

Article

Small-scale rotor aeroacoustics for drone propulsion: a review of noise sources and control strategies

Paolo Candeloro¹, Tiziano Pagliaroli¹, Daniele Ragni², and Silvia Di Francesco¹

¹ Università Niccolò Cusano, Via Don Carlo Gnocchi 3, 00166 Rome, Italy

² TU Delft Aerospace Faculty, AWEP Department, Kluyverweg 1, 2629HS, Delft

* Correspondence: paolo.candeloro@unicusano.it

Abstract: In the last decade, the drone market has grown rapidly for both civil and military purposes. Due to their versatility, drones demand is constantly increasing, with several industrial players joining the venture to transfer urban mobility to the air. This has exacerbated the problem of noise pollution, mainly due to the relatively lower altitude of these vehicles and to the proximity of their routes to extremely densely populated areas. In particular, both the aerodynamic and aeroacoustic optimization of the propulsive system and of its interaction with the airframe are key aspects of the design of aerial vehicles for the success or the failure of their mission. The industrial challenge involves finding the best performance in terms of loading, efficiency and weight, and, at the same time, the most silent configuration. For this reason, research has focused on an initial localization of the noise sources and, on further analysis, of the noise generation mechanism, focusing particularly on directivity and scattering. The aim of the present study is to review the noise source mechanisms and the state-of-the-art technologies available in literature for its suppression, focusing especially on the fluid-dynamic aspects of low Reynolds numbers of the propulsive system and on the interaction of the propulsive-system flow with the airframe.

Keywords: Drones; Aerodynamics; Aeroacoustics; Rotor Noise; Airframe Noise; Porous Material

1. Introduction

The term "drone" refers to an automatized vehicle with high manoeuvrability, in both hovering and cruise operations. In the most interesting configurations, Unmanned Aerial Vehicle (UAVs), small multicopter Unmanned Aerial Systems (UAS) or Micro Aerial Vehicle (MAV) are already designed with vertical or horizontal take-off and landing capabilities, and can manoeuvre with extremely high versatility and speed. Due to their unique properties, MAVs are often used in tactical surveillance missions or for reconnaissance purposes. In order to gain information about the scouting area without being easily identified, achieving an acoustically stealth-mode is an essential feature of mission success. Despite the different aims, the noise footprint of these vehicles is extremely important even when employed in civilian roles, due to their flight proximity to populated urban areas. Some of their mission tasks still require geographical mapping, infrastructure inspections, precision agriculture, delivery and e-commerce. Small drones will have an enormous social and economic impact. In fact, this technology opens new possibilities in several application fields. For example, drones equipped with cameras can resolve the problem of the images taken by satellites (which are often expensive, weather-dependant and in low-resolution) or car-based images (which are limited to human-level perspectives and the availability of accessible roads). In addition, farmers can check the quality of crop growth by using cameras mounted on specific UAV. These particular drones will also enable construction companies to verify work advancement in real time. For mining companies, interest focuses on the possibility of obtaining precise volumetric data, leading to lower risks for their employers. Humanitarian

35 organizations will be able to evaluate and adapt aid efforts for refugee camps, while medical supplies
36 can be delivered quickly by rescue organizations where necessary. By using MAVs for transportation,
37 developing countries (i.e. countries without appropriate road networks) could deliver goods simply.
38 Inspection drones, vehicles able to fly in confined space, can be used by fire-fighting and emergency
39 units to assess danger faster and safely, or by logistic companies to detect damage to both inner and
40 outer shells of ships, or by road maintenance companies to measure deterioration in bridges or tunnels.
41 Security agencies will be able to improve building safety by monitoring even the areas outside cameras
42 range. Drones will enable disaster mitigation agencies to inspect partially collapsed buildings in the
43 event of obstacles for terrestrial robots. Teams of autonomous drones coordinators will enable missions
44 to last longer than the flight time of a single drone by allowing it to leave the swarm for a short time to
45 replace the battery [1].

46 An interesting application for drones is their ability to provide accurate surface flow maps of sub-meter
47 water bodies [2,3]. With These vehicles, remote and distributed non-invasive flow measurements can
48 be taken in water environments that are difficult to access. By using drones, on site surveys, which
49 are typically used for traditional measurements, will be unnecessary, allowing for inaccessible area
50 to be observed. Generally, in situ stations provide observation points that are too widely spaced to
51 achieve spatial patterns. On the other hand, UAV can open up several possibilities in land and water
52 monitoring because of low-altitude flight, low cost and flexible payload design [3]. Micro-UAVs can
53 also be employed for analysing large-scale environmental and hydraulic parameters [4]. In particular,
54 they focus on the spatial and temporal extension of reed beds(common reed). The advantages of using
55 UAVs is their extreme portability, easy driving and lower costs and the possibility to fly in dangerous
56 areas reducing enormously risks for the employers. On the contrary, the disadvantages are the limited
57 weight and dimension payload and the instabilities in bad weather conditions. Nevertheless, results
58 show that UAV system can be considered an alternative to the traditional monitoring methods. In fact,
59 UAVs guarantee maps with sufficient accuracy due to their mechanic characteristics and the usability
60 of the control software.

61 Additionally, the combination of distributed or multi-rotor propulsive systems, generally preferred for
62 manoeuvrability, and proximity to civil areas makes drone noise a challenging issue for the European
63 scientific community at both industrial and academic level. In a 2018 document, the European Aviation
64 Safety Agency (EASA) specified the noise level requirement for drones at a fixed value of 60 dB(A) ,
65 measured at a distance of $3 - m$ from the source [5]. Generally, the strategic objectives for drone market
66 growth are greater endurance and acoustic impact reduction. These two aspects are also key issues to
67 improve the safety of this technology in the future. Drone noise pollution is also a problem from the
68 point of view of public acceptance of the widespread deployment of flying drones in urban areas. To
69 give an idea of public acceptance of large-scale use of drones in residential areas, information about
70 the effects on the population of a large-scale test drone for delivering can be found in an article from
71 the Wall Street Journal ("Delivery Drones Cheer Shoppers, Annoy Neighbors, Scare Dogs", WSJ 2018
72 [6]). In this article, drone noise is indicated as the main obstacle to widespread public acceptance of
73 this technology in residential areas. Furthermore, it is known that exposure to aircraft noise might
74 be a significant cause of community reaction and social disturbance. Using a definition of health that
75 includes both mental and social well-being, it is true and a well-known fact that being exposed to
76 aircraft noise causes ill-health. Several studies indicated that aircraft noise exposure can be associated
77 with a prevalence of psychological and psychiatric symptoms. Studies show a strong link between
78 aircraft noise and sleep loss and awakenings [7]. These effects can be a further motivation to find a
79 way to reduce noise generated by UAVs.

80 Despite the clear drawbacks related to acoustic emissions, drones are earmarked to transform the
81 marketplace of deliveries and civil urban transports, speeding up delivery times and reducing costs,
82 which is what the companies are betting on them [6]. The global drone market will have grown from
83 \$ – 2 billion in 2016 to almost \$ – 127 billion in 2020 [8]. Growth is so fast that this technology is
84 expected to encourage innovations that will disrupt existing industries. In addition, interest in this

topic can also be seen in the European Union *U-space* project. U-space is a set of new services designed to guarantee safe, efficient and secure access to airspace under $150 - m$ for a great number of drones. This would facilitate any kind of routine mission in all classes of airspace and all types of environment. One additional and often overlooked drone application is the monitoring and scouting of wildlife. The impact of UAVs on the animal population has been the object of recent research [9]. What the studies have found is that drones constitute a potential new source of anthropogenic disturbance, and depends both on UAV configurations themselves and on additional environmental factors. Mulero-Pazmany et al. [9] suggest that animal reactions are not only influenced by the magnitudes of the noise levels, but also by the sound intermittency and timbre. In the case of a UASs, these changes in intensity may be associated with aircraft on-flight engine variations due to sudden trajectory changes, or due to wind gusts, which has led to the extension of the aeroacoustic problem to unsteady regimes. Noise signature has been additionally addressed as one of the main influencing parameters on both human and animal behaviour [10,11]. Long-term exposure studies based upon the acoustic emissions of UASs have yet to be performed. However, according to recent studies, the physiological and behavioural aspects associated to psycho-acoustic stress [7] are expected to potentially cause relatively higher energy expenditures, decreases in reproduction and survival, and space-use changes, which might compromise the average fitness or even viability of certain populations. Even marine mammals could be negatively affected by UAVs noise emission. In [12,13] drone noise and visual cues are the main problems for the utilization of drones in wildlife science. These situations require drones to fly at close range (less than $10 - m$), increasing the risk of disturbance for marine mammals. I- air-recording showed that the noise level generated by UAVs (they considered two commonly used drones in marine mammal research) were within the level known to cause disturbance in some animals.

There is interest in this topic from both the academic and industrial spheres. The main manufacturer moving to design a silent configuration is DJI, which designed the *Mavic Low Noise Propeller*, which seems to reduce noise to almost 60%, measurable in 4 dB . In addition, the *Master Airscrew* has designed a low noise propeller for the DJI Mavic Air that generates low-pitch sound compared to the original props. The new designed propeller reduces the aircraft noise by up to 3.5 dB and increases the flight time by 12% which means 2.5 minutes of extra flight time for the standard Mavic Air battery. From an academic point-of-view, different research groups are focusing on UAV noise. The main example are the *University of Southampton*, the *Institut Supérieur de l'Aéronautique et de l'Espace* (ISAE-SUPAERO) and *Niccolò Cusano University*. The university of Southampton is working mainly on leading edge modification to reduce interaction noise [14,15], whereas main research topic of ISAE-SUPAERO is the design of a quiet propeller by means of an optimization process [16]. Instead, Niccolò Cusano University is focusing on trailing edge modification to reduce the broad-band noise component generated by propellers [17]. Furthermore, numbers of research groups working on this topic have increased.

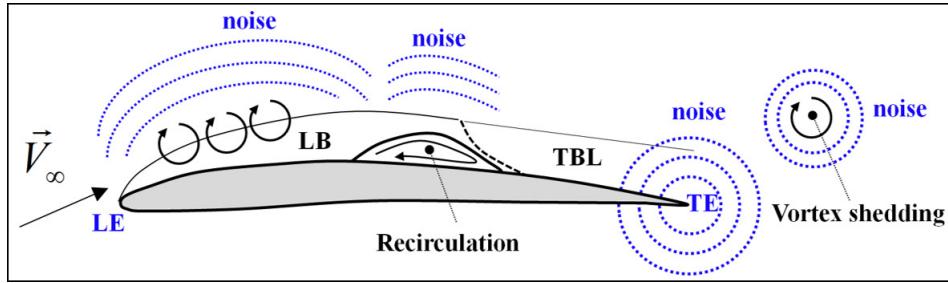
For propeller-driven aircraft, the main noise sources are the engine and the propeller itself, and this problem strongly affects low Reynolds regime too. Therefore, to reduce drone noise signature, the only way to proceed is to optimize both components at the same time. For this reason, in recent years, there has been renewed interest in the first aeronautical propulsion device: the propeller. Rotor noise is becoming a very central issue because of the several fields of drone application. Due to constraints in size and power-density, MAVs are typically equipped with electric motors, which contribute to simplify operations and significantly reduce the mechanical noise signature. As reported in literature, the greater benefit is achieved through the usage of brushless motors [18]. In the last few years, the reduction of noise from the propulsive system of small rotors has been the subject of several works in literature [18–26]. Propeller noise reduction requires particular care in the design process because the achievement of an aeroacoustic optimum may affect the generation of aerodynamic forces. While several previous works focused on relatively high Reynolds numbers propeller, few studies have focused on low-Reynolds small-scale propellers. For the latter kind of propellers, especially in hovering conditions, where a considerable area of the rotor is subjected to stall and to self-interaction

135 with its own slipstream, the effect of the flow features, such as recirculation bubbles, stall cells and
 136 non-uniform boundary layer transition, are exacerbated.

137 In the Fourier domain, the noise footprint of these propellers exhibits two main noise components:
 138 tonal and broadband contributions [20,27,28]. While the tonal component is associated with the
 139 rotational regime of the blade, the broadband component is due to the convection of flow structure
 140 along the leading/trailing edge of the blades. The presence of the aforementioned flow structures,
 141 associated with laminar separation or three-dimensional spanwise flow non-uniformity contributes to a
 142 reduction in effective loading and an increase in the unsteadiness at the blade edge. Small-scale UAVs
 143 provide a great challenge to the task of noise characterization and prediction. Indeed, the main noise
 144 sources remain consistent with those associated with helicopters, but there are numerous unknowns
 145 which could be investigated. For example, the effect of reduced size and the balance between tonal
 146 noise and broadband noise. An important difference between small size UAVs and conventional
 147 rotorcraft is the flow speed regime in which they fly, measured by the chord-based Reynolds number
 148 at 75% span:

$$Re_c = \frac{0.75R\rho_\infty\Omega c}{\mu_\infty} \quad (1)$$

149 where Ω is the rotational regime, R is the rotor tip radius, ρ_∞ is the air density, c is the rotor
 150 blade chord and μ_∞ is the air dynamic viscosity. For a full-scale helicopter, a representative Re_c is in
 151 the order of 10^6 , while for a UAV it may range from 10^4 to 10^5 . In terms of conventional flat plate
 152 aerodynamics, the former Reynolds number explicates in a turbulent flow regime while the latter
 153 in a laminar-transitional flow regime [29]. This discrepancy calls into question the applicability of
 154 traditional noise prediction tools.


155 When summarizing the different contributions, literature shows that broad-band contributions in
 156 the noise footprint can be due to: incoming-flow turbulence at the blade leading edge (i.e. LE noise
 157 from highly turbulent flow in harsh environments), interaction of the boundary layer with the blade
 158 trailing edge (i.e. TE noise due to turbulent boundary-layers but also due to unsteady flow separation
 159 of re-circulation bubbles etc), flow separation of the flow on the different blade sections (i.e. stall and
 160 flow separation noise), blade vortex interaction (i.e. BVI due to the interaction of a rotor blade with the
 161 shed tip vortices from a previous blade) [20]. Predicting and reducing the noise radiation from these
 162 contributions is even more complicated due to the variety and sensitivity of the noise to the flow field.
 163 These reasons clarify the complexity of the problem and the importance of improving knowledge in
 164 this field.

165 In literature, a few studies were devoted to the analysis of the noise due to the interaction between
 166 the propulsive system and the airframe in the case of small propeller. Zawodny et al. [30] in their
 167 experimental analysis found that the presence of airframe surfaces is a not-negligible noise source.
 168 In fact, it generates noise levels analogous or even greater than the rotor blade surfaces in particular
 169 rotor tip conditions. This study analyzed the effects of both airframe to rotor distance and airframe
 170 size. Results show prominent tonal peaks in the Fourier domain related to airframes in the case
 171 of close proximity between the airframe and the rotor plane. This effect seems to decay rapidly if
 172 the rotor-airframe distance increases. Even, the airframe shape seems to influence noise generation.
 173 Generic constant cross-section systems were found not to affect noise generation in the plane of the
 174 rotor. Instead, a conical airframe shows an increase in the tonal noise component.

175 The manuscript is organized as follows. In §2.1 there is a brief explanation of the most important noise
 176 sources for rotors, §2.2 reviews the state of art of passive control strategies currently in use. Finally, §3
 177 draws conclusions and provides a brief overview of future configurations.

178 2. Noise in Drones

179 This section provides a brief explanation of the most common noise prediction model and a list
 180 of the most interesting passive noise control strategies found in literature. The aim is to understand

Figure 1. Representation of the main noise sources around an airfoil.

181 the noise generation mechanism and how this phenomenon can be mitigated. The main problem is to
 182 guarantee the aerodynamic performance necessary for proper mission development.

183 *2.1. Noise modelling: tonal and broad-band*

The aerodynamic noise of conventional propellers can be split into two main components in the Fourier domain: tonal and broad-band contributions [20,28].

Tonal components are directly related to the periodic motion of the blade in the surrounding fluid. Therefore, the frequency and magnitude of the radiated noise is related to rotational velocity. The physical mechanism associated with the production of the tonal contributions is related to blade thickness and to aerodynamic loading.

On the other hand, broad-band noise is radiated by the interaction of turbulent flow structures with the blade edge. Therefore, it is either generated at the blade leading/trailing edge or at the blade tip. Research studies tend to separate pressure fluctuations, denoted as p' , radiated from the blade surface in the far field, into two components [20,27,28]:

$$p' = p'_{NB} + p'_{BB} \quad (2)$$

184 Where p'_{NB} is the narrow-band component of pressure fluctuations, whereas p'_{BB} is the broad-band
 185 counterpart. The theoretical prediction of the periodic noise generated by propellers is based on the
 186 solution of the Ffowcs, Williams and Hawkings non-homogeneous wave equation, known as the
 187 Ffowcs-Williams/Hawkings equation [21,31].

$$\frac{1}{a^2} \cdot \frac{\partial^2 (p')}{\partial t^2} - \frac{\partial^2 (p')}{\partial x_i^2} = \frac{\partial^2 T_{ij}}{\partial x_i \cdot \partial x_i} + \frac{\partial}{\partial t} \left\{ \rho_a \cdot v_i \cdot \delta(f) \cdot \frac{\partial f}{\partial x_i} \right\} - \nabla \left\{ \Delta p_{ij} \cdot \delta(f) \cdot \frac{\partial f}{\partial x_i} \right\} \quad (3)$$

188 where a is the speed of sound, ρ is the air density, p' is the perturbation on the static pressure, t
 189 is the observer time and x_i are the components of the position vector, T_{ij} are the components of the
 190 Lighthill stress tensor, p_{ij} are the components of the generalized stress tensor, v_i the components of the
 191 source velocity vector, δ is the Kronecker's delta function and f is a function that defines the surface of
 192 the body producing the pressure wave.

193 In this equation, there are 3 forcing terms on the right-hand side which are related to vortex, thickness
 194 and loading. For thin blades and low Mach numbers ($M < 1$), the vortex term is negligible and the
 195 narrow-band contribution is given by the sum of a sound source related to blade thickness p'_T and one
 196 related to aerodynamic loading p'_L , as distributed force over the blade:

$$p'_{NB}(\mathbf{x}, t) = p'_T(\mathbf{x}, t) + p'_L(\mathbf{x}, t) \quad (4)$$

The thickness term takes into account the fluid displacement due to the body, while the loading counterpart takes count of the unsteady force distribution over the body surface.

A numerical evaluation of these two quantities can be achieved by discretizing the blade in N finite

elements along the span. The resulting overall radiation field is approximated as the sum of N pointwise sources.

$$p'_L(\mathbf{x}, t) = \sum_{k=1}^N p_{l,k}(\mathbf{x}, t) \quad (5)$$

$$p'_T(\mathbf{x}, t) = \sum_{k=1}^N p_{t,k}(\mathbf{x}, t) \quad (6)$$

Using a reference system of coordinates $\mathbf{x} = (x, y, z)$ as defined in Fig.2, the two components can be calculated using Eqs. 7-8 (see [20]), which are derived in [28,32]:

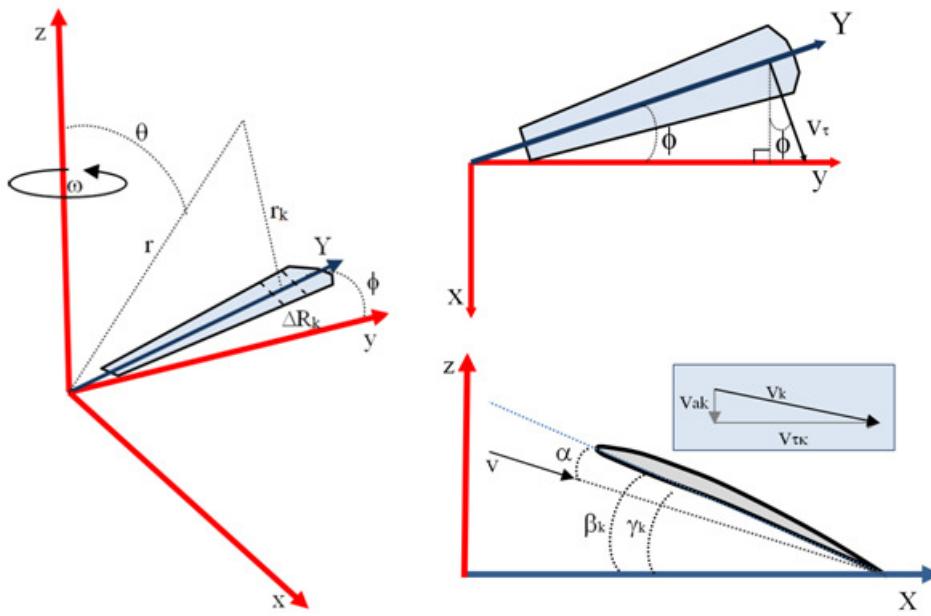
$$p'_{L,k}(\mathbf{x}, t) = \frac{1}{4\pi} \left\{ \frac{\dot{\mathbf{F}}_k \cdot \hat{\mathbf{r}}_k + \mathbf{F}_k \cdot \hat{\mathbf{r}}_k \left[\frac{(\dot{\mathbf{M}}_k \cdot \hat{\mathbf{r}}_k)}{(1-M_{r_k})} \right]}{ar_k (1-M_r)^2} + \frac{\mathbf{F}_k \cdot \hat{\mathbf{r}}_k \left[\frac{(1-\mathbf{M}_k \cdot \mathbf{M}_k)}{(1-M_r)} \right] - \mathbf{F}_k \cdot \mathbf{M}_k}{r_k^2 (1-M_r)} \right\} \quad (7)$$

$$p'_{T,k}(\mathbf{x}, t) = \frac{\rho}{4\pi} \frac{\partial}{\partial^2 \tau^2} \left\{ \frac{\Phi_k}{r_k (1-M_r)} \right\}^2 \quad (8)$$

where $\hat{\mathbf{r}}_k$ is the position vector of an observer relative to the k -point noise source ($|\hat{r}| = 1$), \mathbf{F}_k is the aerodynamic force on the k -point blade element of volume Φ_k . The Mach vector is defined as $\mathbf{M}_k = \frac{\mathbf{v}}{a}$ and the scalar magnitude M_{r_k} represents the component of \mathbf{M}_k on \mathbf{r}_k . If t is time as measured in the observer's reference frame, retarded time τ indicates the time when the pressure wave left the noise source. Observer time t and retarded time τ are connected by:

$$\tau = t - \frac{r(\tau)}{a} \quad (9)$$

In Eq.7, the first term represents the far field, while the second is representative of near field contribution. These two terms differ by the power of r_k in the denominator. The far-field term is proportional to r_k^{-1} while the near field term is proportional to r_k^{-2} , thus the last term becomes relatively small at large distances from the noise sources [21].


On the other hand, the broad-band noise of a propeller is generally produced by three main sources: noise related to the turbulence of the incoming flow (*LE noise*), noise produced by the interaction of the turbulent boundary layer over the blade surface with the trailing edge (*TE noise*) noise generated by the possible separation of the flow (*Separation noise*) [20]. Therefore, the broad-band contribution can be further split as:

$$p'_{BB} = p'_{TE} + p'_{LE} + p'_S \quad (10)$$

where p'_{TE} is the TE component, p'_{LE} is the LE component and p'_S is the separation term. Several authors have addressed the prediction of trailing edge broad-band noise in literature. A relation between the Power Spectral Density of the trailing noise ($S_{pp}^{TE}(r, \theta, \omega)$) and the spanwise velocity correlation length l_y is reported in [20] as:

$$S_{pp}^{TE}(r, \theta, \omega) = \frac{B}{8\pi} \left(\frac{\omega c}{2ar} \right)^2 \Delta R D(\theta, \phi) |I|^2 \Phi_{pp} l_y \quad (11)$$

where c is the chord, ΔR is the spanwise length of the blade, I is the radiation integral function, B is the number of the blades, $\omega = 2\pi f$ is the angular frequency, f is the rotational frequency, $D(\theta, \phi)$ is the directivity function and Φ_{pp} is the wall power spectral density of the pressure fluctuations. The wall pressure spectral density S_{pp}^{TE} and the spanwise correlation length l_y can be evaluated experimentally or numerically. There are different models for S_{pp}^{TE} estimation, e.g. the one proposed by Schklinker and Amiet [33], or the more recent model proposed by Rozenberg et al. [34], which takes into account the effect of the adverse pressure gradient. On the other hand, for l_y evaluation the most used model is the Corcos' model [35].

Figure 2. Representation of the reference coordinate system considered for the definition of the aeroacoustic model.

The effect of the flow separation on broad-band noise can be significant as well. According to [25], an estimation of the power spectral density is provided by the following expression:

$$S_{pp}^{sep}(\mathbf{x}, \omega) = \left(\frac{\omega}{4\pi ar} \right)^2 \left(\rho^2 c U^2 A_S^2 \right) \left(\frac{z}{r} \right)^2 \left\{ \frac{c_D^2}{4} \left[\frac{2\pi U}{\omega c (1 - M_r)} \right]^3 8.6 \cdot 10^{-7} \right\} \quad (12)$$

208 where c_D is the drag coefficient, A_S is the body cross-sectional area where separation is localized
209 and U is the velocity of the flow.

210

211 *2.2. Noise reduction strategies*

212 As pointed out in the previous section, UAV and MAV propeller noise is a central and complicated
213 issue that has to be taken into account in system design. This section describes the most effective noise
214 control techniques, especially the physical mechanism that enables noise reduction and the changes in
215 aerodynamic performance induced by the noise control system itself.

216 There are two basic strategies to control the noise generated: active and passive. Large scale airfoils and
217 propellers have employed active flow control methods, but these solutions require energy expenditure.
218 These methods include active modifications of airfoil geometry or of flow conditions, which is achieved
219 by either modifying airfoil geometry and surface through actuators, or by acting on the local boundary
220 layer through blowing and suction jets. Due to the typical sizes of the control systems and of the
221 actuators, these technologies are not suitable for small-scale propellers employed by MAVs. On the
222 other hand, passive flow control techniques enable the boundary layer to be manipulated without
223 further consumption of additional energy, and it can be employed to reduce noise generation. For this
224 reason, there have been several studies on them in the last decade [36]. Consequently, in this paper
225 the focus is on the second control method. The passive control methods employed to reduce noise
226 generation include serrations, porous materials application, boundary layer tripping and geometry

optimization. The use of serrations is of particular interest in this work due to its potential noise reduction efficiency.

2.2.1. Optimized Geometry

The general aim of the propeller design process is to find the best aerodynamic performance without considering aeroacoustic behaviour. This is achieved by means of an optimization-based design process. Optimization theory points out that an optimal design problem can be described mathematically by looking for a configuration that minimizes (or maximizes) a certain cost function J that embodies the design objective [21]. For rotors, most of the existing methods are based on the work of Betz [37] from 1919. This approach focuses on finding the optimal propeller geometry in order to minimize the power required to obtain a certain propulsive force (or to maximize the thrust produced by a certain power) at a certain specific operating condition (which has to be interpreted as a combination of airspeed, altitude, and propeller rotational speed). To design a quiet propeller, acoustic requirements must be included and an iterative process was commonly employed. First, the optimal propeller in aerodynamic terms is defined (i.e. with maximum efficiency). Then, the resulting propeller is further modified in order to improve its acoustic properties [28,38,39]. This is the "classical" procedure for quiet propeller design, but such an iterative process presents some complications. It does not ensure an optimal final design and it is also difficult to introduce additional constraints into this serial design process, such as side or structural constraints. An improvement of this process is to implement a multidisciplinary design optimization (MDO) approach [40,41]. MDO ensures that all the different disciplines are addressed simultaneously. In this case of study, aerodynamic, structural and acoustic problems were analysed at the same time.

One of the most interesting MDO models in literature was presented by Gur and Rosen [18,21,42,43], developed to reach the best compromise between the opposite requirements of efficiency and quietness. In particular, the target of this design process is first to mitigate the tonal component of the noise, dependent on the actual loading of the blade. In [21], the cost function J is based on the Sound Pressure Level (SPL). However, the presence of power and stress constrains were taken into account. The first step was to optimize only the acoustic footprint of the blade, and interestingly, MDO results provides for a blade with a very large chord and relatively small radius. This is, of course, unfeasible in a small-rotor, due to the power required by such a non-optimal aerodynamic design in combination with the noise increase from the electric engine to deliver such a power at the hub. Furthermore, a limit on the extracted power from the battery produces a significant increase in propeller noise. Instead, stress constrains lead to an increase in cross-sectional thickness and rotational speed. These results clarify the need for a multidisciplinary optimization. In fact, the presence of both structural and acoustic constrains is fundamental to achieve feasible results. This model was enhanced in [18], where the propeller design model was extended to the entire propulsion system. In other words, a model for electric motor and battery was added to the previous model. For this purpose, theoretical models of these components are required. The models presented are based on a comprehensive investigation of existing motors and batteries. The performance of the vehicle greatly depends on the interaction between propeller, electric motor and battery. Clearly, then, it is important to study these three components contemporaneously.

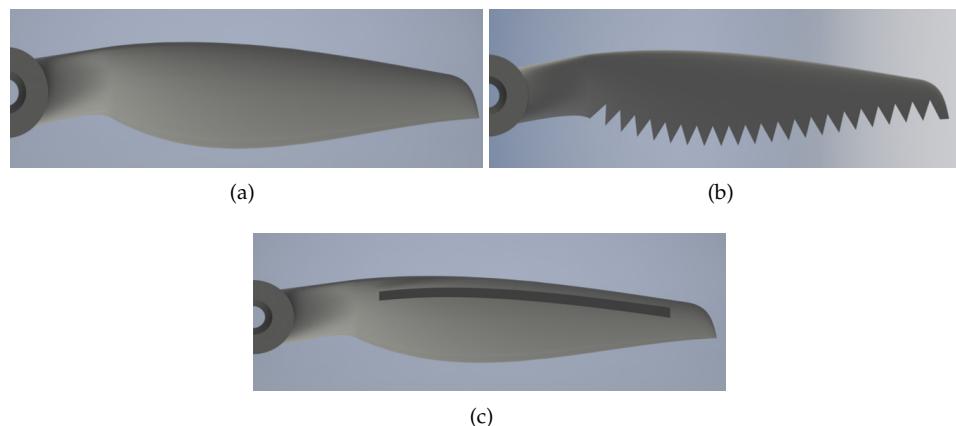
By using Gur and Rosen model [21], Sinibaldi and Marino [20] employed a quiet propeller and carried out an experimental analysis to characterize its behaviour as compared to a conventional one (conventional in the sense of a propeller not specifically designed to achieve noise reduction). In their study, the focus is on the optimization of the chord distribution along the span-wise direction. The results of the comparison of the two propeller show that, by using the MDO approach, significant noise reduction can be achieved, at least for the narrow-band contribution. An unexpected result is that by increasing rotational velocity, in order to achieve high thrust values, strong vibrations occur that can be ascribed to the increased thickness of the optimized blade. This phenomenon produces noise that make the optimized propeller comparable with the conventional one.

276 Pagliaroli et al. [19] used an MDO approach in order to assess the effect of the pitch angle on MAV
277 noise signature. An experimental analysis was carried out in order to evaluate aeroacoustic behaviour.
278 The experimental tests were carried out on a propeller that has 2 [mm] and a twist angle of zero. The
279 blades are mounted on a collective pitch in order to vary the pitch angle from 0 to 21 [deg]. All the
280 measurements were taken at the anechoic chamber of the Office National d'Études et de Recherches
281 Aérospatiales (ONERA). The optimization strategy seems to be useful in reducing the number of
282 variables in the multiphysics problem. Furthermore, wall pressure measurements confirm that the
283 pressure signature is dominated by the broad-band component generated by the separation bubble,
284 showing that it is important to extend studies to broadband noise.

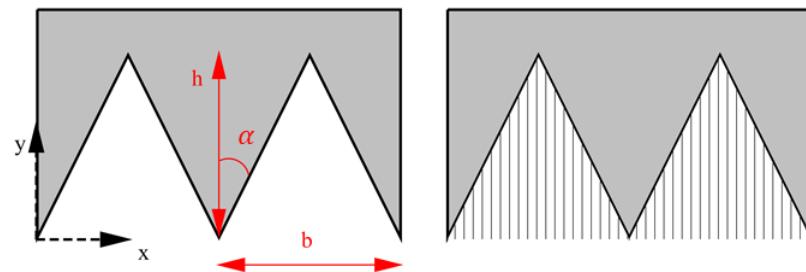
285 2.2.2. Serrated Trailing Edge

286 In literature, one of the most interesting and investigated noise control strategies is based on
287 the application of serrated trailing edges (STE). Serrations applied to the TE of an airfoil reduce
288 noise generation due to the destructive interference of the pressure fluctuations produced by the flow
289 structures convecting along the slanted edge. This technique is already employed on wind turbine
290 blades and fixed wing airfoil. Nevertheless, there have been a few studies on the application of
291 serrations to small rotors. Fig.3(b) shows a representation of a blade with the serration at the TE.

292 The idea for this control strategy was inspired by nature, in particular by the silent flight of owls
293 [44–46]. Owls are known to be one of the most silent predators in nature. The quietness of their flight
294 is due to their characteristic wings, with three main physical features: a suction wing surface with
295 a soft downy coating; a comb of stiff feathers at the wing leading edge, and TE feathers and wings
296 with a fringe of flexible filaments. The sawtooth pattern employed by manufacturers is the simplest
297 geometric way to mimic the permeability of owls' wings.


298 Chong et al. [47] and Avallone et al. [48] focused on wind turbine applications. The first study involved
299 an experimental analysis on a flat plate, while the second was a numerical investigation on an airfoil
300 at zero degree angles of attack by resolving the Ffowcs-Williams/Hawkins analogy (see §2.1). On
301 the basis of Howe[49], Chong et al., pointed out that significant noise reduction can be achieved if
302 two conditions are met. The first is that the serration length is of the same order of the turbulent
303 boundary layer thickness δ near the TE. The second is that the serration angle (called α in Fig.4) is small,
304 favouring sharp sawtooths. Howe's theoretical approach states that the introduction of obliqueness at
305 the TE will reduce the coherence between the acoustic sources along the wetted surface. This effect will
306 result in weaker noise emission. The experimental acoustic results show that TE broad-band noise can
307 be significantly reduced by using serration. Furthermore, noise reduction has been found to occur in a
308 large range of frequency. In [47], hot wire anemometry (HWA) measurements are aimed at determining
309 coherent structures on a flat plate surface. The measurements show that wake structures are affected
310 by serration since noise reduction can be ascribed to this phenomenon. On the other hand, Avallone et
311 al.[48] investigate the physical noise reduction mechanism by means of a numerical simulation based
312 on lattice Boltzmann and Ffowcs-Williams/Hawkins equations (see §2.1). The propeller analysed
313 is a "conventional" sawtooth and a combed-sawtooth TE. For the combed-sawtooth geometry, the
314 space between the teeth was filled with solid filaments called combs (see Fig.4). Noise reduction was
315 found to depend on frequency. Once a critical value was reached, corresponding to $St_c < 30$ (St_c is
316 the Strouhal number based on the airfoil chord and the free-stream velocity), no noise reduction was
317 observed. For a given serration geometry, the introduction of combs does not modify the frequency
318 range over which noise reduction can be observed but only on maximum noise reduction. Flow fields
319 analysis shows that the introduction of sawtooth serrations promotes the constitution of elongated
320 coherent structures in the wake in the space between two consecutive teeth, together with hairpin
321 vortices along the sawtooth edges. The effect of this modification on the time-averaged flow field is to
322 mitigate both the outer (namely from the centre line toward the edge) and the inner (namely from the
323 edge toward the centre line) flow motions.

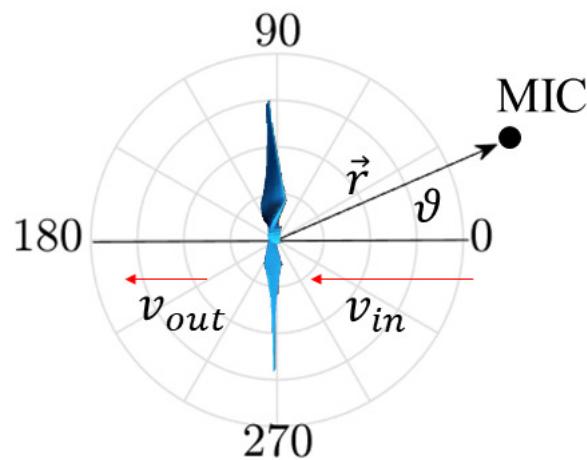
324 Pang et al.[36] involved an experimental analysis of pitch angle and trailing edge serration effect on


325 a small rotor. Results show that sawtooth serrations employed at the TE can noticeably suppress
326 broad-band noise in the high frequency region in the far-field. The main drawback observed is that the
327 tonal component seems to increase in the low frequency region. At low velocities, serrations seem to
328 lead to greater noise reduction. Such an effect suggests that STE is a potential solution for reducing
329 UAV noise when propeller are sure to operate at low speed. Near-field experiments shed light on
330 sound field characteristics, exhibiting a radial decay of SPL in the propeller rotation plane.
331 Ning et al.[50] also carried out an experimental analysis on STE, the aim being to reduce noise
332 while maintaining the thrust constant. This work defines three parameters that ensure a beneficial
333 employment of serraton for noise reduction. The parameters considered are:

334 • the non-dimensional tooth height defined as the ratio between the tooth half-height and the
335 boundary layer thickness $h^* = h/2\delta$;
336 • the Aspect Ratio of the tooth defined as the ratio between the width and the half-height $AR_t =$
337 $2b/h$;
338 • the boundary layer thickness based Strouhal number $St_\delta = f\delta/U$.

339 The geometrical parameters employed are defined in Fig.4. Ning pointed out that to achieve noise
340 reduction $h^* > 0.25$. Otherwise the amplitude of the serraton is too small, as a results of which the
341 turbulent eddies go beyond the sawtooth without significant interaction. Furthermore, inclination
342 angle α (see Fig.4) must be lower than 45° and this fact is guaranteed by imposing $AR_t < 4$. In the
343 definition of the Strouhal number, f is the sound frequency, δ is the boundary layer thickness and
344 $U = 0.7 * U_{rel}$ by having called U_{rel} the relative velocity. This non-dimensional coefficient had to be
345 greater than 1 (as stated in Howe's theory), which means $f > U/\delta$, in order to obtain a significant
346 noise reduction. Experiments have been carried out at $Re > 1.5 \times 10^5$. The results show that when
347 $f > U/\delta$, noise reduction appears at a frequency lower than U/δ , while the overall noise level increases.
348 Therefore, this parameter gives the frequency range in which it is possible to find noise reduction.
349 This work analyses four rotors by varying the AR_t coefficient. The analysis involves aerodynamic and
350 aeroacoustic measurements to characterize wake flow statistics. The results show that the STE can
351 reduce broad-band noise in the high frequency region without any loss in aerodynamic performance,
352 while, in the low frequency region, the noise generated is almost the same. Measurements also show
353 that, in order to keep the thrust constant, a higher rotational velocity of the propeller is required.
354 Also Intravartolo et al.[27] carried out an experimental analysis on STE by focusing on the serraton
355 depth effect. Results show that an increase in serraton depth produces a reduction in the intensity of
356 the trailing edge wake. Nevertheless, benefits from the depth of the serrations diminished with respect
357 to the overall noise signature of the propeller. When serraton depth reaches a value comparable to half
358 of the Mean Aerodynamic Chord (MAC), no further gain in aeroacoustic effect can be observed. On the
359 contrary, an increase in the overall noise may occur due mainly to aerodynamic effects. Serraton depth
360 effect is also analysed by Pagliaroli et al.[17], in particular, as regards broad-band noise component
361 and the directivity of the noise source in the near-field. A notable reduction in the noise generated
362 was obtained in the low frequency region and damping in the tails of the probability density function
363 (PDF) was observed. The statistical analysis shed light on the physical phenomenon that lies behind
364 the noise reduction. It is known that PDF's tails are related to intermittent structures in the pressure
365 field, so the serraton seems to eliminate strong energetic events. The drawback of serraton is a loss in
366 aerodynamic efficiency, so the optimal geometry had to be found. An analysis of the directivity shows
367 that the sawtooth pattern effect is bounded in the polar angle range $\theta = [60^\circ : 120^\circ]$ (the polar angle
368 considered is defined in Fig.5).
369 An improvement to STE technology could be made by the employment of fractal trailing edge geometry.
370 [51] investigates this kind of solution by comparing the behaviours of a sawtooth TE and a conventional
371 TE. An experimental analysis was carried out to test these different TE geometry applied to a flat plate.
372 Noise measurements show that both the sawtooth and the fractal trailing edge produce a reduction in
373 the broad-band noise but an increase in the tonal noise radiated by the tip vortex in the serrations gaps.

Figure 3. 3D rendering of the propeller blade: (a) baseline; (b) serrated trailing edge; (c) boundary layer tripping system.


Figure 4. Schematic of the sawtooth and the combed-sawtooth TE geometry analyzed by Avallone et al. [48]

374 However, the tonal component seems to be mitigated by the fractal TE. This effect may be ascribed to
 375 the cancellation of vortex shedding. The investigation on the coherence behind the TE shows that the
 376 fractal geometry interacts with the strong coherent structures that always occur between the tips of the
 377 serrated TE, by decreasing their strength and extension in all direction. Moreover, the use of sawtooth
 378 and fractal-sawtooth TE improved post-stall lift behaviour. Although, lift slightly decreased at some
 379 pre-stall angles of attack, the drag did not react significantly to TE replacement.

380 A mathematical and physical interpretation may be given to the effect of the serrated trailing edges on
 381 the noise generated by the propeller. In particular, the serration effect creates destructive interference in
 382 pressure fluctuations which are convected along the geometry. From a recent investigations, presented
 383 in [48,52], it was found that the frequency spectrum and the boundary layer characteristics develop at
 384 the serration edge. This means that the assumption of the theory of "frozen turbulence" cannot be used
 385 to analyse of the noise reduction performance. Some of the latest studies [48,53] show that changes in
 386 the skin-friction coefficient along the serrations are related to the change of the frequency spectrum
 387 and could be used to obtain a more accurate prediction of their response.

388 2.2.3. Boundary layer Tripping System

389 The experiments of Leslie et al. [24,54] show that broad-band propeller noise emission of a
 390 propeller can be reduced by employing a LE boundary layer tripping system on the suction surface
 391 of the blade, with negligible evidence of any aerodynamic performance loss. The control technique
 392 presented in these works look at a boundary layer tripping system in the form of a simple strip
 393 of aluminium adhesive tape. A rendering of the blade with the tripping system is detailed in
 394 8(c). The noise reduction mechanism is related to the mitigation of BL noise because of a forced

Figure 5. Definition of the polar reference system for the directivity analysis.

395 laminar to turbulent transition of the BL. Noise generated by the turbulent boundary layer (TBL) is
 396 different from the laminar boundary layer (LBL). The LBL generates strong and loud tonal noise,
 397 so it appears as narrow-band peaks in the frequency domain. This is the result of an aeroacoustic
 398 feedback loop between LBL oscillation and the noise radiated by the TE at the same frequency.
 399 Furthermore, the presence of a small laminar separation bubble just prior to the TE helped to amplify
 400 the Tollmien-Schlichting (T-S) boundary layer waves, confirming what was found in [55]. In this
 401 situation, the presence of the aeroacoustic feedback loop combined with the amplification of the
 402 T-S resulted in the production of strong narrow-band tones. By forcing the transition from laminar
 403 to turbulent through the use of a transition strip the aeroacoustic feedback loop is broken. The
 404 tripping system translates the transition from 80% to 5% of the chord and replace the tonal noise
 405 with a broad-band noise radiating from the TE. As a result of transition, due either to the presence
 406 of a laminar separation bubble, or to forced transition through the use of a transition strip, a TBL
 407 is present at the TE of the airfoil. TBL-TE is strongly dependent upon the BL thickness δ at the TE.
 408 The location of the transition affects the TBL-TE noise. If the transition occurs further downstream
 409 along the chord, there are smaller contributions from low-frequencies and increased high frequency
 410 contributions. Consequently, the tonal noise connected with these two phenomena seems to be
 411 mitigated. This passive control technique seems very interesting because it should not affect the
 412 aerodynamic properties of the propeller, but rather reduce the drag force.

413 2.2.4. Porous materials inserts

414 The idea of using porous materials to obtain noise attenuation dates back to the studies of Graham
 415 [56] on the silent flight of the owl. Since then, porous materials were added to the blade leading edge in
 416 order to reduce noise generation due to strong blade vortex interaction (BVI) in helicopter applications
 417 [57]. Another solution is to treat the flap side-edge of the wing with porous material in order to mitigate
 418 flap-noise [58]. Recently, porous material has been tested on blunt bodies, such as the cylinder [59], and
 419 on flat plat to see if it is possible to reduce noise emission by using them. Another approach previously
 420 discussed in literature is the usage of fully porous airfoil [60,61]. These airfoil have a prevalently
 421 rough surface. Thus, the drag force generated is expected to increase while the lift force is expected to
 422 decrease with respect to the baseline airfoil. Nevertheless, aerodynamic measurements [61] show that
 423 there is more lift and less drag as porous material flow resistivity increases. Such a simple dependence
 424 cannot be found for the acoustic properties. On the other hand, Geyer et al [60] found that the SPL
 425 generated at the TE of the porous airfoil was lower as regard the baseline airfoil for a large range of
 426 medium frequencies. Instead, for very high frequency, the porous airfoil has a higher noise signature

427 than the non-porous one. As expected, a TBL analysis shows that the porous airfoil has a boundary
428 layer thickness δ and a displacement thickness δ^* that exceed the non-porous one in both the suction
429 and pressure side of the airfoil.

430 In recent years, additive manufacturing technology (i.e. 3D printing) has grown very fast and has now
431 made possible to directly integrate porous material structures into airfoil and rotor blade. Jiang et
432 al. [62] carried out an experimental analysis on the effect on the TE noise of porosity employed on
433 a rotor rig. Porous materials have already been used to control flat plate noise generation [46,47,63].
434 In this work, instead, the focus is on a modified propeller with the insertion of a blade extension
435 realized by additive manufacturing. This technology allows designers to employ complex geometries
436 at the TE in order to develop a quiet propeller. The way to attain acoustic stealth is to disrupt the
437 conversion of TBL pressure fluctuations into acoustic waves and reduce the turbulent length scales
438 in the BL, without generating higher levels of turbulence (noise) at unwanted frequencies. Two sets
439 of experiments and one numerical simulation were performed. The first set of experiments involved
440 measuring the acoustic impedance of various additively manufactured samples in order to understand
441 the porous structures effect on absorption. After this characterization, the porous structures were
442 applied as blade extensions to the outer part of the rotor blade without increasing the rotor diameter.
443 Fig.6 shows a schematic representation of the blade extension. The experimental results are very
444 interesting, indicating significant noise reduction in the frequency region [1 : 7] kHz. Numerical
445 simulation showed that the porous TE did not affect the flow field or the BL thickness δ at the TE.
446 Consequently, the noise reduction observed in the rotor tests may be attributed more to a reduction in
447 turbulence length scale than a disruption of the edge scattering process.

448 In literature, several authors have studied the effect of porosity on trailing edge noise [64–66]. Rubio
449 Carpio et al. [64] focused on a flat plate with different types of inserts. The porous inserts, covering 20%
450 of the chord, are manufactured with metal foams of cell diameters $d_c = 450$ [μm] and $d_c = 800$ [μm]
451 and permeability values of 6×10^{-10} and 2.7×10^{-9} [m^2]. The far-field measurements show low
452 frequency noise attenuation of up to 7 and 11 [dB], respectively, for the first and second permeability
453 value. On the other hand, in the high frequency region, an increase in noise up to 8 – 10 [dB] was
454 observed, this phenomenon is due to surface roughness. By increasing permeability also led to a
455 reduction of the frequency range affected by noise attenuation. A PIV measurement campaign shows
456 an increase in BL thickness δ and in displacement thickness δ^* for the metal foam insert with higher
457 permeability. Analysis in the Fourier domain shows that the attenuation in velocity fluctuations affects
458 mostly the low frequency region, suggesting that turbulence intensity reduction may be one of the
459 changes that contributes to noise reduction. On the other hand, the results do not show an increase in
460 high frequency fluctuations content as regards the solid case. Showkat Ali et al. [65] demonstrated
461 that porous TE can delay vortex shedding and significantly increase vortex formation length, leading
462 to a very low turbulent near-wake region. The usage of porous material also leads to significant lateral
463 coherence reduction of the turbulent structure.

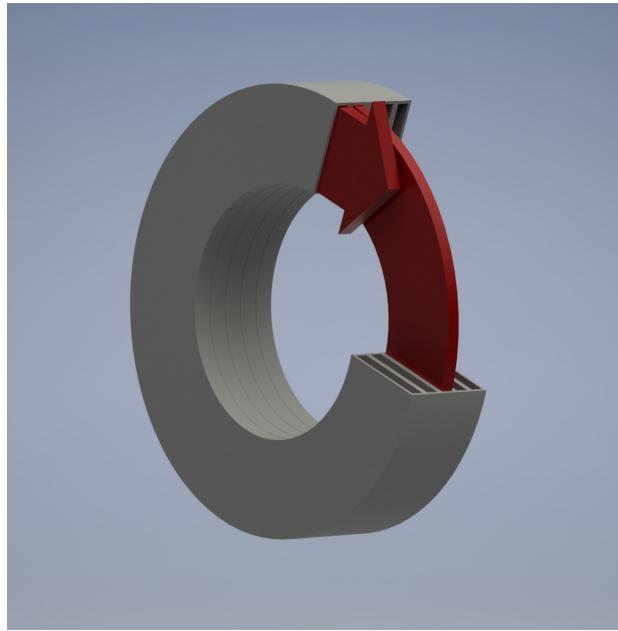
464 [66] documents acoustic test on airfoil with porous treatment at the TE. Maximum noise reduction
465 reached was up to 2 – 6 dB. This effect may be attributed to a material-dependent pressure field
466 generated in the near-field related to the flow resistivity of the TE material.

467 A very interesting control technique is the use of Poro-Serrated TE [67–69], which combines the serrated
468 TE (§2.2.2) and the effect of porosity. These poro-serrated TE devices contain porous materials of
469 various air flow resistances at the gaps between adjacent members of the serrated sawtooth. The object
470 of this study is to understand if two control strategies for noise mitigation can co-exist, one related
471 to the oblique edges introduced by the serrations, the second arising from porosity, which allows the
472 pressure side and suction side to communicate, thereby reducing the acoustic dipole strength at the
473 trailing edge. In these studies the focus is on a flat plate with serrated trailing edge with the addition
474 of porous foam between adjacent members of the sawtooth. The porous foam is cut in order to match
475 perfectly with the volume and shape of the sawtooth gaps, thus preserving the original airfoil profile.
476 This technique can simultaneously suppress vortex shedding and reduce broad-band noise. Results

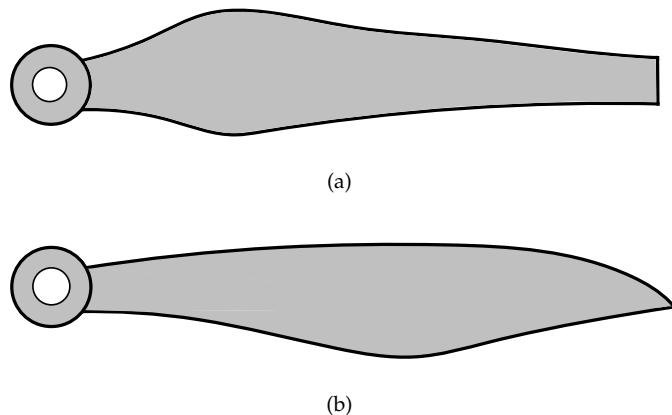
Figure 6. Schematitzation of the section of the rotor extension.

477 show that multiple broadband noise reduction mechanisms occur (serration + porous material), but
 478 it is likely that the porous material is enhancing the serration effect, rather than the porous material
 479 exerting an effect of its own.

480 2.2.5. Metamaterials


481 One way of achieving sound attenuation is the application of sound barrier that reflects or absorbs
 482 the incident acoustic energy. Such a solution cannot be directly applied to MAVs because it eliminates
 483 the passage of air. To be employed on a rotor blade, it is important to guarantee permeability to
 484 air by designing a ducted propeller. In recent years, there has been a fast growth in metamaterial
 485 science, leading to new solutions for manipulating acoustic energy. Metamaterials are composed of
 486 subwavelength structures since their effective acoustic properties are governed by their structural
 487 shape rather than their constitutive properties.

488 Ghaffarivardavagh et al. [70] present a design methodology for an Ultra-Open Metamaterial (UOM)
 489 composed of subwavelength unit-cell structures featuring a predominately open area. The designed
 490 UOM works as a high-performance selective sound silencer for applications where both sound
 491 attenuation and highly efficient ventilation are required. The proposed method is based on Fano-like
 492 interference [71] for selective attenuation of acoustic waves. The first part of their studies aimed to
 493 analytically demonstrate that Fano-like interference is present in a transverse bilayer metamaterial.
 494 Then, the feasibility of the metamaterial structure was proved by providing both analytic and
 495 experimental validation. The designed UOM consist of two distinguishable regions: a central open
 496 part and a peripheral helical part. The two regions are characterized by different acoustic properties.
 497 Fig.7 reports a 3D representation of it. The contrast in the acoustic properties of the two regions has
 498 been proved to be essential to achieve the required silencing functionality. The experimental tests show
 499 a reduction in transmitted acoustic energy up to 94%. Another interesting feature of this solution is
 500 that the design is inherently flexible. Desired acoustic and refractive index impedance can be achieved
 501 by adjusting some geometrical parameters. This feature gives the designer a large number of degrees
 502 of freedom in order to optimize device performance.


503 2.2.6. Bio-inspired blade Shape

504 An innovative bio-inspired UAV propeller is investigated in Ning. [72]. By taking idea from
 505 nature and designing a propeller with the planform shape based on cicada wings and maple seeds
 506 (see Fig.8(b)). In order to compare it to a conventional propeller (Fig.8(a)), the designed propeller was
 507 given the same planform area, the same cross sectional shape, and same weight. Both the propellers
 508 were realized by using additive manufacturing. An experimental analysis was carried out in order
 509 to characterize the aerodynamic and aerocoustic behaviour of the propellers. The aerodynamic
 510 measurements show that the bio-inspired propeller can provide the same thrust as the baseline
 511 propeller under the same power input in hover condition, but the rotational regime was lower,
 512 indicating higher lift coefficient for the bio-inspired blade. However, the reduction in noise is up to 4
 513 dB and can be ascribed to the small force variation of the new blade. Thrust standard deviation σ_T ,
 514 representative of force oscillation, is observed to be 24% lower than the baseline propeller. As seen in
 515 §2.1, loading noise is related to force variation. Furthermore, the bio-inspired propeller generated a
 516 smaller wake region and demonstrated a faster decay rate in tip vortex strength.

517 Another noise reduction strategy inspired by nature is presented in [73]: by mimicking the idowny
 518 coat of the barn owl to reduce the noise generated by an airfoil. A numerical investigation was
 519 carried out on an airfoil with finlet fences. The simulation was carried out on a baseline geometry

Figure 7. 3D Rendering of the proposed configuration of the Ultra-Open Metamaterial.

Figure 8. Representation of the considered baseline blade (a) and of the new bio-inspired blade (b).

and later the finlets were added. The study was performed by using an implicit large eddy model. The comparison between c_f and c_P for the baseline and the owl-inspired geometry shows that the add-on does not significantly degrade the aerodynamic performance. Furthermore, spectral analysis shows a slight reduction in pressure spectra at high frequencies near the TE of the airfoil. At the present state-of-art, this technology has not been tested on a propeller, so it would be interesting to investigate this innovative geometry both numerical and experimental in order to understand if it is really applicable to drone propellers.

3. Conclusion

In this paper the focus is on the noise generated by small rotors, the aim being to identify which passive noise control strategies can be employed on a drone propeller. The main noise sources for this application concern the interaction between the BL and the TE of the blade. This paper presents several techniques to control this noise source. Even though, noise control is the main focus, aerodynamic performance is also taken in count in order to guarantee the success of the mission. The first strategy to reduce noise emission was to employ an *optimized* geometry by taking into account acoustic constraints in the multi-disciplinary optimization process. These solutions led to

535 blade geometry that reduce noise for a specific operating configuration, so it is not sure that in other
536 configurations the behaviour would be exactly the same, both in terms of thrust and noise generation.
537 The effect of chord distribution and of pitch angle was analyzed, indicating significant noise reduction,
538 but the drawback was a loss of aerodynamic features.
539 By taking ideas from nature, in particular the owl wing, innovative blade geometries may be employed,
540 the most effective, seemingly, being the application of serration. The most investigated configuration is
541 the sawtooth pattern at the TE, which has been shown to reduce the broad-band noise component.
542 From a theoretical point of view, this effect can be related to a reduction in coherent structures in the
543 pressure field. This assumption is confirmed by statistical analysis, which shows lower PDF tails when
544 serration is employed at the TE. Another configuration involves the use of fractal serration, the effect,
545 even for this configuration, being related to the interaction between the coherent structures and the
546 serration.
547 Another strategy to reduce TE noise is the use of porous materials. The effect of porosity on rotor noise
548 has been studied principally for wind turbines but it seems very interesting also for UAV rotors. In
549 fact, it has been proved that porosity produces a reduction in turbulence length scale. The next step
550 is to employ this technology on a small-scale propeller and test it. Furthermore, metamaterials
551 can be designed as highly efficient sound barriers for a target frequency. The development in
552 metamaterials science may, in a few years, lead to the realization of a ducted propeller with specific
553 sound characteristics.
554 On the other hand, in order to reduce the tonal noise component, a boundary layer tripping system
555 can be applied on the suction side of the propeller blade in the form of a simple adhesive aluminium
556 strip. By using this system, laminar to turbulent transition is forced at 5% of the chord. This effect
557 results in broad-band noise radiating from the TE in the high frequency region and seems to have
558 no effect on thrust generation; rather it should reduce drag force since the efficiency of the propeller
559 should increase.
560 Finally, this paper presented an innovative type of geometry inspired by nature. This particular
561 geometry mimics the planform shape of cicada wings and maple seeds. The experimental results
562 show that the bio-inspired wing can provide the same thrust as a baseline propeller. Additionally, a
563 reduction in loading noise was observed and can be attributed to the reduction in standard thrust
564 deviation.

565 4. References

566

- 567 1. Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. *Nature* **2015**,
521, 460–466. doi:10.1038/nature14542.
- 569 2. Tauro, F.; Porfiri, M.; Grimaldi, S. Surface flow measurements from drones. *Journal of Hydrology* **2016**,
540, 240–245. doi:10.1016/j.jhydrol.2016.06.012.
- 571 3. Bandini, F.; Jakobsen, J.; Olesen, D.; Reyna-Gutierrez, J.A.; Bauer-Gottwein, P. Measuring water level in
572 rivers and lakes from lightweight Unmanned Aerial Vehicles. *Journal of Hydrology* **2017**, 548, 237–250.
- 573 4. Venturi, S.; Di Francesco, S.; Materazzi, F.; Manciola, P. Unmanned aerial vehicles and Geographical
574 Information System integrated analysis of vegetation in Trasimeno Lake, Italy. *Lakes and Reservoirs:
575 Research and Management* **2016**, 21, 5–19. doi:10.1111/lre.12117.
- 576 5. Agency, E.A.S. Introduction of a regulatory framework for the operation of unmanned aircraft systems in
577 the 'open' and 'specific' categories. *Opinion No 01/2018* **2018**.
- 578 6. Cherney, M. Delivery Drones Cheer Shoppers, Annoy Neighbors, Scare Dogs. *Wall Street Journal* **2018**.
- 579 7. Morrell, S.; Taylor, R.; Lyle, D. A review of health effects of aircraft noise. *Australian and New Zealand
580 Journal of Public Health* **1997**, 21, 221–236. doi:10.1111/j.1467-842X.1997.tb01690.x.
- 581 8. Giones, F.; Brem, A. From toys to tools: The co-evolution of technological and entrepreneurial developments
582 in the drone industry. *Business Horizons* **2017**, 60, 875–884. doi:10.1016/j.bushor.2017.08.001.

583 9. Mulero-Pázmány, M.; Jenni-Eiermann, S.; Strelbel, N.; Sattler, T.; Negro, J.J.; Tablado, Z. Unmanned aircraft
584 systems as a new source of disturbance for wildlife: A systematic review. *PLoS ONE* **2017**, *12*, 1–14.
585 doi:10.1371/journal.pone.0178448.

586 10. Ditmer, M.A.; Vincent, J.B.; Werden, L.K.; Tanner, J.C.; Laske, T.G.; Iaizzo, P.A.; Garshelis, D.L.; Fieberg,
587 J.R. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. *Current
588 Biology* **2015**, *25*, 2278–2283. doi:10.1016/j.cub.2015.07.024.

589 11. Kempf, N.; Hüppop, O. What effect do airplanes have on birds?—a summary and update of “Wie wirken
590 Flugzeuge auf Vögel?”, *Naturschutz und Landschaftsplanung*, 30–1 (17–28). 1998”[Internet]. 1998, 1998.

591 12. Christiansen, F.; Rojano-Doñate, L.; Madsen, P.T.; Bejder, L. Noise Levels of Multi-Rotor Unmanned Aerial
592 Vehicles with Implications for Potential Underwater Impacts on Marine Mammals. *Frontiers in Marine
593 Science* **2016**, *3*, 1–9. doi:10.3389/fmars.2016.00277.

594 13. Smith, C.E.; Sykora-bodie, S.T.; Bloodworth, B.; Pack, S.M.; Spradlin, T.R.; Leboeuf, N.R. Assessment of
595 known impacts of unmanned aerial systems (UAS) on marine mammals: data gaps and recommendations
596 for researchers in the United States. *Journal of Unmanned Vehicle Systems* **2016**, *14*, 1–14.

597 14. Cannard, M.; Joseph, P.; Kim, J.W.; Paruchuri, C.C. Slotted leading-edge profiles for the reduction of
598 broadband interaction noise; physical mechanisms and performance. 25th AIAA/CEAS Aeroacoustics
599 Conference, 2019, p. 2511. doi:10.2514/6.2019-2511.

600 15. Hasheminejad, S.M.; Chong, T.P.; Joseph, P.; Lacagnina, G. Effect of Leading-Edge Serrations on
601 Trailing-Edge-Bluntness Vortex-Shedding Noise Radiation. 25th AIAA/CEAS Aeroacoustics Conference,
602 2019, p. 2437. doi:10.2514/6.2019-2437.

603 16. Serré, R.; Fournier, H.; Moschetta, J.M. A design methodology for quiet and long endurance MAV rotors.
604 *International Journal of Micro Air Vehicles* **2019**, *11*, 1756829319845937. doi:10.1177/1756829319845937.

605 17. Pagliaroli, T.; Camussi, R.; Candeloro, P.; Giannini, O.; Bella, G.; Panciroli, R. Aeroacoustic Study of small
606 scale Rotors for mini Drone Propulsion: Serrated Trailing Edge Effect. *2018 AIAA/CEAS Aeroacoustics
607 Conference* **2018**. doi:10.2514/6.2018-3449.

608 18. Gur, O.; Rosen, A. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles. *Journal of
609 Aircraft* **2009**, *46*, 1340–1353. doi:10.2514/1.41027.

610 19. Pagliaroli, T.; Moschetta, J.m.; Benard, E.; Nana, C. Noise signature of a MAV rotor in hover. *49th
611 International Symposium of Applied Aerodynamics Lille*, 24–25–26 March 2014 **2014**, pp. 24–25.

612 20. Sinibaldi, G.; Marino, L. Experimental analysis on the noise of propellers for small UAV. *Applied Acoustics*
613 **2013**. doi:10.1016/j.apacoust.2012.06.011.

614 21. Gur, O.; Rosen, A. Design of a Quiet Propeller for an Electric Mini, 2009. doi:10.2514/1.38814.

615 22. JanakiRam, D.; Scruggs, B. Investigation of performance, noise and detectability characteristics of
616 small-scale remotely piloted vehicle /RPV/ propellers. *7th Aeroacoustics Conference* **1981**, *19*, 1052–1060.
617 doi:doi:10.2514/6.1981-2005.

618 23. Serré, R.; Chapin, V.; Moschetta, J.M.; Fournier, H. Reducing the noise of Micro–Air Vehicles in hover.
619 *International Micro Air Vehicle Conference and Flight Competition* **2017**, pp. 51–59.

620 24. Leslie, A.; Wong, K.C.; Auld, D. Broadband Noise Reduction on a mini-UAV Propeller. 14th AIAA/CEAS
621 Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008. doi:10.2514/6.2008-3069.

622 25. Nelson, P.A.; Morfey, C.L. Aerodynamic Sound Production. *Journal of Sound and Vibration* **1981**, *79*, 263–289.

623 26. Rozenberg, Y.; Roger, M.; Moreau, S. Rotating Blade Trailing-Edge Noise: Experimental Validation of
624 Analytical Model. *AIAA Journal* **2010**. doi:10.2514/1.43840.

625 27. Intravartolo, N.; Sorrells, T.; Ashkharian, N.; Kim, R. Attenuation of Vortex Noise Generated
626 by UAV Propellers at Low Reynolds Numbers. *55th AIAA Aerospace Sciences Meeting*, 2017.
627 doi:10.2514/6.2017-2019.

628 28. Farassat, F.; Succi, G.P. A review of propeller discrete frequency noise prediction technology
629 with emphasis on two current methods for time domain calculations. *Topics in Catalysis* **1980**.
630 doi:10.1016/0022-460X(80)90422-8.

631 29. Zawodny, Nikolas S., B.; Burley, Casey L.. Acoustic Characterization and Prediction of Representative,
632 Small-Scale Rotary-Wing Unmanned Aircraft System Components . *72nd American Helicopter Society (AHS)
633 Annual Forum; 17–19 May 2016; West Palm Beach, FL; United States* **2016**.

634 30. Zawodny, N.S.; Boyd Jr, D.D. Investigation of rotor-airframe interaction noise associated with small-scale
635 rotary-wing unmanned aircraft systems. *American Helicopter Society Paper* **2017**.

636 31. Ffowcs Williams, J. E., and Hawkins, D.L. Sound Generation by Turbulence and Surfaces in Arbitrary
637 Motion . *Philosophical Transactions of the Royal Society of London. Serie A, Mathematical and Physical Sciences*
638 1969, 264, 321–342. doi:10.1098/rsta.1969.0031.

639 32. Succi, G.P. Design of Quiet Efficient Propellers. SAE Technical Paper. SAE International, 1979, p. 14.
640 doi:10.4271/790584.

641 33. Schlinker, R.H.; Amiet, R.K. Helicopter Rotor Trailing Edge Noise. *7th Aeroacoustics Conference* 1981, p.
642 2001. doi:10.2514/6.1981-2001.

643 34. Rozenberg, Y.; Roger, M.; Moreau, S.; Division, D.; Cedex, C.; Systems, V.T.; Normand, L.; Verri, L. Fan
644 Blade Trailing-Edge Noise Prediction Using RANS Simulations. *Journal of the Acoustical Society of America*
645 2008, 123, 5207–5212. doi:10.2514/6.2010-3720.

646 35. Corcos, G. The structure of the turbulent pressure field in boundary-layer flows. *Journal of Fluid Mechanics*
647 1964, 18, 353–378. doi:10.1017/S002211206400026X.

648 36. Pang, E.; Cambray, A.; Rezgui, D.; Azarpeyvand, M.; Showkat Ali, S.A. Investigation Towards a Better
649 Understanding of Noise Generation from UAV Propellers. 2018 AIAA/CEAS Aeroacoustics Conference,
650 2018. doi:10.2514/6.2018-3450.

651 37. Betz, A. Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von l. Prandtl. *Nachrichten*
652 von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse

653 1919, 1919, 193–217.

654 38. Patrick, H.; Finn, R.W.; Stich, C.K. Two and Three-Bladed Propeller Design For the Reduction of Radiated
655 Noise. *3rd AIAA/CEAS Aeroacoustics Conference* 1997, pp. 934–950. doi:10.2514/6.1997-1710.

656 39. Roncz, J.G. Propeller Development for the Rutan Voyager. Technical report, SAE Technical Paper, 2018.
657 doi:10.4271/891034.

658 40. Adkins, C.N.; Liebeckt, R.H. Design of Optimum Propellers. *Journal of Propulsion and Power* 1994,
659 10, 676–682. doi:10.2514/3.23779.

660 41. Sobiesczanski-sobieski, J.; Haftka, R.T. Multidisciplinary aerospace design optimization - Survey of recent
661 developments. *Structural optimization* 1996, 14, 1–23.

662 42. Gur, O.; Rosen, A. Optimization of Propeller Based Propulsion System. *Journal of Aircraft* 2009, 46, 95–106.
663 doi:10.2514/1.36055.

664 43. Gur, O.; Rosen, A. Multidisciplinary Design Optimization of a Quiet Propeller. *14th AIAA/CEAS*
665 *Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)* 2008, 3073, 5–7. doi:10.2514/6.2008-3073.

666 44. Clark, I.A.; Daly, C.A.; Devenport, W.; Alexander, W.N.; Peake, N.; Jaworski, J.W.; Glegg, S.
667 Bio-inspired canopies for the reduction of roughness noise. *Journal of Sound and Vibration* 2016.
668 doi:10.1016/j.jsv.2016.08.027.

669 45. Peake, N. The aeroacoustics of the Owl. *Lecture Notes in Mechanical Engineering*, 2016.
670 doi:10.1007/978-3-662-48868-3_2.

671 46. Jaworski, J.W.; Peake, N. Aerodynamic noise from a poroelastic edge with implications for the silent flight
672 of owls. *Journal of Fluid Mechanics* 2013, [arXiv:1011.1669v3]. doi:10.1017/jfm.2013.139.

673 47. Chong, T.P.; Vathylakis, A. On the aeroacoustic and flow structures developed on a flat plate with a
674 serrated sawtooth trailing edge. *Journal of Sound and Vibration* 2015. doi:10.1016/j.jsv.2015.05.019.

675 48. Avallone, F.; Van Der Velden, W.C.; Ragni, D.; Casalino, D. Noise reduction mechanisms of sawtooth and
676 combed-sawtooth trailing-edge serrations. *Journal of Fluid Mechanics* 2018. doi:10.1017/jfm.2018.377.

677 49. Howe, M.S. Noise produced by a sawtooth trailing edge. *The Journal of the Acoustical Society of America*
678 1991, 90, 482–487. doi:10.1121/1.401273.

679 50. Ning, Z.; Hu, H. An Experimental Study on the Aerodynamics and Aeroacoustic Characteristics of Small
680 Propellers. 54th AIAA Aerospace Sciences Meeting, 2016. doi:10.2514/6.2016-1785.

681 51. Hasheminejad, S.M.; Chong, T.P.; Joseph, P.; Lacagnina, G. Airfoil Self-Noise Reduction
682 Using Fractal-Serrated Trailing Edge. 2018 AIAA/CEAS Aeroacoustics Conference, 2018.
683 doi:10.2514/6.2018-3132.

684 52. Ragni, D.; Avallone, F.; van der Velden, W.C.; Casalino, D. Measurements of near-wall pressure fluctuations
685 for trailing-edge serrations and slits. *Experiments in Fluids* 2019, 60, 0. doi:10.1007/s00348-018-2654-5.

686 53. Arce León, C.; Merino-Martínez, R.; Ragni, D.; Avallone, F.; Snellen, M. Boundary layer characterization
687 and acoustic measurements of flow-aligned trailing edge serrations. *Experiments in Fluids* 2016, 57.
688 doi:10.1007/s00348-016-2272-z.

688 54. Leslie, A.; Wong, C.; Auld, D. Experimental analysis of the radiated noise from a small propeller. *Proceedings*
689 *of 20th International Congress on Acoustics, ICA 2010*.

690 55. McAlpine, A.; Nash, E.; Lowson, M. On the generation of discrete frequency tones by the flow around an
691 aerofoil. *Journal of Sound and Vibration* **1999**, *222*, 753–779.

692 56. Graham, L.R.R. The Silent Flight of Owl. *The Aeronautical Journal* **1934**, *38*, 837–843.
693 doi:10.1017/S0368393100109915.

694 57. Lee, S. Reduction of Blade-Vortex Interaction Noise Through Porous Leading Edge. *AIAA Journal* **1994**,
695 *32*, 480–488. doi:doi.org/10.2514/3.12011.

696 58. Revell, J.D. Trailing-Edge Flap Noise Reduction by Porous Acoustic Treatment. *3rd AIAA/CEAS Aeroacoustic*
697 *Conference 1997*, pp. 493–505. doi:10.2514/6.1997-1646.

698 59. Search, H.; Journals, C.; Contact, A.; Iopscience, M.; Dyn, F.; Address, I.P. Application of porous
699 material to reduce aerodynamic sound from bluff bodies. *Fluid Dynamics Research* **2010**, *015004*.
700 doi:10.1088/0169-5983/42/1/015004.

701 60. Geyer, T.; Sarradj, E.; Fritzsche, C. Porous airfoils : noise reduction and boundary layer effects. *International*
702 *Journal of Aeroacoustics* **2010**, *9*, 787–820. doi:10.1260/1475-472X.9.6.787.

703 61. Sarradj, E.; Geyer, T. Noise Generation by Porous Airfoils. *13th AIAA/CEAS Aeroacoustics Conference (28th*
704 *aeroacoustic conference) 2007*. doi:10.2514/6.2007-3719.

705 62. Jiang, C.; Moreau, D.; Yauwenas, Y.; Fischer, J.R.; Doolan, C.J.; Gao, J.; Jiang, W.; McKay, R.; Kingan, M.
706 Control of rotor trailing edge noise using porous additively manufactured blades. *2018 AIAA/CEAS*
707 *Aeroacoustics Conference*, 2018. doi:10.2514/6.2018-3792.

708 63. Moreau, S.; Dignou, B.; Jaiswal, P.; Yakhina, G.R.; Pasco, Y.; Sanjose, M.; Alstrom, B.; Atalla, N. Trailing-edge
709 noise of a flat plate with several liner-type porous appendices. *2018 AIAA/CEAS Aeroacoustics Conference*,
710 2018. doi:10.2514/6.2018-3119.

711 64. Rubio Carpio, A.; Merino Martínez, R.; Avallone, F.; Ragni, D.; Snellen, M.; van der Zwaag, S. Experimental
712 characterization of the turbulent boundary layer over a porous trailing edge for noise abatement. *Journal of*
713 *Sound and Vibration* **2019**, *443*, 537–558. doi:10.1016/j.jsv.2018.12.010.

714 65. Showkat Ali, S.A.; Azarpeyvand, M.; Ilario da Silva, C.R. Experimental Study of Porous Treatments
715 for Aerodynamic and Aeroacoustic Purposes. *23rd AIAA/CEAS Aeroacoustics Conference 2017*, p. 3358.
716 doi:10.2514/6.2017-3358.

717 66. Applications, T.e. Specification of Porous Materials for Low-Noise. *24th AIAA/CEAS Aeroacoustic Conference*
718 *2014*, pp. 1–19. doi:10.2514/6.2014-3041.

719 67. Joseph, P.F. Poro-Serrated Trailing-Edge Devices for Airfoil Self-Noise. *AIAA Journal* **2015**, *53*.
720 doi:10.2514/1.J053983.

721 68. Chong, T.P.; Dubois, E.; Vathylakis, A. Aeroacoustic and flow assessments of the poro-serrated trailing
722 edges. *22nd AIAA/CEAS Aeroacoustics Conference*, 2016. doi:10.2514/6.2016-2833.

723 69. Chong, T.P.; Dubois, E. Optimization of the poro-serrated trailing edges for airfoil broadband noise
724 reduction. *The Journal of the Acoustical Society of America* **2016**, *140*, 1361–1373. doi:10.1121/1.4961362.

725 70. Ghaffarivardavagh, R.; Nikolajczyk, J.; Anderson, S.; Zhang, X. Ultra-open acoustic metamaterial silencer
726 based on Fano-like interference. *Physical Review B* **2019**, *99*, 1–10. doi:10.1103/PhysRevB.99.024302.

727 71. Újsághy, O.; Kroha, J.; Szunyogh, L.; Zawadowski, A. Theory of the Fano resonance in the STM tunneling
728 density of states due to a single Kondo impurity. *Physical review letters* **2000**, *85*, 2557.

729 72. Ning, Z.; Hu, H. An Experimental Study on the Aerodynamic and Aeroacoustic Performances of a
730 Bio-Inspired UAV Propeller. *35th AIAA Applied Aerodynamics Conference*, 2017. doi:10.2514/6.2017-3747.

731 73. Bodling, A.; Agrawal, B.R.; Sharma, A.; Clark, I.; Alexander, W.N.; Devenport, W.J. Numerical
732 Investigations of Bio-Inspired Blade Designs to Reduce Broadband Noise in Aircraft Engines and Wind
733 Turbines. *55th AIAA Aerospace Sciences Meeting*, 2017, p. 0458. doi:10.2514/6.2017-0458.

734 **Acknowledgments:** This work was supported by the Italian Ministry of Education, University and Research
735 under the PRIN grant No.20154EHYW9 “Combined numerical and experimental methodology for fluid structure
736 interaction in free surface flows under impulsive loading”.