

1 Article

2 **Sol Hamed ophiolitic complex, southern Eastern**
3 **Desert, Egypt: Petrological, economic potentiality and**
4 **structural implications**

5 **Tarek Sedki^{1,*}, Shehata Ali¹, Haroun A. Mohamed¹ and Rafat Zaki¹**

6 ¹ Geology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt

7 * Correspondence: t.sedki@yahoo.com; Tel.: (+201101155505)

8 **Abstract:**

9 The Sol Hamed (SH) area is a part of the Arabian-Nubian Shield (ANS) ophiolites occurred
10 within Onib-Sol Hamed suture zone in the southern Eastern Desert of Egypt. The ophiolitic
11 assemblages in this area are represented by serpentinite, metagabbro and arc assemblages
12 represented by metavolcanics. They later intruded by gabbros and granites.

13 Geochemically, the compatible trace elements (Cr=2426–2709 ppm, Ni=1657–2377 ppm and
14 Co=117–167 ppm) enrichment in SH serpentinites indicate derivation from a depleted mantle
15 peridotite source. They show affinity to the typical metamorphic peridotites. The normative
16 compositions reflect harzburgitic mantle source. Their Al₂O₃ contents (0.05–1.02 wt. %) are akin to
17 oceanic and active margin peridotites and Pan-African serpentinites. The Cr and TiO₂ contents
18 indicate supra-subduction zone (SSZ) environment. Their Al₂O₃/SiO₂ and MgO/SiO₂ ratios support
19 the SSZ affinity and are similar to ANS peridotites with fore-arc setting. Moreover, their Al₂O₃ and
20 CaO depletion is typical of fore-arc peridotites.

21 Structurally, the area represents four deformational events can be well-known in the
22 Neoproterozoic rocks (D₁, D₂, D₃ and D₄); D₁: E–W thrust faults and related E–W (F₁) folds; D₂: NW–
23 SE thrust faults and related NW–SE (F₂) folds were formed; D₃: conjugate NNW-trending sinistral
24 and NNE-trending dextral transpression, as well as N-trending tight folds (F₃) and D₄: is E–W dextral
25 strike-slip and dip-slip normal faults striking NNW–SSE to N–S and E–W may be related to Red Sea
26 rifting. There are major three fault sets affected the area. The first set trend mainly NE–SW and is
27 manifested in the volcanic-sedimentary assemblage and Gabal SH and have important role in

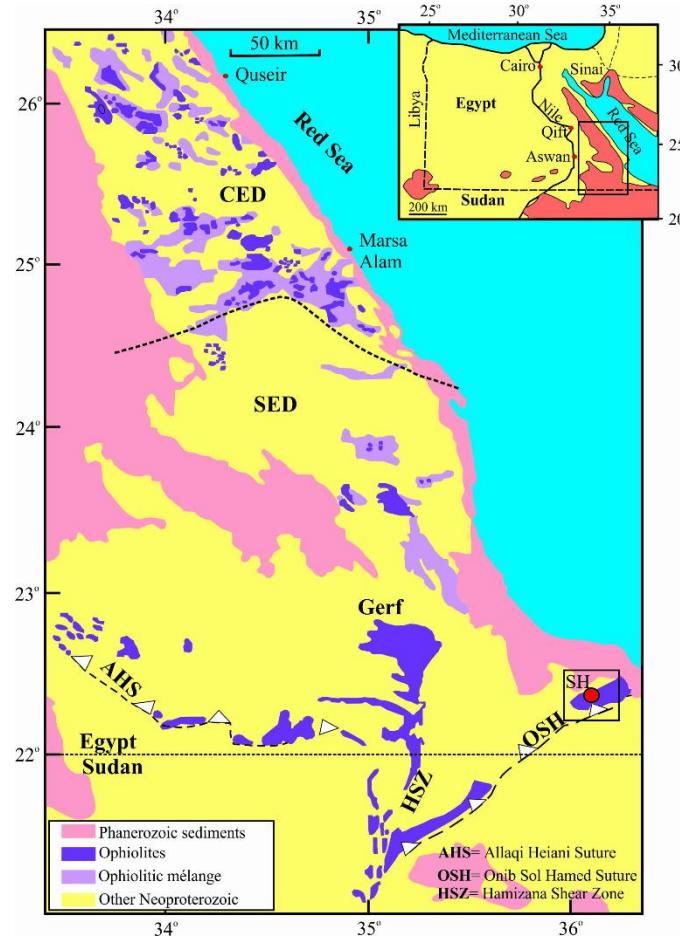
28 mineralization. The second set trend E-W affecting all the basement rocks and disturbs the first fault
29 set. The third set trend N-S affected all the rock units.

30 Magnesite mineralization in SH serpentinites is cryptocrystalline formed due to hydrothermal
31 alteration of the serpentinite host rocks. It is occur as snow-white veins and stock-works. These
32 characteristics are typical of Kraubath type magnesite deposits.

33 Gold mineralization is confined to malachite-bearing quartz veins, smoky quartz veins and
34 alteration zones. Malachite-bearing quartz veins trending NW-SE cut through gabbroic rocks and
35 exhibit mylonitic structure. They are fractured containing malachite and disseminated sulfide
36 minerals. Smoky quartz veins trending NE-SW with SE steeply dipping intrude the meta-andesite.
37 They are intensively sheared containing iron oxides in the fissures. The gold grades increase with
38 arsenopyrite occurrences. On the other hand, the barren quartz veins are nearly vertical with E-W
39 directions. Alteration zones with NW-SE trend and nearly vertical dip intrude metagabbros and
40 metavolcanics. Hematite, limonite, goethite and fresh pyrite characterize these zones. They occur
41 mainly neighboring the auriferous quartz veins.

42

43 **Keywords:** Sol Hamed; Supra-subduction zone; Serpentinites; Magnesite mineralization; Gold
44 deposits.


45

46 1. Introduction

47 The Arabian–Nubian Shield (ANS) crustal growth occurred during the Neoproterozoic Era [1].
48 The ANS represents a combination of well-preserved tectono-stratigraphic terrains characterized by
49 well-defined suture zones which are marked by ophiolite assemblages [2-4]. During mid-
50 Neoproterozoic, Juvenile arc terrains formation around Mozambique Ocean margins and collision
51 occurred producing the ANS [3, 5, 6]. In late Neoproterozoic (~630 Ma), arc accretion terminated once
52 East and West Gondwana fragments collision occurred closing the Mozambique Ocean and
53 generating the East African–Antarctic Orogen [7, 8]. Therefore, ANS suture zones are classified to
54 older arc–arc suture zones which separated ~700–870 Ma arc terrains and younger arc–continent
55 suture zones formed at ~630 Ma [2, 9-12]. It is generally accepted that most of the ANS ophiolites

were generated in supra-subduction zone (SSZ) environment [13-18]. They formed due to seafloor spreading above active subduction zones. Several tectonic scenarios were attributed for the ANS ophiolites formation: (1) NMORB setting (i.e., fragments of normal oceanic crust); [19] (2) remnants of back-arc basins (e.g., [9, 20, 21]); or (3) fore-arc setting due to seafloor spreading during initiation of subduction process [4, 13-15, 17, 22]. Various ophiolite complexes may possibly generated in diverse SSZ tectonic settings. In order to contribute to resolve this existed debate, we introduce new geochemical data on Sol Hamed serpentinites in the southern Eastern Desert to better constraint their tectonic setting. The Egyptian Precambrian belt which is the NE part of the ANS is consisted of an Upper Proterozoic assemblages of volcano-sedimentary succession, scattered over thrusting mafic-ultramafic rocks (i.e., ophiolite complex) and intruded by syn- to late-tectonic granitoids and mafic-ultramafic intrusions. Later, Precambrian peralkaline granites and Tertiary alkaline ring complex intrude the country rocks of the area. The Sol Hamed ophiolitic complex is a part of Allaqi-Heiani-Onib-Sol Hamed-Yanbu arc-arc suture (Fig. 1; [23, 24] which represent one of the two longest and most complete Neoproterozoic ophiolite suture in the Arabian Nubian Shield [25].

71 **Figure 1.** Map showing the distribution of ophiolites in the central Eastern Desert (CED) and southern Eastern
72 Desert (SED) of Egypt (Modified from [24]). The location of Sol Hamed (SH) ophiolites is also indicated. The
73 inset map shows the general map of Egypt.

74

75 **2. Materials and Methods**

76 **The work includes both field and laboratory works.**

77 **2.1. Field study**

78 For this purpose, field trip was carried out during the period of (20-27) April 2019 by using the landsat
79 image and the available geologic maps (scale 1:50000) were used. About 15 rock samples were collected
80 representing the exposed serpentinites in the mapped area (Fig. 2). Thin sections were prepared for each
81 sample.

82 **2.2. Laboratory work**

83 For this purpose, petrographic investigation of about 15 thin sections and 4 polished sections were
84 prepared. The petrographical study was achieved using MEIJI ML 9000 Polarizing Microscope equipped
85 with automatic photo micrographic attachment ToupCam Digital Camera XCAM1080PHA. Chemical
86 analyses of 10 samples were carried out at the Central Laboratories of the Geological Survey of Egypt.
87 The selected samples represent the best aerial coverage of the examined area. Before bulk rock chemical
88 analyses were carried out, the samples were cleaned and grinded in an electric agate mill, homogenized,
89 dried on the oven for 60 min at 105 degree then mix with 50% from wax polyvinyl meta-acylate additives.
90 Determination of the chemical composition of both major and some trace elements was performed by
91 using a Philips x-ray fluorescene technique model PW/2404, with Rh radiation tube and eight analysing
92 crystals. Crystal (LIF-200) was used for estimating Ca, Fe, K, Ti and Mn, while crystal (TIAP, PX-1) was
93 used for estimating Mg and Na. Crystal (Ge) was used for estimating P and Crystal (PET) was used for
94 estimating Si and Al. The concentration of the analysed elements was determined by using software
95 Super-Q with accuracy 99.5 % and confidence limite 95.6 %. Ten samples of these rocks were also
96 analysed to determine their REE contents using the simultaneous inductively coupled plasma emission
97 spectrometer (720 ICP-OES, Agilent Technologies), with accuracy 96 %. Nine samples from SH

98 magnesites were analyzed for major elements by the same technique of XRF mentioned above. All
99 analytical results are given in Table 1 and 2.

100 **3. Geologic setting**

101 Sol Hamed area located in north of Gabal Elba in the southern Eastern Desert. Its rock units
102 consist of mainly ophiolitic assemblage and arc-related metavolcanics and granitoids.

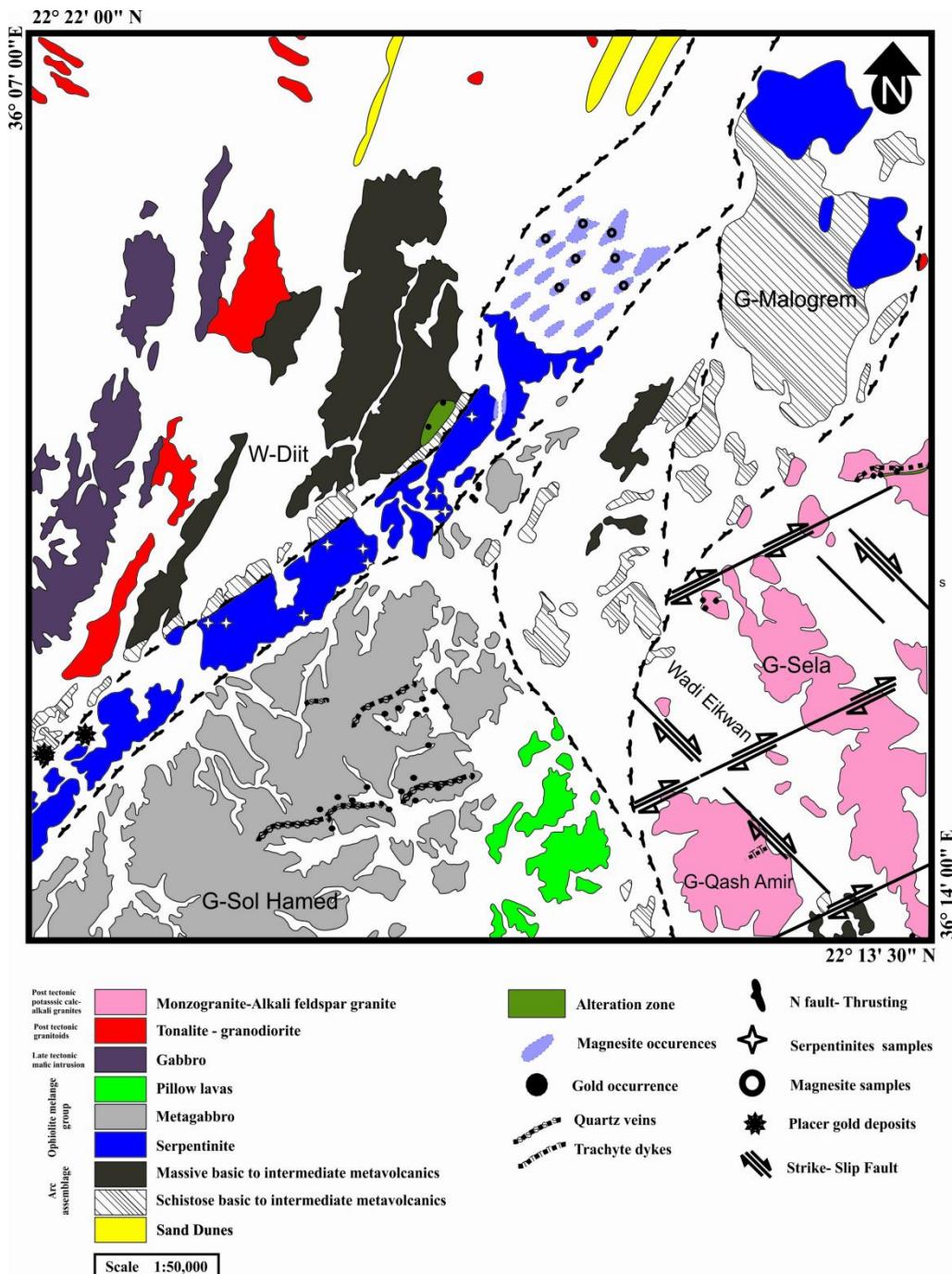
103 Ophiolite complex contains three NE-SW trending sub-vertical lithological zones, ultramafic in
104 the NW side, gabbros in the middle and pillow lava in SE (Fig. 2). This belt signifies the north-eastern
105 outlet of the Hamizana Shear Zone (Fig. 1). The ophiolitic ultramafics include both sheared and
106 massive verities. Serpentinites show low to medium relief. They cropped out in the central and
107 eastern parts. Furthermore, they are transformed along NE-SW trending shear zones to talc, talc- and
108 quartz-carbonates, and magnesite particularly in the eastern parts. Most quartz carbonates present in
109 the area sideways the contact between serpentinites and metavolcanics. Magnesites fill the cracks and
110 fissures creating stock-work within the serpentinite (Fig. 3a).

111 The massive ultramafic complex comprise serpentinitized dunite, peridotite and pyroxenite. The
112 serpentinitized dunite swarm few chromite pods [26]. The complex is net-veined with white-blue grey
113 magnesite filling the fractures due to hydrothermal alteration. Serpentinite is geologically bounded
114 in NW and SE by schistose basic to intermediate metavolcanics and ophiolitic metagabbro,
115 correspondingly.

116 Metagabbros befall as large masses of low to medium relief. They are serene in the southern part
117 of the study area, separated by basic dykes (Fig. 3b) and quartz veins. They current SE of the
118 serpentinites with a perfect tectonic contact trending NE-SW and dip to NW (Fig. 2). They are locally
119 layered, sheared and warped as flaser structure (Fig. 3d). They are cut by acidic dykes of apogranite
120 (Fig. 3e) and metagabbro-diorite dykes forming parallel and nearly vertical NE-SW trending dykes
121 (Fig. 3b). They are also intruded by post-tectonic granitoids (i.e., tonalite and monzogranite) at SE of
122 Gabal Sol Hamed (Fig.3f).

123 Basaltic pillow lavas situated NW to W of Gabal Qash Amer and related with the volcaniclastics.
124 The original pillow customs are easily familiar and dip to the SW. They have go through constrain
125 deformation designated by the lineated and stretched pillow volcanics.

126 The arc assemblages comprise basic to intermediate metavolcanics and their pyroclastics. The
127 acidic metavolcanics display schistose structure with main direction of 50° and dip 60° SE. The meta-
128 rhyolites showing at the northeastern and western part of the area, wounding by quartz veins and
129 enclosed by sand dune particularly in the north central part. The massive basic to intermediate
130 metavolcanics produce out at the northern part. In the western side of Wadi Diit a small belt of
131 massive and schistose metavolcanics is observed (Fig. 2). These rocks are slightly foliated and
132 comprise thin beds of fine laminated volcaniclastics and tuffs. There are also lapilli tuffs with
133 plagioclase and quartz clasts of lapilli size. Gradational connection with gabbroic rocks existing south
134 of the volcanic rocks. North of this volcanic belt, there is a sharp intrusive contact with tonalite rocks.


135 The arc granitoids with low to medium relief crop out at the NW part of the area and are
136 characterized by presence of dioritic xenoliths.

137 Granitic rocks befall in Qash Amer and El Sela area. Qash Amer muscovite granites signify the
138 highest peak in the area. They are categorized by fractures, exfoliation, and weathering boulders. The
139 El Sela younger granites take place as high-relief remote and dispersed granitic masses vacating the
140 southern East part of the mapped area (Fig. 2). They are characterized by cavernous weathering and
141 exfoliation. They interrupt younger metavolcanics and are occupied by different types of trachytic
142 dikes and quartz. These granites show joints and fractures that are occupied by iron oxide containing
143 radioactive minerals (Ali, 2013; Abouelnaga et al., 2014).

144 Numerous basic and acidic dykes separated the area. Acidic dykes are detailed in Wadi Diit,
145 where they cut tonalite and metavolcanics. Generally, they are trending either NE-SW or N-S. They
146 include rhyolite, apogranite and dacite. Basic dykes are abundant and trend mainly either NE-SW or
147 NW-SE. They changed through all the rock units described above particularly tonalite, metavolcanics
148 and ophiolitic gabbro (Fig. 3b). They comprise andesite and dolerite (Fig. 3b) with N-S trend.

149 The veins can be subdivided into three main types, quartz, and ankerite and pegmatite veins.
150 The studied area is rich in quartz veins with different thickness trending mainly N-S and NE-SW
151 particularly in the metavolcanics. It is white color and sometimes rich with iron oxides and copper
152 minerals. Other types of quartz are brecciated, cemented by iron oxides (Fig. 3c). Sometimes, smoky
153 quartz detailed especially in the gabbroic rocks. Quartz veins cut through all the rock units. The
154 veins are brecciated, stained red with iron oxides and may comprise pyrite crystals (Fig. 3c). Many

155 quartz veins are supplementary with hydrothermal alteration zones in the metavolcanic rocks.
 156 Ankerite veins befall as big veins at junction of Wadi Diit with Wadi Badbari. They changed the
 157 schistose metavolcanics, trending either NE-SW or E-W with a vertical dip.

158
 159
 160
 161

Figure 2. Geological map of SH (after EMRA, 1995, [77]).

162

163 **Figure 3.** Field photographs show a) the stock-work in magnesite bearing serpentinites, b) Basal basic dyke cutting
 164 the ophiolitic gabbro, c) Brecciated quartz-vein, d) Flaser structure of metagabbro, e) acidic dykes of apogranite
 165 and f) post-tectonic granitoids intruded within metagabbro.

166

167 **4. Petrography**

168 **4.1. Serpentinites**

169 Serpentinites recorded in SH. They are fine-grained and light green to dark green in color
170 and essentially consist of serpentine minerals (>80%) together with variable amounts of carbonates,
171 magnetite (Fig. 4a), and brucite as well as chromian spinel. In few samples, talc is observed and
172 Olivine is completely altered to serpentine and opaques along its irregular fractures. Clinopyroxenes
173 are partially and/or completely altered to tremolite and chlorite. The rocks exhibit pseudomorphic
174 (Fig. 4b) and interpenetrating textures. Antigorite is the main serpentine mineral together with lesser
175 chrysotile and lizardite. Antigorite occurs as large plates and fibrous and scaly aggregates (Fig. 4b).
176 Chrysotile occurs as fibrous veinlets that commonly transformed into carbonate and traversing the
177 antigorite matrix (Fig. 4a). In some parts, bastite texture is associated with schiller structure where
178 magnetite define cleavage planes of the original orthopyroxene (Fig. 4a). Chromian spinel in the
179 serpentinites occurs as both subhedral to euhedral crystals (Fig. 4a) and irregular grains, while in the
180 sheared varieties spinel is mostly brecciated. Carbonates occur as sparse crystals, patches, and fine
181 aggregates.

182 **4.2. Carbonate serpentinite**

183 Carbonate serpentinites are composed of serpentine minerals and carbonates as the main
184 components. Carbonates occur as an alteration product of serpentine minerals (Fig. 4b) whereas;
185 opaques represent the main accessories. Carbonate samples are mostly stained with iron oxides,
186 whereas some appear as veinlets corroding rock.

187 **4.3. Tremolite-talc rocks**

188 Tremolite-talc rocks are composed of tremolite and talc together with olivine and
189 orthopyroxene relics (Fig. 4c). Accessory minerals are represented by carbonates and opaques. Talc
190 and tremolite are formed as alteration products of olivine and orthopyroxene. Tremolite forms fibro-
191 lamellar sheaves piercing talc, orthopyroxene and olivine.

192 **4.4. Ophiolitic Metagabbros**

193 These metagabbros are massive, holocrystalline, medium to fine-grained with a greyish-green
194 to dark green color. They show ophitic to sub-ophitic textures, and mainly consists of plagioclase (60-
195 50%) and amphibole (40-30%), together with rare fresh relics of clinopyroxene. The secondary
196 minerals are chlorite, zoisite, clinozoisite, epidote, sericite and calcite, while the accessories are
197 sphene, apatite and opaque minerals.

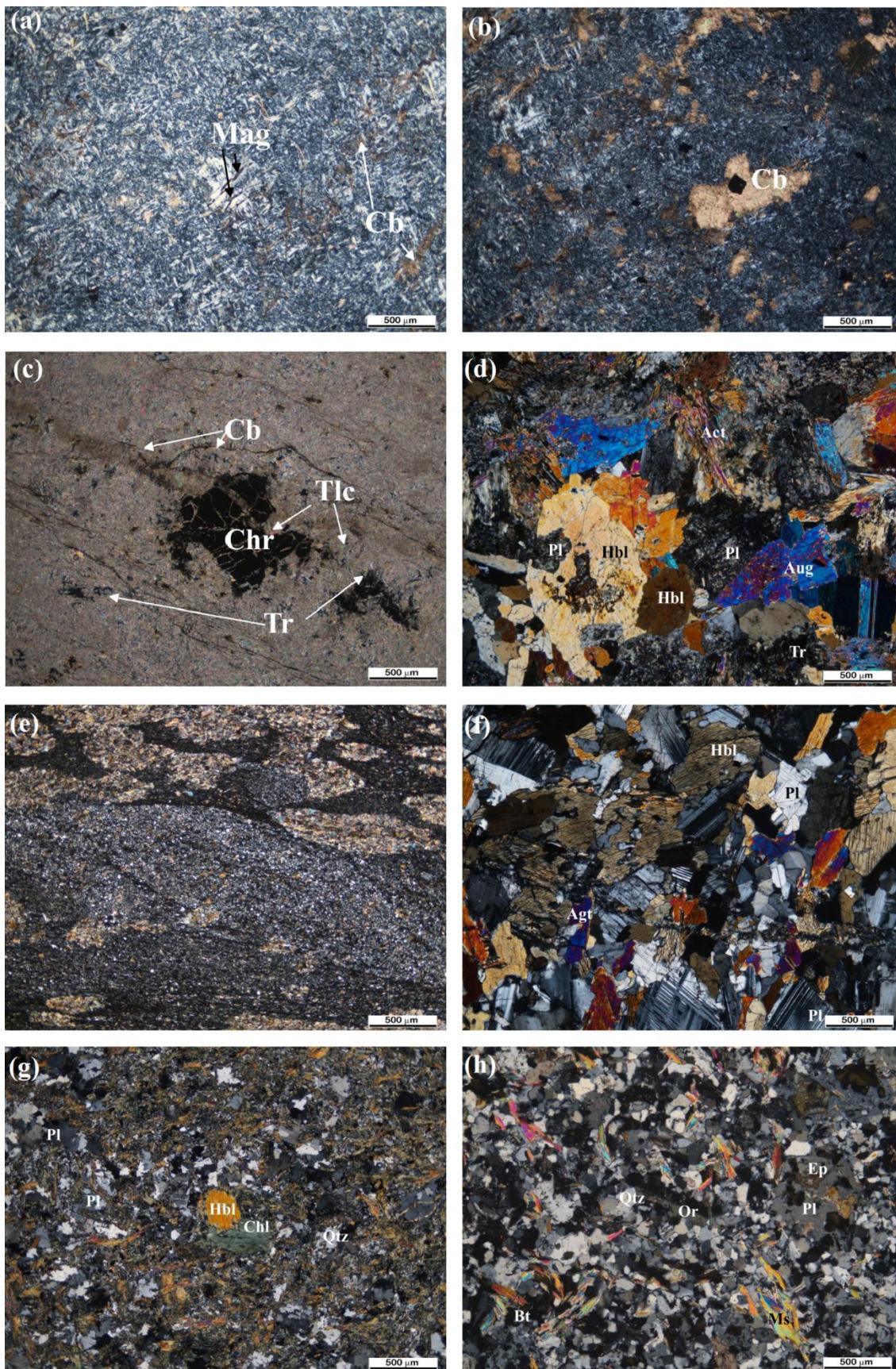
198 Plagioclase crystals are euhedral to subhedral and many exhibit albite twinning. Variable
199 alteration of plagioclase to epidote, zoisite and clinozoisite, as well as sericite, is observed. Zoning of
200 plagioclase occurs, but is generally uncommon. Primary magmatic hornblende is less abundant and
201 when observed it occurs as prismatic and bladed aggregates that poikilitically encloses fine crystals
202 of plagioclase (Fig. 4d) and is variably altered to tremolite, actinolite and chlorite. The secondary
203 amphibole are highly abundant and mainly represented by actinolite commonly pale green and
204 moderately pleochroic, often simply twinned and occurs as fibrous prisms and tablets (Fig. 4d).
205 Augite occurs as irregular shreds and remnants within the pseudomorphic amphibole (Fig. 4d).
206 Chlorite is present as flakey and fibrous aggregates and is closely associated with amphibole, epidote
207 and calcite. Epidote occurs as anhedral granular aggregates replacing plagioclase and amphibole.
208 Accessory minerals such as apatite occurs as fine laths embedded in plagioclase and amphibole.

209 **4.5. The metavolcanoclastic rocks (meta-tuffs)**

210 The metatuffs are encountered in the western part of the mapped area but with restricted
211 extension. They are massive, fine-grained, bedded, laminated and sometimes associated with thin
212 bands of brownish opaque minerals. Microscopically, they are composed essentially of
213 metamorphosed ash and lapilli tuffs, containing mineral and rock fragments. The mineral fragments
214 are represented by plagioclase and quartz, whereas the rock fragments are andestic and rarely
215 basaltic in composition (Fig. 4e).

216 **4.6. Metagabbro-diorite**

217 Microscopically, these rocks consist mainly of plagioclase, amphibole together with subordinate
218 amounts of pyroxene and opaques. Few samples contain very small amounts of quartz. Opaques,
219 sphene and apatite are the accessories, while calcite, actinolite, chlorite and epidote represent the
220 secondary products. Ophitic and sub-ophitic textures are common, whereas the porphyritic texture
221 is rarely observed. Plagioclase ranges in composition from labradorite to oligoclase and generally
222 occurs as subhedral to anhedral crystals, partly saussuritized. Amphiboles are represented by less
223 abundant primary, prismatic crystals of brownish green color and poikilitically enclosing minute
224 crystals of plagioclase (Fig. 4f). Secondary hornblende is predominating and form pesudomorphs
225 after pyroxene. It commonly occurs as pale green subhedral crystals sometimes enclosing small


226 crystals of plagioclase. Pyroxene occurs as relics of altered greenish blue crystals. It is commonly an
227 augite altered to secondary hornblende as indicated by the presence of the original pyroxene in the
228 core mantled by secondary hornblende (Fig. 4f).

229 **4.7. Diorite**

230 Mineralogically the diorites are composed mainly of plagioclase and hornblende (Fig. 4g).
231 Locally, chlorite partially replaces hornblende and quartz is a minor constituent. Hypidiomorphic
232 texture is characteristic, Apatite, zircon and Fe oxides are common accessories.

233 **4.8. Syn-tectonic granite**

234 These rocks are represented by micro-granite. It is medium-grained and shows granular to
235 granular porphyritic in texture. It is made up of plagioclase, K-feldspars, quartz, muscovite, biotite
236 (Fig. 4h), accessory minerals (zircon, opaque minerals), and secondary minerals (chlorite, sericite and
237 calcite). Plagioclase constitutes about 40% of the granite. Crystals are anhedral and equant, and albite
238 twinning is ubiquitous. Plagioclase crystals are usually un-zoned. Potassium feldspar constitutes up
239 to 20% of the rock. It occurs as small irregular crystals, often totally or partially enclosed by
240 plagioclase; in some instances, plagioclase with myrmekitic intergrowths appears to invade the
241 adjacent orthoclase. Quartz constitutes about 30% of the granite. It occurs as medium-sized, anhedral
242 crystals, sometimes with sutured margins, and also as small, drop-like inclusions in either feldspar.
243 It generally has undulose extinction. Muscovite constitutes up to 10% of the rock. It occurs as
244 euhedral isolated laths, sometimes with small rounded quartz inclusions, and sometimes occurs as
245 ragged intergrowths with quartz. Occasional ragged crystals of biotite occur, which may be partially
246 replaced by chlorite. Calcite occurs as fine interlocked crystals commonly form micro-bands or filling
247 the polygonal spaces among the plagioclase laths.

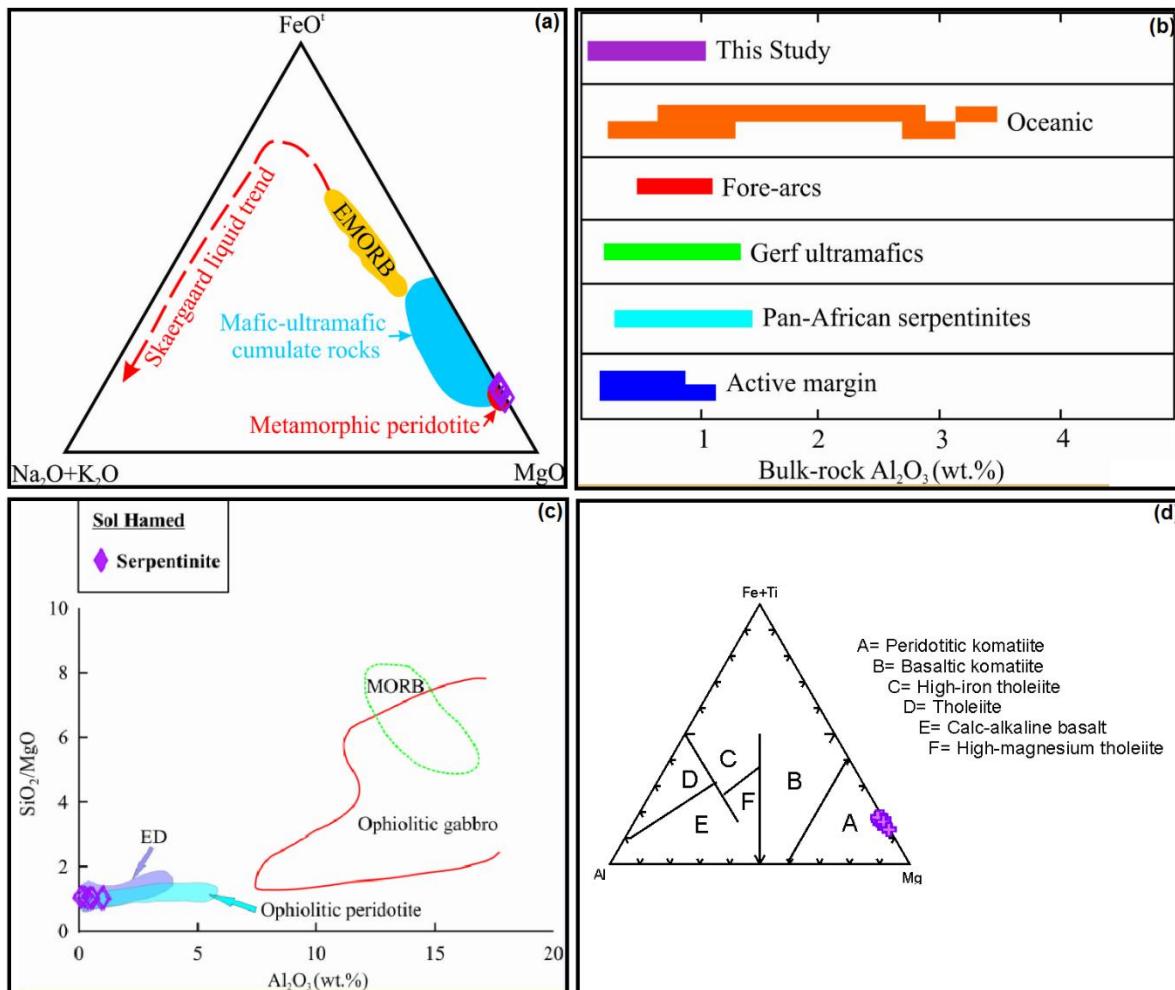
248

249 **Figure 4.** Photomicrograph showing a) Serpentinites with fine-grained and light green to dark green in color
250 and consist of serpentine minerals organized with variable amounts of carbonates, magnetite, b) Pseudomorphs

251 and interpenetrating textures of serpentinites, carbonates as an alteration product of serpentine minerals, c)
252 Tremolite-talc rocks composed of tremolite and talc together with olivine and orthopyroxene relics, d)
253 Metagabbro with fine crystals of plagioclase and is variably altered to tremolite, actinolite and chlorite. The
254 secondary amphibole are highly abundant and mainly represented by actinolite commonly pale green and
255 moderately pleochroic, often simply twinned and occurs as fibrous prisms and tablets. Augite occurs as irregular
256 shreds and remnants within the pseudomorphic amphibole, e) Andestic and basaltic composition of metatuffs,
257 f) Crystals of plagioclase and Hornblende in metagabbro-diorite, g) Plagioclase and Hornblende in diorite and
258 h) Plagioclase, K-feldspars, quartz, muscovite, biotite in syn-tectonic granite

259

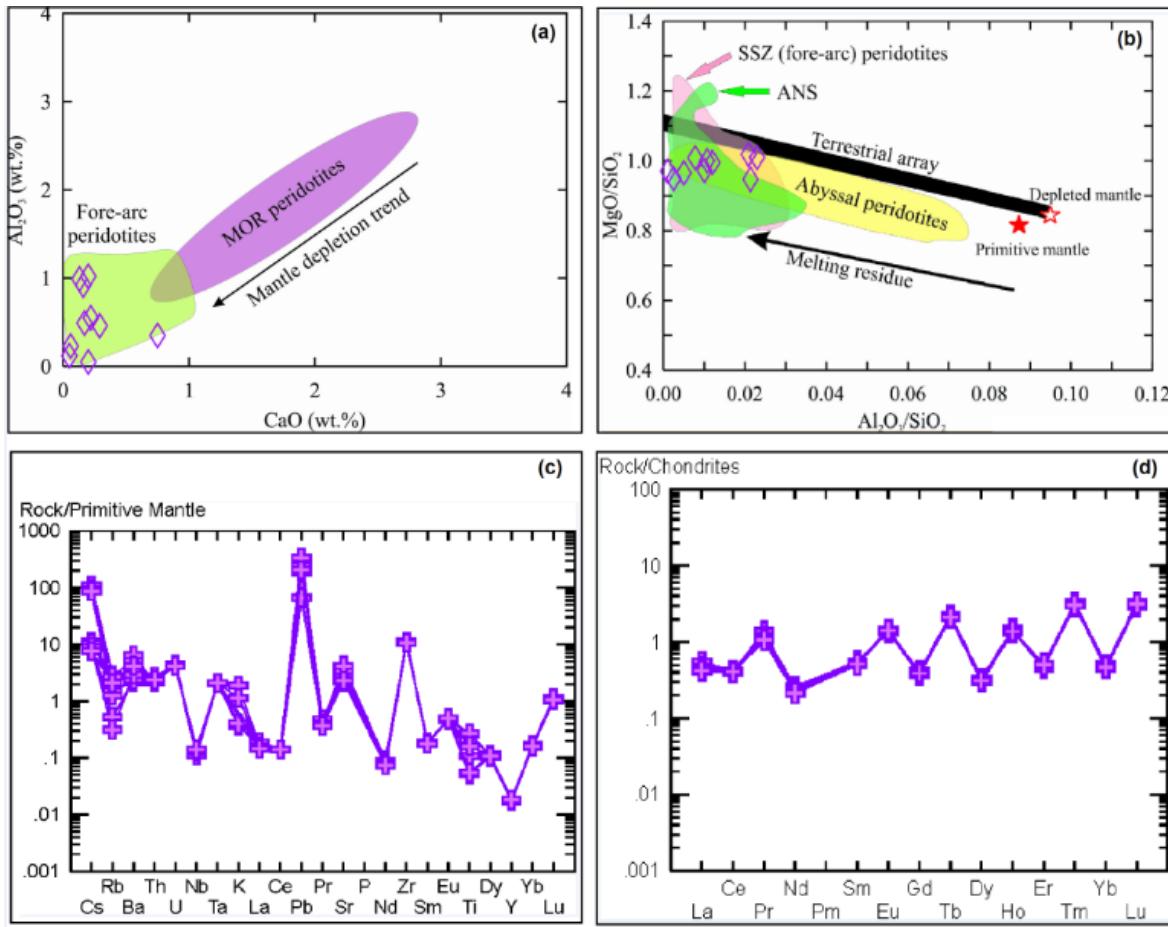
260 **5. Results**


261 Major oxides recalculated on an anhydrous basis and plotted volatile-free to reduce the variable
262 element dilution effects resulting from serpentinitization process. The studied serpentinites have
263 relatively higher loss of ignition (LOI) values (10.34–13.92 wt. %). The MgO content is hardly affected
264 by serpentinitization process and its elevated values in SH serpentinites (MgO=43.83–45.71 wt. %)
265 reflect highly depleted mantle source [27, 28]. Their high Mg[#] (89.94–92.85) are like modern oceanic
266 peridotites [29] indicating a limited mobility of Mg and Fe. Their very low Na₂O (0.00–0.28 wt. %)
267 and K₂O (0.00–0.06 wt. %) contents are comparable to those from the Eastern Desert supporting this
268 study [13, 15]. The serpentinitization processes possibly increased the LOI contents without significant
269 modification of the major element composition [30]. The Ca-metasomatism is a common issue in
270 Egyptian serpentinites [31], however the very low CaO contents (0.05–0.75 wt.%) in the serpentinites
271 indicates restricted effect of carbonate metasomatism. So, we suggest that the protolith major element
272 compositions must have been preserved during the hydration processes and that the geochemistry
273 of the studied serpentinites display mostly the original nature.

274 SH serpentinites display affinity to the typical metamorphic peridotites on the AFM diagram
275 [32]; Fig. 5a. The bulk-rock Al₂O₃ content is relatively unaffected by serpentinitization and therefore
276 retains its original primary signature [29]. The studied serpentinites have Al₂O₃ contents (0.05–1.02
277 wt. %) comparable to oceanic and active margin peridotites and fore-arc and Pan-African
278 serpentinites Fig. 5b; [13, 15, 18, 33, 34]. Like other Eastern Desert ultramafites, the SH serpentinites

279 have SiO_2/MgO ratios and Al_2O_3 contents analogous to ophiolitic peridotite [13, 15, 17, 19, 35, 36] Fig.
280 5c. The serpentinites the nature of peridotitic komatiite by using of Jensen's cation plot after [37], Fig.
281 5d. The Al_2O_3 and CaO depletion is typical of fore-arc peridotites, Fig. 6a;[38] and characterizes ED
282 ophiolitic ultramafites [15, 17, 19, 36]. In terms of $\text{Al}_2\text{O}_3/\text{SiO}_2$ and MgO/SiO_2 ratios, they are like
283 Arabian–Nubian shield and fore-arc peridotites (Fig. 6b; [13, 15, 28, 39, 40], low value of $\text{Al}_2\text{O}_3/\text{SiO}_2$
284 (fore-arc field), suggesting that these rocks were derived from a mantle source with high degrees of
285 partial melting. The studied serpentinites have enriched compatible trace elements (Cr=2426–2709
286 ppm, Ni=1657–2377 ppm and Co=117–167 ppm) suggesting derivation from a depleted mantle
287 peridotite source.

288 The SH mantle rocks are highly depleted in incompatible trace elements relative to the primitive
289 mantle (Fig. 6c). They are variably depleted in Nb consistent with SSZ geochemical characteristics
290 [41] similar to abyssal and fore-arc peridotites [42, 43]. Moreover, the positive Pb-anomaly on spider
291 diagrams resembles abyssal and fore-arc peridotites [42, 43] (Fig.6c). This specific positive Pb-
292 anomaly may proposes a protolith origin or reflects the result of fluid percolation during
293 serpentinization processes [44, 45]. The serpentinites has low concentrations HFSE such as Nb, Hf,
294 Ta, Ce, U and Th, comparatively high concentration of LILE such as Ba and Sr. Subduction zone trace
295 element signatures are clear due to the enrichment of LILE (Sr and Ba) over HFSE (Nb, Ti, Y, Ce, U
296 and HF) and negative Ta anomaly [22]. The REE diagram displays HREE enrichment and LREE
297 depletion. The Av. Σ REE contents of serpentinites is 1.33 ppm.


298 Chondrite normalized REE patterns show very low fractionated patterns $(\text{La}/\text{Yb}) = (1.398)$. The
299 LREE of the studied ultramafic show a low degree of fractionation $(\text{La}/\text{Sm}=1.24)$. The degree of
300 fractionation of HREE is also low $(\text{Gd}/\text{Yb}=0.998)$, (Fig.6d).

301

302 **Figure 5.** a) AFM diagram for SH serpentinites after [32], b) Bulk-rock Al₂O₃ (wt. %) contents of SH compared
 303 with those from other tectonic settings from [34] and the Pan-African serpentinites [18, 33], c) SiO₂/MgO ratios
 304 vs. Al₂O₃ diagram. Ophiolitic peridotite, ophiolitic gabbro and MORB are from [35]. Data from Eastern Desert
 305 (ED) are shown for comparison [13, 15, 17, 19, 36] and d) Jensen's cation plot after [37].

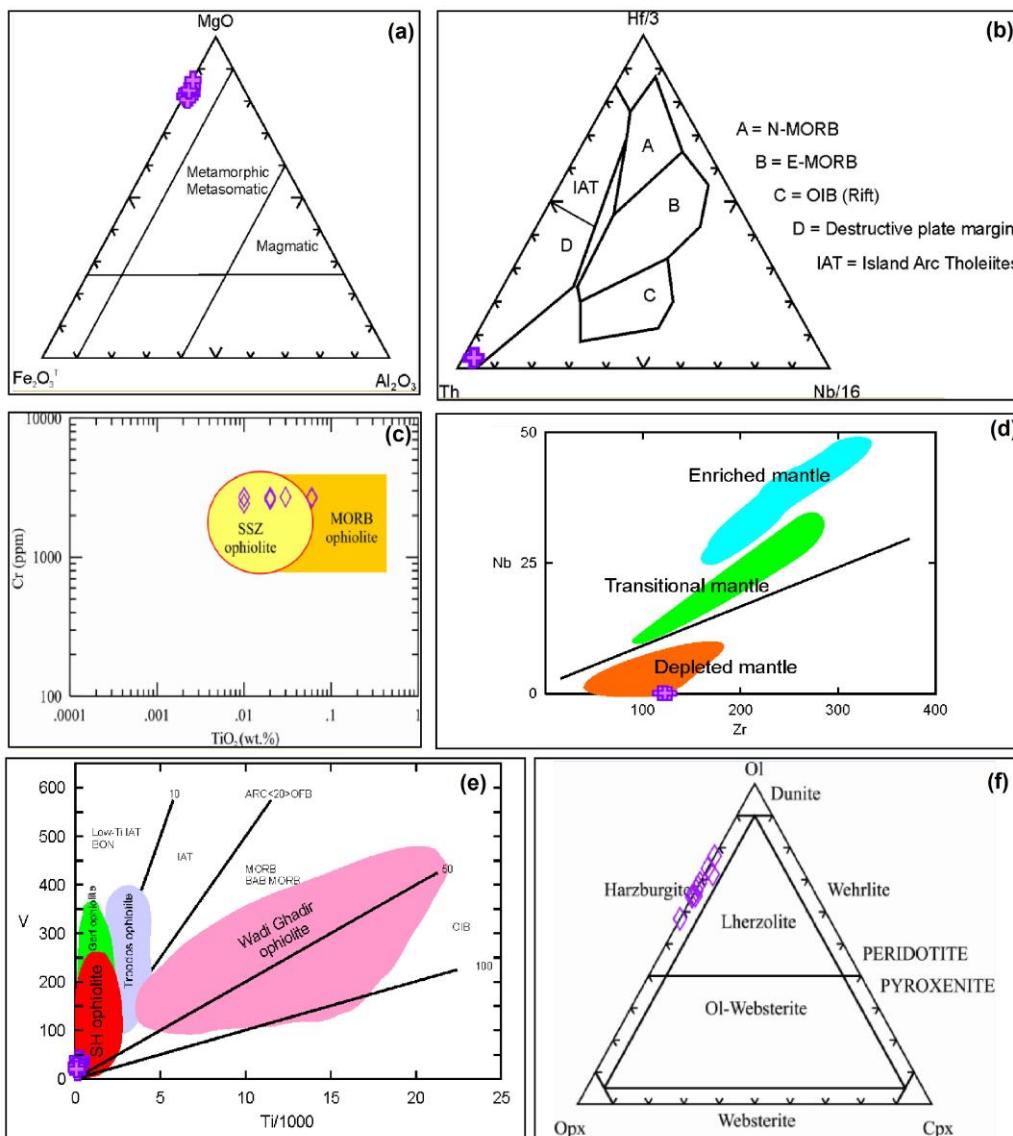
306

307

308 **Figure 6.** a) CaO vs. Al_2O_3 diagram showing SH serpentinites compared with fore-arc and MOR peridotites
 309 after [38], b) MgO/SiO_2 vs. $\text{Al}_2\text{O}_3/\text{SiO}_2$ diagram. Primitive and depleted mantle values are after [78] and [65],
 310 respectively. The “terrestrial array” represents the bulk silicate Earth evolution [79, 80]. Abyssal and fore-arc
 311 peridotite fields are after [28, 39, 42]. ANS ophiolitic peridotite field is after [13, 40], c) Primitive mantle-
 312 normalized trace element patterns, and d) Chondrite-normalized REE patterns for the SH mantle section.
 313 Normalizing values are after [78].

314

315 6. Discussion


316 Metamorphism ranging from low-grade greenschist to medium-grade amphibolite facies usually
 317 influenced the ophiolitic ultramafites of the Egyptian ED forming serpentinite and/or mixtures of
 318 serpentine, talc, chlorite, carbonates and magnetite e.g., [13, 15, 46-48]. The time and source of
 319 carbonate metasomatism that commonly affected the Egyptian ultramafites still debated. [31]
 320 adopted mixing between mantle-derived CO_2 -rich fluids and remobilized sedimentary carbonate.
 321 [49] suggested pure CO_2 -bearing mantle source based on stable isotopes (i.e. O, C). Moreover, CO_2

322 input from mantle and metamorphic-degassing was proposed to explain the origin of the magnesite
323 veins in serpentinites from the ED e.g., [50, 51]. Even with changes occurred during serpentinitization
324 in the mineral compositions of peridotites, geochemical data of serpentinites suggest negligible
325 modification of major elements (except for Ca) at the hand-specimen scale e.g., [30, 45, 52]. Therefore,
326 the low CaO contents (0.05–0.75 wt. %) in the serpentinites indicate restricted effect of Ca–
327 metasomatism. The CaO contents are not correlated with LOI further confirming this implication.
328 Moreover, the trace element compositions (except U and Sr) are not significantly modified during
329 serpentinitization e.g., [42, 45, 53]. Accordingly, the major and trace element data reflect the primary
330 signature of the serpentinites protolith in subduction zones [45, 54, 55]. LOI reach up to 10.34-13.92
331 wt. %, which supports the role of hydrothermal alteration. In the $\text{MgO}-\text{Fe}_2\text{O}_3^{\text{T}}-\text{Al}_2\text{O}_3$ ternary diagram
332 of [56], all samples plot in the metamorphic metasomatic field (Fig. 7a).

333 The MgO/SiO_2 and $\text{Al}_2\text{O}_3/\text{SiO}_2$ ratios of serpentinites agree with SSZ peridotites from fore-arc
334 setting, Fig. 6b; [28, 39]. In the Hf-Th-Nb diagram [57] used to regulate the tectonic character of
335 ultramafic rocks, all samples plot in the destructive field of plate margins (Fig. 7b). Generally, the
336 Al_2O_3 and CaO depletion characterizes fore-arc peridotites (Fig. 6a) [29, 38]. The Cr vs. TiO_2 diagram
337 also supports the SSZ setting for the SH serpentinites, Fig. 7c; [58].
338 The studied rocks show low Al_2O_3 content reflecting depleted upper mantle source [29]. Their high
339 $\text{Mg}^{\#}$, Cr and Ni are consistent with a depleted mantle peridotite source [15, 59]. The MgO/SiO_2 and
340 $\text{Al}_2\text{O}_3/\text{SiO}_2$ ratios (Fig. 6b) accord with peridotites generated from subduction-related magma source.
341 It is supporting by using Zr vs. Nb binary diagram [60], all samples plot in the depleted mantle
342 sources (Fig. 7d). Comparing SH ophiolites with other ophiolites such as, Troodos in Cyprus, [61],
343 Gerf ophiolite in South Eastern Desert [15] and Wadi Ghadir ophiolites in Central Eastern Desert [22].
344 Using the criteria in [58], we conclude that the chemical signature, the crystallization arrangement
345 and mantle residue of SH ophiolites are similar to supra-subduction zone ophiolites formed in fore-
346 arc basins based on the Ti–V variation diagram [62], (Fig. 7e).

347 Numerous geochemical studies demonstrated restricted mobility of major elements during
348 serpentinitization and protolith primary signature were retained e.g. [45, 52, 63]. The SH serpentinites
349 have low CaO contents comparable to ophiolitic peridotites [35]. Moreover, their low $\text{Al}_2\text{O}_3/\text{SiO}_2$
350 ratios (mostly < 0.03) are similar to fore-arc mantle wedge serpentinites suggesting that their

351 protoliths had experienced partial melting before serpentinization which has no effect on this ratio
 352 e.g., [45, 53, 64]. Also, their low MgO/SiO_2 ratios (< 1.1) resemble serpentinised lherzolites and
 353 harzburgite [45]. They have low TiO_2 contents (0.01–0.06 wt. %) compared to depleted mantle
 354 composition but like subduction zone serpentinites [45, 65]. Their major element data consistent with
 355 harzburgitic source (Fig. 7f).

356
 357 **Figure 7.** a) $\text{MgO}-\text{Fe}_2\text{O}_3^T-\text{Al}_2\text{O}_3$ ternary diagram for the ultramafic rocks. Zone after [56] and lines after [81], b)
 358 c) Cr vs. TiO_2 plot to discriminate SSZ and MORB ophiolites after [58],
 359 d) Zr vs. Nb diagram after [60], e) $\text{Ti}-\text{V}$ discrimination diagram [62], where Sol Hamed (SH) ophiolites (Red
 360) compare with forearc/arc ophiolites, Troodos (blue) ophiolite from [61], Gerf (Green) ophiolite from [15] and
 361 Wadi Ghadir ophiolites (Pink) from [22] and f) $\text{Ol}-\text{Cpx}-\text{Opx}$ diagram [82].

Table (1) Major, trace and rare earth elements of the studied rocks.

Sample no	1	2	3	4	5	6	7	8	9	10
Major oxides (wt. %)										
SiO ₂	45.699	46.286	45.709	45.539	45.957	45.654	44.360	44.050	44.857	47.617
TiO ₂	0.057	0.056	0.011	0.058	0.012	0.023	0.023	0.023	0.035	0.012
Al ₂ O ₃	0.550	0.993	0.491	0.465	0.046	0.231	1.015	0.915	0.346	0.115
Fe ₂ O ₃ ^T	7.788	8.365	7.771	9.294	9.099	9.799	9.249	9.954	8.660	6.924
MnO	0.103	0.089	0.114	0.081	0.092	0.173	0.056	0.034	0.104	0.104
MgO	45.470	43.832	45.709	44.261	44.575	44.063	44.778	44.863	45.226	45.182
CaO	0.218	0.134	0.171	0.290	0.196	0.058	0.203	0.160	0.750	0.046
Na ₂ O	0.103	0.190	0.011	0.012	0.012	0.000	0.282	0.000	0.012	0.000
K ₂ O	0.011	0.056	0.011	0.000	0.012	0.000	0.034	0.000	0.012	0.000
Total	100	100	100	100	100	100	100	100	100	100
LOI	12.690	10.340	12.490	13.920	13.180	13.260	11.340	12.600	13.280	13.350
SiO ₂ /MgO	1.005	1.056	1.000	1.029	1.031	1.036	0.991	0.982	0.992	1.054
Al ₂ O ₃ /SiO ₂	0.012	0.021	0.011	0.010	0.001	0.005	0.023	0.021	0.008	0.002
MgO/SiO ₂	0.995	0.947	1.000	0.972	0.970	0.965	1.009	1.018	1.008	0.949
Mg#	92.077	91.247	92.131	90.450	90.692	89.940	90.592	89.961	91.220	92.855
Trace elements (ppm)										
V	40.200	29.500	27.400	37.200	26.100	22.160	40.200	14.010	34.100	19.500
Cr	2655.400	2701.100	2706.600	2656.800	2688.800	2580.200	2701.200	2654.100	2708.600	2425.900
Ni	2377.100	1800.300	2056.300	2057.300	2070.100	1840.200	1816.200	2055.400	1657.200	1999.100
Cu	63.100	15.100	24.100	50.530	43.210	53.210	54.210	8.290	47.310	33.510
Zn	56.900	13.460	24.900	23.070	35.100	17.900	34.800	17.200	11.890	23.050
Co	166.500	121.400	120.500	162.300	165.200	152.400	154.200	152.400	117.200	136.100
Ga	1.560	1.050	0.900	1.300	1.200	1.110	1.200	1.400	1.330	1.340
Rb	0.330	0.350	0.500	0.400	0.450	0.500	0.450	0.350	0.300	0.280
Sr	55.020	46.150	47.900	62.100	60.100	72.110	50.100	88.990	48.080	48.100
Zr	120.000	118.000	127.000	119.000	121.000	120.000	123.000	122.000	121.000	118.000
Nb	0.100	0.090	0.085	0.100	0.100	0.100	0.090	0.080	0.090	0.100
Ba	35.600	15.100	25.000	15.120	19.800	17.110	16.430	45.040	20.000	29.500
La	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Ta	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
Pb	4.800	13.140	16.100	15.100	16.900	19.900	17.100	4.660	24.050	14.700
Th	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
Tl	0.037	0.038	0.040	0.300	0.260	0.040	0.038	0.040	0.300	0.280
Li	10.100	5.000	7.000	6.120	5.500	8.200	8.980	9.900	1.710	7.150
Hf	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Cs	0.850	0.750	0.090	0.090	0.088	0.090	0.080	0.680	0.070	0.060
Sn	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
Bi	0.010	0.030	0.025	0.020	0.010	0.020	0.030	0.030	0.025	0.020
Cd	2.100	2.100	3.200	3.400	2.150	2.500	3.500	3.400	3.450	2.900
In	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
W	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Mo	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Re	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Sb	1.830	2.400	3.110	1.140	3.150	2.700	3.100	3.100	1.980	2.330
As	4.210	5.330	3.700	5.700	5.300	4.800	4.500	5.210	4.910	3.800
Ag	185.000	190.000	195.000	191.000	187.000	170.000	193.000	192.000	190.000	194.000
S	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
Se	0.300	0.500	0.400	0.300	0.700	0.230	0.300	0.400	0.700	0.500
Be	0.850	0.700	0.900	0.850	0.900	0.900	0.800	0.700	0.700	0.800
Te	5.500	5.400	5.500	5.500	4.110	4.800	5.700	4.300	4.980	5.120
Rb	1.810	1.000	1.200	1.700	1.450	1.700	0.330	0.800	0.200	1.300
Sc	4.100	4.010	3.800	3.550	4.200	3.700	3.940	4.010	4.300	3.900
U	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Rare earth elements (ppm)										
Y	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Ce	0.250	0.249	0.248	0.250	0.250	0.250	0.250	0.250	0.250	0.250
Dy	0.079	0.082	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Eu	0.078	0.089	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Er	0.078	0.084	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Gd	0.081	0.077	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Ho	0.083	0.078	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Nd	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Pr	0.100	0.120	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Sm	0.083	0.079	0.082	0.083	0.078	0.078	0.079	0.084	0.083	0.078
Tm	0.077	0.081	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Tb	0.080	0.079	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Yb	0.083	0.077	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
Lu	0.082	0.076	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
ΣREE	1.334	1.342	1.330	1.333	1.328	1.328	1.329	1.334	1.333	1.328
La/Yb	1.325	1.429	1.558	1.688	1.310	1.205	1.358	1.410	1.447	1.266
Gd/Yb	0.976	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
La/Sm	1.205	1.266	1.220	1.205	1.282	1.282	1.266	1.190	1.205	1.282

366 **7. Structural setting**367 **7.1. Deformation history**

368 The structure of the SH area is complex, and partially agreed [26], the area situated in a supra-
369 structural position between three major Pan-African terranes (SE Desert, Gabgaba, and Gebeit
370 terranes). Four deformational events can be distinguished in the Neoproterozoic rocks [66-69];

371 - **D₁** event: E-W thrust faults and related E-W (F1) folds which considered as early stages of
372 collision of Gerf and Gabgaba arc terranes.

373 - **D₂** event: NW-SE thrust faults and related NW-SE (F2) folds were formed, characterized by
374 local high-P, low-T metamorphism and reflected as late stages of collision of Gerf and
375 Gabgaba arc terranes. The mineralization in this stage is described as remobilization of Cu-
376 Ni-Pt sulfides in ultramafic rocks, alteration talc/serpentinites and listwaenites; Talc
377 carbonate, gold-bearing quartz veins.

378 - **D₃** event: conjugate NNW-trending sinistral and NNE-trending dextral transpression, as well
379 as N-trending tight folds (F3). NW-SE shear zones and open folds, crenulation cleavage, SC
380 fabrics, sigmoidal foliation patterns that defined in late- to post-tectonic granitoids. This stage
381 characterized by local contact metamorphism. The mineralization in this stage is styled as
382 kaolinitized alteration zones along D3, shear zones; ferregination and silicification of copper
383 sulfide zones and gold-quartz veins. Shortening connected to collision of east and west
384 Gondwana; tectonic escape toward oceanic free face to N along WNW striking Najd faults.

385 - **D₄** event: E-W dextral strike-slip and dip-slip normal faults striking NNW-SSE to N-S and
386 E-W may be related to Red Sea rifting. This stage characterized by dike swarms along faults.
387 The mineralization in this stage is styled as disseminated secondary uranium and anomalous
388 secondary concentrations of Pb, Zr, Y, Nb, Ta, in late dikes.

389 **7.2. Faults and structural analysis**

390 The SH complex is characterized by flat-lying and steeply dipping ductile shear zones trending
391 ENE and associated thrust sheets (Fig. 2, 8a). The strike-slip shear zones which surround the SH to
392 the N and S show tectonic transport to the ENE where SH mass movement in this direction
393 generated over thrusts of the SH on the volcanic-sedimentary succession. The ENE tectonic direction
394 transport is inferred from moderately-plunging WSW-directed mineral lineation, rodding, minor

395 fold axes and from long axes of the deformed pillows. Shears and thrust planes are characterized by
396 either siliceous mylonites or talc iron rich schists and ankerite-carbonates.

397 There are three major faults on the investigated area (Fig. 8b).

398 • The first is NE-SW trending faults and is mainly present in the volcanic-sedimentary
399 assemblage and Gabal SH.

400 • The second is E-W faulting affects all the basement rocks and disturbs the NE-SW
401 trending faults.

402 • The third is N-S faults are probably related to some stages of the Red Sea rifting, and
403 affected all the rock units including sandstone and Quaternary marine sediments of the
404 Red Sea coast.

405 The direction of the shear zone on the investigated area has NE, the principal stress access has
406 WNW to EW (Fig. 8a). The associated structural features are signified by:

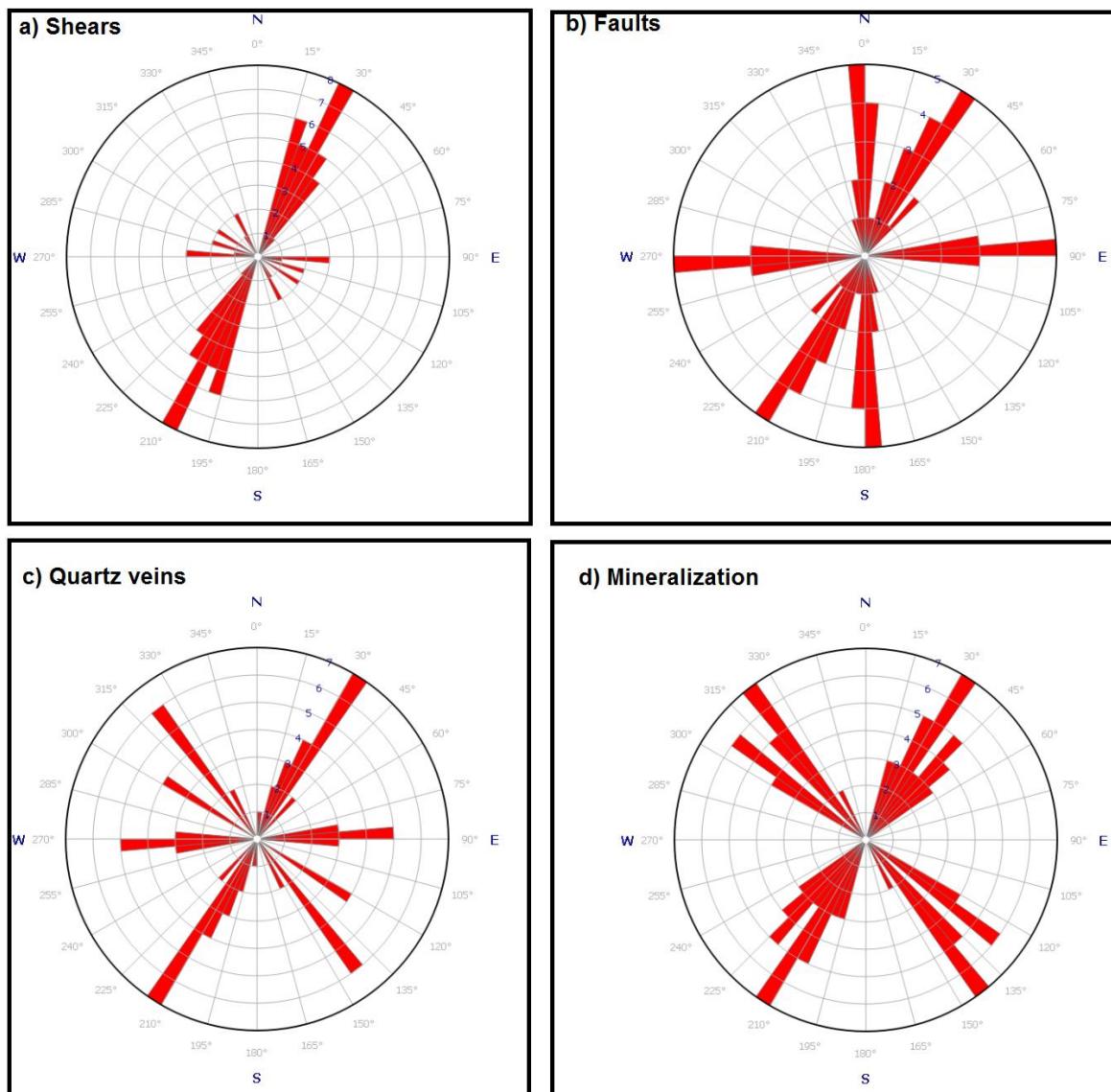
407 • NNE-SSW normal faults,

408 • NW-SE reverse faults,

409 • NE-SW, NW-SE, WNW-ESE, NNE-SSW and EW quartz veins (Fig. 8c).

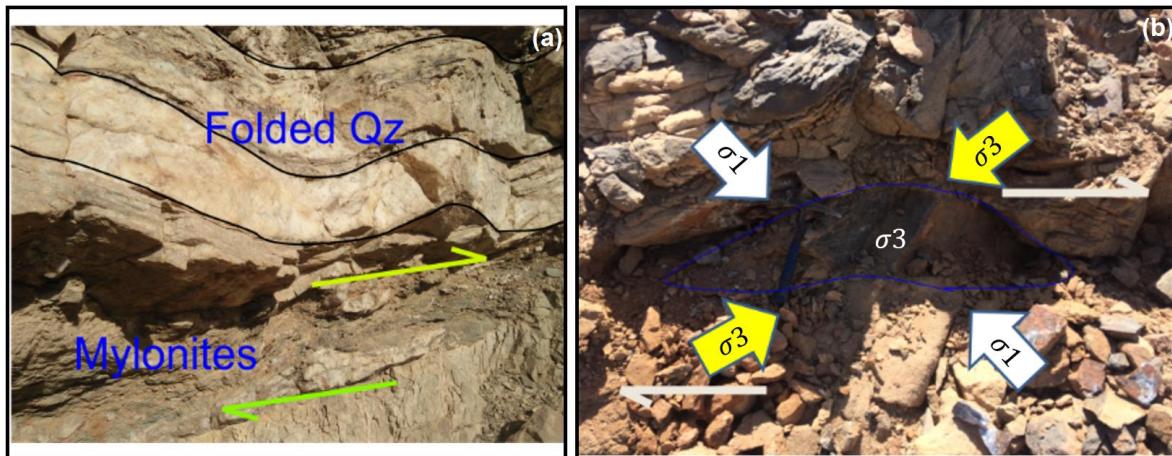
410 The mineralized structures (Fig. 8d), are represented by

411 • Quartz veins have mainly NE-SW and NNW-SSE trends


412 • Faults have mainly NE-SW trends

413 • Breccia and alteration has mainly NW-SE trend

414 El Sela shear zone is separated by two main faults in the direction of ENE-WSW and NNW-SSE
415 (Fig. 2). The earlier trend associated with the major shear zone is injected by quartz veins. This shear
416 zone is dissected into three parts by two strike slip faults trending NNW-SSE. Field observations
417 indicate that the granites are affected by different stages of alteration, mainly at El Sela shear zone.
418 These granites are invaded by ENE-WSW quartz veins. These veins caused hydrothermal alteration
419 associated with radioactive mineralization in the fine-grained granites. Secondary uranium
420 mineralization is observed as canary-yellow thin layers deposited along small cracks and micro-
421 fractures.


422 **7.3. Kinematic indicators**

423 Various kinematic indicators are used to fix the sense of movement with the common settled in
 424 the brittle-ductile system. The most common kinematic indicators on the SH area are mylonites (Fig.
 425 9a) and quartz fish (Fig. 9b) shows dextral sense of movement. Mylonites take place in extraordinary
 426 strain zones (mylonite zones) and are understood as exhumed ductile shear zones. The sense of
 427 replacement on a shear zone is usually expected to lie subparallel to striations, stretching and mineral
 428 lineations.

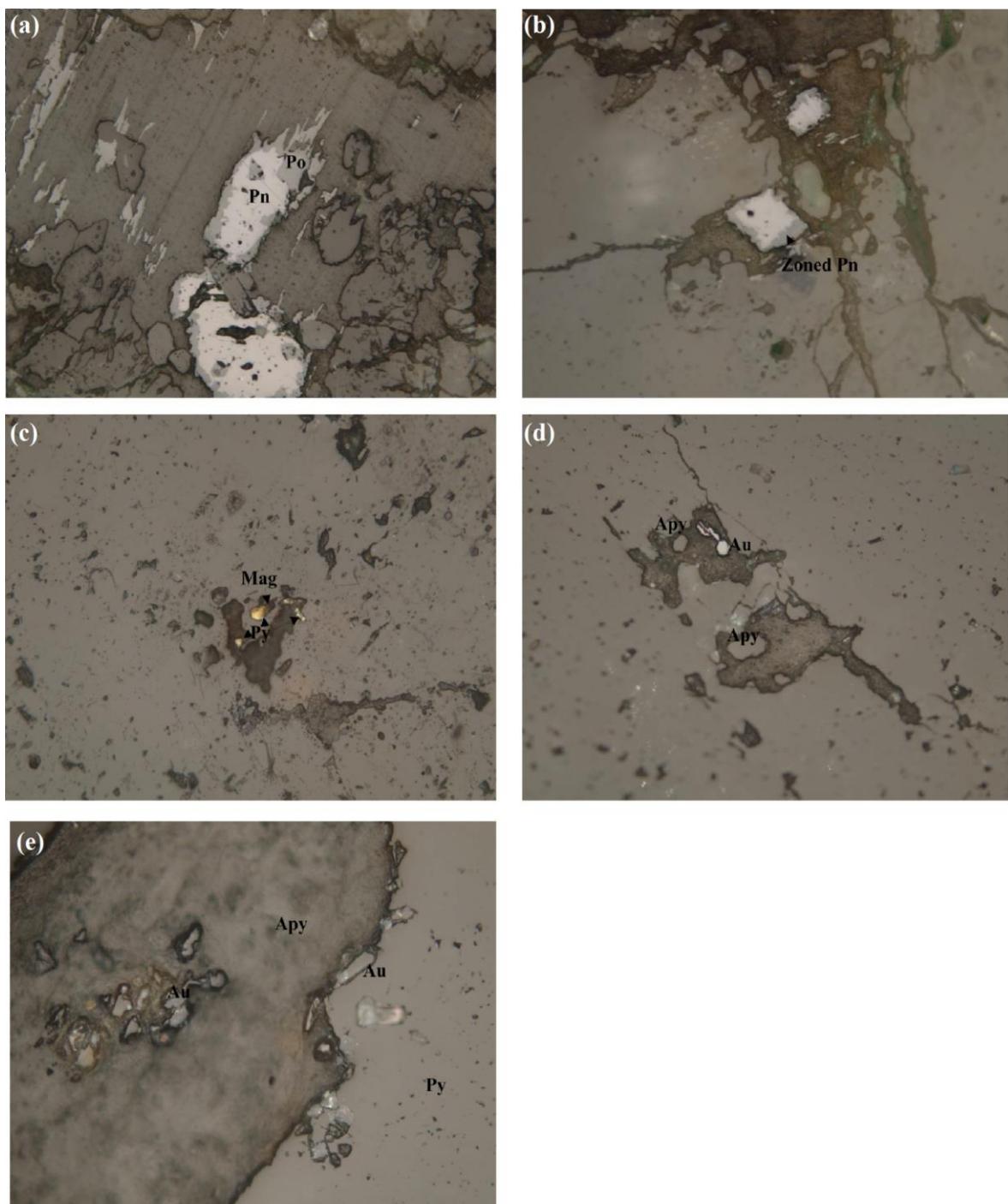
429
 430
 431

Figure 8. Structural analysis of Sul Hamid area.

432

433 **Figure 9.** a) Mylonite derived from a narrow shear zone transecting a weakly deformed granodiorite. b) Quartz
 434 fish from a quartzite mylonite shows dextral sense of movement. Quartz in the matrix is dynamically
 435 recrystallized and developed an oblique foliation.

436 8. Ore mineralogy


437 The opaque mineral content in the studied rock types from 2% to 6% of the rock volume. They
 438 are represented by sulphides, magnetite, hematite and gold.

439 Sulphides minerals are mainly represented by arsenopyrite, pentlandite, pyrrhotite and pyrite.
 440 Minor crystals of chalcopyrite and bornite are observed in few samples. Arsenopyrite occurs as
 441 subhedral to euhedral rhombic crystals either independent or associated with pyrrhotite (Fig. 10a). It
 442 shows white color and displays strong anisotropism of blue color. Pentlandite occurs either as
 443 homogeneous or zoned grains (Fig. 10b). Pyrrhotite forms irregular grains with bluish shade and
 444 moderate reflectance and sometimes replaced by light creamy to yellow isotropic pentlandite (Fig
 445 10a). Pyrite occurs as subhedral to euhedral crystals either replaced by magnetite (Fig. 10c). The
 446 replacement of pyrite by magnetite indicates oxidizing conditions.

447 Magnetite appears as anhedral crystals with peripheral granules of pyrite. Magnetite forms well-
 448 formed euhedral crystals of light grey color and moderate reflectance (Fig. 10c). Hematite exhibits
 449 whiter color and cherry red internal reflection. It shows isotropism in minor parts, which reveals its
 450 alteration from previous existing magnetite.

451 Gold is only recorded in highly altered quartz veins associated with the granitic masses. It occurs
 452 as disseminated grains that have bright yellow color with greenish tint. These grains occur as
 453 inclusions in arsenopyrite crystals (Fig.10d) and at pyrite-arsenopyrite contacts (Fig. 10e). The gold

454 grains range in color from yellow to creamy yellowish color and with occur as sub-rounded grains
455 or as straight-edged grains (Figs. 10d, e).

456

457 **Figure 10.** Photomicrograph showing a) Pyrrhotite forms irregular grains with bluish shade and moderate
458 reflectance and sometimes replaced by light creamy to yellow isotropic pentlandite, b) Pentlandite occurs either
459 as homogeneous or zoned grains, c) Magnetite forms well-formed euhedral crystals , d) Gold as inclusions in
460 arsenopyrite crystals and e) Pyrite-arsenopyrite contacts and The gold grains range in color from yellow to
461 creamy yellowish color and with occur as sub-rounded grains or as straight-edged grains.

462 **9. Economic potentiality**463 **9.1. Magnesite mineralization**

464 Economically, the important magnesite deposits occur in two types: the Venarch and Kraubath
465 type [70]. The Venarch type deposits have the world's largest reserves [70]. They form strata-
466 bound lensoid bodies of coarsely crystalline spar-magnesite hosted by marine sediments. Genetically,
467 they are associated with shallow marine water of chloride-type evaporites. Kraubath type deposits
468 are cryptocrystalline magnesite [70] and less common than spar-magnesites. However, they are
469 important because of their high quality magnesite product. These deposits comprise stock-works and
470 veins of white magnesite formed in ultramafic country rocks. The origin of Kraubath magnesite type
471 deposits favor hypogene-hydrothermal formation [70].

472 Magnesite deposits of SH serpentinites are cryptocrystalline formed by hydrothermal solution
473 effects on the serpentinite host rocks and occur in three forms. The first is represented by white
474 patches consisting of vertical veins and horizontal sheets. The second is found as veinlets represented
475 by stock-work shape, characterized by nodules clusters and exposed as pockets within the
476 serpentinites. The third is widespread in Wadi Diit NE of Gabal SH and is intercalated with surficial
477 deposits. It is found as veinlets with stock-work shape and has low grade magnesite ore. These
478 features are consistent with Kraubath type deposits (Fig. 11).

479 The magnesite pockets exposed at the NE ends of SH serpentinites and along NNE trending shear
480 zone (Fig. 2). The magnesium source in magnesite is likely the magnesium-rich minerals (e.g.,
481 serpentine, olivine) occurred within ultramafics. Serpentinite appears to be the host for over 90 % of
482 all known magnesite veins worldwide.

483 The chemical data of magnesite ore is recalculated and presented in Table 2. The collected
484 samples contain average (wt. %) 42.98 MgO, 0.57 SiO₂, 0.09 Fe₂O₃, 4.5 CaO, and 0.023 P₂O₅. They
485 show depletion in some incompatible major elements (i.e., Ca, Al and Na) relative to the average
486 primitive composition of upper mantle [71]. Possibly some of this CaO might has been lost during
487 serpentinization [72] and shows strongly negative correlation with MgO (Pearson correlation factor=
488 -0.864) in Table 3. Iron also shows loss during serpentinization.

489

490

491 **9.2. Gold deposits**

492 Ophiolitic serpentinites surrounded the metavolcano-sedimentary assemblage are the likely
493 sources for gold mineralization in the vein-type gold deposits which invaded the island-arc volcanic
494 and volcaniclastic rocks and/or the granitic rocks [73, 74].

495 The vein-type mineralization occurred in the sheared ophiolitic serpentinites (Fig. 12a) associated
496 with the Pan-African Orogeny. Linear zones of serpentinites display abundant alterations along
497 thrusts and shear zones with the development of talc, talc-carbonate and reddish brown quartz-
498 carbonate rock (i.e., listwaenite) (Fig. 12b). Listwaenite is commonly mineralized with gold [75, 76].
499 Malachite-bearing quartz veins with NW-SE direction cut through gabbroic rocks and show
500 mylonitic structure, pinch and swell phenomenon. They are extremely fractured containing
501 considerable content of malachite and disseminated sulfide minerals (Fig. 12c, f). Mineralized smoky
502 quartz veins with NE-SW direction and steeply dipping SE invaded the meta-andesite (Fig. 12g).
503 They are intensively sheared and contain iron oxides in the fissures and cracks (Fig. 12d, e, and f).
504 The barren quartz veins are nearly vertical and have E-W directions (Fig. 12f). The highest gold grades
505 are associated with strong arsenopyrite mineralization and in fracture-seal veins.

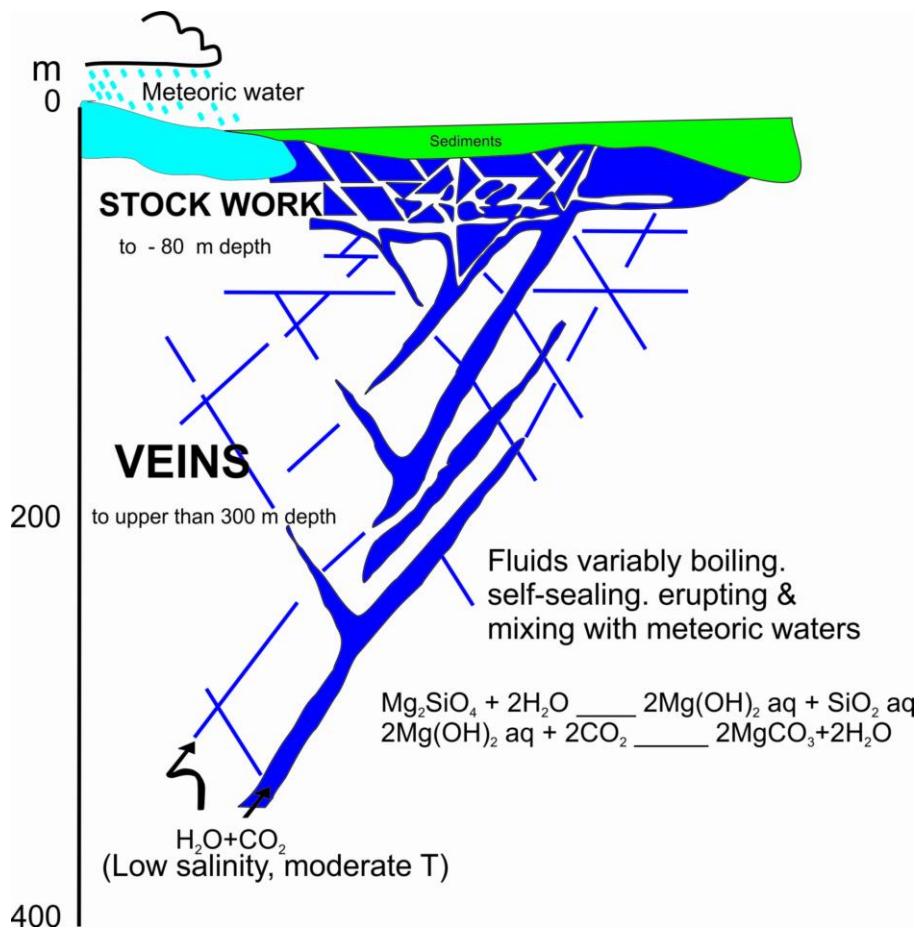
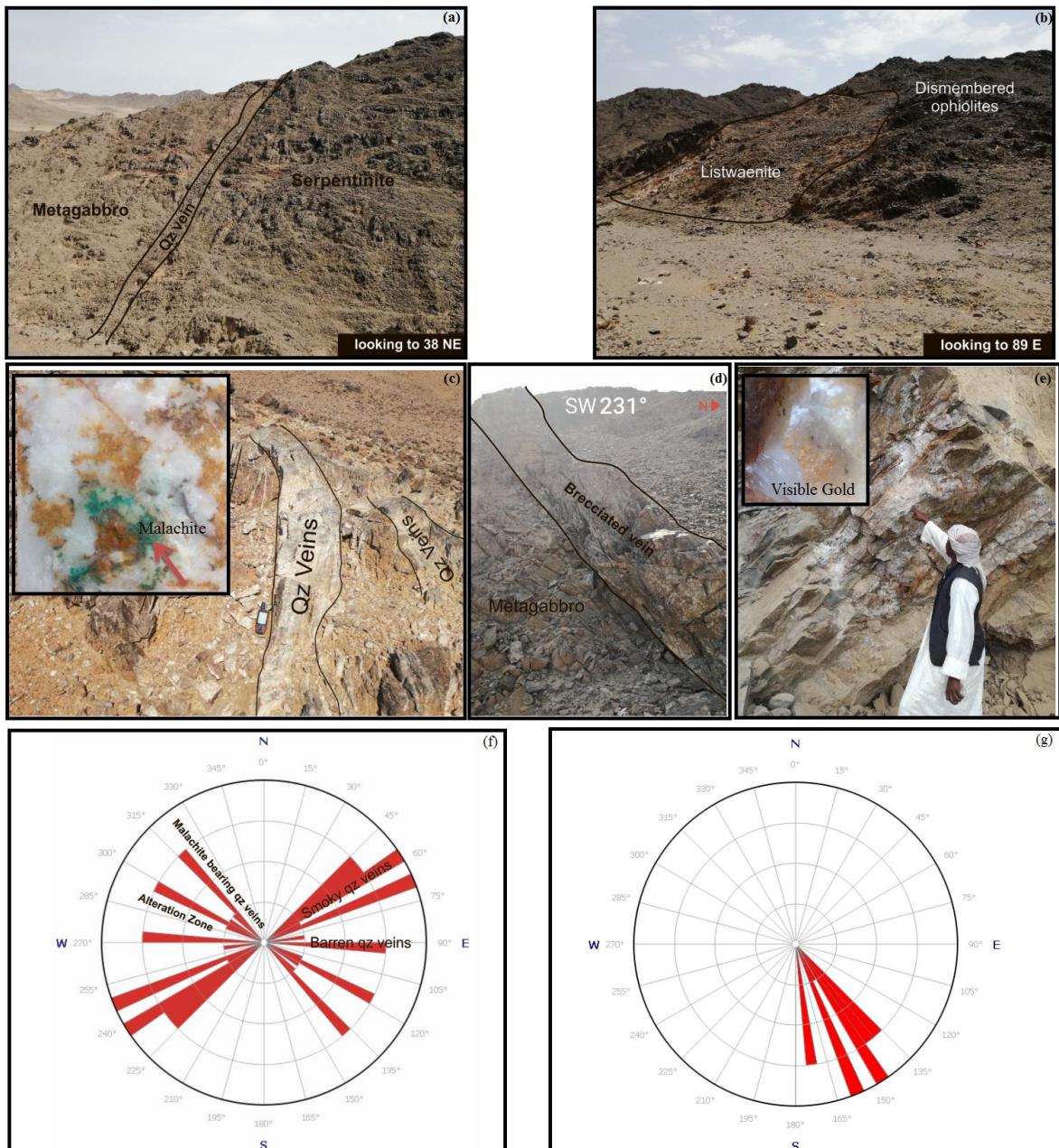

506 Mineralized alteration zones trending NW-SE and dipping nearly vertical traverse metagabbro
507 and metavolcanics (Fig. 12f). They are characterized by the presence of hematite, limonite, goethite
508 and fresh pyrite. They occur either neighboring the auriferous quartz veins. The common types of
509 alteration are silicification, sulphidation, carbonatization, listwaenitization.

Table 2. Magnesite chemical analysis :

	1	2	3	4	5	6	7	8	9
SiO ₂	0.70	0.68	0.40	1.30	0.23	0.30	0.90	0.30	0.30
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al ₂ O ₃	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Fe ₂ O ₃	0.04	0.05	0.10	0.32	0.03	0.06	0.05	0.05	0.06
Fe	0.03	0.03	0.07	0.22	0.02	0.04	0.03	0.04	0.04
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	42.70	42.30	42.60	41.10	45.50	43.00	45.10	43.40	41.10
CaO	5.80	5.18	5.50	5.18	1.60	5.30	2.60	4.18	5.30
Na ₂ O	0.40	0.15	0.18	0.15	0.50	0.01	0.01	0.15	0.01
K ₂ O	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P ₂ O ₅	0.02	0.02	0.02	0.02	0.02	0.07	0.02	0.02	0.02
LOI	49.10	49.30	50.10	49.00	49.30	50.30	49.50	50.50	51.01
Total	98.89	97.82	99.07	97.40	97.30	99.19	98.31	98.74	97.94

Table 3: Pearson Correlations between oxides in magnesite mineralization

	MgO	CaO	SiO2	Na2O	K2O	P2O5
MgO	1					
CaO	<u>-0.864</u>	1				
SiO2	-0.27	0.139	1			
Na2O	0.36	-0.308	-0.124	1		
K2O	-0.086	0.138	-0.01	-0.041	1	
P2O5	-0.047	0.254	-0.236	-0.316	-0.052	1



512

513

514

Figure 11. Kraubath type of magnesite deposit model after [83]

515

516 **Figure 12.** Field photographs show a) quartz vein between metagabbro and serpentinites, b) the listwaenite
 517 within dismembered serpentinite, c) Malachite-bearing quartz veins, d) Brecciated quartz vein containing iron
 518 oxides in the fissures, and e) Smoky quartz vein with visible gold. Rose diagram showing f) Alteration zone and
 519 various types of quartz veins, and g) the dipping of smoky quartz vein.

520

521 **10. Conclusions**

522 **a.** Sol Hamed (SH) area as a part of the ANS ophiolites occurred within Onib-Sol Hamed suture
 523 zone in the southern Eastern Desert of Egypt. The ophiolitic assemblages in this area are

524 represented by serpentinite, metagabbro and arc assemblages represented by metavolcanics.

525 They later intruded by gabbros and granites.

526 **b.** Geochemically, the compatible trace elements (Cr-Ni-Co) enrichment in SH serpentinites
527 indicate derivation from a depleted mantle peridotite source. They show affinity to the typical
528 metamorphic peridotites with peridotitic komatiite nature. The normative compositions reflect
529 harzburgitic mantle source. Their Al_2O_3 contents (0.05–1.02 wt. %) are akin to oceanic and active
530 margin peridotites and Pan-African serpentinites. The Cr and TiO_2 contents indicate SSZ
531 environment with tectonic character destructive plate margins and depleted mantle sources.
532 Their $\text{Al}_2\text{O}_3/\text{SiO}_2$ and MgO/SiO_2 ratios support the SSZ affinity and are similar to ANS
533 peridotites with fore-arc setting. Low value of $\text{Al}_2\text{O}_3/\text{SiO}_2$ (fore-arc field), suggesting that these
534 rocks were derived from a mantle source with high degrees of partial melting. Moreover, their
535 Al_2O_3 and CaO depletion is typical of fore-arc peridotites. The normative compositions replicate
536 harzburgitic mantle source.

537 **c.** Structurally, the area represents four deformational events can be distinguished in the
538 Neoproterozoic rocks (D_1 , D_2 , D_3 and D_4); D_1 : E–W thrust faults and related E–W (F_1) folds; D_2 :
539 NW–SE thrust faults and related NW–SE (F_2) folds were formed; D_3 : conjugate NNW-trending
540 sinistral and NNE-trending dextral transpression, as well as N-trending tight folds (F_3) and D_4 :
541 is E–W dextral strike-slip and dip-slip normal faults striking NNW–SSE to N–S and E–W may
542 be related to Red Sea rifting. There are major three fault sets affected the area. The first set trend
543 mainly NE-SW and is manifested in the volcanic-sedimentary assemblage and Gabal SH. The
544 second set trend E-W affecting all the basement rocks and disturbs the first fault set. The third
545 set trend N-S affected all the rock units.

546 The associated structural features with shearing are showed as fallowing:

- 547 • NNE-SSW normal faults,
- 548 • NW-SE reverse faults,
- 549 • NE-SW, NW-SE, WNW-ESE, NNE-SSW and EW quartz veins.

550 The mineralized structures are exemplified by

- 551 • Quartz veins have mainly NE-SW and NNW-SSE trends,
- 552 • Faults have mainly NE-SW trends,

553 • Breccia and alteration has mainly NW-SE trend.

554 d. Magnesite ore deposits in SH serpentinites is cryptocrystalline formed due to hydrothermal
555 alteration of the serpentinite host rocks. It is occur as snow-white veins and stock-works. These
556 characteristics are typical of Kraubath type magnesite deposits

557 e. Gold mineralization is confined to malachite-bearing quartz veins, smoky quartz veins and
558 alteration zones. The gold grades increase with arsenopyrite occurrences.

559

560 **Acknowledgments**

561 The first author is grateful to Shalateen Mineral Resource Company and Gold Pyramids Group
562 Company for helping during geologic field work. He also, thanked his mother and his wife for
563 continuous support. And his first baby Sela.

564

565 **References**

- 566 1. Stern, R.J., *Neoproterozoic crustal growth: the solid Earth system during a critical episode of Earth*
567 *history.* . Gondwana Research 2008. . **14**, : p. 33–50.
- 568 2. Stoeser, D.B., Camp, V.E., , *Pan-African microplate accretion of the Arabian Shield.* Geological
569 Society of America Bulletin 1985. **96**, x: p. 96, 817–826.
- 570 3. Johnson, P.R., Woldehaimanot, B., , *Development of the Arabian–Nubian Shield: perspectives on*
571 *accretion and deformation in the northern East African Orogen and the assembly of Gondwana.* In:
572 Yoshida, M., Dasgupta, S., Windley, B. (Eds.), *Proterozoic East Gondwana: Supercontinent Assembly*
573 *and Breakup.* Geological Society of London Special Publications, , 2003. . **206**, : p. pp. 289–325.
- 574 4. Stern, R.J., Johnson, P.J., Kröner, A., Yibas, B., , *Neoproterozoic ophiolites of the Arabian–Nubian*
575 *Shield.* In: Kusky, T. (Ed.), . Precambrian Ophiolites. Elsevier, , 2004. : p. pp. 95–128.
- 576 5. Stern, R.J., *Crustal evolution in the East African Orogen: a neodymium isotopic perspective.* . Journal
577 of African Earth Sciences 2002. . **34**, : p. 109–117.
- 578 6. Abu-Alam, T.S., and Hamdy, M. M., , *Thermodynamic modelling of Sol Hamed serpentinite, South*
579 *Eastern Desert of Egypt: implication for fluid interaction in the Arabian–Nubian Shield ophiolites.*
- 580 Journal of African Earth Sciences,, 2014. v. **99**, : p. 7-23.

581 7. Stern, R.J., *Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland*. . Annual Reviews of Earth and Planetary Science 1994. . **22**, : p. 319–351.

582 8. Jacobs, J., Thomas, R.J., , *Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African–Antarctic orogen*. . Geology 2004. . **32**, : p. 721–724. .

583 9. Pallister, J.S., Stacey, J.S., Fischer, L.B., Premo, W.R., , *Precambrian ophiolites of Arabia; geologic setting, U–Pb geochronology, Pb-isotope characteristics, and implications for continental accretion*. . Precambrian Research, 1988. **38**: p. 1-54.

584 10. Kröner, A., Todt, W., Hussein, I.M., Mansour, M., Rashwan, A.A., , *Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single grain zircon evaporation technique*. . Precambrian Research 1992. . **59**, : p. 15–32.

585 11. El-Bialy, M.Z., *On the Pan-African transition of the Arabian–Nubian Shield from compression to extension: the post-collision Dokhan volcanic suite of Kid-Malhak region, Sinai, Egypt*. . Gondwana Research 2010. . **17**, : p. 26–43.

586 12. Abdel-Salam, M.G., Tsige, L., Yihunie, T., Hussien, B., , *Terrane rotation during the East African Orogeny: evidence from the Bulbul Shear Zone, south Ethiopia*. . Gondwana Research 2008. . **14**: p. 497–508.

587 13. Abdel-Karim AM, A.S., El-Shafei SA *Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt* International Journal of Earth Sciences, , 2018. **107**: p. 2337–2355.

588 14. Abdel-Karim AM, A.S., El-Shafei SA *Mineral chemistry and geochemistry of ophiolitic ultramafics from central Eastern Desert, Egypt: a case for contaminated mantle-derived magma*. . Geophysical Research Abstracts 2017. **Vol. 19**, (EGU2017-16680-1, EGU General Assembly 2017).

589 15. Abdel-Karim AM, A.S., Helmy HM, El-Shafei SA *Fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramafites*. . Lithos 2016. **263**: p. 52–65

608 16. Ahmed AH, G.M., Arai S *Characterization of the thermally metamorphosed mantle–crust transition*
609 *zone of the Neoproterozoic ophiolite at Gebel Mudarraj, south Eastern Desert, Egypt.* . Lithos 2012.
610 **142–143:** p. 67–83.

611 17. Azer, M.K., Stern, R.J., , *Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt:*
612 *fragments of forearc mantle.* . Geology 2007. **115**, : p. 457–472.

613 18. El Bahariya GA, A.S., *Petrology and origin of Pan-African serpentinites with particular reference to*
614 *chromian spinel compositions, Eastern Desert, Egypt: implication for supra-subduction zone ophiolite.*
615 . Third International Conference on the Geology of Africa, Assiut University, Egypt, , 2003:
616 p. 371–388.

617 19. Zimmer, M., Kröner, A., Jochum, K.P., Reischmann, T., Todt, W., , *The Gabal Gerf complex: a*
618 *Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa.* . Chemical Geology 1995. **123**,
619 : p. 29–51.

620 20. Kröner, A., *Ophiolites and the evolution of tectonic boundaries in the late Proterozoic Arabian–*
621 *Nubian Shield of northeast Africa and Arabia.* . Precambrian Research 1985. . **27**, : p. 277–300.

622 21. Bakor, A.R., Gass, I.G., Neary, C.R., , *Jabal al Wask, northwest Saudi Arabia: an Eocambrian back-*
623 *arc ophiolite.* . Earth and Planetary Science Letters 1976. . **30**, : p. 1–9.

624 22. Abd El-Rahman, Y., Polat, A., Dilek, Y., Fryer, B.J., El-Sharkawy, M., Sakran, S., , *Geochemistry*
625 *and tectonic evolution of the Neoproterozoic incipient arc–forearc crust in the Fawakhir area, Central*
626 *Eastern Desert of Egypt.* . Precambrian Research 2009. . **175**, (116–134.).

627 23. Abdelsalam, M. and R. Stern, *Sutures and shear zones in the Arabian-Nubian Shield.* Journal of
628 African Earth Sciences, 1996. **23**(3): p. 289-310.

629 24. R.M., S., *Review of late proterozoic sutures, ophiolitic mélange and tectonics of eastern Egypt and*
630 *northeast Sudan.* . Geol Rundsch 1994. **83**: p. 537–546.

631 25. Azer, M.K., *Evolution and economic significance of listwaenites associated with Neoproterozoic*
632 *ophiolites in south Eastern Desert, Egypt.* Geologica Acta, 2013. **11**(1): p. 113-128.

633 26. Fitches, W.R., Graham, R.H., Hussein, I.M., Ries, A.C., Shackleton, R.M. and Price, R.C., , *The*
634 *Late Proterozoic ophiolite of Sol Hamed, NE Sudan.* . Precambrian Res., 1983. **19**: p. 385–411.

635 27. Frey FA, S.J., Stockman HW *The Ronda high temperature peridotite: geochemistry and petrogenesis.*
636 . Geochim Cosmochim Acta 1985. **49**: p. 2469–2491.

637 28. Parkinson IJ, P.J., *Peridotites from the Izu–Bonin–Mariana fore-arc (ODP Leg125): evidence for*
638 *mantle melting and meltmantle interaction in a supra-subduction zone setting.* J Petrol 1998. **39**: p.
639 1577–1618.

640 29. Bonatti E, M.P., *Mantle peridotites from continental rifts to oceanic basins to subduction zones.* .
641 Earth Planet Sci Lett., 1989. **9**(297–311).

642 30. Deschamps F, G.S., Godard M, Chauvel C, Andreani M, Hattori K *In situ characterization of*
643 *serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid/mobile*
644 *elements in subduction zones.* . Chem Geol 2010. **269**: p. 262–277.

645 31. Stern RJ, G.C., *Origin of late Precambrian intrusive carbonates, Eastern Desert of Egypt and Sudan:*
646 *C, O, and Sr isotopic evidence.* . Precambr Res 1990 **46**: p. 259–272.

647 32. Coleman, R.G., *Ophiolites. "Mir",* . 1978. : p. 261 p.

648 33. Abdel-Karim AM, A.Z., *Possible origin of the ophiolites of Eastern Desert of Egypt, from*
649 *geochemical prospectives.* . Arab J Sci Eng 2010. **34**: p. 1–27.

650 34. PA, F., *Oceanic basalts. Blachie and Son Ltd, New York.* 1991

651 35. Bodinier JL, G.M., *Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed), Treatise on*
652 *geochemistry mantle and core: treatise on geochemistry, 2 edn.* . Elsevier Science Ltd, Amsterdam,
653 , 2003: p. pp 103–170.

654 36. Azer MK, K.A., *Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid*
655 *area, central Eastern Desert, Egypt.* . J Afr Earth Sci 2005. **43**: p. 525–536.

656 37. Jensen, L.S., *A new cation plot for classifying sub-alkaline volcanic rocks. Ontario Division Mines*
657 *Miscellaneous* 1976. : p. Paper No. 66.

658 38. Ishii T, R.P., Maekawa H, Fiske R *Petrological studies of peridotites from diapiric Serpentinite*
659 *Seamounts in the Izu- Ogasawara-Mariana forearc, leg 125. In: Pearce J, Stokking LB, et al (eds),*
660 *Proceedings of the Ocean Drilling Project, Leg 125,* . Scientific Results (College Station), 1992: p.
661 pp 445–485. .

662 39. Pearce JA, B.P., Edwards SJ, Parkinson IJ, Leat PT *Geochemistry and tectonic significance of*
663 *peridotites from the south sandwich arc-basin system, South Atlantic.* . Contrib Miner Petrol 2000.
664 **139**: p. 36–53.

665 40. Ahmed AH, H.A., *Heterogeneously depleted Precambrian lithosphere deduced from mantle*
666 *peridotites and associated chromitite deposits of Al'Ays ophiolite, Northwestern Arabian Shield, Saudi*
667 *Arabia.* . *Ore Geol Rev* 2015. **67**: p. 279–296.

668 41. Hawkins, J.W., *Geology of supra-subduction zones—implications for the origin of ophiolites.* In:
669 *Dilek, Y., Newcomb, S. (Eds.), Ophiolite Concept and the Evolution of Geological Thought.* Boulder,
670 CO, . Geological Society of America Special 2003. : p. Paper 373, 227–268.

671 42. Y, N., *Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle*
672 *melting melt extraction and post-melting processes beneath mid-ocean ridges.* . *J Petrol* 2004. **45(12)**:
673 p. 2423–2458.

674 43. Song, S., Su, L., Niu, Y., Lai, Y., Zhang, L.,, *CH4 inclusions in orogenic harzburgite: evidence for*
675 *reduced slab fluids and implication for redox melting in mantle wedge.* . *Geochimica et*
676 *Cosmochimica Acta* 2009. . **73 (6)**: p. 1737–1754.

677 44. Godard, M., Lagabrielle, Y., Alard, O., Harvey, J.,, *Geochemistry of the highly depleted peridotites*
678 *drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge):*
679 *implications for mantle dynamics beneath a slow spreading ridge.* *Earth and Planetary Science*
680 *Letters* 2008. . **267**: p. 410–425.

681 45. Deschamps F, G.M., Guillot S, Hattori K *Geochemistry of subduction zone serpentinites: a review.*
682 . *Lithos* 2013. **178**: p. 96–127.

683 46. El-Sayed MM, F.H., Mohamed FH *Geochemical constraints on the tectonomagmatic evolution of*
684 *the late Precambrian Fawakhir ophiolite, central Eastern Desert, Egypt.* *J Afr Earth Sci* 1999. **29**: p.
685 515–533.

686 47. ES, F., *Chrome spinels in serpentinites and talc carbonates of the El-Ideid–El Sodmein District, central*
687 *Eastern Desert, Egypt: their metamorphism and petrogenetic implications.* *Chem Erde* 2008. **68(2)**:
688 p. 195–205.

689 48. Khedr MZ, A.S., *Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt,*
690 *constrained from primary mantle mineral chemistry.* . *Mineral Petrol* 2013. **107(5)**: p. 807–828.

691 49. Boskabadi A, P.I., Broman C, Boyce A, Teagle DAH, Cooper MJ, Azer MK, Stern RJ,
692 Mohamed FH, Majka J *Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of*

693 *Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au*
694 *deposits. Int Geol Rev 2017. 59(4): p. 391–419.*

695 50. Ghoneim MF, S.I., Hamdy MM *Origin of magnesite veins in serpentinites from Mount El-Rubshi*
696 *and Mount El-Maiyit, Eastern Desert, Egypt. . Arch Mineral 2003. 54: p. 41–63.*

697 51. Hamdy MM, L.E., *Metamorphism of ultramafic rocks at Gebel Arais and Gebel Malo Grim, Eastern*
698 *Desert, Egypt: mineralogical and O-H stable isotopic constraints. Egypt J Geol 2007. 51: p. 105–*
699 *124.*

700 52. C, M., *Serpentinization of abyssal peridotites at mid-ocean ridges. . C R Geosci, 2003. 335: p. 825–*
701 *852.*

702 53. Paulick H, B.W., Godard M, De Hoog JCM, Suhr G, Harvey J *Geochemistry of abyssal peridotites*
703 *(Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): implications for fluid/rock interaction in slow*
704 *spreading environments. Chem Geol 2006. 234: p. 179–210.*

705 54. Chalot-Prat F, G.J., Lombard A *No significant element transfer from the oceanic plate to the mantle*
706 *wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos 2003. 69:–*
707 *p. 69–103.*

708 55. Hattori KH, G.S., *geochemical character of serpentinites associated with high- to ultrahigh-pressure*
709 *metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones.*
710 *Geochem Geophys Geosyst. , 2007.*

711 56. Nockolds, S.R., *The relation between chemical composition and paragenesis in the biotites of micas*
712 *of igneous rocks. Am J Sci 1947. . 245(5): p. 401–420.*

713 57. Wood, D.A., *The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification*
714 *and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic*
715 *Province. . Earth Planet Sci. , 1980. . Lett 50: p. 11–30.*

716 58. Pearce, J.A., Lippard, S.J., Roberts, S., , *Characteristics and tectonic significance of supra-*
717 *subduction ophiolites. In: Kokelaar, B.P., Howells, M.F. (Eds.), . Geological Society of London,*
718 *Special Publication 1984. . 16, : p. 777–794.*

719 59. KI, K., *Chromite mineralization in ultramafic rocks of the Wadi Ghadir area, Eastern Desert, Egypt:*
720 *mineralogical, microchemical and genetic study. Neues Jb Mineral Abh 2007. 183: p. 283–296.*

721 60. Geng, H.Y., Sun, M., Yuan, C., Zhao, G.C., Xiao, W.J., , *Geochemical and geochronological study*
722 *of early carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications.*
723 *Journal of Asian Earth Sciences*, 2011. . v. **42**,: p. p. 854 – 866. .

724 61. Flower, M.F.J., and Levine, H.M., , *Petrogenesis of a tholeiite–boninite sequence from Ayios Mamas,*
725 *Troodos ophiolite: evidence for splitting of a volcanic arc* Contribution to Mineralogy and
726 Petrology 1987. **97**, : p. 509– 524.

727 62. Shervais, J.W., *Ti –V plots and the petrogenesis of modern and ophiolitic lavas.* . Earth Planetary
728 Science Letters 1982. . **59**, : p. 101 –118.

729 63. DS, O.H., *Serpentinites, records of tectonic and petrological history.* . Oxford Monographs on
730 Geology and Geophysics 1996(no 34.).

731 64. Snow JE, D.H., *Pervasive magnesium loss by marine weathering of peridotite.* . Geochim
732 Cosmochim Acta 1995 **59**:: p. 4219–4235.

733 65. Salters VJM, S.A., *Composition of the depleted mantle.* . Geochem Geophys Geosyst. , 2004.

734 66. Kusky, T.M., and Ramadan, T. M., , *Structural controls on Neoproterozoic mineralization in the*
735 *South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach.* Journal
736 of African Earth Sciences,, 2002, . v. **35**, no. **1**, : p. p. 107-121.

737 67. Ren, D., and Abdelsalam, M. G., , *Tracing along-strike structural continuity in the Neoproterozoic*
738 *Allaqi-Heiani Suture, southern Egypt using principal component analysis (PCA), fast Fourier*
739 *transform (FFT), and redundant wavelet transform (RWT) of ASTER data.* Journal of African Earth
740 Sciences, , 2006, . v. **44**, no. **2**, : p. p. 181-195.

741 68. Abdeen, M.M., and Abdelghaffar, A. A., , *Syn-and post-accretionary structures in the*
742 *Neoproterozoic Central Allaqi-Heiani suture zone, Southeastern Egypt.* Precambrian Research, ,
743 2011, . v. **185**, no. **3-4**, : p. p. 95-108.

744 69. Ibrahim, W., Watanabe, K., Ibrahim, M., and Yonezu, K., , *Neoproterozoic Tectonic Evolution of*
745 *Gabal Abu Houdied Area, South Eastern Desert, Egypt: As a Part of Arabian–Nubian Shield*
746 *Tectonics.* Arabian Journal for Science and Engineering,, 2015, . v. **40**, no. **7**, : p. p. 1947-1966.

747 70. Pohl, W., *Genesis of magnesite deposits—models and trends.* Geologische Rundschau, 1990. **79**(2):
748 p. 291-299.

749 71. Allegre CJ, P.J., Humler E, Hofmann AW *The chemical composition of the Earth.* . Earth Planet.
750 Sci. Lett., 1995. **134**: p. 515-526.

751 72. Arif M, M.C., *Goechemistry of serpentinized peridotites from the Indus Suture Ophiolite in Swat,*
752 *NW Pakistan.* Geol. Bull. Univ. Peshawar 2003. **36**: : p. 1-10.

753 73. Dardir, A.A., Elshimi, K.A.M., , *Geology and geochemical exploration for gold in the banded iron*
754 *formation of Um Nar area, Central Eastern Desert, Egypt.* . Ann. Geol. Surv. Egypt 1992. . **18**; p.
755 381– 409.

756 74. Takla, M.A., Suror, A.A.,, *On the occurrence of Ni-sulphides and arsenides in some Egyptian*
757 *serpentinites.* . Egypt. Mineral. , 1996. **8**: p. 1 –18.

758 75. Botros, N.S., *Geological and geochemical studies on some gold occurrences in the north Eastern*
759 *Desert, Egypt.* . PhD thesis, Zagazig Univ., Zagazig, Egypt. , 1991: p. 146 pp.

760 76. Oweiss, K.A., El Naggar, A.A., Abdel Razik, K.A., Moselhy, N., Ali, A.B., , *Gold exploration at*
761 *the Heianai area, South Eastern Desert, Egypt.* . Ann. Geol. Surv. Egypt 2001. . **24**, : p. 435–450.

762 77. Ramadan, T.M., Ibrahim, T.M., Said, A.D., Baiumi, M., , Application of remote sensing in
763 exploration for uranium mineralization in Gabal El Sela area, south Eastern Desert, Egypt. .
764 The Egyptian Journal of Remote Sensing and Space Science 2013. . **16** , : p. 199-210.

765 78. McDonough, W.F., Sun, S-s., *The composition of the Earth.* . Chemical Geology 1995. **120**; p.
766 223-253.

767 79. Jagoutz E, P.H., Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V,
768 Wanke H *The abundances of major, minor and trace elements in the earth's mantle as derived*
769 *from primitive ultramafic nodules.* . Proc. Lunar Planet. Conf. 10;, (1979) p. 2031-2050.

770 80. Hart SR, Z.A., *In search of a bulk-Earth composition.* Chem Geol 1986. **57**:: p. 247-267.

771 81. Gokhale, N.W., *Chemical composition of biotite as a guide to ascertain the origin of granites.*
772 . Bull Soc Geol 1968. Fin 40: p. 107–111.

773 82. Streckeisen, A., *Classification of common igneous rocks by mean of their chemical*
774 *composition. A provisional attempt.* . Neues Jahrbuch für Mineralogie – Abhandlungen 1976.
775 : p. 1–15.

776 83. Pohl, W., *Genesis of magnesite deposits—models and trends.* Geologische Rundschau,, 1990,
777 . v. 79, no. 2, : p. p. 291-299.