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Abstract: This paper presents a novel method to extract local features, which instead of calculating 
local extrema computes global maxima in a discretized scale-space representation. To avoid obtaining 
precise scales by interpolation and to achieve perfect rotation invariance, two essential techniques, 
increasing the width of kernels in pixel and utilizing disk-shaped convolution template are adopted 
in this method. Since the size of a convolution template is finite and finite templates can introduce 
computational error into convolution, we sufficiently discuss this problem and work out an upper 
bound of the computational error. The upper bound is utilized in the method to ensure that all 
features obtained are computed under a given tolerance. Besides, the technique of relative threshold 
to determine features is adopted to reinforce the robustness for the scene of changing illumination. 
Simulations show that this new method attains high performance of repeatability in various situations 
including scale change, rotation, blur, JPEG compression, illumination change and even viewpoint 
change.

Keywords: local feature extraction; scale-space representation; Laplacian of Gaussian; convolution 
template14

1. Introduction15

Local feature extraction is a fundamental technique for solving problems of computer vision, such16

as matching, tracking and recognition. A local feature is a structure around a point in an image, and its17

size, which relates to the scale, is usually unknown before it is extracted. Traditional Harris corner18

detector [1] does not consider the variance of scale, which accounts for a drawback that it cannot be19

applied to matching features with different scales. For detecting corners with different resolutions,20

Dufournaud [2] discusses a scale-invariant approach based on the Harris detector, which adopts21

the Gaussian kernel with width σ and uses a variable s as the scale factor. Therefore sσ represents22

an arbitrary scale, by which corner features with different scales are detected by traditional Harris23

corner detector. Scale-invariant properties are systematically studied by Lindeberg. Introducing a24

normalized derivative operator [3] into the scale-space theory [4], Lindeberg presents a framework25

for automatic scale selection, pointing out that a local maximum of some combination of normalized26

derivatives over scale reflects a characteristic length of a corresponding structure, and has a nice27

behaviour under rescaling of the intensity pattern [3], which has been a principle for solving problems28

of feature extraction. In SIFT [5,6], Lowe presents the Difference-of-Gaussian (DoG) method on29

image pyramids, which is an inchoate type of multi-scale representation, to approximate Laplacian30

of Gaussian (LoG). Mikolajczyk presents a Harris-Laplacian method [7], which uses Harris functions31

of images in scale-space representation to extract interesting points and then invokes Laplacian to32
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select feature points as well as their precise scale parameters. This method afterwards is extended to33

an affine-adapted approach [8]. Aiming at reducing computation time, Bay introduces integral images34

and box filters and works out SURF [9,10]. Because of the techniques of integral images and box35

filters, Hessian feature detector in SURF is revised into Fast-Hessian detector which can be computed36

more quickly than the former. Recently, Lomeli-R and Nixon present a feature detector, the Locally37

Contrasting Keypoints detector (LOCKY) [11,12], which extracts blob keypoints directly from the38

Brightness Clustering Transform (BCT) of an image. The BCT also exploits the technique of integral39

images, and performs a fast search through different scale spaces by the strategy of coarse-to-fine.40

In the extractors mentioned above, features are extracted through comparison amid its immediate41

neighbours, which are in the image and two other adjacent images. We here name this methodology of42

these extractors as Local-Prior Extraction (LPE). Due to the exponential growth of scale parameters43

usually adopted by LPE (which are too coarse to locate features precisely at the scale axis) the LPE44

needs interpolation or other refining procedures to obtain precise scales. A great advantage of LPE is45

the relatively low cost of computation, which enables LPE to be broadly applied to numerous extractors.46

However, the repeatability of features obtained by LPE is yet to be improved. We alternatively study a47

novel method which instead of LPE, extracts features in a discretized scale-space representation that48

has been constructed in advance, and name this new method as Global-Prior Extraction (GPE). The49

rest of this paper is organized as follows. In section 2, we give a brief introduction for GPE. In section 3,50

we present an approach to compute feature responses in a discretized scale-space representation and51

to represent these responses by a 3-dimensional array. In section 4, we carry out a method for finding52

local features in the array to achieve the extraction of features. In section 5, we test the algorithm of53

GPE and compare results with some classical extractors. We conclude our work in section 6.54

2. Sketch of GPE55

Suppose f (u, v) (u, v ∈ R) to be a 2-dimensional signal and K(·; t) (t ∈ R+) to be a kernel with
width

√
t. Then the scale-space representation of f (u, v) is (cf. [4]){

L(u, v; 0) = f (u, v),
L(·, ·; t) = K(·, ·; t) ∗ f .

(1)

Using the scale-normalized derivative D, the scale space (1) can be transformed to (cf. [3])

DL(·, ·; t) = DK(·, ·; t) ∗ f . (2)

Assume that K(· ; ·) is an appropriate kernel that sensitively responds to a certain class of features,
which is applied as a detector for some kinds of features. Then in any bounded open set Ω ⊂ R2 ×R+

the following expression

(x, y; τ) ∈ argmax
(u,v;t)∈Ω

DL2(u, v; t), (3)

represents a maximal responding position of both spatial space and scale space and therefore is56

an extremum of L(u, v; t). This extremal point is a feature point in the signal f (x, y), and has the57

scale-invariant property.58

An iterative procedure can be proposed to work out scale-invariant features in f (x, y). Let F = φ59

be the initial set of feature points, and (xi, yi; τi) be the i-th feature points calculated through (3). Denote60

by Ui a neighbourhood of the point (xi, yi; τi). Put Ωi = Ω \ ∪i−1
k=1Uk (Obviously, Ωi = Ωi−1 \Ui−1).61

The (i + 1)-th feature point can be computed through steps as follows.62

• Compute the point of maximal response in Ωi through (3);63

• Update the set Ωi+1 = Ωi−1 \Ui−1.64
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Repeatedly executing the two steps above, we can obtain a set {(xi, yi; τi)}N
i=1 for choosing features,65

where N is the times of iterations, and (x1, y1; τ1) is obtained from Ω1 := Ω.66

In contrast to LPE, GPE does not detect features during the procedure of generating scaled67

images, but instead detects features in a discretized scale-space representation constructed beforehand.68

Therefore there are two stages essential in GPE: (1) constructing a discrete scale-space representation69

and transforming it properly; (2) obtaining maxima iteratively in this transformed discrete scale-space70

representation.71

3. Discretization and transformation of scale-space representations72

The natural structure imposed on a scale-space representation is a semi-group, and namely, the73

kernels should satisfy K(·; t1) ∗K(·; t2) = K(·; t1 + t2) [4]. For retaining the semi-group structure within74

some range in scale when discretizing a scale-space representation, one can sample scales equidistantly75

from the scale space. However, a computer image f (x, y) (1 ≤ x ≤ c, 1 ≤ y ≤ d; x, y, c, d ∈ Z+) can be76

regarded as a sample drawn equidistantly from a given 2-dimensional signal f (u, v) (u, v ∈ R). The77

domain of f (x, y) therefore consists of finitely many pixels. Considering the computation of discrete78

convolution and its cost, we alternatively employ pixel as the unit for the width of kernels, and then79

determine sampling intervals on the scale space by these widths. We here call the kernel width in80

pixel as the pixel scale. When increasing the width of kernels by a single pixel each time, a sequence of81

samples with pixel scale 1, 4, 9, · · · , N2 (where N is the maximal width of kernels used in computation),82

can be drawn from a scale-space representation. In contrast to multiplying the original scale, the83

preference of increasing scale by adding pixels rids GPE of interpolating scale values as many LPE84

extractors do.85

3.1. Choice of an appropriate kernel86

To choose a suitable kernel for our method, we consider the normalized LoG

∇2
normG = Gnorm

xx + Gnorm
yy , (4)

where

Gnorm
xx (x, y) : = σ2Gxx(x, y)

=
1√
2πσ

(
x2

σ2 − 1)e−
x2+y2

2σ2 ,

Gnorm
yy (x, y) : = σ2Gyy(x, y)

=
1√
2πσ

(
y2

σ2 − 1)e−
x2+y2

2σ2 ,

and G(·; ·) is the Gaussian kernel.87

The LoG is preferable due to its excellent performance on scale-space feature detecting.88

Mikolajczyk pointed out that the LoG is the most efficient one to draw interesting points over a89

scale space in contrast to operators such as DoG, Gradient and Harris [7]. Moreover, the LoG operator90

(4) is a strict rotation-invariant integral kernel when the integral region is a finite disk. The rotation91

invariance will be justified by the following reasoning.92

Suppose that A is a 2-by-2 orthogonal matrix and ξ is a vector in R2. It is obvious that

∇2
normG(ξ) = ∇2

normG(Aξ).
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Consider two signals f and f ′ related by f (ξ) = f ′(Aξ). Then on a disk D with center c, we have∫
D
∇2

normG(ξ − c) f (ξ)
√

dξTdξ

=
∫
D
∇2

normG(A(ξ − c)) f ′(Aξ)
√

d(Aξ)Td(Aξ)

=
∫
D′
∇2

normG(η− Ac) f ′(η)
√

dηTdη, (5)

where D′ is a disk centred at Ac with radius identical to that of the disk D.93

Under the scale-invariant framework, many feature detectors can be modified into scale-invariant94

detectors. However some of them, such as the determinant of the Hessian, the Gradient, and the95

Harris are not rotation-invariant on such a disk region because Gxy(ξ) 6= Gxy(Aξ), Gx(ξ) 6= Gx(Aξ)96

and Gy(ξ) 6= Gy(Aξ).97

3.2. Size of convolution templates98

To compute the convolution of a kernel with a computer image, it should be discretized into a99

bounded template. By our foregoing results, the templates for LoG in GPE should be disks with certain100

radii. Denote by rT the radius of a LoG template utilized in GPE. We discuss how to determine the101

radius rT .102

Suppose the current scale to be σ2. For a given signal f (u, v), it follows that

L(u, v; σ2) =
1√
2πσ

∫∫
R2
(

x2 + y2

σ2 − 2)e−
x2+y2

σ2 f (x− u, y− v)dxdy

=
1√
2πσ

∫∫
R2
(

r2

σ2 − 2)e−
r2

σ2 f (r cos θ − u, r sin θ − v)rdrdθ

=
1√
2πσ

∫ ∞

0
r(

r2

σ2 − 2)e−
r2

σ2

∫ 2π

0
f (r cos θ − u, r sin θ − v)dθdr.

When r > 4σ, the function g(r) = r( r2

σ2 − 2)e−
r2

σ2 is monotonically decreasing. It is easy to know
that

0 < g(r) · I{r>4σ} < 56σe−
r2

σ2 .

Let

e(4σ) =
1√
2πσ

∫ ∞

4σ
r(

r2

σ2 − 2)e−
r2

σ2

∫ 2π

0
f (r cos θ − u, r sin θ − v)dθdr.

Then we have

e(4σ) =
1√
2πσ

∫ ∞

4σ
h(r)g(r)dr <

1√
2πσ

∫ ∞

4σ
56σe−

r2

σ2 h(r)dr,

where h(r) =
∫ 2π

0 f (r cos θ − u, r sin θ − v)dθ. Considering that the maximal gray level is 256, we
further have

e(4σ) < 56× 256
√

2π
∫ ∞

4σ
e−

r2

σ2 dr < 3584σπ
√

2πe−16. (6)
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Then we set

v(4σ) =
1√
2πσ

∫ 4σ

0
r(

r2

σ2 − 2)e−
r2

σ2

∫ 2π

0
f (r cos θ − u, r sin θ − v)dθdr,

and estimate DL(u, v, ; σ) by v(4σ). Inequality (6) gives an upper bound of the error in this estimation.
Utilizing this upper bound, we can preclude points not satisfying the tolerance of computation error
from feature candidates. Therefore, we introduce a relative error threshold α, and construct a threshold
for feature response:

β =
3584σ̃π

√
2πe−16

α
, (7)

where σ̃ is the maximal width of kernels used in the computation of drawing features. Hence the
function to determine features is:

ρ(u, v; σ) = 1 · I{DL2(u,v,;σ)>β2} + 0 · I{DL2(u,v,;σ)<β2},

and the maximal point (u, v; σ) is a feature point if and only if ρ(u, v; σ) = 1.103

In summary, we set the radius of the convolution template in GPE as rT = 4σ, and introduce a104

relative error threshold α to ensure that all features obtained are computed under a given tolerance.105

3.3. Algorithm for discretizing and transforming scale-space representations106

The general idea of discrtetizing and transforming a scale-space representation is to produce a107

sequence of smoothed images, which are obtained through convolution between the original image108

and a series of LoG templates with increasing widths. The criterion to stop the process is the maximal109

width of kernels, which should be set in advance. A pseudo-code for this algorithm is shown in Table110

1.

Table 1. Algorithm for Sampling a scale-space representation

Algorithm 1: Sampling a scale-space representation
Input: (i) image to be processed, f (x, y); (ii) the maximal pixel scale, N.
for σ = 1 : N

(a) Calculate the radius of LoG template, r = 4σ;
(b) If 2r exceeds the size of the image, then break;
(c) Construct the normalized LoG template Tσ(x, y) with radius r;
(d) Compute the convolution DL2

σ = ( f ∗ Tσ)2;

end for
Build a 3-dimensional array A(:, :, :) by A(x, y, σ) = DL2

σ(x, y) (σ = 1, 2, · · · , N);
Output: the array A(:, :, :), a discretized sample of (∇2

normG ∗ f (u, v))2.

111

In this algorithm, the responses of LoG on discretized scale-space representation are described by112

a 3-dimensional array, where the 1st and the 2nd dimensions represent x-axis and y-axis respectively113

for the image, and the 3rd dimension is the scale axis.114

4. Extracting features from discretized scale-space representations115

It is easy to find the maximal entry in the 3-dimensional array A in Table 1, and therefore through116

recording extrema and then excluding their neighbourhoods iteratively, a series of candidates of local117

features can be extracted. A crucial problem is how many candidates should be chosen as true local118

features. Since the scheme of global comparison is adopted in GPE, besides the threshold β mentioned119

in the previous section, a parameter λ can also be introduced to calculate a relative threshold to be120

applied to determinate a position in the series of candidates, before which all candidates are considered121

as local features. The parameter λ works with the maximal entry in the array A (denoted by M122
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here). When the response of a candidate times λ is less than M, the candidate is not a local feature.123

Otherwise, it is a local feature. Because of the scheme of local comparison, LPE employs an absolute124

threshold to determinate whether a candidate is a local feature. In contrast to the relative threshold in125

GPE, it lowers adaptiveness in the scene of illumination change. From (2), it is easy to know that for126

two images with the same content but different illumination, LPE and the GPE that only applies β127

as the threshold can compute different sets of extremal points under variant illumination, whereas128

using the relative threshold, GPE computes the same set under variant illumination, and therefore129

achieves adaptiveness to illumination change. Here we call the adaptiveness to illumination change as130

illumination invariance. Table 2 shows the algorithm for extracting features in GPE.131

Table 2. Algorithm for extracting local features

Algorithm 2: Extracting extrema in discretized scale-space representations
Input: (i) the sample A(:, :, :) (an n1 × n2 × n3 array) obtained by Algorithm 1; (ii) relative
error threshold α; (iii) a positive real number λ.
Calculate the threshold β for the error tolerance by (7)
for i = 1 : n1n2n3

(a) Find the maximum m in A(:, :, :);
(b) If m is the first maximum found, set M = m;
(c) If the product λ ·m is smaller than M or m < β2, then break;
(d) If the coordinate (x, y, σ) of m in the image has not been registered and 1 < σ < n3

then record the coordinate (x, y) in the image and the pixel scale σ in the scale space
of this m as a vector (x, y, σ)T ;

(e) Register the coordinate (x, y);
(f) Annihilate all entries of the square submatrices of A(:, :, σ− 1), A(:, :, σ) and A(:, :

, σ + 1) centered at (x, y) of order 6(σ− 1) + 1, 6σ + 1 and 6(σ + 1) + 1 respectively;

end for
Build a matrix M(:, :) by all records (column vectors) from step (d);
Output: the matrix M(:, :) consisting of extracted local features.

In this algorithm, local features in the image f (x, y) are extracted to construct a matrix M whose132

columns are vectors (xi, yi, σi)
T , i = 1, · · · , N (for some positive integer N), which means that there133

are N local features located at (xi, yi) in the image with pixel scale σi.134

5. Simulations135

Adjoining Algorithm 1 and Algorithm 2, we arrive at a complete algorithm for GPE, and we utilize136

repeatability to test the extracting performance of GPE. The score of repeatability is a ratio between the137

number of true matches and the number of matches. In general, an extractor attaining higher score138

of repeatability and larger number of true matches is a better extractor [13]. Test data, criteria and139

codes for the test of repeatability can be found at Mikolajczyk [13].1 In all the following tests, set the140

parameter N in Table 1 to be 16, and the parameter α and λ in Table 2 to be 10−4 and 2000 respectively.141

We test the repeatability of GPE, Harris-Hessian-Laplace, SIFT and SURF on Mikolajczyk’s test data.142

The executable file of Harris-Hessian-Laplace is from VGG 2. The executable file of SIFT detector is143

from David Lowe 3. The codes of SURF detector are OpenSURF, which are developed by Chris Evans144

4. The test results are shown from Figure 1 to Figure 8.145

In the aspect of repeatability, GPE shows promising results. In comparison with SIFT and SURF,146

except the score being close to SIFT under the scene of JPEG compression (cf. Figure 7(a)), GPE acquires147

prominent advantage in all other cases. In contrast to Harris-Hessian-Laplace detector, except for some148

1 The image sequences and the test software are from the website http://www.robots.ox.ac.uk/∼vgg/research/affine/
2 This executable file for windows is from the website http://www.robots.ox.ac.uk/∼vgg/research/affine/detectors.html
3 This executable file for windows is from the website http://www.cs.ubc.ca/lowe/keypoints/
4 The codes of OpenSURF is from the website http://github.com/gussmith23/opensurf
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Figure 1. Viewpoint change for the structured scene by the Graffiti sequence.
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Figure 2. Viewpoint change for the textured scene by the Wall sequence.
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Figure 3. Scale change for the structured scene by the Boat sequence.

special situations, i.e., viewpoint change with more than 40 degrees for the structured scene in Figure149

1(a), the viewpoint change with degrees greater than 60 for the textured scene in Figure 2, one slight150

change of scale change for the structured scene in Figure 3(a), the largest scale change for the textured151

scene in Figure 4(a), and the first four cases of JPEG compression in Figure 7(a), GPE obtains higher152
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Figure 4. Scale change for the textured scene by the Bark sequence.
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Figure 5. Blur for the structured scene by the Bikes sequence.
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Figure 6. Blur for the textured scene by the Trees sequence.

scores. In the aspect of true recalls, GPE also shows fairly better performance under the situations of153

viewpoint change for the textured scene (cf. 2(b)), scale change for the textured scene (cf. 4(b)), blur154

for the structured scene (cf. 5(b)), JPEG compression (cf. 7(b)), and illumination change (cf. 8(b)). In155
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Figure 7. JEPG compression by the UBC sequence.
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Figure 8. Illumination change by the Leuven sequence.

addition to the above comparisons, we use the results directly from related works to compare with156

GPE, and discuss them in following subsections.157

5.1. Comparison with results of affine detectors from [13]158

In the work [13], there are eight sets of test results for six affine region detectors, namely159

Harris-Affine [8,14,15], Hessian-Affine [8,14], MSER [16], IBR [15,17], EBR [17,18] and Salient [19].160

Since GPE is not intended for the situation of viewpoint change, when the viewpoint angle is161

greater than 30 degrees, the repeatability score for structured scene is less than all those affine detectors.162

But from 20 to 30 degrees, GPE drastically overcomes any other detectors (cf. 1(a) and Figure 13(a) in163

[13]). In the situation of the images containing repeated texture motifs, from Fig. 2(a) (in comparison164

with Figure 14(a) in [13]) it can be seen that except viewpoint change of 60 degrees, GPE reaches higher165

repeatability score than all affine detectors, which means that as long as the viewpoint angle is less166

than 50 degrees, GPE has strong capacity of extracting affine features. In the tests for scale change and167

rotation, GPE shows its obvious advantages in both structured scene and texture scene except at scale168

4 in the textured scene, where Hessian-Affine attains the repeatability of 70% (cf. Figure 4(a), 3(a) and169

Figure 15(a), Figure 16(a) in [13]). In the results shown in Figure 5 (in contrast to Figure 17(a) in [13])170

and Figure 6 (in contrast to Figure 18(a) in [13]), GPE shows excellent capacity to cope with the situation171

of blur in both structured scene and texture scene. In those comparisons, none of other detectors172

achieves higher repeatability score than GPE at any test point. In the test of JPEG compression, GPE173
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has similar performance compared with Harris-Affine and Hessian-Affine, but obviously outperforms174

other LPE detectors (cf. Figure 7(a) and Figure 19(a) in [13]). The Hessian-Affine detector shows its175

slight advantage for JPEG compression change. Figure 8(a) and Figure 20(a) in [13] shows that GPE has176

good robustness to illumination change and overall higher repeatability score than other extractors.177

5.2. Comparison with results from [10]178

In the work [10], five detectors, FH-15, FH-9, DoG [6], Harris-Laplace and Hessian-Laplace [14]179

have been tested for repeatability performance of viewpoint change for structured scene, viewpoint180

change for textured scene, scale change for structured scene, and blur for structured scene. Therefore181

there are four results can be adapted directly, which are shown in the Fig. 16 and Fig. 17 in [10].182

Comparing these results respectively with the (a) in Fig. 1, 2, 3 and 5, it can be seen that except one183

point (which is the scale change about 1.3 for FH-15 and DoG), GPE apparently overcomes FH-15,184

FH-9, DoG, Harris-Laplace and Hessian-Laplace in all these tests.185

5.3. Comparison with results from [11,12]186

Figure 5 in [11] and Figure 7 in [12] show results in the tests of LOCKY, where the sub-figures, (a),187

(b), (c), (d), (e), (f), (g), (h) correspond to Figure 4(a), 5(a), 3(a), 1(a), 8(a), 6(a), 7, and 2(a) respectively in188

our work. Since LOCKY mainly aims to achieve faster computation than most of the currently used189

feature detectors, except the cases that viewpoints are greater than 40 in the Graffiti sequence, GPE190

shows apparently higher repeatability score than LOCKY.191

6. Conclusion192

We present a new method (GPE) for local feature extracting with high repeatability, which193

transforms a discretized scale-space presentation through LoG and extracts local features by the194

scheme of global comparison. Because of the use of convolution templates of disk shape, GPE is195

rotation-invariant. Discussion for the radii of convolution templates and the error caused by finite196

radii is an important merit in our work. We first decompose the LoG transformation of a discretized197

scale-space presentation into two parts, the approximation and the error. Then an upper bound of the198

error under a given radius is worked out and we utilize this upper bound to determinate a threshold,199

below which the candidates are no longer regarded as features since the computational error can200

influence the precision of the approximation (cf. (6) and (7)). Because of the global comparison, the201

relative threshold can be employed to choose local features from candidates, and hence these chosen202

features are illumination-invariant. Since the kernel width increases only one pixel a time, GPE obtains203

more precise scales for extracted local features without interpolation than LPE does, and therefore204

the step of interpolation for precisely locating the scale of a feature point in LPE is elided in GPE.205

Simulations show that GPE reaches high performance for repeatability and true recalls in various206

situations, including scale change, rotation, blur, JPEG compression, illumination change and even207

viewpoint change of a textured scene.208
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