How Codon Usage Bias Affects Our Ability to Recover the Tree of Life

Justin B. Miller1, Michael F. Whiting1,2, John S.K. Kauwe1, Perry G. Ridge1,*

1Department of Biology, Brigham Young University, Provo, UT 84602, USA

2M.L. Bean Museum, Brigham Young University, Provo, UT 84602, USA

*Correspondence to be sent to: 4102 LSB, Department of Biology, Brigham Young University, Provo, UT 84602, USA;

E-mail: perry.ridge@byu.edu
Abstract

Phylogenies depict shared evolutionary patterns and structures on a tree topology, enabling the identification of hierarchical and historical relationships. Recent analyses indicate that phylogenetic signals extend beyond the primary structure of protein or DNA, and various aspects of codon usage biases are phylogenetically conserved. Several functional biases exist within genes, including the number of codons that are used, the position of the codons, and the overall nucleotide composition of the genome. Codon usage biases can significantly affect transcription and translational efficiencies, leading to differential gene expression. Although systematic codon usage biases originate from the overall GC content of a species, ramp sequences, codon aversion, codon pairing, and tRNA competition also significantly affect gene expression and are phylogenetically conserved. We review recent advances in analyzing codon usage biases and their implications in phylogenomics. We first outline common phylogenomic techniques. Next, we identify several codon usage biases and their effects on secondary structure, gene expression, and implications in phylogenetics. Finally, we suggest how codon usage biases can be included in phylogenomics. By incorporating various codon usage biases in common phylogenomic algorithms, we propose that we can significantly improve tree inference. Since codon usage biases have significant biological implications, they should be considered in conjunction with other phylogenetic algorithms.
The Continued Importance of Phylogenetic Systematics

Phylogenetic systematics explores the historical and hierarchical relationships among genes, individuals, populations, and taxa. Phylogenies allow biologists to infer similar characteristics in closely related species and provide an evolutionary framework for analyzing biological patterns (Soltis and Soltis 2003).

Furthermore, phylogenies are statements of homology and are used to organize shared structures or patterns between species (Haszprunar 1992). Originally, phylogenies were recovered using only morphological data. However, with the increased availability of molecular data, a combined approach using morphology and genetic markers is typically used in phylogenetic analyses (Bertolani, et al. 2014).

Although genetic data provide researchers with access to more species, it typically requires large amounts of data cleaning (e.g., alignment and annotation) before it becomes useful. Some of the greatest difficulties in recovering phylogenetic trees from molecular data (e.g., multiple substitutions at the same position between ancient terminal branches or no substitutions in a gene in short internal tree branches) are explored by Philippe, et al. (2011). These issues have recently become more pertinent as sequencing costs have dropped and genomic data now spans the Tree of Life.

Codon Usage Biases Span the Tree of Life

Codon usage bias is present throughout molecular datasets. There are 61 canonical codons plus three stop codons that form and regulate the creation of 20 amino acids and the stop signal (Crick, et al. 1961). Since there are more codons than amino acids, the term synonymous codon is used to describe how multiple codons encode the same amino acid and were presumably identical in function. However, an unequal distribution of synonymous codons occurs within species, especially within highly expressed genes, suggesting that synonymous codons might play different roles in species fitness (Sharp and Li 1986). Furthermore, an unequal distribution of tRNA anticodons directly coupling codons also varies between species, leading to the wobble hypothesis: tRNA anticodons do not need to latch onto all three
Codon nucleotides during translation (Crick 1966). Codon usage is highly associated with the most abundant tRNA present in the cell (Post, et al. 1979) and codon usage patterns affect gene expression (Gutman and Hatfield 1989). Non-random mutations or selection for phenotypic differences caused by differential gene expression could explain some of the phylogenetic differences in synonymous codon usages. Although codon usages directly affect phenotypes, common phylogenomic approaches typically ignore the influence of codon bias in tree inference.

Overview of Common Phylogenomic Techniques

Homologous sequence comparisons are commonly used to identify species relationships. Homologous characters are identified by aligning orthologous genes and detecting character state changes of amino acid residues or nucleotides across a tree topology. This multi-step process is time-consuming and requires orthologous gene annotations. Non-homologous sequence comparisons have also been explored in alignment-free methods and will subsequently be discussed.

1. Ortholog Identification

Orthologs are genes within two or more species that usually share the same function because they are derived from the same ancestral gene in the most recent common ancestor (Koonin 2005). In contrast, paralogs may share the same function, but can arise from gene duplication or horizontal gene transfer. Paralogs may not be under the same evolutionary pressures and should not be compared in a direct positional alignment because these comparisons are a poor indicator of phylogenetic relationships (Koonin 2005). An in-depth evaluation of ortholog identification techniques is presented by Tekaia (2016). Once an ortholog is identified, phylogenetic studies typically require a multiple sequence alignment to align homologous characters. Reviews of some common multiple sequence aligners such as T-coffee (Magis, et al. 2014), MUSCLE (Edgar 2004), Clustal (Sievers and Higgins 2014), Clustal Omega
(Sievers and Higgins 2018), and MAFFT (Katoh and Standley 2014) can be examined elsewhere (Daugelaite, et al. 2013; Pais, et al. 2014).

2. Recovering the Phylogenetic Tree

i. Maximum Parsimony

Maximum parsimony assumes that each character is equally important and minimizes the number of character state changes to recover the relatedness of species. Proponents of parsimony point to its explanatory power and ability to minimize ad hoc hypotheses (Farris 2008). However, parsimony can be misleading if unequal evolutionary rates between lineages exist because longer evolutionary branches have a tendency to form monophyletic groups even if the species have different phylogenetic histories (Felsenstein 1978). PAUP (Wilgenbusch and Swofford 2003) and TNT (Goloboff, et al. 2005) are two popular software packages to identify phylogenies based on parsimony.

ii. Maximum Likelihood

Maximum likelihood requires specific models of evolution that show the probability of character state changes and can be used in the likelihood function. Maximum likelihood calculates the probability of obtaining the data given the model and tree topology. One of the main reasons that maximum likelihood estimates have gained traction is the mathematical property of consistency, which states that as more data (phylogenetically informative characters) are added, the likelihood function will converge to the correct tree (Wald 1949; Rogers 1997). Furthermore, maximum likelihood takes into account more complex modelling of datasets, and the modelling has become more computationally tractable through faster algorithmic design and faster computer processors (Paninski, et al. 2004). However, in exact opposition to maximum parsimony, maximum likelihood is more likely to separate highly divergent species, leading to long branch repulsion (Siddall 1998). MEGA X (Kumar, et al. 2018), RAxML
(Stamatakis 2014), IQ-TREE (Nguyen, et al. 2015) and PHYLIP (Retief 2000) are commonly used to recover phylogenies using maximum likelihood.

iii. Bayesian Inference

Bayesian phylogenetic estimates use posterior probabilities of a distribution of trees calculated with Markov Chain Monte Carlo (MCMC) techniques to evaluate tree probabilities. Bayesian inference adds statistical support to phylogenies and empirically produces more accurate trees in simulations. However, Bayesian inference is highly sensitive to prior probabilities (Huelsenbeck, et al. 2002). How Bayesian techniques compare to other phylogenetic methods is addressed by Yang and Rannala (2012) and popular Bayesian techniques are implemented in MrBayes (Ronquist, et al. 2012; Ling, et al. 2016) and BEAST2 (Bouckaert, et al. 2014).

iv. Distance-based and Alignment-free

Distance-based phylogenies use techniques such as neighbor-joining to quickly produce relatively good trees and are often used as a starting point for phylogenetic analyses using other methods. Neighbor-joining decomposes a star tree by taking the two closest taxa based on the number of character changes between them, pairing them together, recalculating weights based on the shortest distance between the paired species and all other species, and repeating this process until all taxa are paired. Although this technique is computationally fast, compressing the sequences into distances loses information and phylogenetic reliability is difficult to ascertain from highly divergent sequences (Holder and Lewis 2003). However, distance-based methods are frequently used when sequence alignments are not available or in whole genome comparisons. Since genome assembly and multiple sequence alignment affect phylogenies more than the technique used to recover the phylogeny, alignment-free methods attempt to recover shared phylogenetic history without an alignment by comparing basic characteristics of
genomes (i.e., GC content, k-mer counts, codon usages, etc.) (Chan, et al. 2014). Broadly, alignment-free approaches can be classified into three main groups. The first group analyzes the frequency of words with a certain length (e.g., FFP (Sims, et al. 2009; Jun, et al. 2010) and CVTree (Zuo and Hao 2015)). The second group matches lengths of overlapping sequences (e.g., ACS (Ulitsky, et al. 2006), KMACS (Leimeister and Morgenstern 2014), and Kr (Haubold, et al. 2009)). The last group calculates informational content between sequences (e.g., Co-phylog (Yi and Jin 2013), FSWM (Leimeister, et al. 2017), andi (Haubold, et al. 2015), CAM (Miller, McKinnon, et al. 2019a), and codon pairing (Miller, McKinnon, et al. 2019b)). These techniques are still being developed, and new software packages are constantly updated to recover more robust trees.

3. Assessing the Phylogenetic Tree

Bootstrapping is a common technique to assess the robustness of a phylogeny by randomly sampling characters with replacement and determining if the recovered phylogenetic tree changes. Proponents of bootstrapping point to its ability to uncover the phylogenetic signal under the noise of phylogenetically uninformative characters. Bootstrapping also has statistical properties that allow a confidence value to be placed on clades (Sanderson 1995). On the other hand, critics of bootstrapping point to the statistical assumptions that are violated in DNA characters because DNA characters cannot be considered independently and identically distributed (Sanderson 1995). Furthermore, a bootstrap proportion is generally unbiased but highly imprecise, meaning the bootstrap number can give high confidence that the data support a clade even if the clade is not real (Hillis and Bull 1993).

Biological Construct of Codon Usage Bias

Phylogenomic studies have recently used codon usage bias to recover species relationships with or without ortholog annotations. Various codon usage biases appear to track speciation events and can
cause gene expression to either increase or decrease (Quax, et al. 2015). Furthermore, codon usage biases affect protein and RNA folding, which affects transcription and translational efficiency, as well as gene expression. Although genetic drift drives global codon usages, the majority of codon usage bias within individual genes is influenced by translational selection (Labella, et al. 2019). Figure 1 outlines how codon biases affect protein levels.

<table>
<thead>
<tr>
<th>DNA</th>
<th>RNA</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codon Biases</td>
<td>Ramp Sequence</td>
<td>Rare Codons Concentrated at Initiation</td>
</tr>
<tr>
<td>Codon Pairing</td>
<td>Synonymous Codons Appear in Close Proximity</td>
<td>tRNA Recharged Before Diffusing From Ribosome</td>
</tr>
<tr>
<td>tRNA Competition</td>
<td>Codon Usage and Codon Aversion Correlate With tRNA Abundance</td>
<td>Traffic Jam of Suboptimal tRNA</td>
</tr>
<tr>
<td>GC Content</td>
<td>Third Codon Position Governed By Overall Nucleotide Percentages</td>
<td>Randomly Creates Either Optimal Or Suboptimal Codons</td>
</tr>
</tbody>
</table>

Figure 1: How Codon Usage Biases Affect Protein Levels. Many types of codon usage biases directly affect DNA, RNA, and protein secondary structure. They also affect transcription and translational efficiency. The mechanisms by which ramp sequences, codon pairing, tRNA competition, and the GC nucleotide composition affect protein levels are depicted.
1. Codon Usage Metrics

Several measurements of codon usage preferences facilitate comparing codons. Originally, the Codon Adaptation Index compared the relative codon usage of the most commonly used codons within highly expressed genes (Sharp and Li 1986). Soon thereafter, the effective number of codons quantified the difference in codon usage versus the expected usage if all synonymous codons were used equally (Wright 1990). Because of their simplicity, the effective number of codons and codon adaptation index are still widely used techniques. However, those methods oversimplify the dynamics of codon usage. The tRNA adaptation index (tAI) takes into account the complex relationship between tRNA and codons by using tRNA copy number, gene length, number of codons, and the preponderance of tRNA wobble to determine codon optimality (dos Reis, et al. 2003; dos Reis, et al. 2004). Building on tAI, the normalized translational efficiency (nTE) measurement balances tRNA supply and demand on codon usage and considers cellular tRNA dynamics. A codon is considered “optimal” if the relative supply of its cognate tRNAs exceeds the codon’s usage (Pechmann and Frydman 2013). Unfortunately, tAI and nTE require data that are not always available in a species or gene, thus limiting their use across the Tree of Life.

2. Biological Implications of Codon Usage Bias

a. Selection toward decreased translational efficiency

Occasionally, suboptimal codons are more beneficial to cells because they slow translation and allow for more precise, deliberate gene translation. Codon usage bias affects mRNA secondary structure so strongly that local mRNA secondary structure can be used to predict codon usage in highly expressed genes (Trotta 2013). Highly expressed genes also have a ramp of 30-50 slowly-translated, rare codons at the 5’ end of most protein coding sequences (Tuller, et al. 2010) that serves to evenly space ribosomes (Shah, et al. 2013) and reduce mRNA secondary structure (Goodman, et al. 2013) at translation.
Initiation. A comprehensive analysis of ramp sequences from all domains of life, as well as a method to extract ramp sequences from individual genes is presented in Miller, Brase, et al. (2019).

Suboptimal codons are also used in genes that are regulated by the cell cycle. Since tRNA expression levels are highest during the G2 phase, suboptimal codon usage for genes expressed during this phase is also highest. The G1 phase has the lowest tRNA expression, and genes expressed during G1 have a tendency toward optimal codon usage (Frenkel-Morgenstern, et al. 2012).

Codon usage bias in various bacteria is also associated with species lifestyle (Carbone, et al. 2005; Botzman and Margalit 2011). For cyanobacteria (photosynthetic bacteria), selection toward sub-optimal codon usage produces the circadian clock conditionality, where the circadian clock is expressed only under certain environmental conditions where cyanobacteria are not intrinsically robust (Xu, et al. 2013). Similarly, the pathogenicity and habitat of Actinobacteria (High GC gram positive bacteria important for soil systems) also influence codon usage, with aerobic species varying significantly from anaerobic species, and pathogenic species varying significantly from non-pathogenic species (Lal, et al. 2016). In each case, codon usage explains bacterial adaptation to their environment.

b. Selection toward increased translational efficiency

Highly expressed genes tend to use more optimal codons after the ramp sequence to increase gene translation because optimal codons are translated faster (Quax, et al. 2015). Faster translation is due to decreased wobble interactions, increased optimal tRNA composition, and decreased competition from synonymous codons within a gene. (Brule and Grayhack 2017) Selective pressures for protein expression also act on mRNA sequences to optimize co-translational folding within polypeptides in over 90% of high expression genes and about 80% of low expression genes (Pechmann and Frydman 2013). Furthermore,
gene body methylation is strongly correlated with codon bias, and appears to systematically replace CpG

Recharging a tRNA while the ribosome is still attached to the mRNA strand is another strategy used to
increase translational efficiency and decrease overall resource utilization. Co-tRNA codon pairing occurs
when two non-identical codons that encode the same amino acid are located in close proximity to each
other in a gene. Identical codon pairing occurs when identical codons are located in close proximity in a
gene. Co-tRNA and identical codon pairing are mechanisms that a cell uses to reuse a tRNA by
recharging the tRNA with an amino acid before the tRNA diffuses, and increases translational speed by
approximately 30% (Cannarozzi, et al. 2010). Although co-tRNA codon pairing occurs more prominently
in eukaryotes and identical codon pairing occurs prominently in bacteria (Shao, et al. 2012) and archaea
(Zhang, et al. 2013), both co-tRNA and identical codon pairing are phylogenetically conserved in all

Other systematic biases also influence codon choice. Background dinucleotide substitution biases from
GC to AT and AT to GC often coincide with shifts in optimal codons (Sun, et al. 2017). Even under
sustained selective pressure, GC content at the third codon position is highly correlated with overall GC
content in a gene, suggesting that optimal codons are affected by overall GC content (Sun, et al. 2017).
In an analysis of 65 eukaryotes and prokaryotes, GC content accounted for 76.7% of amino acid variation
(Li, et al. 2015). A summary of mechanisms that affect codon usage bias are shown in Table 1.
Table 1: Mechanisms Affecting Codon Usage Bias

<table>
<thead>
<tr>
<th>Name</th>
<th>Location/ Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Sequence</td>
<td>30-50 nucleotides downstream of start codon</td>
<td>The ramp sequence consists of rare, slowly translated codons that increase ribosomal spacing, reduce mRNA secondary structure, and slow initial translation.</td>
</tr>
<tr>
<td>Co-tRNA pairing</td>
<td>More prominent in eukaryotes. Phylogenetically conserved in all domains of life</td>
<td>tRNA are recharged with amino acids for synonymous codon translation when synonymous codons are in close proximity to each other. Recharging allows the tRNA to stay attached to the ribosome and significantly increases translation efficiency.</td>
</tr>
<tr>
<td>Identical Codon Pairing</td>
<td>All domains of life</td>
<td>tRNA are recharged with amino acids for identical codon translation when identical codons are in close proximity to each other. Recharging allows the tRNA to stay attached to the ribosome and significantly increases translation efficiency.</td>
</tr>
<tr>
<td>tRNA competition</td>
<td>Eukarya, bacteria, and archaea</td>
<td>Cognate, near-cognate, and non-cognate tRNA may attempt to bind to an mRNA codon. If relatively few cognate tRNA are available, translation will slow because other tRNA attempt to bind to the same codon. This process is essential for translation elongation, efficiency, and accuracy (Zur and Tuller 2016).</td>
</tr>
<tr>
<td>GC Content</td>
<td>All domains of life</td>
<td>Overall GC content in a gene is highly correlated with GC content at the third codon position. GC content influences over two-thirds of codon variation.</td>
</tr>
</tbody>
</table>
Limited codon substitution models have been used for decades in maximum likelihood estimates. However, until recently, a full 61 x 61 codon matrix was too computational intensive to apply to more than a few species and genes (Anisimova and Kosiol 2009). Somewhat surprisingly, after a 61 x 61 codon matrix became computationally viable, it was determined that the full matrix is not always optimal because models that use a fixed codon mutation rate for phylogenetic tree reconstruction fit the data better than a variable codon substitution rate. The apparent variation in codon substitution is actually caused by variable selection against amino acid substitutions in the regions used to develop the model, specifically mitochondria, chloroplast, and hemagglutinin proteins (Miyazawa 2013). Maximum likelihood estimates that use codon models outperform a parsimony analysis only when codon usage is highly skewed and is not affected by asymmetry in substitution rates (approach validated using *Drosophila* (Akashi, et al. 2007).

Because full codon models are computationally intensive and do not always elucidate more information than simpler models, common likelihood approaches use nonsynonymous to synonymous mutation rates per site (\(d_N/d_S\)) instead of the complete codon model. If the codon usage bias is strongly conserved, then \(d_S\) will decrease and \(d_N/d_S\) will increase within a population. The \(d_N/d_S\) ratio was used in *Drosophila* lineages, and helped determine that the Notch locus had evolved to include suboptimal codons (Nielsen, et al. 2007). Using 158 orthologous genes, maximum likelihood also detected a strong shift from suboptimal to optimal codons in two lineages of *Populus* (Ingvarsson 2008). Detecting the cause of such shifts in codon usage is important for determining the biological significance of mutations. SCUMBLE (Synonymous Codon Usage Bias Maximum Likelihood Estimation) uses a model inspired by statistical physics to identify different sources of codon bias including selection and mutation (Kloster and Tang 2008). SCUMBLE is also used as a filter to identify regions with insufficient information for
analysis. This technique helped determine that natural selection shaped codon biases in

Strongylocentrotus purpuratus (purple sea urchin) by limiting the analysis to only regions with sufficient

support (Kober and Pogson 2013). Shifts in mutation and selection rates allow the evolutionary history

of species to be recovered using this method.

2. **Violations of Maximum Likelihood Statistical Properties in a Codon Model**

Many of the assumptions of the statistical properties in maximum likelihood are violated by a codon

model. For instance, species are constrained to taxon-specific pools of tRNA, and triplets in coding

sequences are not independent. Algorithms with statistical properties that require character

independence, such as maximum likelihood, violate that rule for genetic data (Christianson 2005).

Furthermore, the codon model assumption of homogeneity of codon composition leads to seriously

biased phylogenetic estimations when that assumption is violated (Inagaki and Roger 2006).

Horizontal gene transfer is another important mechanism in evolution and complicates phylogenetic

analyses in bacteria because 81 ± 15% of genes have been laterally transferred among bacteria at some

point in their evolutionary history (Dagan, et al. 2008). Common transposable elements in eukaryotes

also arose from horizontal gene transfer, with over 50% of some mammalian genomes originally arising

from horizontal gene transfer (Ivancevic, et al. 2018). Detecting horizontal gene transfer has been

challenging, and codon bias is a poor indicator of horizontal transmission, normally underestimating the

effects of lateral transfer (Koski, et al. 2001; Tuller 2011; Friedman and Ely 2012). However, codon

composition is an excellent indicator of whether a gene will become fixed in a species after a lateral

transfer event (Tuller 2011). The concept of horizontal gene transfer not only complicates a general

phylogenetic analysis, but suggests that a standard bifurcating tree might not be the best choice in

analyses of bacteria or archaea (Koonin and Wolf 2008). Although it is known that codons (and DNA in
general) do not strictly follow many of the assumptions of phylogenetic analyses, the bifurcating tree is still the most widely used phylogenetic representation, and generally depicts statements of homology even when some assumptions are violated.

3. **Codon Usage in Viruses**

Another purpose of phylogenies is to predict the pathogenicity of viruses and viral interactions with their hosts. Bee-infecting viruses have strong correlations in their codon usages with their hosts, and the infected insects’ codon usage similarity follows the insect phylogeny (Chantawannakul and Cutler 2008). Furthermore, human-host viruses tend to share the same codon usages as proteins expressed in tissues that the viruses infect (Miller, Hippen, Wright, et al. 2017). More specifically, the key determinant in codon patterns within herpesviruses were the overall GC content, GC content at the 3rd codon position, and gene length (Roychoudhury and Mukherjee 2010). In contrast, mutation played a larger role in Zika viruses, with higher frequencies of A-ending codons (Cristina, et al. 2016). However, evidence of natural selection in Zika viruses also suggest that they evolved host- and vector-specific codon usage patterns to successfully replicate in various hosts and vectors (Butt, et al. 2016). In hepatitis C, preferred codon usages did not always match the phylogenetic histories of the viruses as determined by sequence similarity, indicating that codon usage might provide additional information not identified in common phylogenomic approaches (Mortazavi, et al. 2016).

4. **Successful Implementations of Codon Usage Bias in Phylogenetics**

Beyond analyzing pathogenicity, phylogenetic inferences using codon usage bias from all domains of life have successfully uncovered several interesting biological principles. One study found compositional differences in codon usage between monocots (flowering plants whose seeds contain one embryonic leaf) and dicots (flowering plants whose seeds contain two embryonic leaves), where monocots had
lower DNA background compositional bias, but higher codon usage bias than dicots (Camiolo, et al. 2015). Another technique used a distance-based clustering method of codon usage weighted by nucleotide base bias per position (i.e., the frequency of a codon over the product of the frequency of the nucleotide at the first, second, and third positions) to recover the phylogeny of closely related Ectocarpales (brown algae) (Das, et al. 2005). The phylogenetic signal of codon usage was not limited to nuclear DNA, and mitochondrial synonymous codon usage in plants was associated with intron number that mirrored species evolution (Xu, et al. 2015).

Creative attempts at analyzing codon usage have also proven fruitful. A binary representation of codon aversion (i.e., creating a character matrix based on codons which are not used in an ortholog) successfully recover the phylogeny of various tetrapods, showing that complete codon aversion is also conserved (Miller, Hippen, Belyeu, et al. 2017). That study also found that stop codon usage had the highest phylogenetic signal (Miller, Hippen, Belyeu, et al. 2017), meaning a codon matrix of 64 x 64 (the probability of all codons including the stop codons transitioning to all other codons) might be better than the traditional 61 x 61 codon matrix in a likelihood framework. Codon aversion has also been used in an alignment-free context by comparing sets of codon tuples found in a genome, where each tuple is a list of codons not used in a gene (Miller, McKinnon, et al. 2019a). A similar technique used codon pairing and codon pairs (i.e., the same codon being used within a ribosomal window) and was phylogenetically informative in both alignment-free and parsimony frameworks (Miller, McKinnon, et al. 2019b).

Other studies map codon usage in a particular gene across a reference phylogeny. This technique can produce meaningful representations of codon transitions across genes. Mapping the codon usage bias of a gene tree to a species tree revealed purifying selection among the actin-depolymerizing factor/cofilin
(ADF/CFL) gene family (Roy-Zokan, et al. 2015). This technique also showed that codon usage is significantly correlated with gene age within metazoan genomes (Prat, et al. 2009). Codon aversion in all domains of life was also mapped to the Open Tree of Life (OTL) (Hinchliff, et al. 2015) and showed that codon aversion follows established species relationships more closely than expected by random chance (Miller, McKinnon, et al. 2019c).

Concluding Remarks

Codon usage bias continues to be widely studied in a phylogenetic construct. However, its application in phylogenomics remains limited by its applicability in current phylogenomic techniques. While some applications attempt to incorporate codon usage bias as a novel character state in phylogenetics or in a maximum likelihood framework, many of the key attributes of codon bias remain unexplored. For instance, although the ramp of slowly translated codons has been identified, it is unknown if the ramp sequence is more or less phylogenetically conserved than the rest of the gene sequence.

In addition, although it is known that tRNA supply and demand is correlated to codon usage, a model does not currently exist to assess tRNA supply and demand in a maximum likelihood framework. Future codon analyses will necessitate more complete datasets with accurate tRNA expression values in different tissues and species. A more robust dataset of tRNA expression values would also facilitate codon model analyses. Furthermore, since codons are used to regulate gene translational efficiency, codon models might require gene expression data in addition to the full (or reduced) codon matrix.

Codon usage bias is an exciting biological principle that has not been fully utilized in phylogenetic systematics. Few likelihood methods use codon bias, and many aspects of the ramp sequence, co-tRNA codon pairing, gene expression, and tRNA expression have yet to be explored. Although codon usage
bias has been shown to be phylogenetically conserved, many of the biological principles surrounding codon usage bias have yet to be fully utilized in phylogenomics. We propose that more research into codon usage bias and its phylogenetic conservation will be beneficial to future phylogenomic studies by providing researchers with more robust phylogenetic trees.

Acknowledgements
We appreciate the continued support of Brigham Young University.

Authors’ Contributions
JM and PR conceived the idea. JM led the writing of the manuscript. All authors contributed critically to the drafts, edited the drafts, and gave final approval for publication.

References

Camiolo S, Melito S, Porceddu A. 2015. New insights into the interplay between codon bias determinants in plants. DNA Research:dsv027.

Kober KM, Pogson GH. 2013. Genome-Wide Patterns of Codon Bias Are Shaped by Natural Selection in the Purple Sea Urchin, Strongylocentrotus purpuratus G3: Genes|Genomes|Genetics 3:1069.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2019 doi:10.20944/preprints201910.0086.v1

