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Abstract: Bone homeostasis depends on the interplay between bone resporption by osteoclasts and 

bone formation by osteoblasts. Any Imbalance of this tightly regulated process can cause diseases 

such as osteoporosis. Therefore, the knowledge about the factors that regulate communication 

between osteoclasts and osteoblasts are critical to bone cell biology. Osteoporosis is a progressive 

systemic skeletal disease characterized by low bone mass density and deterioration of bone tissue. 

Mature miRNAs are about 22 nucleotide long non coding RNA molecules that are involved in 

regulatory processes intracellularly. A number of scientific studies have revealed a comprehensive 

and evidential knowledge about miRNAs that affect the bone metabolism by influencing bone 

formation and resorption processes. In this short review we have summarized the regulatory role 

of some selective miRNAs in bone formation. 
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1. Introduction 

MicroRNAs are a class of small non-coding RNA molecules (about 22-nucleotide long) that are 

involved in a wide range of physiological and pathological processes.  It is evident in many recent 

studies that miRNAs affect bone metabolism by influencing bone formation and resorption processes. 

In the last few years, a number of promising studies suggested miRNAs as potential biomarkers for 

osteoporosis. A tightly regulated balance between bone resorption (mediated by osteoclasts) and 

bone formation (mediated by osteoblasts) ensure a normal bone remodeling process and ultimately 

a mature healthy bone. Proper balance is controlled by the coupling of bone formation to bone 

resorption, which involves a number of coordinated signaling mechanisms. Nonetheless, an 

imbalance between bone resorption and bone formation may occur under certain pathological 

conditions, which leads to abnormal bone remodeling and the development of bone disorders.[1] 

2. miRNAs as gene regulatory elements. 

MiRNAs were first reported in 1993 by Lee et al.[2] Mature miRNAs are about 22 nucleotide long 

non coding RNA molecules that are involved in regulatory processes intracellularly, but were 

detected also in the circulation and other body fluids .[3]They are one of the most studied regulators 

of gene expression in both physiological and pathological conditions.[4] miRNAS and noncoding 

RNAs are considered epigenetic regulators along with DNA methylation and histone modifications 

that regulate gene transcription.[5,6] 

Regulatory tasks are executed at post-transcriptional level by the binding of miRNAs to the 3’ UTR 

(untranslated region) of the target RNA and modulating their target in two possible, ways depending 

on the degree of the complementarity between the miRNA and the target sequences within 3′ 

untranslated regions (UTRs) of mRNA. 

If the miRNA bind perfectly with the complimentary sequence of targeted mRNA it will induce the 

RNA interface pathway that result in the degradation of mRNA.[7-10] 
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While miRNAs that bind with their targeted mRNAs at 3′ UTRs with partial complementarity result 

repress gene expression post-transcriptionally at the level of translation, without degradation of 

mRNA.[11,12] 

3. miRNAs AND OSTEOBLAST DIFFERENTIATION 

Osteoblastic bone formation process occurs in different stages: osteoblast proliferation; Extracellular 

matrix(ECM) maturation; ECM mineralization; and osteoblast apoptosis. A number of key steps are 

involved in osteoblast maturation starting form mesenchymal stem cells differentiation to 

preosteoblasts that is regulated by a transcription factor Runx2; these then differentiated into 

osteoblasts, regulated by a combined regulatory mechanism of Runx2 and osteoblast-specific 

transcription factor (Osx).[13] 

Multiple signaling pathways play role in osteogenic differentiation including Wnt/-catenin, bone 

morphogenetic protein (BMP), JAK/STAT, and MAPK.[14,15] 

 In addition, regulatory genes like Runx2, osterix, SMADs, TCF/LEF, NFATc1, Twist1, and AP-1 take 

partto activates Smad protein family and Wnt signal.[16] This activated Wnt pathway successively 

activates frizzled related protein (FRP) and promotes the expression of specific genes that result in 

the proliferation of stem cells, preosteoblasts, increasing osteoblasts numbers, and the resistance to 

apoptosis of osteoblasts.[17] 

Many studies have reported that the expression of particular miRNAs in osteoblast differentiation 

appears unregulated or down regulated. miRNas regulate the osteolasteogenesis by directly or 

indirectly affecting the above mentioned pathways. Some miRNAS have positive effective on 

osteoblast and promote their differentiation such as miR-29b, miR-2861 and miR-3960, miR-378 are 

important examples that enhance the osteoblastic differentiation. Conversely, while some miRNAs 

negatively regulatethe osteoblast by Inhibiting Osteoblastic Differentiation. Some important 

examples of osteoblastic inhibitory miRNAS are miR-204/miR-211, miR-133 and miR-135 , miR-125b, 

miR-206. 

Table. 1 of shows the list of reported important miRNAS with their target genes/pathways, effect on 

osteoblasteogenesis and the reference study in detail. 

Table 1. miRNAS related to osteoblasteogenesis 

Mirna Target protein/ Pathway Effect on osteclastogenesis Reference 

let-7f Axin2 Promote [18] 

miR-10a KLF4 promote  [19] 

miR-15b Smurf1 promote  [20] 

miR-20a PPARγ Bambi Crim1 promote  [20] 

miR-23a Runx2 Suppress [21] 

miR-23a~27a~24-2 SATB2 suppress  [22] 

miR-26a Smad-1 suppress  [23] 

miR-27 APC,SFRP1 promote  [24,25] 

miR-29a DKK1 Kremen2 SFRP2 

HDAC4,osteonectin 

promote  [26] ,[27] ,[28] 

miR-29b DUSP2 ,TGF-β3  

HDAC4,AcvR2a,CTNNBIP1 

promote  [29] 

miR-29c osteonectin promote  [26] 
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miR-30c Runx2 suppress  [21] 

miR-31 Osx,SATB2 suppress  [30],[31],[32], 

miR-34a JAG1 suppress  [33] 

miR-34b SATB2 promote  [34] 

miR-34c SATB2,Runx2 suppress  [34],[21] 

miR-93 Osx suppress  [35] 

miR-103a Runx2 suppress  [21] 

miR-125b Osx, Smad-4, Cbfβ suppress  [36] 

miR-133 Runx2 suppress  [37],[21] 

miR-135a Smad-5,Runx2 suppress  [37],[21] 

miR-137 Runx2 suppress  [21] 

miR-138 FAK suppress  [38] 

miR-140-5p BMP-2 suppress  [39] 

miR-141 Dlx5 suppress  [40] 

miR-143 Osx suppress  [41] 

miR-145 Osx suppress  [42] 

miR-146a JMJD3,Smad-2, Smad-3 suppress  [43],[44] 

miR-181a TgfbI, TβR-I ,Rgs4 

 Gata6 

promote  [45] 

miR-196a HOXC8 promote  [46] 

miR-199a Smad-1 suppress  [47] 

miR-200a Dlx5 suppress  [40] 

miR-206 Connexin43 suppress  [48] 

miR-204 Runx2 suppress  [49],[21] 

miR-205 Runx2 suppress  [21] 

miR-210 AcvR1b promote  [50] 

miR-211 Runx2 suppress  [49] 

miR-214 Osx, ATF4 suppress  [51],[52] 

miR-217 Runx2 promote  [21] 

miR-218 SOST DKK2 SFRP2 

Runx2 

promote  

suppress  

[53],[54], 

[55] 

miR-335-5p DKK1 promote  [56] 

miR-338 Runx2 suppress  [21] 

miR-338-3p Runx2 Fgfr2 promote  [57] 

miR-346 GSK-3β suppress  [52] 

miR-378 unknown promote  [58] 

miR-433 Runx2 suppress  [59] 

miR-542-3p BMP-7 suppress  [60] 

miR-548d-5p PPARγ promote  [61] 

miR-637 Osx suppress  [62] 

miR-654-5p BMP-2 suppress  [63] 

miR-2861 HDAC5 promote  [64] 
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miR-3960 HOXA2 promote  [65] 

 

4. miRNAs and Osteoclsat 

Multinucleated osteoclast primarily originate from mononuclear macrophages. The process 

comprises the complex interaction of different pathway and receptors andregulated by a variety of 

cytokines. Mononuclear cells are stimulated by a number of cyto-regulatory elements ,most 

importantly  osteoclast differentiation factor (RANKL), macrophage colony stimulating factor (M-

CSF) and other positive stimulating factor, that leads to differentiate into osteoclasts.[66] Although 

different miRNAS contribute in regulating osteoblast differentiation however their effects on 

osteoclastogenesis have been less studied as compared to osteoblast. In Table 02 some selected 

miRNAs are listed with their target proteins/pathways, effects and reference studies. 

Table 02. miRNAS related to Osteoclastogenesis 

Mirna Target protein/ Pathway Effect on osteclastogenesis Reference 

miR-21-5p FasL, PDCD4 Inhibits/promotes [67],[68],[69],[70] 

miR-29 CDC42, SRGAP2, 

NFIA, CD93,CALCR 

promotes [71] 

miR-31-5p RhoA promotes [72] 

hsa-miR-133a-3p CXCL11, CXCR3 and 

SLC39A1 

Inhibit/promotes [73] 

hsa-miR-422a CBL, CD226,IGF1, 

PAG1,TOB2 

promotes [74] 

hsa-miR-148a-3p MAFB Promotes [75],[76] 

miR-183-5p HO-1 Promotes [77] 

miR-214-3p Pten Promotes [52],[78], 

miR-223-3p NFIA, IKKα Inhibits/promotes [78],[79],[80],[81],[82] 

[83],[84],[85],[86], 

miR-9718 PIAS3 promotes [87] 

miR-7b-5p DC-STAMP Inhibits [88] 

miR-26a-5p CTGF Inhibits [89] 

miR-124-3p NFATc1, RhoA, Rac1 Inhibits [90] 

miR-125a-5p TRAF6 Inhibits [91] 

miR-146a-5p TRAF6, Stat1 Inhibits [92],[93],[94] 

miR-218-5p p38MAPK-c-Fos-

NFATc1 

Inhibits [95] 

miR-503-5p RANK Inhibits [96] 

miR-34a-5p Tgif2 Inhibits [97] 

 

5. Conclusion 
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Despite the limitation of unclear role of miRNAs in bone disorders there is substantial information 

about some specific miRNAs relative to bone metabolism now emerging and making their use as a 

new tool for the early diagnosis of osteoporosis. 
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