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Abstract 

The Landauer principle asserts that “the information is physical”. In its strict meaning 

Landauer's principle states that there is a minimum possible amount of energy required to 

erase one bit of information, known as the Landauer bound 𝑊 = 𝑘𝐵𝑇𝑙𝑛2 where T is the 

temperature of a thermal reservoir used in the process and 𝑘𝐵 is Boltzmann’s constant. Modern 

computers use the binary system in which a number expressed in the base-2 numeral system. 

We demonstrate that the Landauer principle remains valid for the physical computing device 

based on the ternary and more generally N-based logic. The energy necessary for erasure of 

one bit of information (the Landauer bound) 𝑊 = 𝑘𝐵𝑇𝑙𝑛2 remains untouched for the 

computing devices exploiting a many-valued logic.  
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1. Introduction 

Modern computers use the binary system in which a number is expressed in the base-2 numeral 

system. The base-2 numeral system is a positional notation with a radix of 2. Each digit is 

referred to as a bit. The base-2 is ubiquitous in computing devices because of its straightforward 

implementation in digital electronic circuitry using binary logic gates. However, one of the first 

computing machines was based on the ternary logic. In 1840, Thomas Fowler, a self-taught 

English mathematician and inventor, created a unique ternary mechanical calculating machine, 

completely manufactured of wood [1]. Ternary logic based computers based in the “trit” unit 

of information were successfully developed in Soviet Union by Nicolay Brousentsov [2].  The 

Setun computer, based on the ideas of ternary logic, ternary symmetrical number system and 

ternary memory element (“flip-flap-flop”) was designed in 1958 in Moscow University [2-3]. 

In principle, computer may be based on a many-valued logics, exposed in recent years to a 

growing interest due to the fundamental aspects and numerous applications [4-5].  

 The present paper does not come into the mathematical details of the ternary (or 

another) many-valued logics, but extends the Landauer principle to the erasing of the 

information by the computing machine, based on the many-valued logics. Informational theory 

is usually supplied in a form that is independent of any physical realization. In contrast, Rolf 

Landauer in his papers argued that “information is physical” and it has an energy equivalent 

[6-8]. It may be stored in physical systems such as books and memory chips and it is transmitted 

by physical devices exploiting electrical or optical signals [6-8]. Therefore, he concluded, it must 

obey the laws of physics, and first and foremost the laws of thermodynamics. The Landauer 

principle [6-8] establishing the energy equivalent of information remains in the focus of 

investigations in the last decade [9-17]. In its strict, tight and simplest meaning the Landauer 

principle states that the erasure of one bit of information requires a minimum energy cost equal 

to 𝑘𝐵𝑇𝑙𝑛2, where T is the temperature of a thermal reservoir used in the process and 𝑘𝐵 is 

Boltzmann’s constant [6-13]. The Landauer principle is usually demonstrated with the 
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computers, based on the binary logic. We demonstrate how it may be extended to devices, 

exploiting a many-valued logics.  

1. Discussion. 

Consider the computing device exploiting a particle enclosed within a chamber (cylinder) 

divided by half by a partition, as shown in Figure 1.  Finding of the particle M in the certain 

(left or right) half of the chamber corresponds to the recording of 1 bit of information. When 

the partition is removed, the location of particle is uncertain, and this corresponds to the 

erasure of 1 bit of information. Location of a particle on the certain half of the chamber 

corresponds to “1”, and the uncertain location of the particle corresponds to “0”, thus our 

particle based computer is based on the binary logical system. The work of this computer may 

be exemplified by the single-particle thermal engine, suggested by Leo Szilard in 1929 [18] and 

depicted in Figure 2. The smallest possible thermodynamic machine consists of a single particle 

of mass m in a closed cylinder, contacting with a thermal reservoirs. Consider the “evergreen” 

Carnot cycle performed by the minimal engine, depicted in Figure 1 from the informational 

point of view [9, 19-20]. At the first stage the particle contacts the thermal reservoir (bath) T1 

and undergoes a reversible isothermal expansion doubling its available volume [20]. Note, that 

the particle initially occupies the left side of the cylinder. Heat kBT1 ln2 is drawn from the bath 

and work 𝑘𝐵𝑇1𝑙𝑛2 is extracted. This process is equivalent to the removal of the partition at the 

midpoint of the cylinder, thus one bit of information is erased, if one bit as seen as finding 

particle m at the certain side (left in our case) of the cylinder, as shown in Figure 2 [9]. The first 

stage (isothermal expansion) of the Carnot cycle may be understood as follows: one bit of 

information, erased within the engine, was converted into the work kBT1ln2 [19]. At the second 

stage our engine is exposed to the adiabatic expansion and the additional mechanical work is 

made. At this stage the entropy of the working body and the thermal reservoir remain 

unchanged, and there is no informational change in both of them (thermal reservoir T1 is 

disconnected from the engine at this stage). At the next stage the engine is connected to the 

thermal bath T2 and the reversible isothermal compression to half volume takes place. A piston 

reversibly and isothermally compresses the space occupied by the particle m from full to half 

volume. One bit of information is recorded by the engine. Heat 𝑄2 =kBT2 ln2, is delivered to the 

heat bath, and work kT2 ln2 is consumed. At the last stage of the cycle the engine is disconnected 

from the reservoir T2 and the system is adiabatically heated to the temperature T1. No entropy 

and informational changes take place at this stage. The work of the minimal Carnot engine 

illustrates the Landauer principle: recording/erasing of one bit of information demands 

𝑘𝐵𝑇𝑙𝑛2  units of energy.  

The non-trivial problems of “thermalization” of the motion of the particle in the minimal 

Carnot engine are out of the scope of our paper [9, 19-20]. The Carnot engine is fully reversible; 

actually, the erasure/recording of information is asymmetric and it was shown that there may 

be no entropy cost to the acquisition of information, but the destruction of information does 

involve an irreducible entropy cost [21]. This erasure/recording asymmetry is essential [9, 21], 

however it is not in the focus of the present paper. Note, that the efficiency of the engine equals 

 𝜂 = 1 −
𝑇2

𝑇1
 , as demonstrated in ref. 20. This result is quite expectable due to the fact that the 

efficiency of the Carnot machine is insensitive to working substance in the engine and depends 

only on the temperatures of the thermal reservoirs [20]. 

The additional exemplification of the Landauer principle is supplied by the Brownian 

particle in a double-well potential, as shown in Figure 3 and discussed in detail in refs. 7, 9.  

When the barrier is much higher than the thermal energy, the particle will remain in either well 

for a long time [7, 9, 19]. Thus, the particle being in the left or right well can serve as the stable 

informational states, “0” and “1” of a bit. A Brownian particle trapped in either left or right 
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well represents the informational states 𝑚 = 0 and 𝑚 = 1, as shown in Figure 3, where m is the 

parameter, characterizing the statistical state of the system. The average work W to change the 

statistical state of a memory from the state Ψ with the distribution 𝑝𝑚 to Ψ′ with distribution 

𝑝𝑚
′  is given by Eqs. 1(a-b): 

                                                             𝑊 ≥ 𝐹(Ψ′) − 𝐹(Ψ)                                                     (1a) 

                                                      𝐹(Ψ) = ∑ 𝑝𝑚𝐹𝑚𝑚 + 𝑘𝐵𝑇 ∑ 𝑝𝑚𝑙𝑛𝑝𝑚𝑚  ,                               (1b) 

where 𝐹𝑚 = 𝐸𝑚 − 𝑇𝑆𝑚 is the free energy of the conditional state [9]. For a symmetrical well and 

a random bit 𝑝0 = 𝑝1 =
1

2
, and we immediately recover the Landauer bound 𝑊 = 𝑘𝐵𝑇𝑙𝑛2 , as 

shown in ref. 9 and checked experimentally in refs. 22-24. The analysis of the asymmetrical 

potential well, performed in ref. 9, is out of the scope of our paper. 

Now consider the computing device based on the ternary logic, and using the “trit” 

computing element, presented in Figure 4 and discussed in refs. 1-3. Finding of the particle m 

in the certain one third part of the chamber corresponds to the recording of 1 bit of information. 
When both of partitions are removed the location of particle is uncertain, and this corresponds 

to the erasure of 1 bit of information. The analysis of the minimal Carnot engine which work is 

analogical to removing/introducing the partition immediately yields that the work necessary 

for erasing of the “trit” of information equals 𝑊 = 𝑘𝐵𝑇𝑙𝑛3 . The same conclusion arises from 

the analysis of the “trit” based on the Brownian particle in a triple-well symmetrical potential, 

analogical to that depicted in Figure 3 and shown in Figure 5.  Indeed, in this case 𝑝0 = 𝑝1 =

𝑝2 =
1

3
 , and again, we obtain for the Landauer bound 𝑊 = 𝑘𝐵𝑇𝑙𝑛3. It seems from the first glance 

that the ternary computer device is well-expected to be energetically unfavorable, when 

compared to the computing device based on the binary logic. However, this conclusion is 

erroneous. Indeed, "trit" equals to log23 bits of information [25]. Thus, an energy bound for 

erasing of one bit of information for the ternary computers equals: 

                                           𝑊𝑏𝑖𝑡 =
𝑘𝐵𝑇𝑙𝑛3

𝑙𝑜𝑔23
= 𝑘𝐵𝑇𝑙𝑛2                                                    (2) 

It is recognized from Eq. 2 that the erasing of 1 bit of information for the ternary 

computer equals to that inherent for the binary-memory-based one. Generalization of Eq. 2 for 

the N-based memory is straightforward:  

                                                  𝑊𝑏𝑖𝑡 =
𝑘𝐵𝑇𝑙𝑛𝑁

𝑙𝑜𝑔2𝑁
= 𝑘𝐵𝑇𝑙𝑛2                                          (3) 

We conclude that the Landauer bound, necessary for erasing of one bit of information 

𝑊 = 𝑘𝐵𝑇𝑙𝑛2 remains the same for the computers based on a many-valued logic.  

Conclusions 

The physical roots, justification and precise meaning of the Landauer principle remain 

debatable and were exposed to the turbulent discussion recently [6-11, 26-28]. The present 

paper is devoted to the very particular question: if we assume that the Landauer principle holds 

for the binary-logic based computing device, should it hold for the many-valued logic 

computer? In other words, if we adopt that a minimum possible amount of energy required to 

erase one bit of information within a binary logic computer equals the Landauer bound 

𝑊 = 𝑘𝐵𝑇𝑙𝑛2, what minimal energy should be spent for the same purpose within the many-

valued-logic-based computer? Starting from the analysis of ternary-logic-based computing 

device [1-3, 29] we demonstrated that the Landauer limit, necessary for erasing of one bit of 

information 𝑊 = 𝑘𝐵𝑇𝑙𝑛2 remains the same for the computers based on a many-valued logic. 

Thus, the universality of the Landauer principle is shown.  
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Figure 1. Finding of the particle M in the certain (left or right) half of the chamber 

corresponds to the recording of 1 bit of information.   
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Figure 2. Sketch of the minimal single-particle thermal machine is depicted. Particle M moves 

the piston. The machine works between the hot (T1) and cold (T2) thermal reservoirs which 

may be finite. The conditions of “thermalization” (randomization) of the particle motion are 

discussed    
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Figure 3. The qubit model of a memory exploiting a Brownian particle M in a symmetrical 

double-well potential with position y which can be stably trapped in either left or right well, 

corresponding to informational states 𝑚 = 0; 𝑚 = 1 (see ref. 9). 
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Figure 4. Finding of the particle m in the certain one-third part of the chamber corresponds to 

the recording of 1 bit of information. Thus, the “trit”- based computation becomes possible.   
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Figure 5. The trit-based model of a memory exploiting a Brownian particle M in a 

symmetrical triple-well potential with position y which can be stably trapped in either 

central, left or right well, corresponding to the informational states, namely:  𝑚 = −1; 𝑚 =

0; 𝑚 = 1 . 
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