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ABSTRACT 

This article presents a comprehensive framework for valuing financial instruments subject to 

credit risk. In particular, we focus on the impact of default dependence on asset pricing, as correlated 

default risk is one of the most pervasive threats in financial markets. We analyze how swap rates are 

affected by bilateral counterparty credit risk, and how CDS spreads depend on the trilateral credit risk of 

the buyer, seller, and reference entity in a contract. Moreover, we study the effect of collateralization on 

valuation, since the majority of OTC derivatives are collateralized. The model shows that a fully 

collateralized swap is risk-free, whereas a fully collateralized CDS is not equivalent to a risk-free one. 
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1 Introduction 

A broad range of financial instruments bear credit risk. Credit risk may be unilateral, bilateral, or 

multilateral. Some instruments such as, loans, bonds, etc, by nature contain only unilateral credit risk 

because only the default risk of one party appears to be relevant, whereas some other instruments, such as, 

over the counter (OTC) derivatives, securities financing transactions (SFT), and credit derivatives, bear 

bilateral or multilateral credit risk because two or more parties are susceptible to default risk. This paper 

mainly discusses bilateral and multilateral credit risk modeling, with a particular focus on default 

dependency, as correlated credit risk is one of the greatest threats to global financial markets. 

There are two primary types of models that attempt to describe default processes in the literature: 

structural models and reduced-form (or intensity) models. Many practitioners in the credit trading arena 

have tended to gravitate toward the reduced-from models given their mathematical tractability. They can 

be made consistent with the risk-neutral probabilities of default backed out from corporate bond prices or 

credit default swap (CDS) spreads/premia.  

Central to the reduced-form models is the assumption that multiple defaults are independent 

conditional on the state of the economy. In reality, however, the default of one party might affect the 

default probabilities of other parties. Collin-Dufresne et al. (2003) and Zhang and Jorion (2007) find that 

a major credit event at one firm is associated with significant increases in the credit spreads of other 

firms. Giesecke (2004), Das et al. (2006), and Lando and Nielsen (2010) find that a defaulting firm can 

weaken the firms in its network of business links. These findings have important implications for the 

management of credit risk portfolios, where default relationships need to be explicitly modeled. 

The main drawback of the conditionally independent assumption or the reduced-form models is 

that the range of default correlations that can be achieved is typically too low when compared with 

empirical default correlations (see Das et al. (2007)). The responses to correct this weakness can be 

generally classified into two categories: endogenous default relationship approaches and exogenous 

default relationship approaches.  
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The endogenous approaches include the contagion (or infectious) models and frailty models. The 

frailty models (see Duffie et al. (2009), Koopman et al. (2011), etc) describe default clustering based on 

some unobservable explanatory variables. In variations of contagion or infectious type models (see Davis 

and Lo (2001), Jarrow and Yu (2001), etc.), the assumption of conditional independence is relaxed and 

default intensities are made to depend on default events of other entities. Contagion and frailty models fill 

an important gap but at the cost of analytic tractability. They can be especially difficult to implement for 

large portfolios. 

The exogenous approaches (see Li (2000), Laurent and Gregory (2005), Hull and White (2004), 

Brigo et al. (2011), etc) attempt to link marginal default probability distributions to the joint default 

probability distribution through some external functions. Due to their simplicity in use, the exogenous 

approaches become very popular in practice. 

Collateralization is one of the most important and widespread credit risk mitigation techniques 

used in derivatives transactions. According the ISDA (2012), 71% of all OTC derivatives transactions are 

subject to collateral agreements. The use of collateral in the financial markets has increased sharply over 

the past decade, yet the research on collateralized valuation is relatively sparse. Previous studies seem to 

turn away from direct and detailed modeling of collateralization (see Fuijii and Takahahsi (2012)). For 

example, Johannes and Sundaresan (2007), and Fuijii and Takahahsi (2012) characterize collateralization 

via a cost-of-collateral instantaneous rate (or stochastic dividend or convenience yield). Piterbarg (2010) 

regards collateral as a regular asset in a portfolio and uses the replication approach to price collateralized 

contracts. 

This paper presents a new framework for valuing defaultable financial instruments with or 

without collateral arrangements. The framework characterizes default dependencies exogenously, and 

models collateral processes directly based on the fundamental principals of collateral agreements. Some 

well-known risky valuation models in the markets, e.g., the CDS model, the risky interest rate swap (IRS) 

model (Duffie and Huang (1996)), can be viewed as special cases of this framework, when the default 

dependencies are ignored.  
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IRSs and CDSs are two of the largest segments of the OTC derivatives market, collectively 

accounting for around two-thirds of both the notional amount and market value of all outstanding 

derivatives. Given this framework, we are able to analyze the value of IRSs with bilateral credit risk and 

look at how swap rates are affected by correlated default risk. Our study shows that counterparty default 

correlations have a relatively small impact on swap rates. Furthermore, we find that the value of a fully 

collateralized IRS is equal to the risk-free value. This conclusion is consistent with the current market 

practice in which market participants commonly assume fully collateralized swaps are risk-free. 

We also study the value of CDS contracts with trilateral credit risk and assess how spreads 

depend on the risk of the buyer, seller, and reference entity in a CDS contract. In general, a CDS contract 

is used to transfer the credit risk of a reference entity from one party to another. The risk circularity that 

transfers one type of risk (reference credit risk) into another (counterparty credit risk) within the CDS 

market is a concern for financial stability. Some people claim that the CDS market has increased financial 

contagion or even propose an outright ban on these instruments. 

The standard CDS pricing model in the market assumes that there is no counterparty risk. 

Although this oversimplified model may be accepted in normal market conditions, its reliability in times 

of distress has recently been questioned. In fact, counterparty risk has become one of the most dangerous 

threats to the CDS market. For some time now it has been realized that, in order to value a CDS properly, 

counterparty effects have to be taken into account (see ECB (2009)). 

We bring the concept of comvariance into the area of credit risk modeling to capture the 

statistical relationship among three or more random variables. Comvariance was first introduced to 

economics by Deardorff (1982), who used this measurement to correlate three factors in international 

trading. Furthermore, we define a new statistics, comrelation, as a scaled version of comvariance. 

Accounting for default correlations and comrelations becomes important in determining CDS premia, 

especially during the credit crisis. Our analysis shows that the effect of default dependencies on CDS 

premia from large to small is i) the default correlation between the protection seller and the reference 

entity, ii) the default comrelation, iii) the default correlation between the protection buyer and the 
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reference entity, and iv) the default correlation between the protection buyer and the protection seller. In 

particular, we find that the default comvariance/comrelation has substantial effects on the asset pricing 

and risk management, which have never been documented. 

There is a significant increase in the use of collateral for CDS after the recent financial crises. 

Many people believe that, if a CDS is fully collateralized, there is no risk of failure to pay. Collateral 

posting regimes are originally designed and utilized for bilateral risk products, e.g., IRS, but there are 

many reasons to be concerned about the success of collateral posting in offsetting the risk of CDS 

contracts. First, the value of CDS contracts tends to move very suddenly with big jumps, whereas the 

price movement of IRS contracts is far smoother and less volatile than CDS. Second, CDS spreads can 

widen very rapidly. Third, CDS contracts have many more risk factors than IRS contracts. In fact, our 

model shows that full collateralization cannot eliminate counterparty risk completely for a CDS. 

This article also shows that the pricing process of a defaultable instrument normally has a 

backward recursive nature if the payoff can be positive or negative. Accordingly, we propose a backward 

induction approach for risky valuation. In contrast to the popular recursive integral solution (see Duffie 

and Huang (1996)), our backward induction method significantly simplifies the implementation. One can 

make use of the well-established algorithms, such as lattice/tree and regression-based Monte Carlo, to 

price a defaultable instrument. 

The rest of this paper is organized as follows: Pricing bilateral defaultable instruments is 

elaborated on in Section 2; valuing multilateral defaultable instruments is discussed in Section 3; the 

conclusions are presented in Section 4. All proofs and some detailed derivations are contained in the 

appendices. 

 

2 Pricing Financial Instruments Subject to Bilateral Credit Risk 
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We consider a filtered probability space ( , F ,   0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and 

  0ttF  denotes a filtration. 

In the reduced-form approach, the stopping (or default) time i  of firm i is modeled as a Cox 

arrival process (also known as a doubly stochastic Poisson process) whose first jump occurs at default and 

is defined by, 

 it

sii HdsZsht  0
),(:inf          (1) 

where )(thi  or ),( ti Zth  denotes the stochastic hazard rate or arrival intensity dependent on an exogenous 

common state tZ , and iH  is a unit exponential random variable independent of tZ . 

Dependence between the default times is only introduced by the dependence of the intensity )(thi  

on a common process tZ . Consequently, conditional on the path of tZ , defaults are independent, which is 

the reason why this setup is also often called the conditional independence setup. 

It is well-known that the survival probability from time t to s in this framework is defined by 






 

s

t itii duuhZtsPstp )(exp),|(:),(       (2a) 

 The default probability for the period (t, s) in this framework is given by 






 

s

t iitii duuhstpZtsPstq )(exp1),(1),|(:),(           (2b) 

 Three different recovery models exist in the literature. The default payoff is either i) a fraction of 

par (Madan and Unal (1998)), ii) a fraction of an equivalent default-free bond (Jarrow and Turnbull 

(1995)), or iii) a fraction of market value (Duffie and Singleton (1999)). The whole course of the recovery 

proceedings under the Bankruptcy and Insolvency act is a complex process that typically involves 

extensive negotiation and litigation. No model can fully capture all aspects of this process so, in practice, 

all models involve trade-offs between different perspectives and views. In general, the choice for a certain 

recovery assumption is based on the legal structure of an instrument to be priced. For example, the 
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recovery of market value (RMV) assumption is well matched to the legal structure of an IRS contract 

where, upon default close-out, valuation will in many circumstances reflect the replacement cost of the 

transaction, whereas the best default recovery assumption for a CDS is that the claim made in the event of 

the reference default equals a fraction of the face value of the underlying bond. 

There is ample evidence that corporate defaults are correlated. The default of a firm’s 

counterparty might affect its own default probability. Thus, default correlation/dependence arises due to 

the counterparty relations.  

Two counterparties are denoted as A and B. The binomial default rule considers only two possible 

states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows a Bernoulli 

distribution, which takes value 1 with default probability jq , and value 0 with survival probability jp , 

i.e., jj pYP  }0{  and jj qYP  }1{ . The marginal default distributions can be determined by the 

reduced-form models. The joint distributions of a multivariate Bernoulli variable can be easily obtained 

via the marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. The joint 

probability representations are given by 

ABBABA ppYYPp  )0,0(:00      (3a) 

ABBABA qpYYPp  )1,0(:01      (3b) 

ABBABA pqYYPp  )0,1(:10      (3c) 

ABBABA qqYYPp  )1,1(:11      (3d) 

where  
jj qYE )( ,

jjj qp2 , and   BBAAABBAABBBAAAB pqpqqYqYE   ))((:  where AB  

denotes the default correlation coefficient, and  AB  denotes the default covariance. 

A critical ingredient of the pricing of a bilateral defaultable instrument is the default settlement 

rules. There are two rules in the market. The one-way payment rule was specified by the early 

International Swap Dealers Association (ISDA) master agreement. The non-defaulting party is not 
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obligated to compensate the defaulting party if the remaining market value of the instrument is positive 

for the defaulting party. The two-way payment rule is based on current ISDA documentation. The non-

defaulting party will pay the full market value of the instrument to the defaulting party if the contract has 

positive value to the defaulting party. 

1.1   Risky valuation without collateralization 

Consider a defaultable instrument that promises to pay a TX  from party B to party A at maturity 

date T, and nothing before date T. The payoff TX  may be positive or negative, i.e. the instrument may be 

either an asset or a liability to each party. All calculations are from the perspective of party A. 

We divide the time period (t, T) into n very small time intervals ( t ) and use the approximation 

  yy 1exp  provided that y is very small. The survival and the default probabilities for the period (t, 

tt  ) are given by 

  tthtthtttptp  )(1)(exp),(:)(ˆ     (4a) 

  tthtthtttqtq  )()(exp1),(:)(ˆ     (4b) 

Suppose that the value of the instrument at time tt  is )( ttV   that can be an asset or a 

liability. There are a total of four ( 42 2  ) possible states shown in Table 1. 

The risky value of the instrument at time t is the discounted expectation of all the payoffs and is 

given by 

 


      tt

t

t

FF

F

F

)()(exp)()(1)(1)(exp

)()()()()()()()(1

)()()()()()()()(1)(exp)(

0)(0)(

111001000)(

111001000)(

ttVttgEttVttltltrE

ttVtpttpttpttp

ttVtpttpttpttpttrEtV

AttVBttV

ABAAttV

ABBBttV
















    (5a) 

where 

)(1)(1)()( 0)(0)( tltltrtg AttVBttV           (5b) 

      )()()()()()(1)()(1)()(1)( ththttttthtthttl BAABABBBABBBB     (5c) 

      )()()()()()(1)()(1)()(1)( ththttttthtthttl BAABABAABAAAA     (5d) 
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where Y  is an indicator function that is equal to one if Y is true and zero otherwise,  tE F  is the 

expectation conditional on the tF , )(tr  is the risk-free short rate, and i  is the recovery rate. 

 The pricing equation above keeps terms of order t . All higher order terms of t  are omitted. 

Similarly, we have 

  ttttVtttgEttV  F)2()(exp)(        (6) 

Note that  ttg  )(exp  is ttF  -measurable. By definition, an ttF  -measurable random 

variable is a random variable whose value is known at time tt  . Based on the taking out what is 

known and tower properties of conditional expectation, we have 

        
  ti

tttt

ttVttitgE

ttVtttgEttgEttVttgEtV

F

FFF

)2())(exp

)2()(exp)(exp)()(exp)(

1
0





 


 (7) 

By recursively deriving from t forward over T where TXTV )(  and taking the limit as t  

approaches zero, we obtain 

 












  tT

T

ttT XduugEXTtGEtV FF )(exp),()(                      (8) 

We may think of ),( TtG  as the bilateral risk-adjusted discount factor and )(ug  as the bilateral 

risk-adjusted short rate. Equation (8) has a general form that applies in a particular situation where we 

assume that parties A and B have independent default risks, i.e. 0AB  and 0AB . Thus, we have: 

 












  tT

T

ttT XduugEXTtGEtV FF )(exp),()(                   (9a) 

where  

)(1)(1)()( 0)(0)( ululurug AuVBuV          (9b) 

    )()(1)()(1)( uhuuhuul ABBBB             (9c) 

    )()(1)()(1)( uhuuhuul BAAAA             (9d) 

Equation (9) is the same as equation (2.5’) in Duffie and Huang (1996). 
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In theory, a default may happen at any time, i.e., a risky contract is continuously defaultable. This 

Continuous Time Risky Valuation Model is accurate but sometimes complex and expensive. For 

simplicity, people sometimes prefer the Discrete Time Risky Valuation Model that assumes that a default 

may only happen at some discrete times. A natural selection is to assume that a default may occur only on 

the payment dates. Fortunately, the level of accuracy for this discrete approximation is well inside the 

typical bid-ask spread for most applications (see O’Kane and Turnbull (2003)). From now on, we will 

focus on the discrete setting only, but many of the points we make are equally applicable to the 

continuous setting. 

 If we assume that a default may occur only on the payment date, the risky value of the instrument 

in a discrete-time setting is given by 




    tt

t

t

FF

F

F

TTAXBX

TABAAX

TABBBX

XTtKEXTtkTtkTtDE

XTtpTTtpTTtpTTtp

XTtpTTtpTTtpTTtpTtDEtV

TT

T

T

),(),(1),(1),(

),()(),()(),()(),(1

),()(),()(),()(),(1),()(

00

111001000

111001000
















    (10a) 

where 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB







        (10b) 

 )()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA







        (10c) 

where ),( tD denotes the stochastic risk-free discount factor at t for the maturity T given by 





  duurTtD

T

t
)(exp),(      (10d) 

We may think of ),( TtK as the risk-adjusted discount factor, and ),( TtkA  and ),( TtkB  as the 

adjustment factors. Equation (10) tells us that the bilateral risky price of a single-payment instrument can 

be expressed as the present value of the payoff discounted by a risk-adjusted discount factor that has a 

switching-type dependence on the sign of the payoff. 
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Equation (10) can be easily extended from one-period to multiple-periods. Suppose that a 

defaultable instrument has m cash flows. Let the m cash flows be represented as 1X ,…, mX  with payment 

dates 1T ,…, mT . Each cash flow may be positive or negative. We have the following proposition. 

Proposition 1: The  risky value of the multiple-payment instrument is given by 

   

  m

i ti
i

j jj XTTKEtV
1

1

0 1),()( F          (11a) 

where 0Tt   and 

 ),(1),(1),(),( 10))((10))((11 1111  
 jjATVXjjBTVXjjjj TTkTTkTTDTTK

jjjj
      (11b) 

where ),( 1jjA TTk and ),( 1jjB TTk  are defined in Equation (10). 

Proof: See the Appendix. 

From Proposition 1, we can see that the intermediate values are vital to determine the final price. 

For a payment interval, the current risky value has a dependence on the future risky value. Only on the 

final payment date mT , the value of the instrument and the maximum amount of information needed to 

determine the risk-adjusted discount factor are revealed. This type of problem can be best solved by 

working backwards in time, with the later risky value feeding into the earlier ones, so that the process 

builds on itself in a recursive fashion, which is referred to as backward induction. The most popular 

backward induction valuation algorithms are lattice/tree and regression-based Monte Carlo.  

1.2   Risky valuation with collateralization 

Collateralization is the most important and widely used technique in practice to mitigate credit 

risk. The posting of collateral is regulated by the Credit Support Annex (CSA) that specifies a variety of 

terms including the threshold, the independent amount, and the minimum transfer amount (MTA), etc. 

The threshold is the unsecured credit exposure that a party is willing to bear. The minimum transfer 

amount is the smallest amount of collateral that can be transferred. The independent amount plays the 

same role as the initial margin (or haircuts). 
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In a typical collateral procedure, a financial instrument is periodically marked-to-market and the 

collateral is adjusted to reflect changes in value. The collateral is called as soon as the mark-to-market 

(MTM) value rises above the given collateral threshold, or more precisely, above the threshold amount 

plus the minimum transfer amount. Thus, the collateral amount posted at time t is given by 



 


otherwise

tHtViftHtV
tC

0

)()()()(
)(         (12) 

where )(tH is the collateral threshold. In particular, 0)( tH corresponds to full-collateralization2; 0H  

represents partial/under-collateralization; and 0H  is associated with over-collateralization. Full 

collateralization becomes increasingly popular at the transaction level. In this paper, we focus on full 

collateralization only, i.e., )()( tVtC  . 

The main role of collateral should be viewed as an improved recovery in the event of a 

counterparty default. According to Bankruptcy law, if there has been no default, the collateral is returned 

to the collateral giver by the collateral taker. If a default occurs, the collateral taker possesses the 

collateral. In other words, collateral does not affect the survival payment; instead, it takes effect on the 

default payment only. 

For a discrete one-period (t, u) economy, the posted collateral at time t is )()( tVtC  . At time u, 

there are several possible states: i) Both A and B survive. The instrument value is equal to the market 

value )(uV ; ii) Either or both counterparties A and B default. The instrument value is the future value of 

the collateral, i.e., ),(/)()( utDtVuC   where we consider the time value of money only. Since the 

majority of the collateral is cash according to ISDA (2012), it is reasonable to consider the time value of 

money only for collateral assets. The large use of cash means that collateral is both liquid and not subject 

 
2  There are three types of collateralization: Full-collateralization is a process where the posting of 

collateral is equal to the current MTM value. Partial/under-collateralization is a process where the posting 

of collateral is less than the current MTM value. Over-collateralization is a process where the posting of 

collateral is greater than the current MTM value. 
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to large fluctuations in value. The value of the collateralized instrument at time t is the discounted 

expectation of all the payoffs and is given by 

  
     )(),(1)(),(),(

)(),()(),()(),()(),(),()(

0000

11100100

tVutpEuVutputDE

uCutpuCutpuCutpuVutputDEtV

tt

t

FF

F




   (13a) 

or 

   tt FF ),(/)(),(),()( 0000 stpEsVstpstDEtV          (13b) 

If we assume that default probabilities are uncorrelated with interest rates and payoffs3, we have 

 tF)(),()( sVstDEtV       (14) 

 Equation (14) is the formula for the risk-free valuation. Thus, we have the following proposition. 

Proposition 2: If a bilateral risky instrument is fully collateralized, the risky value of the instrument is 

equal to the risk-free value, as shown in equation (14). 

 Since an IRS is a typical bilateral risky contract, Proposition 2 squares with the results of 

Johannes and Sundaresan (2007), and is also consistent with the current market practice in which market 

participants commonly assume fully collateralized swaps are risk-free and it is common to build models 

of swap rates assuming that swaps are free of counterparty risk. 

1.3   Numerical results 

To study the impact of bilateral credit risk, we have selected a new 10-year fixed-for-floating IRS 

with a quarterly payment frequency. Two counterparties are denoted as A and B. Counterparty A pays a 

fixed rate and counterparty B pays a floating rate.  All calculations are from the perspective of party A. 

The current (spot) market data are shown in Table 2, provided by FinPricing (2019). At the time 

the contract is entered into, there is no advantage to either party. By definition, a swap rate is a fixed rate 

 
3 Moody’s Investor’s Service (2000) presents statistics that suggest that the correlations between interest 

rates, default probabilities, and recovery rates are very small and provides a reasonable comfort level for 

the uncorrelated assumption. 
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that makes the market value of a given swap at initiation zero. The risk-free swap rate can be easily 

calculated as 0.03433. 

Since the payoff of an IRS is determined by interest rates, we need to model the evolution of the 

floating rates. Interest rate models are based on evolving either short rates, instantaneous forward rates, or 

market forward rates (e.g., the LIBOR Market Model (LMM)). Since both short rates and instantaneous 

forward rates are not directly observable in the market, the models based on these rates have difficulties in 

expressing market views and quotes in term of model parameters, and lack agreement with market 

valuation formulas for basic derivatives. On the other hand, the object modeled under the LMM is 

market-observable. It is also consistent with the market standard approach for pricing caps/floors using 

Black’s formula. They are generally considered to have more desirable theoretical calibration properties 

than short rate or instantaneous forward rate models. Therefore, we choose the LMM lattice proposed by 

Xiao (2011) for pricing the defaultable IRS. We also implement the Hull-White trinomial tree to verify 

the results and ensure robustness of the valuation. This paper, however, only reports the results produced 

by the LMM lattice. 

We first assume that i) counterparties A and B have independent default risks; ii) the hazard rates 

are deterministic; and iii) both parties have a constant recovery of 60%. We use the LMM to evolve the 

interest rates and then price the risky IRS according to Proposition 1. The risky swap rates are computed 

and shown in Table 3. 

From Table 3, we derive the following conclusions: First, a fixed-rate payer with lower credit 

quality (higher credit risk) pays a higher fixed rate. Second, a credit spread of about 100 basis points 

translates into a swap spread of about 1.3 basis points. Finally, the credit impact on swap rates is 

approximately linear within the range of normally encountered credit quality. This confirms the findings 

of Duffie and Huang (1996). Intuitively, a risk-free floating-rate payer demands a higher fixed rate if the 

fixed-rate payer has a lower credit score. 
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We next present some new results. Assume that party A has an ‘A+300bps’ credit quality, i.e., a 

‘300 basis points’ parallel shift in the A-rated credit spreads, and party B has an ‘A’ credit quality. The 

risky swap rate with asymmetric credit qualities is calculated as 0.03436. 

Assume 5.0AB . The effect of the default correlation AB  on swap rate is shown in Figure 1. 

We can draw the following conclusions from the results: First, the counterparty default correlation and the 

swap rates have a negative relation, i.e., a negative sensitivity of swap rates to changes in counterparty 

default correlation is obtained. Second, the graph suggests an almost linear relationship between the swap 

rates and the default correlation. Finally, the impact of the default correlation is modest (e.g., in the range 

of [-2, 2] basis points). 

Bilateral credit risk modeling is probably the simplest example involving default dependency, but 

it shows several essential features for modeling correlated credit risk, which will help the reader better 

understand the increasingly complex cases in the following section. 

 

2 Pricing Financial Instruments Subject to Multilateral Credit Risk 

The interest in the financial industry for the modeling and pricing of multilateral defaultable 

instruments arises mainly in two respects: in the management of credit risk at a portfolio level and in the 

valuation of credit derivatives. Central to the pricing and risk management of credit derivatives and credit 

risk portfolios is the issue of default relationships.  

Let us discuss the three-party case first. A CDS is a good example of a trilateral defaultable 

instrument where the three parties are counterparties A, B and reference entity C. In a standard CDS 

contract one party purchases credit protection from another party, to cover the loss of the face value of a 

reference entity following a credit event. The protection buyer makes periodic payments to the seller until 

the maturity date or until a credit event occurs. A credit event usually requires a final accrual payment by 

the buyer and a loss protection payment by the protection seller. The protection payment is equal to the 
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difference between par and the price of the cheapest to deliver (CTD) asset of the reference entity on the 

face value of the protection. 

A CDS is normally used to transfer the credit risk of a reference entity between two 

counterparties. The contract reduces the credit risk of the reference entity but gives rise to another form of 

risk: counterparty risk. Since the dealers are highly concentrated within a small group, any of them may 

be too big to fail. The interconnected nature, with dealers being tied to each other through chains of OTC 

derivatives, results in increased contagion risk. Due to its concentration and interconnectedness, the CDS 

market seems to pose a systemic risk to financial market stability. In fact, the CDS is blamed for playing a 

pivotal role in the collapse of Lehman Brothers and the disintegration of AIG.  

For years, a widespread practice in the market has been to mark CDS to market without taking the 

counterparty risk into account. The realization that even the most prestigious investment banks could go 

bankrupt has shattered the foundation of the practice. It is wiser to face frankly the real complexities of 

pricing a CDS than to indulge in simplifications that have proved treacherous. For some time now it has 

been realized that, in order to value a CDS properly, counterparty effects have to be taken into account. 

The default indicator jY  for firm j (j = A or B or C) follows a Bernoulli distribution, which takes 

value 1 with default probability jq , and value 0 with survival probability jp . The joint probability 

representations of a trivariate Bernoulli distribution (see Teugels (1990)) are given by 

ABCBCAACBABCCBACBA ppppppYYYPp   )0,0,0(:000   (15a) 

ABCBCAACBABCCBACBA qppppqYYYPp   )0,0,1(:100   (15b) 

ABCBCAACBABCCBACBA pqppqpYYYPp   )0,1,0(:010   (15c) 

ABCBCAACBABCCBACBA ppqqppYYYPp   )1,0,0(:001   (15d) 

ABCBCAACBABCCBACBA qqppqqYYYPp   )0,1,1(:110   (15e) 

ABCBCAACBABCCBACBA qpqqpqYYYPp   )1,0,1(:101   (15f) 

ABCBCAACBABCCBACBA pqqqqpYYYPp   )1,1,0(:011   (15g) 
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ABCBCAACBABCCBACBA qqqqqqYYYPp   )1,1,1(:111   (15h) 

where 

 ))()((: CCBBAAABC qYqYqYE       (15i) 

Equation (15) tells us that the joint probability distribution of three defaultable parties depends 

not only on the bivariate statistical relationships of all pair-wise combinations (e.g., ij ) but also on the 

trivariate statistical relationship (e.g., 
ABC ). 

ABC  was first defined by Deardorff (1982) as comvariance, 

who use it to correlate three random variables that are the value of commodity net imports/exports, factor 

intensity, and factor abundance in international trading. 

We introduce the concept of comvariance into credit risk modeling arena to exploit any statistical 

relationship among multiple random variables. Furthermore, we define a new statistic, comrelation, as a 

scaled version of comvariance (just like correlation is a scaled version of covariance) as follows: 

Definition 1: For three random variables AX , BX , and CX , let A , B , and C  denote the means of 

AX , BX , and CX . The comrelation of AX , BX , and CX  is defined by 

 
3 333

))()((

CCBBAA

CCBBAA
ABC

XEXEXE

XXXE









         (16) 

 According to the Holder inequality, we have 

  3 333
))()(())()(( CCBBAACCBBAACCBBAA XEXEXEXXXEXXXE    (17) 

Obviously, the comrelation is in the range of [-1, 1]. Given the comrelation, Equation (15i) can be 

rewritten as 

 

3 222222

3 333

)()()(

))()((:

CCCCBBBBAAAAABC

CCBBAAABCCCBBAAABC

qpqpqpqpqpqp

qYEqYEqYEqXqYqYE








     (18) 

where 
jj qYE )(  and )( 223

jjjjjj qpqpqYE  ,  j=A, B, or C. 

If we have a series of n measurements of AX , BX , and CX  written as Aix , Bix and Cix  where i = 

1,2,…,n,  the sample comrelation coefficient can be obtained as: 
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3
1

3

1

3

1

3

1
))()((













n
i CCi

n
i BBi

n
i AAi

n
i CCiBBiAAi

ABC

xxx

xxx




    (19) 

 More generally, we define the comrelation in the context of n random variables as 

Definition 2: For n random variables  1X , 2X ,…, nX , let i  denote the mean of iX  where i=1,..,n. The 

comrelation of 1X , 2X ,…, nX   is defined as 

 
n n

nn
nn

nn
n

XEXEXE

XXXE











2211

2211
...12

)())((
        (20) 

The correlation is just a specific case of the comrelation where n = 2. Again, the comrelation 

n...12  is in the range of [-1, 1] according to the Holder inequality. 

2.1  Risky valuation without collateralization 

Recovery assumptions are important for pricing credit derivatives. If the reference entity under a 

CDS contract defaults, the best assumption, as pointed out by J. P. Morgan (1999), is that the recovered 

value equals the recovery rate times the face value plus accrued interest4. In other words, the recovery of 

par value assumption is a better fit upon the default of the reference entity, whereas the recovery of 

market value assumption is a more suitable choice in the event of a counterparty default. 

Let valuation date be t. Suppose that a CDS has m scheduled payments. Let each payment be 

represented as ),( 1 iii TTsNX    with payment dates 1T ,…, mT  where i=1,,,,m, ),( 1 ii TT   denotes the 

accrual factor for period ),( 1 ii TT  , N denotes the notional/principal, and s denotes the CDS premium. 

Party A pays the premium/fee to party B if reference entity C does not default. In return, party B agrees to 

pay the protection amount to party A if reference entity C defaults before the maturity. We have the 

following proposition. 

Proposition 3: The  value of the multiple-payment CDS is given by 

 
4 In the market, there is an average accrual premium assumption, i.e., the average accrued premium is half 

the full premium due to be paid at the end of the premium. 
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where 0Tt   and 

    ),(1),(1),( 10)(10)(1 1111  
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jjjj
         (21b) 
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where   ),()(1),( 111   jjjCjj TTTNTTR  , 2/),(),( 1 TTsNTT Sjj  
, and ),( 1 jji TTsNX  . 

Proof: See the Appendix. 

We may think of ),( TtO  as the risk-adjusted discount factor for the premium and ),( Tt  as the 

risk-adjusted discount factor for the default payment. Proposition 3 says that the pricing process of a 

multiple-payment instrument has a backward nature since there is no way of knowing which risk-adjusted 

discounting rate should be used without knowledge of the future value. Only on the maturity date, the 

value of an instrument and the decision strategy are clear. Therefore, the evaluation must be done in a 

backward fashion, working from the final payment date towards the present. This type of valuation 

process is referred to as backward induction.  
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Proposition 3 provides a general form for pricing a CDS. Applying it to a particular situation in 

which we assume that counterparties A and B are default-free, i.e., 1jp ,  0jq , 0kl , and 0ABC , 

where j=A or B and  k, l=A, B, or C, we derive the following corollary. 

Corollary 1: If counterparties A and B are default-free, the value of the multiple-payment CDS is given by 
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where ),(),(),( 111 iiCiiii TTpTTDTTO   ; ),(),(),( 111 iiCiiii TTqTTDTT   . 

The proof of this corollary becomes straightforward according to Proposition 3 by setting kl =0, 

0AB , 0ABC , 1jp , 0jq ,  
  1

0 1),(),(
i

g ggiC TTpTtp , and  
  1

0 1),(),(
i

g ggi TTDTtD .  

If we further assume that the discount factor and the default probability of the reference entity are 

uncorrelated and the recovery rate 
C  is constant, we have 

Corollary 2: Assume that i) counterparties A and B are default-free, ii) the discount factor and the default 

probability of the reference entity are uncorrelated; iii) the recovery rate 
C  is constant; the value of the 

multiple-payment CDS is given by 
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where  tii TtDETtP F),(),(   denotes the bond price,  tF),(),( icic TtpETtp  , ),(1),( icic TtpTtq  , 

),(),(),(),( 111 iiiii TtpTtpTTqTtp   . 

This corollary is easily proved according to Corollary 1 by setting      ttt YEXEXYE FFF   

when X and Y are uncorrelated. Corollary 2 is the formula for pricing CDS in the market. 

 Our methodology can be extended to the cases where the number of parties 4n . A generating 

function for the (probability) joint distribution (see details in Teugels (1990)) of n-variate Bernoulli can 

be expressed as 
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where   denotes the Kronecker product;  )()( n
k

n pp   and  )()( n
k

n    are vectors containing n2  

components: 
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2.2  Risky valuation with collateralization 

According to the ISDA (2012), almost all CDSs are fully collateralized. Many people believe that 

full collateralization can eliminate counterparty risk completely for CDS.  

Collateral posting regimes are originally designed and utilized for bilateral risk products, e.g., 

IRS, but there are many reasons to be concerned about the success of collateral posting in offsetting the 

risks of CDS contracts. First, the values of CDS contracts tend to move very suddenly with big jumps, 

whereas the price movements of IRS contracts are far smoother and less volatile than CDS prices. 

Second, CDS spreads can widen very rapidly. The amount of collateral that one party is required to 

provide at short notice may, in some cases, be close to the notional amount of the CDS and may therefore 

exceed that party’s short-term liquidity capacity, thereby triggering a liquidity crisis. Third, CDS 

contracts have many more risk factors than IRS contracts.  

We assume that a CDS is fully collateralized, i.e., the posting of collateral is equal to the amount 

of the current MTM value: )()( tVtC  . For a discrete one-period (t, u) economy, there are several 

possible states at time u: i) A, B, and C survive with probability 000p . The instrument value is equal to the 

market value )(uV ; ii) A and B survive, but C defaults with probability 001p . The instrument value is the 

default payment )(uR ; iii) For the remaining cases, either or both counterparties A and B default. The 

instrument value is the future value of the collateral ),(/)( utDtV  (Here we consider the time value of 

money only). The value of the collateralized instrument at time t is the discounted expectation of all the 

payoffs and is given by 


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or 
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    (25b) 

If we assume that  ),(),(),( ututputp ABBA   and  )(),()(),(),( uRutquVutputD CC   are 

uncorrelated, we have 

),(/),()()( ututtVtV ABABC
F           (26a) 

where  

  tF)(),()(),(),()( uRutquVutputDEtV CC
F        (26b) 

  tF),(),(),(),( ututputpEut ABBAAB         (26c) 

    tF)()(),(),(),(),(),(),(),( uRuVutututpututputDEut ABCBCAACBABC      (26d) 

The first term )(tV F  in equation (26) is the counterparty-risk-free value of the CDS and the 

second term is the exposure left over under full collateralization, which can be substantial.  

Proposition 4: If a CDS is fully collateralized, the risky value of the CDS is NOT equal to the 

counterparty-risk-free value, as shown in equation (26). 

Proposition 4 or equation (26) provides a theoretical explanation for the failure of full 

collateralization in the CDS market. It tells us that under full collateralization the risky value is in general 

not equal to the counterparty-risk-free value except in one of the following situations: i) the market value 

is equal to the default payment, i.e., )()( uRuV  ; ii) firms A, B, and C have independent credit risks, i.e., 

ij =0  and 0ABC ; or iii) ABCBCAACB pp   . 

2.3  Numerical results 

Our goal in this subsection is to study the quantitative relationship between the CDS premium 

and the credit qualities of the counterparties and reference entity, including the default correlations and 

comrelation in a CDS contract. 

In our study, we choose a new 5-year CDS with a quarterly payment frequency. Two 

counterparties are denoted as A and B. Counterparty A buys a protection from counterparty B. All 
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calculations are from the perspective of party A. By definition, a breakeven CDS spread is a premium that 

makes the market value of a given CDS at inception zero. Assume that the reference entity C has an 

“A+200bps” credit quality throughout this subsection. The 5-year counterparty-risk-free CDS premium is 

0.027 (equals the 5-year ‘A’ rated CDS spread in Table 2 plus 200 basis points). 

Since the payoffs of a CDS are mainly determined by credit events, we need to characterize the 

evolution of the hazard rates. Here we choose the Cox-Ingersoll-Ross (CIR) model. The CIR process has 

been widely used in the literature of credit risk and is given by 

tttt dWhdthbadh  )(      (27) 

where a denotes the mean reversion speed, b denotes the long-term mean, and   denotes the volatility. 

 The calibrated parameters are shown in table 4. We assume that interest rates are deterministic 

and select the regression-based Monte-Carlo simulation (see Longstaff and Schwartz (2001)) to perform 

risky valuation.  

We first assume that counterparties A, B, and reference entity C have independent default risks, 

i.e., 0 ABCABBCACAB  , and examine the following cases: i) B is risk-free and A is risky; 

and ii) A is risk-free and B is risky. We simulate the hazard rates using the CIR model and then determine 

the appropriate discount factors according to Proposition 3. Finally we calculate the prices via the 

regression-based Monte-Carlo method. The results are shown in Table 5 and 6. 

From table 5 and 6, we find that a credit spread of about 100 basis points maps into a CDS 

premium of about 0.4 basis points for counterparty A and about -0.7 basis points for counterparty B. The 

credit impact on the CDS premia is approximately linear. As would be expected, i) the dealer’s credit 

quality has a larger impact on CDS premia than the investor’s credit quality; ii) the higher the investor’s 

credit risk, the higher the premium that the dealer charges; iii) the higher the dealer’s credit risk, the lower 

the premium that the dealer asks. Without considering default correlations and comrelations, we find that, 

in general, the impact of counterparty risk on CDS premia is relatively small. This is in line with the 

empirical findings of Arora, Gandhi, and Longstaff (2009). 
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Next, we study the sensitivity of CDS premia to changes in the joint credit quality of associated 

parties. Sensitivity analysis is a very popular way in finance to find out how the value and risk of an 

instrument/portfolio changes if risk factors change. One of the simplest and most common approaches 

involves changing one factor at a time to see what effect this produces on the output. We are going to 

examine the impacts of the default correlations AB , AC , BC , and the comrelation ABC  separately. 

Assume that party A has an ‘A+100bps’ credit quality and party B has an ‘A’ credit quality. The 5-year 

risky CDS premium is calculated as 0.02703. 

Assume AB =0.5. The impact diagrams of the default correlations and comrelation are shown in 

Figure 2. From this graph, we can draw the following conclusions: First, the CDS premium and the 

default correlations/comrelation have a negative relation. Intuitively, a protection seller who is positively 

correlated with the reference entity (a wrong way risk) should charge a lower premium for selling credit 

protection. Next, the impacts of the default correlations and comrelation are approximately linear. Finally, 

the sensitivity slopes of the CDS premium to the default correlations and comrelation are -0.06 to AB ; -

0.09 to AC ; -53 to BC ; and -14 to ABC . Slope measures the rate of change in the premium as a result 

of a change in the default dependence. For instance, a slope of -53 implies that the CDS premium would 

have to decrease by 53 basis points when a default correlation/comrelation changes from 0 to 1.  

As the absolute value of the slope increases, so does the sensitivity. The results illustrate that BC  

has the largest effect on CDS premia. The second biggest one is ABC . The impacts of AB  and AC  are 

very small. In particular, the effect of the comrelation is substantial and has never been studies before. A 

natural intuition to have on CDS is that the party buying default protection should worry about the default 

correlations and comrelation. 

 

3 Conclusion 

This article presents a new valuation framework for pricing financial instruments subject to credit 

risk. In particular, we focus on modeling default relationships. Some well-known risky valuation models 
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in the market can be viewed as special cases of this framework, when the default dependencies are 

ignored. 

To capture the default relationships among more than two defaultable entities, we introduce a 

new statistic: comrelation, an analogue to correlation for multiple variables, to exploit any multivariate 

statistical relationship. Our research shows that accounting for default correlations and comrelations 

becomes important, especially under market stress. The existing valuation models in the credit derivatives 

market, which take into account only pair-wise default correlations, may underestimate credit risk and 

may be inappropriate. 

We study the sensitivity of the price of a defaultable instrument to changes in the joint credit 

quality of the parties. For instance, our analysis shows that the effect of default dependence on CDS 

premia from large to small is the correlation between the protection seller and the reference entity, the 

comrelation, the correlation between the protection buyer and the reference entity, and the correlation 

between the protection buyer and the protection seller. 

The model shows that a fully collateralized swap is risk-free, while a fully collateralized CDS is 

not equivalent to a risk-free one. Therefore, we conclude that collateralization designed to mitigate 

counterparty risk works well for financial instruments subject to bilateral credit risk, but fails for ones 

subject to multilateral credit risk.  

 

Appendix 

Proof of Proposition 1. Let 0Tt  . On the first cash flow payment date 1T , let )( 1TV  denote the 

market value of the instrument excluding the current cash flow 1X . According to Equation (10), we have 

  tF)(),()( 1110 TVXTTKEtV           (A1) 

Similarly, we have 

  
1

)(),()( 22211 TTVXTTKETV F           (A2) 
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 Note that ),( 10 TTK  is 
1TF -measurable. According to taking out what is known and tower 

properties of conditional expectation, we have 

    
  

       ttt

t

tt

FFF

FFF

FF

)(),(),(),(

))(),(()),((),(

),()(),()(

2
1

0 12
1

0 1110

22122110

1101110

11

TVTTKEXTTKEXTTKE

TVTTKEXTTKETTKE

XTTKETVXTTKEtV

j jjj jj

TT

    





 (A3) 

 By recursively deriving from 2T  forward over mT , where mm XTV )( , we have 
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Proof of Proposition 3. Let 0Tt  . On the first payment date 1T , let )( 1TV  denote the market 

value of the CDS excluding the current cash flow 1X . There are a total of eight ( 82 3  ) possible states 

shown in Table A1. The risky price is the discounted expectation of the payoffs and is given by 
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where 
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Similarly, we have 
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 Note that ),( 10 TTO  is 
1TF -measurable. According to taking out what is known and tower 

properties of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV )( , we have 
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Table 1. Payoffs of a bilateral risky instrument 

This table shows all possible payoffs at time tt  . In the case of 0)(  ttV , there are a total of four 

cases: i) Both A and B survive with probability 00p .  The instrument value is equal to the market value: 

)( ttV  . ii) A defaults but B survives with probability 10p . The instrument value is a fraction of the 

market value: )()( ttVttB   where B  represents the non-default recovery rate. B =0 represents the 

one-way settlement rule, while B =1 represents the two-way settlement rule. iii) A survives but B 

defaults with probability 01p . The instrument value is a fraction of the market value: )()( ttVttB  , 

where B  represents the default recovery rate. 4) Both A and B default with probability 11p . The 

instrument value is a fraction of the market value: )()( ttVttAB  , where AB  denotes the joint 

recovery rate when both parties A and B default simultaneously. A similar logic applies to the case of 

0)(  ttV . 

State 0,0  BA YY  0,1  BA YY  1,0  BA YY  1,1  BA YY  

Comments A and B survive A defaults, B survives A survives, B defaults A and B default 

Probability 
00p  10p  01p  

11p  

Payoff if 0)(  ttV  )( ttV   )()( ttVttB   )()( ttVttB   )()( ttVttAB   

Payoff if 0)(  ttV  )( ttV   )()( ttVttA   )()( ttVttA   )()( ttVttAB   
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Table 2: Current/spot market data  

This table displays the current (spot) market data used for all calculations in this paper, including the term 

structure of continuously compounded interest rates, the term structure of A-rated breakeven CDS 

spreads, and the curve of at-the-money caplet volatilities. 

Term (days) 31 91 182 365 548 730 1095 1825 2555 3650 5475 

Interest Rate 0.0028 0.0027 0.0029 0.0043 0.0071 0.0102 0.016 0.0249 0.0306 0.0355 0.0405 

Credit Spread 0.0042 0.0042 0.0042 0.0045 0.0049 0.0052 0.0058 0.007 0.0079 0.0091 0.0106 

Caplet Volatility 0.3267 0.331 0.3376 0.3509 0.3641 0.3773 0.308 0.2473 0.2141 0.1678 0.1634 
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Table 3. Impact of the credit quality of the fixed-rate payer on swap rates 

This table shows the effect of counterparty credit quality on swap rates. Assume 0 ABAB  . The 1st 

data column represents the risk-free results. For the remaining columns, we assume that party B is risk-

free and party A is risky. ‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS 

spreads. The results in the row ‘Difference from Risk-Free’ = risky swap rate – risk free swap rate. 

Credit Quality 
Party A - A A+100bps A+200bps A+300bps 

Party B - - - - - 

Swap Rate 0.03433 0.03445 0.03459 0.03473 0.03485 

Difference from Risk-Free 0 0.012% 0.026% 0.04% 0.052% 
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Table 4: Risk-neutral parameters for CIR model 

This table presents the risk-neutral parameters that are calibrated to the current market shown in Table 2. 

‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS spreads. 

Credit Quality A A+100bps A+200bps A+300bps 

Long-Term Mean a  0.035 0.056 0.077 0.099 

Mean Reverting Speed b 0.14 0.18 0.25 0.36 

Volatility   0.022 0.028 0.039 0.056 
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Table 5: Impact of the credit quality of the protection buyer on CDS premia 

This table shows how the CDS premium increases as the credit quality of party A decreases. The 1st data 

column represents the counterparty-risk-free results. For the remaining columns, we assume that party B 

is risk-free and party A is risky. ‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated 

CDS spreads. The results in the row ‘Difference from Risk-Free’ = current CDS premium – counterparty-

risk-free CDS premium. 

Credit Quality 
Party A - A A+100bps A+200bps A+300bps 

Party B - - - - - 

CDS premium 0.027 0.02703 0.02708 0.02713 0.02717 

Difference from Risk-Free 0 0.003% 0.008% 0.013% 0.017% 
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Table 6: Impact of the credit quality of the protection seller on CDS premia 

This table shows the decrease in the CDS premium with the credit quality of party B. The 1st data column 

represents the counterparty-risk-free results. For the remaining columns, we assume that party A is risk-

free and party B is risky. ‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS 

spreads. The results in the row ‘Difference from Risk-Free’ = current CDS premium – counterparty-risk-

free CDS premium. 

Credit Quality 
Party A - - - - - 

Party B - A A+100bps A+200bps A+300bps 

CDS premium 0.027 0.02695 0.02687 0.0268 0.02672 

Difference from Risk-Free 0.00% -0.005% -0.013% -0.020% -0.028% 
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Table A1. Payoffs of a trilateral risky CDS 

This table shows all possible payoffs at time 1T . In the case of 0)( 11  XTV  where )( 1TV  is the market 

value excluding the current cash flow 1X , there are a total of eight ( 82 3  ) possible states: i) A, B, and C 

survive with probability 000p . The instrument value equals the market value: 11)( XTV  . ii) A defaults, 

but B and C survive with probability 100p . The instrument value is a fraction of the market value: 

 111 )()( XTVTB   where B , B , and AB  are defined in Table 1. iii) A and C survive, but B defaults 

with probability 010p . The instrument value is given by  111 )()( XTVTB  . iv) A and B survive, but C 

defaults with probability 001p . The instrument value is the default payment: ),( 10 TTR . v) A and B default, 

but C survives with probability 110p . The instrument value is given by  111 )()( XTVTAB  . vi) A and C 

default, but B survives with probability 101p . The instrument value is a fraction of the default payment: 

 10 ,)( TTRTB . vii) B and C default, but A survives with probability 011p , The instrument value is given 

by  10 ,)( TTRTB . viii) A, B, and C default with probability 111p . The instrument value is given 

by  10 ,)( TTRTAB . A similar logic applies to the case of 0)( 11  XTV .  

Status Probability Payoff if 0)( 11  XTV  Payoff if 0)( 11  XTV  

0,0,0  CBA YYY  
000p  11)( XTV   11)( XTV   

0,0,1  CBA YYY  
100p   111 )()( XTVTB    111 )()( XTVTA   

0,1,0  CBA YYY  
010p   111 )()( XTVTB    111 )()( XTVTA   

1,0,0  CBA YYY  
001p  ),( 10 TTR  ),( 10 TTR  

0,1,1  CBA YYY  
110p   111 )()( XTVTAB    111 )()( XTVTAB   

1,0,1  CBA YYY  
101p   10 ,)( TTRTB   10 ,)( TTRTB  

1,1,0  CBA YYY  
011p   10 ,)( TTRTB   10 ,)( TTRTB  

1,1,1  CBA YYY  
111p   10 ,)( TTRTAB   10 ,)( TTRTAB  
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Figure 1. Impact of default correlation on swap rates 

The curve in this diagram represents the sensitivity of swap rates to changes in counterparty default 

correlation. Party A has an ‘A+300bps’ credit quality and party B has an ‘A’ credit quality. ‘A+300bps’ 

represents a ‘300 basis points’ parallel shift in the A-rated CDS spreads. 
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Figure 2: Impact of default correlations and comrelation on CDS premia 

Each curve in this figure illustrates how CDS premium changes as default correlations and comrelation 

move from -1 to 1. For instance, the curve ‘cor_BC’ represents the sensitivity of the CDS premium to 

changes in the correlation BC  when 0 ABCACAB  .  
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