

1 Article

2 **Blood Digestion by Trypsin-Like Serine Protease in the**
3 **Lyme Disease Vector Tick, *Ixodes Scapularis***4 **Jeremiah Reyes 1, Cuauhtemoc Ayala-Chavez 1, Andrew Nuss 1,2,* and Monika Gulia-Nuss 1,***5 ¹ Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA6 ² Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Reno, NV,
7 89557, USA

8 * Correspondence: nuss@cabnr.unr.edu; mgulianuss@unr.edu

9

10 **ABSTRACT:** *Ixodes scapularis* is the major vector of Lyme disease in the eastern United States. This
11 species undergoes a life cycle consisting of eggs and three active stages: larva, nymph, and adult.
12 Each active life stage takes a blood meal either for developing and molting to the next stage (larvae
13 and nymphs) or for oviposition (adult females). This protein rich blood meal is the only food taken
14 by *Ixodes* ticks. Most studies on blood digestion in ticks have shown that the initial stages of blood
15 digestion are carried out by cathepsin proteases within endosomes of acidic digestive cells.
16 However, in other hematophagous arthropods, the serine protease trypsin plays an important role
17 in early protein degradation. In this study, we determined transcript expression of *I. scapularis*
18 cathepsins and serine proteases, some with previously characterized roles in blood digestion. Gut
19 pH was also determined and a trypsin-benzoyl-D, L-arginine 4-nitroanilide assay was used to
20 measure active trypsin levels during blood digestion. Our data suggest that trypsin levels increase
21 significantly after blood feeding and peaked in larvae, nymphs, and adults at 3, 1, and 1 days post
22 host detachment, respectively. In addition, alkaline gut pH (8.0) conditions after *I. scapularis* blood
23 feeding were similar to those required for trypsin activity in other arthropods suggesting these
24 enzymes have an important and previously overlooked role in *I. scapularis* blood digestion.

25 **Keywords:** ticks; *Ixodes scapularis*; serine protease; blood digestion; trypsin

26

27 **1. INTRODUCTION**

28 *Ixodes scapularis* is a three host tick that requires a blood meal to complete each developmental
29 stage, and adult females utilize blood for egg development [1]. The larvae and nymphs feed for 3-7
30 days whereas adult female feeding lasts for up to 10 days and consists of (i) a slow feeding period up
31 to 5-9 days post attachment followed by (ii) rapid engorgement for 12-24 h prior to detachment from
32 the host [2]. Rapid engorgement accounts for about two-thirds of the total blood meal. The tick gut
33 comprises a major portion of the body and consists of a ventriculus (stomach) and several pairs of
34 highly branched ceca extending into all regions of the body. Blood digestion putatively starts in the
35 gut soon after ingestion and continues for several days to weeks after dropping off the host. Proteins
36 represent about 95% of the non-water content of vertebrate blood. Consequently, hematophagous
37 arthropods require proteases as the main enzymes in the midgut to process a blood meal [3].

38 A typical animal genome contains 2-4% of genes encoding for proteolytic enzymes [4]. Among
39 these, serine proteases are the most abundant and functionally diverse group [5]. Over one third of
40 all known proteolytic enzymes are serine proteases. The family name stems from the nucleophilic Ser
41 in the enzyme active site. Hematophagous insects such as tsetse flies, mosquitoes, and many other
42 insects digest the protein-rich blood meal mainly by using trypsin-like serine proteases that have a
43 pH optimum in the alkaline range (~8.0 pH) [6]. Processing of host blood components in tick midgut,
44 however, appears to differ greatly from that in other hematophagous arthropods. In ticks, blood

45 digestion is a slow process that has been shown to occur in the acidic environment of gut intracellular
46 vesicles (endosomes), mainly by the cathepsin-like proteases [3]. In hematophagous insects, in
47 contrast, protein digestion proceeds rapidly and takes place in the gut lumen.

48 Out of a total of 233 putatively active *I. scapularis* proteases thus far identified, 63 (27%) are serine
49 proteases [3]. A multi-enzyme model for hemoglobin degradation was proposed for the European
50 vector of Lyme disease, the castor bean tick, *I. ricinus* [7]. According to this model, the hemoglobin
51 degradation pathway is initiated inside the acidic digestive vesicle by cysteine and aspartic
52 endopeptidases (cathepsin L, legumain, and cathepsin D), generating large peptide fragments (8–11
53 kDa), followed by the action of cathepsin B and C exopeptidases, generating smaller peptides (2–7
54 kDa). Finally, serine carboxypeptidase (SCP, SP28 subfamily) and leucine aminopeptidase may
55 participate in the liberation of dipeptides and free amino acids. Other studies have suggested that the
56 final stages of hemoglobin degradation take place both in and outside of the digestive vesicles [8].
57 Trypsin serine proteases are active at high pH [9], in contrast to the acidic-active cathepsins. Midgut
58 homogenates of the hard tick, *I. scapularis* (formerly *I. dammini*), were shown to lyse erythrocytes from
59 different vertebrate bloods at an alkaline pH suggesting involvement of trypsin enzymes. Ten major
60 blood digestive proteases (cathepsin, and aminopeptidase, and serine proteases) were proposed to
61 be involved in blood digestion in *I. scapularis* [2]. The presence of four serine proteases on this list
62 suggests previously unexplored roles of trypsin during *Ixodes* blood ingestion and digestion phases.

63 Most studies in tick blood digestion have focused on partially engorged females (up to 5 days
64 on host, slow feeding phase), resulting in little information on the digestive profile beyond this stage.
65 Therefore, to better understand the digestive enzyme profile of *I. scapularis*, we first tested expression
66 of ten proteases identified previously [2] and then measured trypsin activity in unfed, partially fed,
67 and post host detachment ticks up to 7 days (adults) and 28 days (larvae and nymphs) using benzoyl-
68 D, L-arginine 4-nitroanilide (BApNA), a trypsin-specific substrate [10, 11]. Our results suggest that
69 tick serine proteases are active within 24 h post host detachment (engorgement) and may play a
70 major, previously unrecognized, role in early blood digestion in all tick life stages. Understanding
71 the digestive profile of trypsin during blood meal digestion in *I. scapularis* improves our
72 understanding of basic biology of ticks and may lead to new methods for tick control.

73 2. MATERIALS AND METHODS

74 Tick samples: Pathogen free *I. scapularis* were acquired from the tick rearing facility at Oklahoma
75 State University, Stillwater, OK. Ticks were then transferred to an incubator and kept at 95% relative
76 humidity and 20° C in our laboratory.

77 Blood feeding: Unfed larvae and nymphs were blood fed on mice at the University of Nevada,
78 Reno. Both stages were allowed to detach naturally post engorgement. Once detached, the ticks were
79 collected as soon as possible and returned to the incubator and harvested at the appropriate post
80 blood meal intervals. All procedures were approved by the Institutional Animal Care and Use
81 Committee (IACUC) at the University of Nevada, Reno (IACUC # 00682). Adults were purchased
82 from the Oklahoma University, Stillwater, OK, Tick rearing facility where adult ticks are fed on
83 sheep.

84 Sample collection: Larvae and nymphs were collected at day 1, 2, 3, 7, 14, 21, and 28 days post
85 engorgement/ host detachment. Two larvae or nymphs per sample were collected in triplicate for
86 each time point.

87 Adult females were collected at 5 days post host attachment (partially fed), and at 1, 2, 3, 7, and
88 14 days post engorgement / host detachment. Whole guts were dissected and two guts were pooled
89 per each triplicate sample. For unfed samples, four guts were pooled. Midguts were dissected in cold
90 PBS buffer and rinsed with PBS to remove the blood. Once cleaned of blood, midguts were
91 immediately transferred to either a cold 1.7 ml tube containing 200 µl of Trizol or Tris-HCl-CaCl₂ and
92 stored at -80° C until processed.

93 RT-PCR: Midguts were collected from adult females in Trizol reagent (Invitrogen) as described
94 above. Samples were collected from four biological cohorts. Total RNA was extracted using Trizol
95 reagent and a Zymo Directzol kit (Zymo Research, Irvine, California). Total RNA was DNase treated

96 before using for cDNA synthesis. 1 µg DNase-treated RNA was used for cDNA synthesis (iScript,
 97 BioRAD). For RT-PCR, 1 µl of 1:10 diluted cDNA was used as template in a 20 µl reaction. RT-PCR
 98 conditions for all four serine proteases were: Initial denaturation at 95°C for 5 min, 95°C for 30 sec,
 99 55-58°C for 30 sec (Table 1), 72°C for 30 sec, repeated for 35 cycles and final extension at 72°C for 10
 100 min. 10 µl of the reaction was separated by electrophoresis on a 1.2% agarose gel along with DNA
 101 ladder (Apex DNA Ladder II; Genesee) and visualized by using Amresco ethidium bromide free dye
 102 (Amresco). Primer sequences for all proteases are listed in Table 1. Tubulin was used as a
 103 housekeeping control [12].

104 **Table 1.** A list of primer pairs and the annealing temperature used for each primer pair.

Gene Name and Accession Number	Primer Pair Sequence	Annealing Temp °C
Cath D (Aspartic) ISCW023880/ XM_002416473.1		
IscapCathDFwd	CCCTTCCGTGTGGTGTGTTG	
IscapCathDRev	AGTAGCCCTTGGTTGAGACAG	55
Cath L (Cysteine) ISCW024899/ XM_002416305.1		
IscapCathLFwd	GACTTCCAGATGTACCAGGGC	
IscapCathLRev	GAAGGATGCGGAAGTAGCCG	55
Cath L (Cysteine) ISCW000076/ XM_002404428.1		
IscapCathL2Fwd	AAGTGGCCCCACTGCAACTC	
IscapCathL2Rev	TTACCCGTAACCGCAGGAATG	55
Legumain (Aspartic) ISCW015983/ XM_002402043.1		
IscapLegumainFwd	CCCCTGGAGTGGTCATCAAC	
IscapLegumainRev	TAAGTGTTCGGAGGGCGTC	55
Cath C (Cysteine) ISCW03494/ XM_002400742.1		
IscapCathCFwd	CGTTAACTACGTGTCCCTG	
IscapCathCRev	TAGTTGCCGACGTAATGCC	57
Serine Protease 1 ISCW021184/ XM_002405400.1		
IscapSP1Fwd	AGCCTAATCAATCAAGGGCG	
IscapSP1Rev	GACCAGTTAGGGATGCGAG	58
Serine Protease 2 ISCW006427/ XM_002435219.1		
IscapSP2Fwd	ATCCACGTTGGAACCTTTC	
IscapSP2Rev	CAATGGTCAAACGCCTTCC	58
Serine Protease 3 ISCW010371/ XM_002402819.1		
IscapSP3Fwd	TCTACGAGTTCTGGACAG	
IscapSP3Rev	GGACCAGGAAATAATCGTCG	58
Serine Protease 4 ISCW007492/ XM_002404245.1		
IscapSP4Fwd	GCTTCGTCGAAAAAGCTCAC	
IscapSP4FRev	CAACTCTCGCGATCTCTTC	58
Leucine Aminopeptidase ISCW023735/ XM_002416067.1		
IscapLAPFwd	ACGCCATTCTCTCACCAAG	
IscapLAPRev	TTCGGACCCACTGCATTCTC	55
Tubulin ISCW005137/ XM_002402966.1		
IscapB-TubFwd	TGAATGACCTGGTGTCCGAG	
IscapB-TubRev	GCAAAGCTGTTCAAGCCTCT	55-58

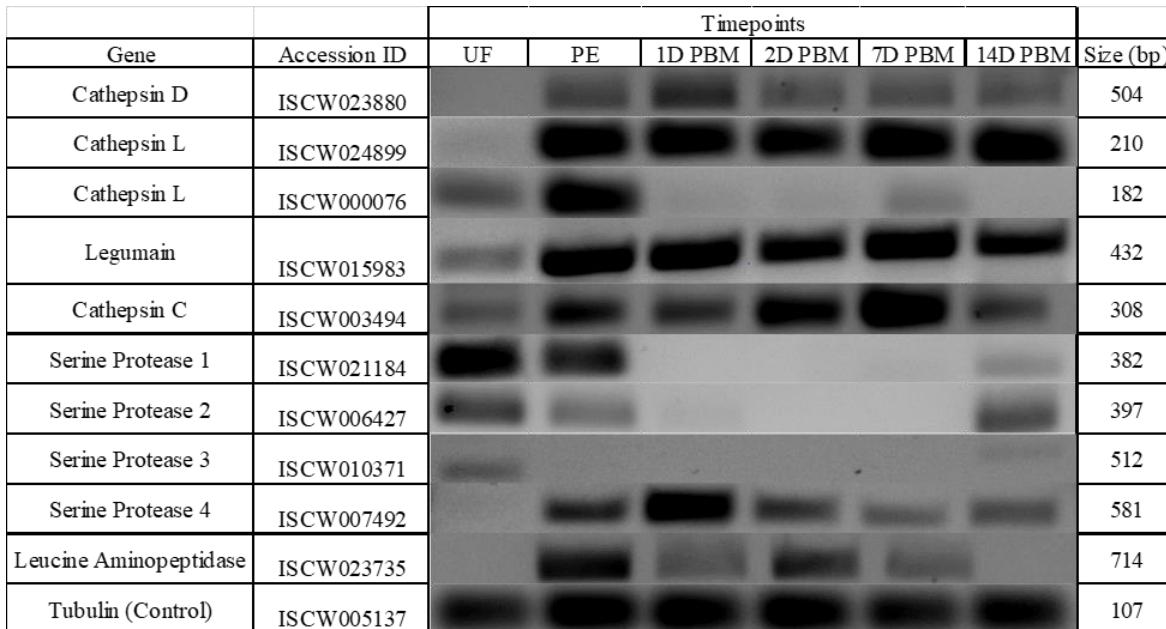
105 Gel images were visualized and band intensity was analyzed by densitometry using Image Lab
 106 5.2.1 (Gel Doc EZ-Imager, BioRad). The DNA ladder was used as the standard for generating a linear
 107 regression model to determine PCR product abundance. The ratio of the tubulin control bands
 108 intensity was used to standardize values of the band from each gene at different time points.

109 Sample Preparation for BApNA assay: Six larvae or nymphs from each post blood meal time
 110 point were collected in triplicates (two individuals per triplicate). Samples were sonicated in 100 µl

111 Tris-HCl-CaCl₂ buffer until completely homogenized and centrifuged at 12,000 RPM for 5 min at 4°C.
112 The supernatants from each individual sample were transferred to clean 1.7 ml tubes. 10 µl
113 supernatant from each sample was added to 90 µl of Tris-HCl-CaCl₂ [11]. Finally, 200 µl of 4 mM
114 BApNA was added to the samples. Samples were then placed on a shaker for 15 min, and loaded
115 onto a 96 well plate (100 µl sample per well).

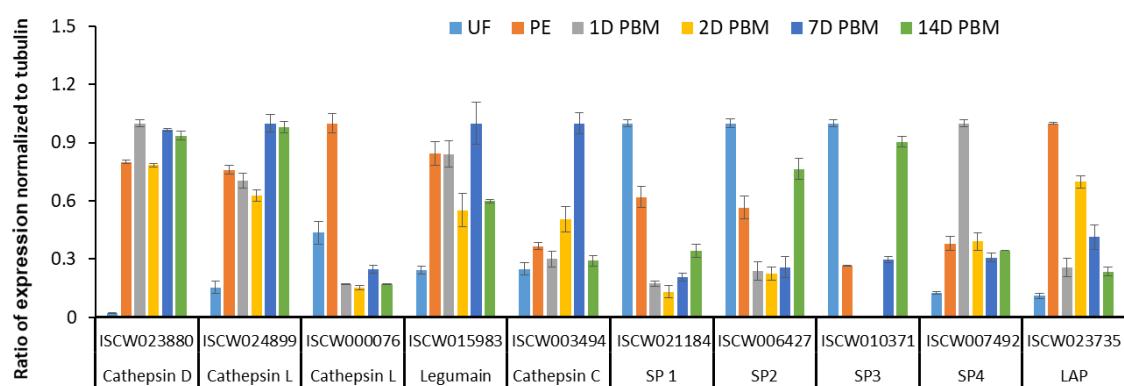
116 Midguts were dissected and pooled from two adults per sample. Adult midgut samples were
117 prepared in a similar manner as described above. Trypsin (Sigma) was used to make a standard
118 curve. Trypsin, in the presence of BApNA, cleaves p-nitroaniline off BApNA, yielding a yellow
119 substrate that was measured at 405 nm. This is a trypsin-specific reaction that does not occur with
120 cathepsins or chymotrypsins or other known digestive enzymes [13]

121 **Gut lumen pH assay:** Guts from unfed, partially engorged (4 days post host attachment), and
122 engorged ticks 1-day post detachment were dissected. Blood fed guts were washed with PBS, dried
123 and then homogenized with a plastic pestle. Unfed guts were directly homogenized. pH was
124 measured with a universal Whatman indicator pH paper (pH range 4.0-10.0 and 1.0-11.0; Millipore
125 Sigma).


126 **Statistical Analysis:** All experiments were replicated a minimum of three times with different
127 biological cohorts. One-way ANOVA and Dunnet's multiple comparison were used for statistical
128 analysis. Unfed ticks were used as a control. All data from each biological replicate was combined
129 and significance was calculated using Graph Pad software.

130 3. RESULTS

131 **Transcript expression:** Transcripts of 10 proteases identified as the main proteolytic enzymes
132 for hemoglobin degradation in *I. scapularis* [2] were examined in adult female midgut. Out of these
133 10, four were serine proteases (ISCW021184, ISCW006427, ISCW010371, and ISCW007492), two
134 cathepsin L (ISCW024899 and ISCW000076), and one each of cathepsin C (ISCW03494), cathepsin D
135 (ISCW023880), legumain (ISCW015983), and leucine aminopeptidase (ISCW023735). All sequences
136 were confirmed by Sanger sequencing. Expression was determined at different time points: partially
137 engorged adult females (collected 5 days post host attachment but before rapid engorgement), and
138 at 1, 2, 7, and 14 days post host detachment (fully engorged and actively digesting blood to provision
139 developing eggs). Out of 10 genes tested, six were expressed in unfed samples whereas four genes
140 (ISCW023880, ISCW024899, ISCW007492, and ISCW023735) were only expressed during feeding or
141 post blood meal (PBM) (Fig. 1 A-B). Cathepsin D expression was highest at day 1 PBM and decreased
142 afterwards. One out of two cathepsin L paralogues (ISCW024899) expressed in all blood fed stages
143 tested, from partially fed to 14 day PBM and the other cathepsin L (ISCW000076) expressed in unfed
144 and partially fed females with almost no expression in fully engorged females. Legumain was
145 expressed at low levels in unfed females, then expression increased during and after feeding.
146 Cathepsin C also expressed at low levels in unfed females and expression was higher during and
147 after a blood meal; peak expression was at 2 and 7 D PBM and decreased at day 14 PBM. Serine
148 protease 1 and 2 (ISCW021184 and ISCW006427) had a similar expression pattern to one another
149 where both expressed in unfed and partially fed females and then expression was undetectable until
150 day 14 PBM. Serine protease 3 (ISCW010371) was faintly expressed in unfed and day 14 PBM samples.
151 Serine protease 4 (ISCW007492) was not detected in unfed females, but expression was detected
152 during and after blood feeding with the highest expression in 1 D PBM samples. Leucine
153 aminopeptidase expression was not detected in unfed females and peak expression was noticed at
154 partially engorged time point. Expression decreased afterwards and no expression was detected at
155 day 14 PBM (Fig. 1 A-B).


156 **Active trypsin in tick life stages:** Trypsin activity increased significantly in larvae after a blood
157 meal (Fig. 2 A). The peak trypsin activity period was 1-3 days post host detachment and levels
158 decreased gradually afterward to nearly unfed levels at 21-28 days PBM (Fig. 2A). In our colony,
159 larvae begin molting into nymphs within 3-4 weeks; therefore, the 28 day time-point coincides with
160 molting.

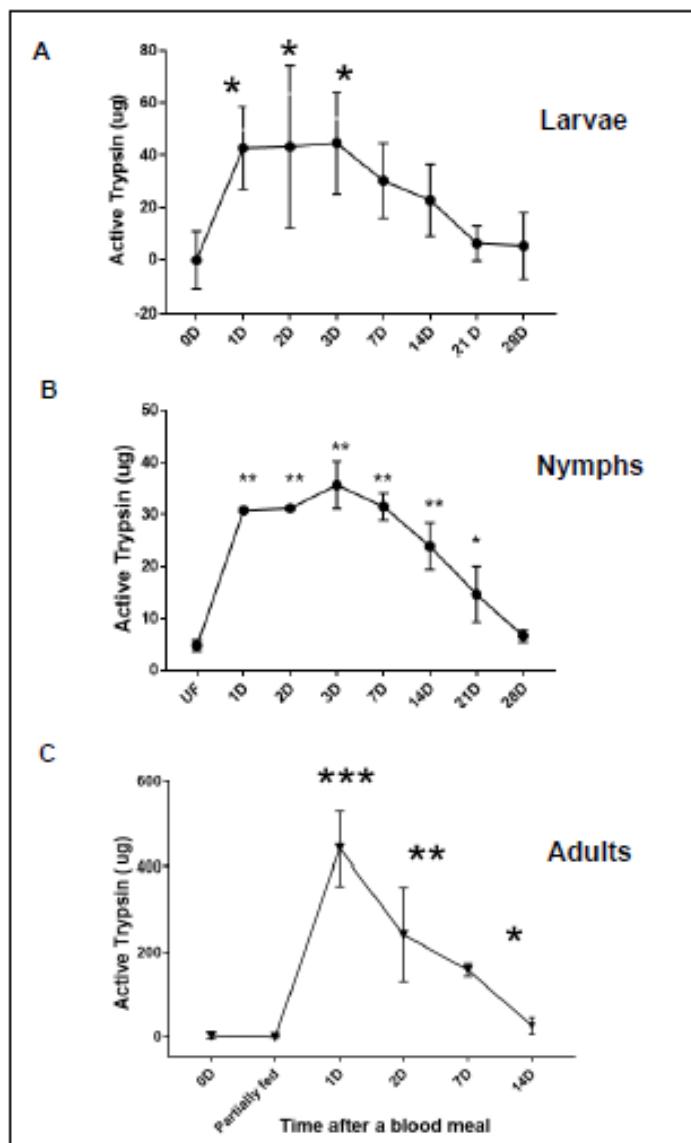
A

161

B

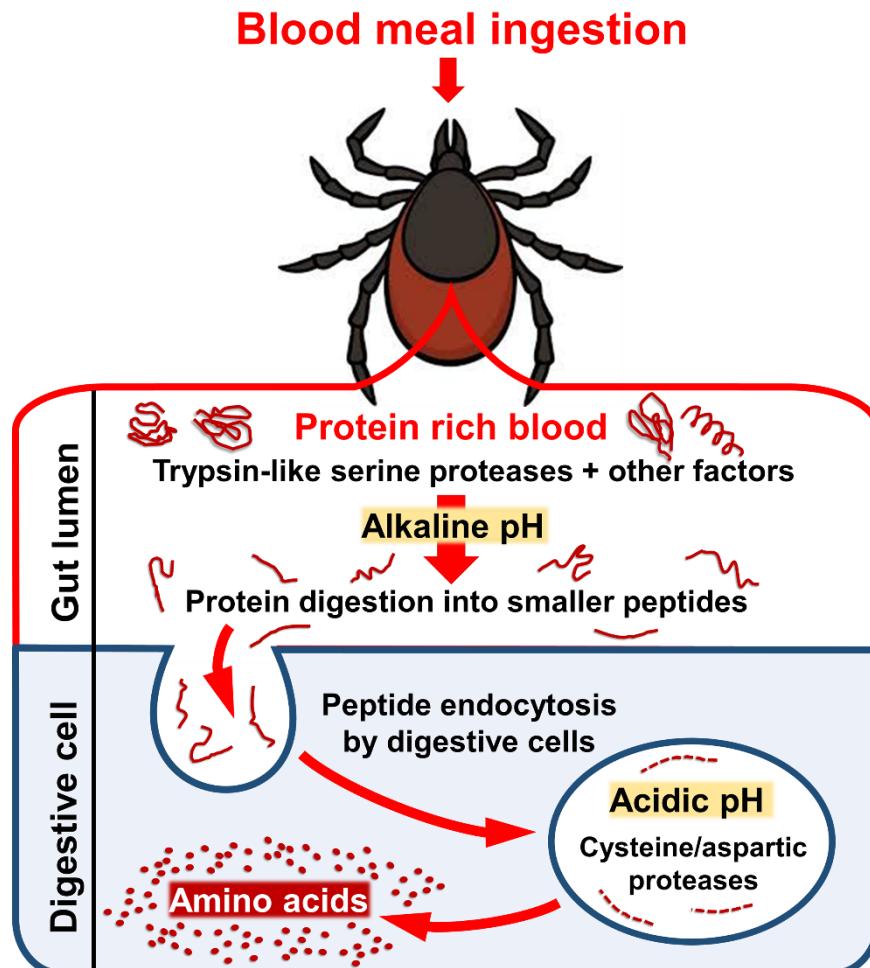
162

163


Figure 1. Transcript expression of proteases in the midgut of adult female *Ixodes scapularis*. **A:** Representative RT-PCR of ten *I. scapularis* proteases that belong to different families was carried out at different time points during blood feeding and digestion. Total RNA was extracted from a pool of 2-4 midguts at each time point and an equal amount of cDNA was used for RT-PCR. **B:** The BioRad Gel Doc EZ Images were used to determine concentrations of PCR product in each lane across the gel for each gene. The ratio of concentrations of the protease and tubulin (housekeeping gene) PCR products were calculated. After calculating the ratios, the band with highest expression in each gene was set at 1 and the values were determined accordingly and plotted to accurately depict the change in expression of each gene over time. UF= unfed female midgut, PE= partially engorged (females were pulled from the host 5 days post attachment), PBM= post blood meal (fully engorged females dropped off the host). SP= serine protease; LAP= Leucine Aminopeptidase.

174

175 In nymphs, a similar pattern to larvae was observed. Trypsin levels increased after a blood meal
 176 and were highest at 3 days post host detachment. Subsequently, levels decreased and by 28 days
 177 trypsin levels were similar to unfed controls.


178 In adult midguts, no trypsin activity was detected in unfed or partially fed ticks. Trypsin activity
 179 was highest after drop off from the host (1 D PBM) and decreased gradually. By 14 D PBM, trypsin
 180 activity returned to unfed levels. Under our rearing conditions, ticks start laying eggs 7 days PBM;
 181 therefore, most blood digestion occurs during the first two weeks post host detachment.

182 **Gut pH assay:** The pH of unfed tick guts was 7.0 (neutral). Once the tick began feeding on
 183 vertebrate blood, midgut pH changed to alkaline (7.5-8.0) and remained at this pH throughout the
 184 engorgement and post detachment period.

185

186 **Figure 2.** Trypsin activity in developmental stages and adult female. Trypsin activity was measured
 187 by the BApNA assay in unfed and blood fed ticks. A: Larvae and B: Nymphs were fed on a mouse
 188 and engorged larvae or nymphs that dropped off of the host were collected. Whole body of larvae
 189 and nymphs were homogenized for the assay. Unfed larvae and nymphs were used as a control. C:
 190 Adult females were fed on a sheep. Females were either pulled off the host 5 days post attachment
 191 (partially engorged) or fully engorged females that dropped off the host were collected over several
 192 days. Midguts were dissected for determination of trypsin activity. Unfed female midguts were used
 193 as a control. One-way ANOVA and Dunnett's multiple comparison were used for statistical analysis.
 194 * = 0.01; ** = 0.001; *** = 0.0001.

195

196 **Figure 3.** Proposed model of *I. scapularis* blood digestion. In this model, ingested blood proteins are
 197 first partially digested in the gut lumen where higher pH is suitable for trypsin-like enzymes.
 198 Degraded peptides are then taken into endosomes of digestive cells where low pH allows catalysis
 199 by cathepsins and other proteases that are active at acidic pH, eventually breaking the peptides into
 200 dipeptides or free amino acids.

201 **4. DISCUSSION**

202 In the present work, we examined an *I. scapularis* trypsin-like serine protease transcript
 203 (ISCW007492) that had increased expression during and after a blood meal and two serine proteases
 204 (ISCW021184 and ISCW006427) with high expression before a blood meal. Trypsin activity from
 205 whole body (larvae and nymphs) and midgut extracts (adult ticks) was tested by the BApNA assay
 206 in all different life stages of *I. scapularis* during blood feeding and digestion. Our trypsin assay
 207 showed that unfed ticks had no trypsin activity in gut. However, trypsin activity increases after
 208 detachment from the vertebrate host and peaks at 1-3 days post detachment in all life stages. This is
 209 in concordance with a rise in midgut lumen pH to become slightly alkaline (pH 8.0), optimal for
 210 trypsin activity.

211 Most previous studies have focused on the mechanism of hemoglobin degradation in ticks and
 212 suggested that the main peptidases for hemoglobin digestion are: (1) clan CA cathepsins B, C, and L;
 213 (2) clan CD asparaginyl endopeptidase (legumain); and (3) clan AA cathepsin D. Other activities
 214 detected were attributed to monopeptidases, namely a serine carboxypeptidase and a leucine
 215 metallo-aminopeptidase within gut digestive vesicles [13]. Our work suggests that protein digestion
 216 might begin in the gut lumen where the environment is more alkaline and best suited for trypsin-like
 217 enzymes. These digested peptides from the gut lumen may then be taken up by the digestive vesicles
 218 by endocytosis, as shown previously [6].

219 Previous studies have also suggested hemoglobin receptor-mediated endocytosis [6, 14] occurs
220 in the digestive vesicles. Digestive vesicles then lead to further breakdown of these peptides by
221 creating an acidic environment suitable for cathepsin and legumain activity. Therefore, we propose
222 a modified model of blood digestion in ticks (Fig. 3), that blood digestion occurs in both the gut lumen
223 and digestive cells, and both trypsin-like serine proteases and cathepsins are important for
224 degradation of blood proteins. Our results are supported by Ribeiro [15] where midgut homogenates
225 of *I. scapularis*, (formerly *I. dammini*) lysed erythrocytes from rabbits, rats, hamsters, and guinea pigs.
226 The midgut homogenate activity was optimal at an alkaline pH, suggestive of trypsin-like serine
227 proteases, and this hemolytic activity was lost when homogenates were heated for 1 h at 60°C. This
228 activity was not detected in unfed ticks as well as ticks attached for up to 2 days to a host, and
229 increased during the later phase of feeding. Ribeiro [15] hypothesized that this activity helped the
230 initial process of the blood meal digestion by releasing the contents of erythrocytes for further
231 enzymatic hydrolysis, possibly in the digestive vesicles. Our results also support this hypothesis.
232 Two serine proteases in *Haemaphysalis longicornis* ticks were identified and characterized, and
233 expression of both serine proteases was induced by blood feeding [16].

234 A remarkable property of certain insect guts is a very high luminal pH, especially in
235 lepidopteran larvae (pH 9-12). Whereas the mosquito, *Aedes aegypti*, the midgut has an acidic pH (6.0)
236 before a blood meal, the pH increases to an alkaline range (7.5) after a blood meal [17]. The pH of the
237 guts of mites also strongly affects their digestive processes. For instance, gut contents of acaridid
238 mites ranged from pH 4 to 7 [18]. Although our current method of homogenizing the gut and
239 measuring pH suggested a rise from neutral to alkaline pH upon the consumption of a blood meal,
240 further refinement in measurement is needed. For instance, the pH in guts of 12 species of stored
241 product and house dust mites was determined based on the color changes of pH indicators fed to the
242 organisms and looking at pH change microscopically. Unfortunately this is not feasible with ticks
243 due to the dark cuticle and blood meal coloration. However, microelectrodes are frequently used to
244 determine gut pH in insects [19-22], and we plan to utilize these in future experiments.

245 In this study, we correlate the serine proteases expression with trypsin activity from *I. scapularis*
246 gut homogenates. However, direct evidence of these serine proteases as digestive proteases that can
247 break down blood proteins remains to be confirmed. Future experiments will include the use of
248 recombinant *I. scapularis* serine proteases for blood protein digestion assays *in vitro*. In addition,
249 knockdown of serine protease 1, 2, and 4 using RNAi will further clarify the effect of these enzymes
250 in *I. scapularis* blood digestion. Also, this initial exploration examined the most prominent *I. scapularis*
251 digestive enzymes, which only included 4 out of a putative 63 serine proteases present in the genome
252 [3]. In future studies, a more expansive screen will yield additional information on the dynamics of
253 *I. scapularis* digestive enzymes important in blood digestion.

254 5. CONCLUSIONS

255 Most studies in ticks suggest that blood digestion occurs in the acidic environment of midgut
256 vesicles by the cathepsin-like peptidases. In this study, we show that the trypsin-like proteases may
257 play a significant role in initial blood protein breakdown in the alkaline gut lumen, and together both
258 cathepsins and serine proteases lead to complete blood protein digestion. One of the major
259 advantages of characterizing the serine proteases that regulate blood digestion is that they are
260 generally secreted in the extra cellular environment and hence they are likely to be exposed to host
261 antibodies [23, 24], making them suitable for anti-tick vaccine candidates.

262 **Author Contributions:** MGN and AN conceived the project and designed the experiments. JR carried out RT-
263 PCR work. CAC and JR did the active trypsin assay. JR did densitometry and statistical analysis. MGN did gut
264 pH assay. AN and MGN wrote the manuscript.

265 **Funding:** This work was funded in part through an NIH R21AI128393 grant.

266 **Acknowledgments:** We thank Arvind Sharma and Michael Pham for their help with tick colony maintenance.

267 **Conflicts of Interest:** We declare no conflict of interest.

268

269 REFERENCES

270 1. Sonenshine, D.E. *Biology of Ticks Volume 1*; 1992; pp. 122-157.

271 2. Giulia-Nuss, M; Nuss, A.B.; Meyer, J.M., Sonenshine, D.E., Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; Fuente, J.; Ribeiro, J.M.; Megy, K.; Thimmapuram, J.; Miller, J.R.; Walenz, B.P., Koren, S.; Hostetler, J.B.; Thiagarajan, M.; Joardar, V.S.; Hannick, L.I.; Bidwell, S.; Hammond, M.P.; Young, S.; Zeng, Q.; Abrudan, J.L.; Almeida, F.C.; Ayllón, N.; Bhide, K.; Bissinger, B.W.; Bonzon-Kulichenko, E.; Buckingham, S.D.; Caffrey, D.R.; Caimano, M.J.; Croset, V.; Driscoll, T.; Gilbert, D.; Gillespie, J.J.; Giraldo-Calderón, G.; Grabowski, J.M.; Jiang, D.; Khalil, S.M.S.; Kim, D.; Kocan, K.M.; Koči, J.; Kuhn, R.J.; Kurtti, T.J.; Lees, K.; Lang, E.G.; Kennedy, R.C.; Kwon, H.; Perera, R.; Qi, Y.; Radolf, J.D.; Sakamoto, J.M.; Sánchez-Gracia, A.; Severo, M.S.; Silverman, N.; Šimo, L.; Tojo, M.; Tornador, C.; Van Zee, J.P.; Vázquez, J.; Vieira, F.G.; Villar, M.; Wespiser, A.R.; Yang, Y.; Zhu, J.; Arensburger, P.; Pietrantonio, P.V.; Barker, S.C.; Shao, R.; Zdobnov, E.M.; Hauser, F.; Grimmelikhuijen, C.J.P.; Park, Y.; Rozas, J.; Benton, R.; Pedra, J.H.F.; Nelson, D.R.; Unger, M.F.; Tubio, J.M.C.; Tu, Z.; Robertson, H.M.; Shumway, M.; Sutton, G.; Wortman, J.R.; Lawson, D.; Wikle, S.K.; Nene, V.M.; Fraser, C.M.; Collins, F.H.; Birren, B.; Nelson, K.E.; Caler, E.; Hill, C.A. Genomic insights into the *Ixodes scapularis* tick vector of Lyme disease. *Nature Comm.* 2016. DOI: 10.1038/ncomms10507.

285 3. Mulenga, A.; Erikson, K. A. Snapshot of the *Ixodes scapularis* degradome. *Gene* 2011, 482, 78-93, doi:10.1016/j.gene.2011.04.008.

287 4. Puente, X.S.; Sanchez, L.M.; Gutierrez-Fernandez, A.; Velasco, G.; Lopez-Otin, C. A. Genomic view of the complexity of mammalian proteolytic systems. *Biochem. Soc. Trans.* 2005, 33, 331-334, doi:10.1042/bst0330331.

290 5. Page, M.J.; Di Cera, E. Serine peptidases: Classification, structure and function. *Cell. Mol. Life Sci.* 2008, 65, 1220-1236, doi:10.1007/s00018-008-7565-9.

292 6. Santiago, P.B.; de Araujo, C.N.; Motta, F.N.; Praca, Y.R.; Charneau, S.; Dourado Bastos, I.M.; Santana, J.M. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. *Parasit Vectors* 2017, 10, doi:10.1186/s13071-017-2005-z.

295 7. Sojka, D.; Franta, Z.; Horn, M.; Hajdusek, O.; Caffrey, C.R.; Mares, M.; Kopacek, P. Profiling of proteolytic enzymes in the gut of the tick *Ixodes ricinus* reveals an evolutionarily conserved network of aspartic and cysteine peptidases. *Parasit Vectors* 2008, 1, doi:10.1186/1756-3305-1-7.

298 8. Horn, M.; Nussbaumerova, M.; Sanda, M.; Kovarova, Z.; Srba, J.; Franta, Z.; Sojka, D.; Bogyo, M.; Caffrey, C.R.; Kopacek, P.; Mares, M. Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. *Chem Biol* 2009, 16, 1053-1063, doi:10.1016/j.chembiol.2009.09.009.

302 9. Calvo, E.; Pham, V.M.; Ribeiro, J.M.C. An insight into the sialotranscriptome of the non-blood feeding *Toxorhynchites amboinensis* mosquito. *Insect Biochem Mol Biol* 2008, 38, 499-507, doi:10.1016/j.ibmb.2007.12.006.

305 10. Rascón, A. A.; Jr, Gearin, J.; Isoe, J.; Miesfeld, R. L. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito *Aedes aegypti*. *BMC biochemistry*, 2011, 12, 43. doi:10.1186/1471-2091-12-43

308 11. Giulia-Nuss, M.; Robertson, A. E.; Brown, M. R.; Strand, M. R. Insulin-like peptides and the target of
309 rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito *Aedes*
310 *aegypti*. *PLoS one*, 2011, 6(5), e20401. doi:10.1371/journal.pone.0020401

311 12. Sharma, A.; Pooraiioub, R.; Guzman, B.; Vu, P.; Giulia-Nuss, M.; Nuss, A.B. Dynamics of Insulin
312 Signaling in the Black-Legged Tick, *Ixodes scapularis*. *Front Endocrinol* 2019, 10,
313 doi:10.3389/fendo.2019.00292.

314 13. Hayakawa, T.; Kondo, T.; Yamazaki, Y.; Linuma, Y.; Mizuno, R. *Gastroenterol Jpn* 1980, 15: 135.
315 <https://doi.org/10.1007/BF02774926>

316 14. Lara, F.A.; Lins, U.; Bechara, G.H.; Oliveira, P.L. Tracing heme in a living cell: hemoglobin degradation
317 and heme traffic in digest cells of the cattle tick *Boophilus microplus*. *J Exp Biol* 2005, 208, 3093-3101,
318 doi:10.1242/jeb.01749.

319 15. Ribeiro J. M. The midgut hemolysin of *Ixodes dammini* (Acari: Ixodidae). *J. Parasitol*. 1988. 74, 532–537.

320 16. Mulenga, A.; Sugimoto, C.; Ingram, G.; Ohashi, K.; Misao, O. Characterization of two cDNAs encoding
321 serine proteinases from the hard tick *Haemaphysalis longicornis*. *Insect Biochem Mol Biol* 2001, 31, 817-
322 825, doi:10.1016/s0965-1748(00)00187-9.

323 17. Nepomuceno, D.B.; Santos, V.C.; Araujo, R.N.; Pereira, M.H.; Sant'Anna, M.R.; Moreira, L.A.; Gontijo,
324 N.F. pH control in the midgut of *Aedes aegypti* under different nutritional conditions. *J Exp Biol* 2017,
325 220, 3355-3362, doi:10.1242/jeb.158956.

326 18. Erban, T.; Hubert, J. Determination of pH in regions of the midguts of acaridid mites. *J Insect Sci* 2010,
327 10.

328 19. Brune, A.; Emerson, D.; Breznak, J.A. The termite gut microflora as an oxygen sink - microelectrode
329 determination of oxygen and ph gradients in guts of lower and higher termites. *Appl Environ Microbiol*
330 1995, 61, 2681-2687.

331 20. Harrison, J.F. Insect acid-base physiology. *Annu Rev Entomol* 2001, 46, 221-250,
332 doi:10.1146/annurev.ento.46.1.221.

333 21. Zimmer, M.; Brune, A. Physiological properties of the gut lumen of terrestrial isopods (Isopoda :
334 Oniscidea): adaptive to digesting lignocellulose? *J Comp Physiol B* 2005, 175, 275-283,
335 doi:10.1007/s00360-005-0482-4.

336 22. Gross, E.M.; Brune, A.; Walenciak, O. Gut pH, redox conditions and oxygen levels in an aquatic
337 caterpillar: Potential effects on the fate of ingested tannins. *J Insect Physiol* 2008, 54, 462-471,
338 doi:10.1016/j.jinsphys.2007.11.005.

339 23. Benyakir, D. Quantitative studies of host immunoglobulin-g in the hemolymph of ticks (Acari). *J Med*
340 *Entomol* 1989, 26, 243-246, doi:10.1093/jmedent/26.4.243.

341 24. Kerlin, R.L.; Allingham, P.G. Acquired immune-response of cattle exposed to buffalo fly (*Haematobia*
342 *irritans exigua*). *Vet Parasitol* 1992, 43, 115-129, doi:10.1016/0304-4017(92)90054-d.

343