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Abstract: Plants are immobile, and, to overcome harsh environmental conditions, such as drought, 

salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid 

phytohormone, is a critical signaling mediator that regulates diverse biological processes in various 

organisms. Significant progress has been made in the determination and characterization of key 

ABA-mediated molecular factors involved in different stress responses, including stomatal closure 

and developmental processes, such as seed germination and bud dormancy. Since ABA-signaling 

is a complex signaling network that integrates with other signaling pathways, the dissection of its 

intricate regulatory network is necessary to understand the function of essential regulatory genes 

involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, 

the perception of the stress signal (abiotic and biotic) and the response network of ABA-signaling 

components that transduce the signal to the downstream pathway to respond to stress tolerance, 

regulation of stomata, and ABA signaling component ubiquitination. Second, ABA-signaling in 

plant development processes, such as lateral root growth regulation, seed germination, and 

flowering time regulation. Examining such diverse signal integration dynamics could enhance our 

understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA 

signaling networks in plants. 

Keywords: abscisic acid; abiotic-stresses signaling; ubiquitination; seed-germination; E3 ubiquitin 
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1. Introduction 

Abscisic acid (ABA) signaling (perception, signaling, and tolerance) in plants is a complex 

response for which there are considerable knowledge gaps at the molecular level. ABA is a plant 

phytohormone with a small lipophilic sesquiterpenoid (C15) structure [1]. It has a key role in stress 

adaptation in addition to being critical in numerous biological processes, such as bud dormancy and 

seed germination [2-6]. In the 1960s, pioneering studies on ABA (initially termed “abscisin” and 

“dormin”) reported that it was accumulated in immature cotton balls that succumbed to 

ethylene-triggered abscission and over-wintering buds [4,7,8]. Later, it was demonstrated that under 

such conditions and developmental stages, plants were experiencing drought stress [5,9-17]. 

Therefore, ABA is a misnomer [18], even though it plays a role in leaf senescence and seed 

dormancy, potentially via osmotic effects [19-21]. It has been observed that drought-stressed 

vegetative tissues of numerous plants accumulate ABA (40-fold induction) within hours of osmotic 

stress and then it decreases after rehydration. In addition, ABA has been considered a long-distance 
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stress signal between shoots and roots [22]. Therefore, the study of spatiotemporal expression of 

genes that control ABA metabolism rate-limiting steps is essential for understanding how plants 

adapt to stress. Other than its role in adaptation to abiotic stress, ABA has been shown to be a key 

regulator of pathogen-virulence [23-27], which could offer insights into the basis of the 

ABA-synthesizing ability of numerous bio- and necrotrophic microbes [24,28-30].  

Gene products acting in the vicinity of the cell wall or at the interface of the plasma 

membrane/cytoskeleton/cell wall are considered the most likely elements to participate in initial 

stress perception. For instance, gated aquaporins (PIPs, plasma membrane intrinsic proteins) and 

osmo-/ion channels at the cell wall-plasma membrane interface may be implicated in the upstream 

perception [31-33]. The receptor of ABA remained unknown until 2009. Before 2009, several ABA 

receptors had been reported [34-40]; however, further investigations, did not substantiate any of 

them. In 2009, two independent studies reported the START (steroidogenic acute regulatory protein 

(StAR)-related lipid-transfer) domain of the significant Bet v1 (birch pollen allergen) superfamily of 

proteins as candidate ABA receptors [41-44]. All 14 members of the protein family are named 

Regulatory Component of ABA Receptor, RCAR1-RCAR14, [41], or Pyrabactin Resistance 1 and 

PYR1-like 1–13 [42]. The discovery of PYR1-like components (PYLs) laid the foundation for the 

unraveling of the ABA signaling mechanism in detail. Such findings opened door for advancements 

in the ABA signaling field and were appropriately recognized as scientific breakthroughs of the year 

[45,46]. Multiple structure studies have clarified the interactions at molecular level comprising a 

signaling cascade consisting of the PYL ABA receptors, the core ABA signaling pathway, 

Snf1-related protein kinases 2 (SnRK2s), and type 2C protein phosphatases (PP2Cs). ABA binding 

induces PYL protein interaction with the active site of PP2C and inhibits phosphatase activity by 

blocking the PP2C catalytic site (SnRK2 substrate) [47-51]. Such findings shed light on the 

ABA-signaling transduction pathway, which could facilitate the unraveling of abiotic stress 

tolerance as well as various developmental processes in plants. 

Numerous reviews have explored the specific aspects of ABA responses in detail [42,52-60], 

including the relationship between ABA-signaling and abiotic stress responses, calcium signaling, 

MAPK-signaling, and ubiquitination. In addition, abiotic-stress tolerance has been reviewed 

extensively, although with less emphasis on seed development and lateral root formation, and no 

reviews have focused on the overall ABA-signaling network [42,52-60]. ABA signaling is a complex 

network that works in tandem with other signaling pathways. Therefore, it is important to present 

an overall network taking into account recent advancements to fill the gaps that have not been 

addressed to date. In this review, we have integrated signaling pathways that align with the 

ABA-signaling pathway, which displays a complex network, being active during both plant abiotic 

stress tolerance and plant development. We have also added recent findings to the existing 

ABA-signaling network in plants. 

2. Ubiquitination in ABA-Signaling 

Protein post-translational modification by ubiquitination has been studied during various 

aspects of stress responses, plant development and growth [61,62]. Since ABA is a major 

phytohormone, and it plays a vital role in plant growth and stress responses, the regulation of its 

signaling components must be subjected to ubiquitination. Reports have emerged regarding E3 

ligase-mediated ubiquitination of ABA signaling components [60]. The E3 ubiquitin ligases 

discussed in this review are indicated using dark red square boxes in Figure 1B and E. ABA 

receptors (PYR/PYL/RCAR) in plants are regulated by degradation via the ubiquitin-26S proteasome 

system. Damaged DNA Binding protein1-Associated1(DDA1) from Cul4-based E3 ligase complexes 

and a single subunit, RING-type E3 ligase Ring finger of Seed Longevity1 (RSL1), are involved in the 

process [63,64], which suggest that in the ABA-signaling pathway, RSL1 acts as the negative 

regulator by regulating the ABA receptor through ubiquitination. Two Plant U-box protein family 

members, PUB12 and PUB13, interact with ABI1. ABI1 is induced in pub12/pub13 mutants compared 

within wild-types irrespective of ABA presence; however, it can ubiquitinate ABI1 only in the 

presence of both PYR1 and ABA, which indicates that the interaction between PYR1 and ABI 
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promotes ABI1 degradation by PUB12/13 [65]. An E3 ubiquitin ligase, PLANT–U-BOX PROTEIN10 

(PUB10), modulates ABA signaling in Arabidopsis. PUB10-OX plants phenocopied myc2, whereas 

the pub10 plants phenocopied MYC2-OX plants in response to ABA, indicating the regulation of 

MYC2 (a JA-signaling component) by PUB10 (Figure 2) [66]. A Keep on Going (KEG) E3 ligase with 

a truncated RING domain also acts as a bait for the CIPK26 interaction because it acts as the negative 

regulator in ABA-signaling [67,68]. ABA also induces the degradation of KEG by self-ubiquitination 

resulting in the accumulation of ABI5 [69]. KEG also ubiquitinates and degrades ABF1 and ABF3 by 

interacting directly with them [70]. The results of the studies above suggested that ABF1, ABF3, and 

ABI5 were the substrates for E3 ligase KEG. 

 

Figure 1. Overview of the ABA-signaling pathway. (A) Inactivation of SnRKs, CIPKs, and 

CDPKs under normal growth conditions (light orange box). PP2C (red oval box) plays an 

important role in the inactivation of SnRKs, CIPKs, and CDPKs. Inactive MAP3K17/18 (orange oval 

box) and AREB/ABF (yellow oval box) undergo protein degradation. (B) Initial perception of 

environmental and developmental cues. ABA-signaling is transduced in Ca2+-independent 

(light-dark box) as well as Ca2+-dependent manners (light orange box). Active SnRKs, CIPKs, and 

CDPKs (dark blue oval box) play important roles in downstream signal transduction. (C) Stomatal 

regulation via ABA-signaling in response to stress and healthy conditions. Under stress 

conditions, stomatal regulation (purple arrow →) is carried out by active SnRK2.6/OST1 (blue oval 

box) through the regulation of downstream ions channel genes (green oval boxes), such as SLAH3, 

SLAC1, and KAT1. This regulation helps stomata remain closed to avoid loss of excessive water 

under adverse conditions. Under normal conditions, SnRK2.6/OST1 inactivated by PP2C cannot 

regulate the downstream genes; thus, stomata remain open.(D) Response to stress tolerance via the 

ABA-signaling pathway. The stress tolerance mechanism (black arrow → ) is regulated in 

Ca2+-independent as well as Ca2+-dependent manners. The MAP kinase cascade (orange oval box) 

pathway carries the signal for the response to abiotic stress tolerance. It delays ABA gene 

expression. Contrarily, Signal transduction via only AREB/ABF (yellow oval box) shows early 

expression of ABA related genes, resulting in an early response to stress tolerance. (E) Involvement 

of ABA-signaling in the plant developmental process. Downstream ABA-signaling involved in 

different developmental processes (red arrow →)such as seed germination (light green oval and 

square boxes), lateral root growth (light blue oval and square boxes), and regulation of flowering 
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time (yellow oval and square boxes). ABI5 emerges as a critical ABA-signaling component in the 

regulation of the plant developmental process. ABA-signaling integrates with light signaling (black 

dark oval box) to regulate plant development. The brown tack facing up (⊥) indicates the role of 

ubiquitination in ABA-signaling. These E3 ubiquitin ligase elements in ABA-signaling guides the 

inactive protein to undergo degradation. The question mark (?) indicates the unknown pathway. 

ABD1, DWA1, and DWA2, which are associated with Cul4-based E3 ubiquitin ligases, were 

reported to be responsible for ABA-signaling through the degradation of ABI5 by regulated 

ubiquitination in the nucleus via the ubiquitin-26S proteasome system [71-73]. Single mutants, abd1, 

dwa1, and dwa2, and a double mutant, dwa1/dwa2, display ABA-hypersensitive phenotypes during 

seed germination and seedling growth [72,73], which indicates ABI5 acts as a target for ABD1, 

DWA1, and DWA2, Cul4-based E3 ubiquitin ligases, which leads to the negative regulation of 

ABA-signaling in the nucleus. ABI3 Interacting Protein2 is a functional RING-type E3 ligase that 

interacts with an unstable protein, ABI3, and is degraded via the ubiquitin-26S proteasome system 

[74]. Different types of E3 ligases with dual roles have been reported participating in the regulation 

of ABA signaling; however, the knowledge on their substrates and studies related to its association 

with ABA-signaling is ongoing process. 

3. ABA-Signaling under Stress 

3.1. Calcium Signaling Integration with ABA-Signaling pathway and Stomatal Regulation 

In plants, abiotic-stress positivelytriggers the levels of ABA and reactive oxygen species  [75] 

such as H2O2 [76-79]. High H2O2 levels trigger cytosolic calcium concentration via nitric oxide (NO) 

[80,81]. Downstream signaling cascades regulate transcriptional responses to abiotic-stress tolerance 

and stomatal regulation (Figure 1B, C, D) [53]. Many reports point to direct interactions between 

ABA and calcium signaling systems at different levels (Table 1). For such interactions between ABA 

and calcium signaling, ABI1 (clade A protein phosphatases 2Cs) appear to function as master 

regulators [53,58,82]. In normal growth conditions (basal ABA level), Ca2+ and SnRK2/3/6/7/8/CDPK 

activity are inhibited by ABI1/PP2C. This inhibition prevents downstream signaling [83,84] (Figure 

1A). In the presence of ABA (during stress or developmental stages), ABI1/PP2C activity is inhibited 

by ABA, which induces RCARs and elevated levels of H2O2, and in turn the conversion of ABA 

signals into appropriate cellular responses where SnRKs (2/3/6/7/8)/CDPK phosphorylate the 

downstream targets [53]. This is the classical ABA signaling pathway; however, recent findings 

suggested that it is not that simple. It is potentially integrated with multiple signaling pathways, 

such as the calcium pathway. Ca2+, along with ABA, represents a most versatile secondary 

messenger in eukaryotes and is involved in crucial aspects of signaling [85-88]. Stress signals that 

trigger cellular ABA levels can also invoke prominent cellular Ca2+ signals in plants, which are 

perceived downstream by Calcineurin B like proteins (CBLs)/CBL Interacting Protein Kinases 

(CIPKs) [89,90] (Figure 1B). The calcium sensor CBL-CIPK regulates a variety of downstream targets, 

such as regulation of stomata and ion channels [91-93]. Ca2+- dependent protein kinases (CDPKs) 

have functions similar to those of CBL/CIPKs in ABA signaling [84,94-97]. OPEN STOMATA 1 

(OST1), an SnRK2 protein, has been reported as functioning as a critical regulator in the ABA 

signaling module [98]. The ost1 mutant displays a stomatal closure defect under drought stress. 

Positional cloning of OST1 revealed its similarity to SnRK2.6 [99]. The ost1/snrk2.6 double mutant 

affects stomatal closure under both stress-driven ABA signaling and normal growth conditions. The 

ABA signaling pathway is regulated by the direct interaction of SnRK2.6/OST1 and PP2CA/ABI1 

(Figure 1C) [100]. 
Table 1. List of the target genes that are regulated by ABA as well as Ca2+ signaling 

 

Gene Accession Main Function Regulated by Ca2+ Regulated by Ca2+ independent Reference 
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Name Number dependent 

ABA-Signaling 

ABA-Signaling 

ABI5 AT2G36270 bZIP TF 

CIPK11/26, It activates by 

phosphorylation 

SnRK2s phosphorylation 

activation; 

PP2Csdephosphorylated 

inactivation 

[132,196,197] 

ABF1/4 

AT1G49720

/ 

AT3G19290 

bZIP TF 

CPK4/11, It activates by 

phosphorylation 

SnRK2s  phosphorylation 

activation; 

PP2Cs dephosphorylated 

inactivation 

[196,198] 

AKT1 AT2G26650 

Potassium ion 

channel 

CBL1/9/CIPK23, 

It activates by 

phosphorylation 

HAI2 and PP2CA, It regulates 

AKT1 

[188-190] 

AKT2 AT4G22200 

Potassium ion 

channel 

CBL4/CIPK6, Localized in 

the plasma membrane 

PP2CA It regulates AKT2 [191,192] 

KAT1 AT5G46240 

Potassium 

channel 

Inhibited by the SnRK2s 

and involved in the 

Stomatal closure 

Inhibition by SnRK2s is 

inhibited byABI1, involved in 

the Stomatal opening 

[203,204] 

NPF6.3 AT1G12110 

Nitrate 

transporter 

CBL1/9CIPK23. 

deactivates under high 

nitrate conditions and it 

increases the nitrate 

sensitivity 

ABI2 involved in the 

Dephosphorylation or 

deactivation of CBL1/CIPK23 

[193,194] 

SLAC1 

AT1G1248

0 

Plasma-Membr

ane Anion 

channel 

Induced by the SnRK2s 

and involved in Stomatal 

closure 

Induction by SnRK2s is 

inhibited byABI1involved in the 

Stomatal open 

[201,202] 

RBOHF 

AT1G6406

0 

Plasma 

Membrane 

superoxide 

CBL1/9/IPK26 activates by 

the phosphorylation 

OST1 involved in the 

phosphorylation  

[82,83] 
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generation 

RBOH

D 

AT5G4791

0 

Plasma 

Membrane 

superoxide 

generation 

CPK5 activates by the 

phosphorylation 

 [77] 

SnRK2.

6/OST1 

AT4G3395

0 

Calcium-indepe

ndent 

ABA-activated 

protein kinase 

CBL/CIPL/CDPK, 

activates by the 

phosphorylation 

SnRK2.6 involved in the 

phosphorylation 

[199,200] 

SLAH3 

AT5G2403

0 

Anion channel 

CBL1/9/CIPK23 

ABI1 involved in deactivation [76,90,195] 

CPK21 involved 

in phosphorylated 

activation; CPK21 also 

recruits SLAH3 on to the 

membrane 

The target proteins of Ca2+- dependent and independent ABA signaling systems are also the 

target of other signaling systems. Reactive burst oxidases (RBOHs) are phosphorylated by 

SnRK2.6/OST1, CPK5, and CBL1-CIPK26 [96,101,102]. At normal ABA levels, SnRK2.6 is inactive, 

and PP2CA (ABI1) inhibits the S-type anion channel (SLAC1) and the activity of its homologs 

(SLAH3) [103]. In addition, SnRK2.6 cannot inhibit K+ channel (KAT1) activity, which results in 

increased turgor pressure and stomatal opening [104]. To cope with stress, plants tend to close 

stomata to prevent water loss. ABA signaling would lead to the closure of stomata. Elevated ABA 

levels under stress condition inhibit PP2CA activity and the phosphorylation of SnRKs (Ca2+ 

-dependent manner), CBL, CIPK, and CDPK (Ca2+ - independent manner) occurs leading to the 

phosphorylation of SLAC1/SLAH3 by CBL1/9-CIPK23, CPK3/6/21/23, and SnRK2.6/OST1 

[84,95,105-109]. SnRK2.6/OST1 also inhibits K+ channel (KAT1) activity [110] and mediates the efflux 

of anions and influx of K+ and decrease in turgor pressure that results in stomatal closure (Figure 

1C). 

3.2. Abiotic-Stress Signaling Integration with the ABA Signaling Pathway 

In plants, ABA signaling is an important tool for robust stress responses to environmental 

stimuli and developmental processes. Plants encounter numerous abiotic stress factors, such as 

water scarcity (drought or dehydration), low temperature (cold stress), and salinity (salt stress) 

[59,111]. The plant utilizes ABA to assess the stress impact and might continuously alter ABA 

signaling stages based on environmental and physiological conditions to delay processes, such as 

germination, development, and lateral root formation, appropriately [112]. Under stress conditions, 

numerous genes are upregulated in plants via the ABA pathway. Promoter analysis of the 

ABA-inducible genes indicated that they must have multiple cis-elements, such as ABREs 

(PyACGTGG/TC) [113,114]. Plant gene expression analyses revealed conserved ABREs cis-acting 
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elements in dehydration-inducible promoters [115]. Sequences of ABREs are also present in the 

genes that are expressed in the seeds (Figure 1D) [116]. 

The bZIP subfamily members (AREB1/ABF2, AREB2/ABF4, and ABF3) are induced by ABA, 

dehydration, and high salinity [117], and the overexpression of the factors above in transgenic plants 

led to drought tolerance [117-119]. To establish the role of such AREB/ABF TFs in stress-responses in 

vegetative tissues, Yoshida et al. [120] generated an areb1/areb2/abf3 triple mutant. Microarray 

analysis revealed impaired stress-responsive gene expression. It also revealed many 

stress-responsive genes, such as LEA proteins, group A PP2Cs, and various types of TFs that lie 

downstream of AREB/ABF TFs. Most of such gene promoters contain ABRE sequences. The 

areb1/areb2/abf3 triple mutant was sensitive to drought-stress and was more resistant to ABA 

(primary root growth) when compared with other single and double mutants, suggesting that ABF3, 

AREB1, and AREB2 are the master TFs that regulate the ABRE-dependent gene expression under 

stress conditions in ABA-signaling. HD-ZIP transcription factor, HAT1, a critical regulator in 

Brassinosteroid (BR) signaling, interacts with SnRK2s [121,122]. HAT1 suppresses ABA signaling 

and is involved in ABA regulation of drought response [122], which also suggests the integration of 

BR-signaling with ABA signaling to regulate the downstream targets of abiotic stress tolerance. 

Mitogen-activated protein kinases (MAPKs) are also involved in ABA signaling in response to 

abiotic stress [57,123]. Studies on MAPK inhibitors highlighted the link between ABA and 

MAPK-signaling. For example, in barley, phenyl arsine oxide inhibited ABA-induced MAPK 

activation [124]. Apart from MPK3, MPK4, and MPK6, the only other MAPKs activated in response 

to ABA are MPK12 [125-127] and the C-clade MAPKs MPK1/2/7/14 [128-130]. In Arabidopsis, 

MAP3K17 and MAP3K18 function upstream of the MAP3Ks to activate MKK3 and MAP2K, and, 

therefore, the C-clade MAPKs (MPK1, MPK2, MPK7, and MPK14) in response to ABA signaling 

(Figure 1D) [82,130,131]. BiFC and yeast 2-hybrid techniques have been used to demonstrate the 

interactions between kinases in Nicotiana benthamiana [130,131]. In the mkk3 and map3k17/18 

backgrounds, ABA driven activation of MPK7 was significantly reduced [130]. Genetic analysis 

revealed that in ABA signaling, PYR/PYL/RCAR-SnRK2-PP2C (an ABA core signaling module) 

activates the MAP3K17/18-MKK3-MPK1/2/7/14 cascade through the transcriptional regulation of 

MAP3K17/18 followed by MAP3K activation [130,132]. MAP3K18 is also regulated directly by the 

PYR/PYL/RCAR-SnRK2-PP2C module, suggesting that PP2C phosphatase ABI1 interacts directly 

with MAP3K18 [82] (Figure 1D). MAP3K18 also controls RD29B and RAB18 expression, two known 

ABA and abiotic stress-responsive genes, indicating the role of ABRE genes downstream of the 

MAPK cascade for the ABA-signaling driven abiotic stress response in plants.  

 

3.3. Biotic-Stress Signaling Integration with the ABA Signaling Pathway 

Plants response to biotic and abiotic stress via crosstalk signals such as ABA, salicylic acid 

(SA)/jasmonic acid (JA)/ethylene-mediated defense signaling [133]. Role of ABA in the crosstalk 

between biotic and abiotic stress is very wide and it is dicussed in detailed by recently published 

reviews [134,135]. A restraint function of ABA on the systemic acquired resistance pathway of SA 

induction has also been reported in tobacco [136]. Elicitors/effectors secreted by Pseudomonas syringae 

pv. tomato activates ABA biosynthesis along with ABA signaling, which leads to the inhibition of 

biotic defense-responses [23]. However, several reports have shown the positive effect of ABA 

signaling on biotic and abiotic stress. For example, treatment with ABA and SA resulted in a 

short-term increase in H2O2 production, which induced tolerance to salinity, heat, and oxidative 

stress [137]. During infection in plants, stomata can act as passive passage for bacteria. P. syringae pv. 

tomato pathogen-associated molecular patterns (PAMPs) induce stomatal closure via 

ABA-signaling, NO production, flagellin receptor (FLS2), indicating the integration of biotic and 

abiotic signaling with ABA-signaling in the regulation of stomata [138]. β-aminobutyric acid 

(BABA), a non-protein amino acid, has been reported as a link between heat tolerance, biotic stress, 

and ABA-signaling. Plants treated with BABA become resistant to abiotic as well as biotic stress 

[139-142]. The ibs3, a BABA-induced sterility mutant, exhibits defected regulation of ABA1, 
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salt-resistance, and BABA-induced pathogen [143]. A recent study described BABA as a natural 

molecule synthesized by plants under stress [144]. Therefore, it might be a new entry into the list of 

plant hormones. Isolation of an activation-tagged mutant of activated disease resistance 1 (adr1) 

further consolidates the link between ABA-mediated biotic and abiotic signaling. The adr1 mutant 

displayed drought tolerance as well as disease resistance. Surprisingly, adr1 plants display sensitive 

phenotype toward salt and heat stress, suggesting antagonism between biotic stress and abiotic 

stress [145]. Recently, a study reported that PUB10 acts as a negative regulator of ABA signaling, 

which could also be intermediatory in JA signaling (Figure 2) [66]. MAPKs are also reportedly 

involved in plant defense response by regulating the JA, SA-signaling and down streaming 

transcription factors. It is discussed in detail by recently published review [146]. 

In Arabidopsis, the biotic stress-inducible AP2/ERF TF family proteins are associated with 

different abiotic stresses, such as cold, drought, salinity, heat, and light stress [70,147-149]. Many 

ROS-inducible genes are also induced by AtERF6 for protection against both biotic and abiotic stress 

[150]. Most of the ethylene response factors (ERFs) that display abiotic stress tolerance are not only 

induced by ethylene but also by other biotic stress associated phytohormones, such as JA and SA. 

Therefore, there is potential crosstalk between abiotic and biotic stress and responses via the ABA 

signaling pathway [151-154] (Figure 2). 

 

Figure 2. A simplified schematic diagram showing synergistic and antagonistic interactions between 

the ABA-signaling pathway and other hormonal signaling pathways during abiotic and biotic stress. 

 

4. ABA Signaling in Plant Developmental 

4.1. Role of ABA-Signaling in Seeds Germination and Lateral Root formation 

ABA accumulates during seed development and seed germination. In mature seeds, ABA 

promotes the synthesis of LEA proteins for desiccation tolerance. ABA also inhibits germination and 
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stimulates dormancy in mature seeds [55]. ABI3 and ABI4 control seed sensitivity and embryonic 

gene expression in plants [155]. abi3 mutant seeds display reduced dormancy, and vivipary, caused 

by the strongest alleles. To control seed maturation, ABI3/VP1 binds directly to the promoters of 

Sph/RY. FUSCA3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) genes encode TFs that are structurally 

related to VP1/ABI3 [156,157] and the genes interact with ABI5 [158], although VP1/ABI3 is involved 

directly in ABA-signaling. A bZIP protein, ABA-INSENSITIVE5 (AB15), was identified via ABA 

insensitive germination screening [155]. In addition to ABI5, three AREB/ABF-type bZIP proteins, 

EEL, AREB3, and AtbZIP67/AtDPBF2, are expressed in the nuclei of developing seeds and play vital 

roles in seed germination [159,160]. During early germination and seed maturation under 

stress-conditions, ABI5 regulates the direct expression of AtEm1 and AtEm6 (LEA class genes) 

[114,159,161]. A seed expressed gene, DELAY OF GERMINATION 1 (DOG1) is critical for dormancy 

induction. During Arabidopsis seed development, DOG1 interacts with ABI3 and influences ABI5 

expression [162] (Figure 1E). PGIP1 and PGIP2 are associated with the process of seed germination, 

and they are direct targets of ABI5 [163,164]. Overall, all the studies above highlight the key role of 

ABI5 as a master regulator of seed development through the ABA signaling pathway. A negative 

regulator of lateral root formation, MYB96, activates the expression of ABI5 and is involved in plant 

responses to salt and drought stress [165]. MYB7 also negatively regulates ABI5 expression in seeds 

[166] (Figure 1E). The above studies support the functional role of ABI5 in the ABA signaling 

pathway-dependent inhibition of lateral root growth under stress conditions [167]. 

4.2. ABA and Light Signaling Convergence 

ABA and light are the endogenous hormonal and the external environmental cues that play 

vital roles in the regulation of seed germination and seed development. The ability of plants to 

integrate external signals with internal regulatory pathways is crucial for their survival [168,169]. 

However, the crosstalk between ABA signaling and light signaling and its underlying molecular 

mechanisms remains largely unclear. The involvement of TF HY5 in promoting seedling 

photomorphogenesis, root development, and early seedling growth has been studied extensively. It 

mediates ABA signaling responses in seed germination by binding directly to the ABI5 promoter 

and regulating its expression [170]. Two major TFs in the phytochrome-A pathway, FAR-RED 

IMPAIRED RESPONSE1 (FAR1) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3), positively 

regulate ABA-signaling by inducing ABI5 expression directly [171]. PIL5, also known as PIF1, a 

phytochrome-interacting bHLH TF, also targets ABI5 [172]. Conversely, BBX21, a transcriptional 

regulator that is involved in the regulation of seedling photomorphogenesis, negatively regulates 

ABI5 expression by intervening in the binding of HY5 to the ABI5 promoter [173].In addition, ABI5 

can regulate its own expression while BBX21 inhibits ABI5 activation (Figure 1E). BBX21 represses 

ABI5 activity by regulating the binding activities of both ABI5 and HY5 to the ABI5 promoter [173]. 

The findings suggest that in the light signaling pathway, multiple TFs regulate ABI5 expression in 

the ABA signaling responses. 

4.3. ABA-Signaling and Control of Flowering Time 

A variety of ABA-signaling activities are involved in controlling meristem function or flowering 

time [155,174]. In addition, the ABA inhibitory effect in floral-transition was described very well in a 

study on an ABA-deficient mutant [175]. Such an inhibitory effect could be due to the modulation of 

DELLA protein activity [168]. Therefore, ABA is also considered a floral repressor. FLOWERING 

LOCUS C (FLC) is a key repressor integrator that tightly controls flowering signals [176]. FLC also 

mediates seed germination via genes, such as SOC1, APETALA1, and FT, making FLC an effective 

regulator in temperature-dependent seed germination [177]. ABFs are the bZIP TFs that are involved 

in ABA-signaling during seed germination in plants [178,179]. Another bZIP protein, FD, mediates 

signals from FT at the shoot apex [180]. Overexpression of another bZIP TF, ABI5, upregulates FLC 

expression and delays flowering initiation. Phosphorylation of ABI5/SnRK2 during ABA-signaling 

directly affects floral-transition and the inhibitory effect of ABI5 on floral transition disappears 

without phosphorylation. Transactivation of FLC expression could be by direct binding of ABI5 to 
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FLC promoter regions [181]. AtU2AF65b, a putative U2AF65 spliceosome, participates in 

ABA-mediated flowering via the regulation of the pre-mRNA splicing of ABI5 and FLC [182], which 

indicates the positive regulation of FLC activity by ABI5 during ABA-signaling, and 

AtU2AF65b-mediated mRNA splicing is critical for ABA-regulated flowering transition for the 

control of floral transition in plants (Figure 1E). 

 

5. Other Aspect of ABA Signaling 

 ABA transporter are arlso important part of ABA signaling as it is important to transport ABA 

from its sites of synthesis to its multiple sites of action within plants. In Arabidopsis, four ABA 

transporters have been identified (AtABCG25, AtABCG30, AtABCG31, and AtABCG40) all four of 

which are ATP-binding cassette transporter G subfamily members [183-186]. AtABCG25 is involved 

in exporting ABA from the vasculature [185], while AtABCG40 is a plasma-membrane ABA-uptake 

transporter in guard cells, and is necessary for timely closure of stomata in response to drought 

stress and seed germination [183,184]. AtABCG30 mediates ABA-uptake into the embryo, while 

AtABCG31 brings about ABA secretion from the endosperm [184]. A recent study reported ABA 

transporter-like 1 (AhATL1) gene from peanut (Arachis hypogaea L.) whose cognate protein, AhATL1, is 

a member of the ATP-binding cassette transporter G subfamily and localizes to the plasma 

membrane [187]. The expression of both the AhATL1 transcript and the corresponding protein were 

upregulated by water stress and treatment with exogenous ABA. Another report suggested that 

Medicago truncatula, MtABCG20 acts as a ABA exporter that influence the root morphology and 

seed germination [188]. These data indicate that the ABA transport system plays a significant role in 

water deficit tolerance and growth regulation [187]. 

ABA-signaling crosstalk with other hormones that are involved in the plant growth and stress 

response. These hormone includes; Strigolactones, Cytokinin, and Karrikin. Strigolactone (SL) is a 

recently discovered class of phytohormone that inhibits shoot branching [189]. ABA-signaling might 

regulate SL biosynthesis [190]. The antagonistic action of ABA and Cytokinin signaling mediates 

drought stress response in Arabidopsis [191]. Karrikin-signaling pathway seems to be upstream of 

ABA-signaling pathway and karrikin‐mediates changes in ABA-related gene expression [192]. 

DELLA protein is important for the seed germination [193]. ABA also interact with DELLA protein 

when DELLA/ABI3/ABI5 complex is involved in the seed germination [194]  

 

6. Conclusions  

It is evident that ABA is an important signaling compound. In stress and developmental 

responses in plants, ABA signaling largely depends on the SnRK family of protein kinases. ABA 

signaling integrates other signaling components, such as Ca2+, light, MAP kinase, SA, JA, and 

ET-signaling, in response to environmental cues, developmental activities, and biotic stress (Figure 

3). Such integration is vital for response stress and plant development; however, there are still gaps 

regarding what extent and how often such integrations occur. In addition, it is important to reveal 

the complex ABA signaling network by adopting more integrated and more detailed genome-wide 

studies to identify the critical components of stress responses and developmental processes and to 

develop scientific tools for the genetic engineering of stress-tolerant and robust plants. Furthermore, 

it is critical to determine the role of all ABA signaling related genes to fill any knowledge gaps about 

ABA-signaling. In the future, studying the function of ABA signaling related genes under different 

combined stress conditions and the regulation of developmental processes would offer detailed 

insights into the underlying mechanism of ABA signaling. 
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Figure 3. Integration of various signaling pathways with ABA-signaling. ABA-signaling plays a 

central role in regulating different developmental processes, including stress responses, as is evident 

from its interactions with calcium (Ca2+), jasmonic acid (JA), salicylic acid (SA), brassinosteroid (BR), 

ethylene (ET), and MAP kinase (MAPK) signaling pathway members. 
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