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Abstract: This paper presents a novel method to extract local features, which instead of calculating
local extrema computes global maxima in a discretized scale-space representation. To avoid obtaining
precise scales by interpolation and to achieve perfect rotation invariance, two essential techniques,
increasing the width of kernels in pixel and utilizing disk-shaped convolution template are adopted
in this method. Since the size of a convolution template is finite and finite templates can introduce
computational error into convolution, we sufficiently discuss this problem and work out an upper
bound of the computational error. The upper bound is utilized in the method to ensure that all
features obtained are computed under a given tolerance. Besides, the technique of relative threshold
to determine features is adopted to reinforce the robustness for the scene of changing illumination.
Simulations show that this new method attains high performance of repeatability in various situations
including scale change, rotation, blur, JPEG compression, illumination change and even viewpoint
change.

Keywords: local feature extraction; scale-space representation; Laplacian of Gaussian; convolution
template

1. Introduction

Local feature extraction is a fundamental technique for solving problems of computer vision, such
as matching, tracking and recognition. A local feature is a structure around a point in an image, and its
size, which relates to the scale, is usually unknown before it is extracted. Traditional Harris corner
detector [1] does not consider the variance of scale, which accounts for a drawback that it cannot be
applied to matching features with different scales. For detecting corners with different resolutions,
Dufournaud [2] discusses a scale-invariant approach based on the Harris detector, which adopts
the Gaussian kernel with width o and uses a variable s as the scale factor. Therefore s represents
an arbitrary scale, by which corner features with different scales are detected by traditional Harris
corner detector. Scale-invariant properties are systematically studied by Lindeberg. Introducing a
normalized derivative operator [3] into the scale-space theory [4], Lindeberg presents a framework
for automatic scale selection, pointing out that a local maximum of some combination of normalized
derivatives over scale reflects a characteristic length of a corresponding structure, and has a nice
behaviour under rescaling of the intensity pattern [3], which has been a principle for solving problems
of feature extraction. In SIFT [5,6], Lowe presents the Difference-of-Gaussian (DoG) method on
image pyramids, which is an inchoate type of multi-scale representation, to approximate Laplacian
of Gaussian (LoG). Mikolajczyk presents a Harris-Laplacian method [7], which uses Harris functions
of images in scale-space representation to extract interesting points and then invokes Laplacian to

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.
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select feature points as well as their precise scale parameters. This method afterwards is extended to
an affine-adapted approach [8]. Aiming at reducing computation time, Bay introduces integral images
and box filters and works out SURF [9,10]. Because of the techniques of integral images and box
filters, Hessian feature detector in SUREF is revised into Fast-Hessian detector which can be computed
more quickly than the former. Recently, Lomeli-R and Nixon present a feature detector, the Locally
Contrasting Keypoints detector (LOCKY) [11,12], which extracts blob keypoints directly from the
Brightness Clustering Transform (BCT) of an image. The BCT also exploits the technique of integral
images, and performs a fast search through different scale spaces by the strategy of coarse-to-fine.

In the extractors mentioned above, features are extracted through comparison amid its immediate
neighbours, which are in the image and two other adjacent images. We here name this methodology of
these extractors as Local-Prior Extraction (LPE). Due to the exponential growth of scale parameters
usually adopted by LPE (which are too coarse to locate features precisely at the scale axis) the LPE
needs interpolation or other refining procedures to obtain precise scales. A great advantage of LPE is
the relatively low cost of computation, which enables LPE to be broadly applied to numerous extractors.
However, the repeatability of features obtained by LPE is yet to be improved. We alternatively study a
novel method which instead of LPE, extracts features in a discretized scale-space representation that
has been constructed in advance, and name this new method as Global-Prior Extraction (GPE). The
rest of this paper is organized as follows. In section 2, we give a brief introduction for GPE. In section 3,
we present an approach to compute feature responses in a discretized scale-space representation and
to represent these responses by a 3-dimensional array. In section 4, we carry out a method for finding
local features in the array to achieve the extraction of features. In section 5, we test the algorithm of
GPE and compare results with some classical extractors. We conclude our work in section 6.

2. Sketch of GPE

Suppose f(u,v) (u,v € R) to be a 2-dimensional signal and K(-; t) (f € Ry ) to be a kernel with
width v/t. Then the scale-space representation of f(u,v) is (cf. [4])

L(u,v;0) = f(u,v),
{ L(, ) = K(, 1) * f. M

Using the scale-normalized derivative D, the scale space (1) can be transformed to (cf. [3])
DL(-,-;t) = DK(-, - t) * f. 2)

Assume that IC(-; -) is an appropriate kernel that sensitively responds to a certain class of features,
which is applied as a detector for some kinds of features. Then in any bounded open set QO C R? x R,
the following expression

(x,y;T) € argmax DLz(u,v;t), (3)
(u,0;t)eQy

represents a maximal responding position of both spatial space and scale space and therefore is
an extremum of L(u,v;t). This extremal point is a feature point in the signal f(x,y), and has the
scale-invariant property.

An iterative procedure can be proposed to work out scale-invariant features in f(x,y). Let F = ¢
be the initial set of feature points, and (x;, y;; 7;) be the i-th feature points calculated through (3). Denote
by U; a neighbourhood of the point (x;, y; 7;). Put Q; = Q'\ U;;;ll Uy (Obviously, Q; = Q; 1\ U;_1).
The (i + 1)-th feature point can be computed through steps as follows.

o Compute the point of maximal response in (); through (3);
e Update theset ;1 = Q; 1\ U;i_1.
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Repeatedly executing the two steps above, we can obtain a set {(x;,y;; ;) } I | for choosing features,
where N is the times of iterations, and (x1, y1; 71 ) is obtained from () := Q.

In contrast to LPE, GPE does not detect features during the procedure of generating scaled
images, but instead detects features in a discretized scale-space representation constructed beforehand.
Therefore there are two stages essential in GPE: (1) constructing a discrete scale-space representation
and transforming it properly; (2) obtaining maxima iteratively in this transformed discrete scale-space
representation.

3. Discretization and transformation of scale-space representations

The natural structure imposed on a scale-space representation is a semi-group, and namely, the
kernels should satisfy K(-; t1) * K(-;t2) = K(+; #; + t2) [4]. For retaining the semi-group structure within
some range in scale when discretizing a scale-space representation, one can sample scales equidistantly
from the scale space. However, a computer image f(x,y) (1 <x <c¢,1<y <d;x,y,¢c,d € Z) canbe
regarded as a sample drawn equidistantly from a given 2-dimensional signal f(u,v) (u,v € R). The
domain of f(x,y) therefore consists of finitely many pixels. Considering the computation of discrete
convolution and its cost, we alternatively employ pixel as the unit for the width of kernels, and then
determine sampling intervals on the scale space by these widths. We here call the kernel width in
pixel as the pixel scale. When increasing the width of kernels by a single pixel each time, a sequence of
samples with pixel scale 1,4,9,--- ,N 2 (where N is the maximal width of kernels used in computation),
can be drawn from a scale-space representation. In contrast to multiplying the original scale, the
preference of increasing scale by adding pixels rids GPE of interpolating scale values as many LPE
extractors do.

3.1. Choice of an appropriate kernel

To choose a suitable kernel for our method, we consider the normalized LoG
2
vnormG = G;zgrm + G%rm/ 4)
where

GH™(x,y) + = 0*Gax(x,y)

1 2 242
= 7(% — 1)6 202 ,
V2o o
Gy " (x,y) 1 = Uszy(x,y)
1 2 242
S

- 210 o2
and G(+; -) is the Gaussian kernel.

The LoG is preferable due to its excellent performance on scale-space feature detecting.
Mikolajczyk pointed out that the LoG is the most efficient one to draw interesting points over a
scale space in contrast to operators such as DoG, Gradient and Harris [7]. Moreover, the LoG operator
(4) is a strict rotation-invariant integral kernel when the integral region is a finite disk. The rotation
invariance will be justified by the following reasoning.

Suppose that A is a 2-by-2 orthogonal matrix and & is a vector in R It is obvious that

V%orm G (g) = v%orm G (A(:f) :
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Consider two signals f and f’ related by f(£)

[ ViamG )f(é)\/dé’Tdé

= [ ViemG(A - )f (42)\/d(47)"d(Ag)

= / Virorm G — Ac)f' (1) /dydy,

where D’ is a disk centred at Ac with radius identical to that of the disk D.

Under the scale-invariant framework, many feature detectors can be modified into scale-invariant
detectors. However some of them, such as the determinant of the Hessian, the Gradient, and the
Harris are not rotation-invariant on such a disk region because Gy, (&) # Gy (Ag), Gx(§) # Gx(AQ)

and Gy (&) # Gy(Ag).

= f'(A&). Then on a disk D with center ¢, we have

©)

3.2. Size of convolution templates

To compute the convolution of a kernel with a computer image, it should be discretized into a
bounded template. By our foregoing results, the templates for LoG in GPE should be disks with certain
radii. Denote by r7 the radius of a LoG template utilized in GPE. We discuss how to determine the
radius 7.

Suppose the current scale to be o2. For a given signal f(u,v), it follows that

=t I
\/7(7 //]RZ 2

1 ) 7’2
= r(— —2)e 02
27'((7/0 (02 )

2
2)e o2 is monotonically decreasing. It is easy to know

Y Sy
Uzy ~2)e” @ f(x—u,y — v)dxdy

2

2)e ¢ f(rcos@ —u,rsin® —v)rdrdf

27

f(rcos@ — u,rsin® — v)dédr.

2
:1’(%—

When r > 40, the function g(r)
that

2

0 <g(r) Ljysyey < 560e 2.

Let

27
f(rcos® —u,rsinf — v)dedr.

4 L[l g
e(a0) = r— — e o
(40) V2o /417 (Uz )

Then we have

e(4o) =

h(r)g(r)dr <

560e azh( )dr

1 (o)
V2o [10 V2o Jao

where h(r fO
further have

(rcos® — u,rsinf — v)dh. Considering that the maximal gray level is 256, we

(o) 2
e 2dr < 358407\ 2me 10
40

e(40) < 56 x 256727 (6)
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Then we set

1 40 42 2 2 dod
v(do :7/ 7(— —2)e o2 rcosf —u,rsinf — v)dodr,
) = o [Tl e [T A )
and estimate DL(u,v,;0) by v(40). Inequality (6) gives an upper bound of the error in this estimation.
Utilizing this upper bound, we can preclude points not satisfying the tolerance of computation error
from feature candidates. Therefore, we introduce a relative error threshold &, and construct a threshold
for feature response:

b= 3584571/ 2me 16
[44

/ @)

where ¢ is the maximal width of kernels used in the computation of drawing features. Hence the
function to determine features is:

p(u,0;0) =1 Iipr2(00)2p2) + 0 Lpr2(uo,e)<p2)s

10 and the maximal point (1, v; 0) is a feature point if and only if p(u,v;0) = 1.
104 In summary, we set the radius of the convolution template in GPE as r1 = 40, and introduce a
105 relative error threshold « to ensure that all features obtained are computed under a given tolerance.

ws 3.3. Algorithm for discretizing and transforming scale-space representations

107 The general idea of discrtetizing and transforming a scale-space representation is to produce a

10e  sequence of smoothed images, which are obtained through convolution between the original image

s and a series of LoG templates with increasing widths. The criterion to stop the process is the maximal

1o width of kernels, which should be set in advance. A pseudo-code for this algorithm is shown in Table
1.

Table 1. Algorithm for Sampling a scale-space representation

Algorithm 1: Sampling a scale-space representation
Input: (i) image to be processed, f(x,y); (ii) the maximal pixel scale, N.
forc=1:N

(a) Calculate the radius of LoG template, r = 4c;

(b) If 27 exceeds the size of the image, then break;

(c) Construct the normalized LoG template T, (x,y) with radius 7;
(d) Compute the convolution DL2 = (f * T,)?;

end for

Build a 3-dimensional array A(:,:,:) by A(x,y,0) = DL2(x,y) (¢ =1,2,--- ,N);

Output: the array .A(:, :, :), a discretized sample of (V2,,,,G * f(u,v))>.

112 In this algorithm, the responses of LoG on discretized scale-space representation are described by
a3 a 3-dimensional array, where the 1st and the 2nd dimensions represent x-axis and y-axis respectively
ua for the image, and the 3rd dimension is the scale axis.

us 4. Extracting features from discretized scale-space representations

116 It is easy to find the maximal entry in the 3-dimensional array A in Table 1, and therefore through
1z recording extrema and then excluding their neighbourhoods iteratively, a series of candidates of local
ue features can be extracted. A crucial problem is how many candidates should be chosen as true local
ue features. Since the scheme of global comparison is adopted in GPE, besides the threshold g mentioned
120 in the previous section, a parameter A can also be introduced to calculate a relative threshold to be
121 applied to determinate a position in the series of candidates, before which all candidates are considered
122 as local features. The parameter A works with the maximal entry in the array A (denoted by M
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here). When the response of a candidate times A is less than M, the candidate is not a local feature.
Otherwise, it is a local feature. Because of the scheme of local comparison, LPE employs an absolute
threshold to determinate whether a candidate is a local feature. In contrast to the relative threshold in
GPE, it lowers adaptiveness in the scene of illumination change. From (2), it is easy to know that for
two images with the same content but different illumination, LPE and the GPE that only applies j
as the threshold can compute different sets of extremal points under variant illumination, whereas
using the relative threshold, GPE computes the same set under variant illumination, and therefore
achieves adaptiveness to illumination change. Here we call the adaptiveness to illumination change as
illumination invariance. Table 2 shows the algorithm for extracting features in GPE.

Table 2. Algorithm for extracting local features

Algorithm 2: Extracting extrema in discretized scale-space representations

Input: (i) the sample A(:,:,:) (an 11 X np X nz array) obtained by Algorithm 1; (ii) relative
error threshold «; (iii) a positive real number A.

Calculate the threshold B for the error tolerance by (7)

fori=1:nynyn;

(a) Find the maximum m in A(:,:,:);

(b) If m is the first maximum found, set M = m;

(c) If the product A - m is smaller than M or m < ‘32/ then break;

(d) If the coordinate (x,y, o) of m in the image has not been registered and 1 < o < 13
then record the coordinate (x, y) in the image and the pixel scale ¢ in the scale space
of this m as a vector (x, y, )T,

(e) Register the coordinate (x,y);

(f) Annihilate all entries of the square submatrices of A(:,:,0 — 1), A(:,:,0) and A(:,
,0 + 1) centered at (x,y) of order 6(c — 1) + 1, 60 + 1 and 6(c + 1) + 1 respectively;

end for
Build a matrix M(:, :) by all records (column vectors) from step (d);
Output: the matrix M(:, :) consisting of extracted local features.

In this algorithm, local features in the image f(x,y) are extracted to construct a matrix M whose
columns are vectors (x;,y;,0)7,i=1,--- ,N (for some positive integer N), which means that there
are N local features located at (x;,y;) in the image with pixel scale 0.

5. Simulations

Adjoining Algorithm 1 and Algorithm 2, we arrive at a complete algorithm for GPE, and we utilize
repeatability to test the extracting performance of GPE. The score of repeatability is a ratio between the
number of true matches and the number of matches. In general, an extractor attaining higher score
of repeatability and larger number of true matches is a better extractor [13]. Test data, criteria and
codes for the test of repeatability can be found at Mikolajczyk [13].! In all the following tests, set the
parameter N in Table 1 to be 16, and the parameter « and A in Table 2 to be 10~% and 2000 respectively.
We test the repeatability of GPE, Harris-Hessian-Laplace, SIFT and SURF on Mikolajczyk’s test data.
The executable file of Harris-Hessian-Laplace is from VGG 2. The executable file of SIFT detector is
from David Lowe 3. The codes of SURF detector are OpenSURF, which are developed by Chris Evans
4. The test results are shown from Figure 1 to Figure 8.

In the aspect of repeatability, GPE shows promising results. In comparison with SIFT and SURF,
except the score being close to SIFT under the scene of JPEG compression (cf. Figure 7(a)), GPE acquires
prominent advantage in all other cases. In contrast to Harris-Hessian-Laplace detector, except for some

The image sequences and the test software are from the website http:/ /www.robots.ox.ac.uk/~vgg/research/affine/
This executable file for windows is from the website http:/ /www.robots.ox.ac.uk/~vgg/research/affine/detectors.html
This executable file for windows is from the website http:/ /www.cs.ubc.ca/lowe/keypoints/

The codes of OpenSUREF is from the website http:/ /github.com/gussmith23/opensurf

W N e
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Figure 3. Scale change for the structured scene by the Boat sequence.

special situations, i.e., viewpoint change with more than 40 degrees for the structured scene in Figure
1(a), the viewpoint change with degrees greater than 60 for the textured scene in Figure 2, one slight
change of scale change for the structured scene in Figure 3(a), the largest scale change for the textured
scene in Figure 4(a), and the first four cases of JPEG compression in Figure 7(a), GPE obtains higher
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scores. In the aspect of true recalls, GPE also shows fairly better performance under the situations of

1s¢  viewpoint change for the textured scene (cf. 2(b)), scale change for the textured scene (cf. 4(b)), blur

155

for the structured scene (cf. 5(b)), JPEG compression (cf. 7(b)), and illumination change (cf. 8(b)). In
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addition to the above comparisons, we use the results directly from related works to compare with
GPE, and discuss them in following subsections.

5.1. Comparison with results of affine detectors from [13]

In the work [13], there are eight sets of test results for six affine region detectors, namely
Harris-Affine [8,14,15], Hessian-Affine [8,14], MSER [16], IBR [15,17], EBR [17,18] and Salient [19].

Since GPE is not intended for the situation of viewpoint change, when the viewpoint angle is
greater than 30 degrees, the repeatability score for structured scene is less than all those affine detectors.
But from 20 to 30 degrees, GPE drastically overcomes any other detectors (cf. 1(a) and Figure 13(a) in
[13]). In the situation of the images containing repeated texture motifs, from Fig. 2(a) (in comparison
with Figure 14(a) in [13]) it can be seen that except viewpoint change of 60 degrees, GPE reaches higher
repeatability score than all affine detectors, which means that as long as the viewpoint angle is less
than 50 degrees, GPE has strong capacity of extracting affine features. In the tests for scale change and
rotation, GPE shows its obvious advantages in both structured scene and texture scene except at scale
4 in the textured scene, where Hessian-Affine attains the repeatability of 70% (cf. Figure 4(a), 3(a) and
Figure 15(a), Figure 16(a) in [13]). In the results shown in Figure 5 (in contrast to Figure 17(a) in [13])
and Figure 6 (in contrast to Figure 18(a) in [13]), GPE shows excellent capacity to cope with the situation
of blur in both structured scene and texture scene. In those comparisons, none of other detectors
achieves higher repeatability score than GPE at any test point. In the test of JPEG compression, GPE
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has similar performance compared with Harris-Affine and Hessian-Affine, but obviously outperforms
other LPE detectors (cf. Figure 7(a) and Figure 19(a) in [13]). The Hessian-Affine detector shows its
slight advantage for JPEG compression change. Figure 8(a) and Figure 20(a) in [13] shows that GPE has
good robustness to illumination change and overall higher repeatability score than other extractors.

5.2. Comparison with results from [10]

In the work [10], five detectors, FH-15, FH-9, DoG [6], Harris-Laplace and Hessian-Laplace [14]
have been tested for repeatability performance of viewpoint change for structured scene, viewpoint
change for textured scene, scale change for structured scene, and blur for structured scene. Therefore
there are four results can be adapted directly, which are shown in the Fig. 16 and Fig. 17 in [10].
Comparing these results respectively with the (a) in Fig. 1, 2, 3 and 5, it can be seen that except one
point (which is the scale change about 1.3 for FH-15 and DoG), GPE apparently overcomes FH-15,
FH-9, DoG, Harris-Laplace and Hessian-Laplace in all these tests.

5.3. Comparison with results from [11,12]

Figure 5 in [11] and Figure 7 in [12] show results in the tests of LOCKY, where the sub-figures, (a),
(b), (), (d), (e), (f), (g), (h) correspond to Figure 4(a), 5(a), 3(a), 1(a), 8(a), 6(a), 7, and 2(a) respectively in
our work. Since LOCKY mainly aims to achieve faster computation than most of the currently used
feature detectors, except the cases that viewpoints are greater than 40 in the Graffiti sequence, GPE
shows apparently higher repeatability score than LOCKY.

6. Conclusion

We present a new method (GPE) for local feature extracting with high repeatability, which
transforms a discretized scale-space presentation through LoG and extracts local features by the
scheme of global comparison. Because of the use of convolution templates of disk shape, GPE is
rotation-invariant. Discussion for the radii of convolution templates and the error caused by finite
radii is an important merit in our work. We first decompose the LoG transformation of a discretized
scale-space presentation into two parts, the approximation and the error. Then an upper bound of the
error under a given radius is worked out and we utilize this upper bound to determinate a threshold,
below which the candidates are no longer regarded as features since the computational error can
influence the precision of the approximation (cf. (6) and (7)). Because of the global comparison, the
relative threshold can be employed to choose local features from candidates, and hence these chosen
features are illumination-invariant. Since the kernel width increases only one pixel a time, GPE obtains
more precise scales for extracted local features without interpolation than LPE does, and therefore
the step of interpolation for precisely locating the scale of a feature point in LPE is elided in GPE.
Simulations show that GPE reaches high performance for repeatability and true recalls in various
situations, including scale change, rotation, blur, JPEG compression, illumination change and even
viewpoint change of a textured scene.
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