaea L.) whose cognate protein, AhATL1, is
a member of the ATP-binding cassette transporter G subfamily and localizes to the plasma
membrane [187]. The expression of both the AhATL1 transcript and the corresponding protein were
upregulated by water stress and treatment with exogenous ABA. Another report suggested that
Medicago truncatula, MtABCG20 acts as a ABA exporter that influence the root morphology and
seed germination [188]. These data indicate that the ABA transport system plays a significant role in
water deficit tolerance and growth regulation [187].
ABA-signaling crosstalk with other hormones that are involved in the plant growth and stress
response. These hormone includes; Strigolactones, Cytokinin, and Karrikin. Strigolactone (SL) is a
recently discovered class of phytohormone that inhibits shoot branching [189]. ABA-signaling might
regulate SL biosynthesis [190]. The antagonistic action of ABA and Cytokinin signaling mediates
drought stress response in Arabidopsis [191]. Karrikin-signaling pathway seems to be upstream of
ABA-signaling pathway and karrikin-mediates changes in ABA-related gene expression [192].
DELLA protein is important for the seed germination [193]. ABA also interact with DELLA protein
when DELLA/ABI3/ABI5 complex is involved in the seed germination [194]

6. Conclusions

It is evident that ABA is an important signaling compound. In stress and developmental
responses in plants, ABA signaling largely depends on the SnRK family of protein kinases. ABA
signaling integrates other signaling components, such as Ca%, light, MAP kinase, SA, JA, and
ET-signaling, in response to environmental cues, developmental activities, and biotic stress (Figure
3). Such integration is vital for response stress and plant development; however, there are still gaps
regarding what extent and how often such integrations occur. In addition, it is important to reveal
the complex ABA signaling network by adopting more integrated and more detailed genome-wide
studies to identify the critical components of stress responses and developmental processes and to
develop scientific tools for the genetic engineering of stress-tolerant and robust plants. Furthermore,
it is critical to determine the role of all ABA signaling related genes to fill any knowledge gaps about
ABA-signaling. In the future, studying the function of ABA signaling related genes under different
combined stress conditions and the regulation of developmental processes would offer detailed
insights into the underlying mechanism of ABA signaling.

Ca?*, BR, light Signaling

P Seed germination
Ca?' Signaling JA, SA, ET Signaling L
Abiotic stress ABA Biotic stress tolerance
tolerance MAPK Signaling e Ca?', BR Signaling
signaling Lateral root growth

Ca?*, BR Signaling

Flowering



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 December 2019

Figure 3. Integration of various signaling pathways with ABA-signaling. ABA-signaling plays a
central role in regulating different developmental processes, including stress responses, as is evident
from its interactions with calcium (Ca?"), jasmonic acid (JA), salicylic acid (SA), brassinosteroid (BR),
ethylene (ET), and MAP kinase (MAPK) signaling pathway members.
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