

Article

Prediction of Terpenoids Toxicity Based on Quantitative Structure-Activity Relationships Model

Rosa Perestrelo ¹, Catarina Silva ¹, Miguel X. Fernandes ² and José S. Câmara ^{1,3,*}

¹ CQM, Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; rmp@staff.uma.pt, cgsluis@staff.uma.pt

² BioLab, Instituto Universitario de Bio-Órgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38200 La Laguna, Spain; mfernandes@ull.es

³ Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal. jsc@staff.uma.pt

* Correspondence: jsc@staff.uma.pt; Tel.: +351 291705112; (J.S.C.)

Abstract: Terpenoids, including monoterpenoids (C_{10}), norisoprenoids (C_{13}) and sesquiterpenoids (C_{15}), constitute a large group of plant-derived naturally occurring secondary metabolites which chemical structure is highly diverse. A quantitative structure-activity relationship (QSAR) model to predict the terpenoids toxicity and to evaluate the influences of their chemical structure, was developed in this study, by assessing the toxicity of 27 terpenoid standards using Gram-negative bioluminescent *Vibrio fischeri*, in real time. Under the test conditions, at concentration of 1 μ M, the terpenoids showed a toxicity level lower than five %, with exception of geraniol, citral, (S)-citronellal, geranic acid, (\pm)- α -terpinyl acetate and geranyl acetone. Moreover, the standards tested displayed a toxicity level higher than 30 % at concentration of 50 to 100 μ M, with the exception of (+)-valencene, eucalyptol, (+)-borneol, guaiazulene, β -caryophellene and linalool oxide. Regarding the functional group, the terpenoids toxicity was observed in the following order: alcohol > aldehyde ~ ketone > ester > hydrocarbons. CODESSA software was employed to develop the QSAR models based on the correlation of terpenoids toxicity and a pool of descriptors related to each chemical structure. The QSAR models, based on t-test values, showed that terpenoids toxicity was mainly attributed to geometric (e.g., asphericity) and electronic (e.g., max partial charge for a C atom [Zefirov's PC]) descriptors. Statistically, the most significant overall correlation was the four-parameter equation with training and test coefficient correlation higher than 0.810 and 0.535, respectively, and square coefficient of cross-validation (Q^2) higher than 0.689. According to the obtained data, the QSAR models are a suitable and a rapid tool to predict the terpenoids toxicity in a diversity of food products.

Keywords: terpenoids; *Vibrio fischeri*; toxicity; QSAR; heuristic method

1. Introduction

Monoterpenoids (C_{10}), norisoprenoids (C_{13}) and sesquiterpenoids (C_{15}) constitute a large group of plant-derived naturally occurring secondary metabolites with a highly diverse chemical structure, having various biological activities in addition to a wide range of applications including its use as agricultural products, flavorings, pharmaceuticals and fragrances [1]. From a health point of view, terpenoids are known for their antibacterial, anticancer, anti-inflammatory, anthelmintic, antiviral and antimalarial properties [2–5]. Terpenoids can function as antimicrobial agents to protect their natural hosts, with antibacterial activity occurring via disruption of the lipid membrane, resulting in alteration of membrane organization and functions [1,6]. As a result of lipophilic compounds partitioning into the lipid bilayer damage occurs in the cell membrane by impairing vital functions (e.g., ions, metabolites, lipids, and proteins loss; dissipation of the pH gradient and electrical potential) [6–8]. However, enzymes and DNA have also been mentioned as possible targets, as lipophilic compounds tend to associate with the hydrophobic core of several proteins leading to conformational

changes, and consequently protein inactivation [6]. The toxicity level depends on the interaction with membrane constituents, concentration and location. Relatively to the lipophilic compounds accumulation, which could occur at varying depths in the lipid bilayer, it depends on the compound hydrophobicity, as well as the influence of membrane composition on the incorporation of terpenoids into the system, or the effect of external factors (e.g., temperature on terpene penetration ability) [8].

Several *in vivo* assays are available to measure chemical toxicity. Nevertheless, these experimental assays are expensive, labor-intensive and time-consuming, which encourages the development of alternative more reliable, sensitive and quick bioassays [9]. In recent years, *Vibrio fischeri* (Gram negative bacterium) based on bioluminescence inhibition assay has been widely used to perform toxicity measurement, due to its good reproducibility, sensitivity, cost-effective, ease of operation and efficient ethical alternative to testing on higher species [10]. Researchers have reported the *V. fischeri* bioluminescence assay as the most sensitive across a wide range of chemicals compared to other bacterial assays, such as nitrification inhibition, respirometry, ATP luminescence, and enzyme inhibition [11,12]. This strain is also commercially available in several test kits i.e., Microtox, Aboatox, LUMIStox and ToxAlert [13].

Quantitative Structure Activity Relationship (QSAR) analysis is usually used to develop mathematical models that relate small variations of chemical structure, parameterized by empirical physicochemical or theoretical molecular descriptors, to biological activity [14]. Different types of numerical molecular descriptors have been employed, which are related to constitutional, topological, geometrical, electronic and quantum chemical origin [15]. Nevertheless, several steps should be taken into consideration to develop a robust and sensitive QSAR model, such as (i) understanding the interaction mechanism between chemical and biological system, (ii) selection relevant descriptors set that describe the relationship between the chemical and activity/property under consideration, and (iii) selection of the statistical tools [15–17].

Some studies have been performed on the relationship between toxicity and chemical structure of several compounds, and QSARs models were developed to predict *V. fischeri* toxicity for specific groups using molecular and physicochemical descriptors [18–23]. The toxicity of narcotic compounds against *V. fischeri* was also predicted using molecular connectivity indices (topological descriptors), and the data obtained suggested that the degree of branching and the compounds electronic characteristic have a dominant role in the toxicity level [20]. Topological, electronic and log P descriptors has also been used to predict the toxicity of organic pollutants against *V. fischeri* [19]. Charge distribution (e.g., max partial charge for a C atom [Zefirov's PC]) and geometric (e.g., shadow parameter) descriptors were used by Couling et al. [21] to assess the toxicity of a diversity of ionic liquids against *V. fischeri* and *Daphnia magna*. In addition, Das et al. [18] developing a predictive QSAR models for the ecotoxicity of ionic liquids using the bacteria *V. fischeri* as an indicator response species. The aim of the current study was to evaluate the toxicity of 27 terpenoids (16 mono-, 8 sesquiterpenic compounds, 3 norisoprenoids) at different concentrations (1, 10, 50 and 100 μ M) and incubation times (0, 20, 40, 60, 80 and 100 min) using *V. fischeri* bioluminescence inhibition assay. The previously experimental data set obtained was then used to develop QSAR models using CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) software to predict the terpenoids related chemical structure toxicity.

2. Materials and Methods

2.1. Reagents

Ethanol (99.9 %), potassium dihydrogen phosphate (KH_2PO_4 , 99 %), glycerol (87 %), peptone from casein, meat extract and tryptic soy agar (TSA) were supplied from Merck (Darmstadt, Germany), whereas agar was obtained from Liofilchem (Teramo, Italy). Anhydrous sodium carbonate (99.8 %), sodium chloride (NaCl , 99 %), sodium hydroxide (NaOH , 98 %) and potassium chloride (KCl , 99 %) were purchased from Panreac (Barcelona, Spain), whereas sodium dihydrogen phosphate dihydrate ($\text{Na}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$, 99 %) was supplied from Fluka (Buchs, Switzerland).

4.2. Terpenoids standards

Figure 1 shows the terpenoids chemical structure used as authentic standards to evaluate the toxicity. Nerol (90 %), β -caryophyllene (98.5 %), (-)- α -cedrene (99 %), (-)- α -neoclovene (95 %), (+)-valencene (70 %), (Z)-nerolidol (95 %), and (-)- α -bisabolol (95 %) were supplied from Fluka (Buchs, Switzerland). *p*-Cymene (99 %), (*R*)-(+)-limonene (97 %), (+)-borneol (97 %), eucalyptol (99 %), geraniol (98 %), linalool (98.5 %), α -terpeniol (95 %), β -citronellol (95 %), (-)-menthol (99 %), (*R*)-carvone (98 %), citral (95 %), (*S*)-citronellal (96 %), geranic acid (85 %), linalool oxide (97 %), (\pm)- α -terpinyl acetate (90 %), β -ionone (97 %), geranyl acetone (98 %), (\pm)-theaspirane (90 %) and (*E,E*)-farnesol (96 %) from Sigma-Aldrich Química S.A. (Madrid, Spain), whereas guaiazulene (98 %) was supplied from TCI Europe N.V. (Zwijndrecht, Belgium). For each terpenoid standard, an ethanolic stock solution was prepared (50 mM). From each stock solution, working solutions were prepared by diluting adequate amounts in order to obtain a final concentration of 0.2, 1, 10 and 20 mM. All solutions were stored at -20 °C.

4.3. Assessment terpenoids toxicity

V. fischeri terpenoids exposures were conducted according to the methodology previously described [24]. The bacterial strains used in this work was a bioluminescent marine bacterium *V. fischeri* ATCC 49387 (USA), that produce light without the addition of exogenous substrates, and its light emission is directly proportional to their metabolic activity. Fresh plate cultures of bioluminescent *V. fischeri* were maintained in solid BOSS medium (1 % peptone, 0.3 % beef extract, 0.1 % glycerol, 3 % NaCl, 1.5 % agar, pH 7.3) at 4 °C. A NaCl concentration range from 20 to 40 g/L is needed to maintain the osmotic pressure of cells required to natural light emission to occur. Before each bioassay, one isolated colony was aseptically inoculated in 30 mL of liquid BOSS medium, and grew during 16 h at 25 °C under constant stirring (120 rpm). An aliquot of this culture (240 μ L) was subcultured in 30 mL of BOSS medium, and grew overnight at 25 °C under stirring (120 rpm) to reach an optical density (OD₆₂₀) of \approx 1.0, corresponding to \approx 10⁸ CFU/mL. For bioassays purpose, an overnight culture of *V. fischeri* was used after a ten-fold dilution in phosphate buffered saline (PBS: 30 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ and 0.24 g KH₂PO₄ per litre; pH 7.4) to achieve a final concentration of 10⁷ CFU/mL.

For each terpenoids experiment, 10 mL of bacterial suspension were aseptically distributed in 100 mL acid-washed and sterilized glass beakers and 50 μ L of each standard working stock solution (0.2, 2, 10 and 20 mM in hydroalcoholic solution) was added in order to achieve a final concentration of 1, 10, 50 and 100 μ M, respectively. Then, all beakers were wrapped with aluminium foil to protect from light exposure and incubated under 120 rpm stirring at 20-25°C. A control experiment, consisting of bacterial suspension and hydroalcoholic solution, instead of terpenoids, was carried out simultaneously. Aliquots of 500 μ L of the C₁₀ and C₁₅ terpenic compounds and norisoprenoids standard and of the control were collected at different times (0, 20, 40, 60, 80 and 100 min) and the bioluminescence signal (peak wavelength detected at 420 nm, standard range 300 - 650 nm) was measured on a luminometer (TD-20/20 Luminometer, Turner Designs, Inc., USA). Three independent assays were performed for each component and for the control and the results were averaged.

4.4. Calibration of bioluminescent signal and viable cell numbers

The correlation between the colony-forming units (CFU) and the bioluminescent signal (in relative light units, RLU) of *V. fischeri* was performed. For this purpose, eighth-fold serial dilutions of the culture were prepared in PBS with 3 % of NaCl. The non-diluted (100) and the diluted aliquots were spread plated in Tryptic Soy Agar (TSA) with 3 % of NaCl (100 μ L) to determine the number of viable cells (CFU/mL), and simultaneous were read on the luminometer (500 μ L) to determine the

1 bioluminescence signal. Both experiments were performed in triplicate and the results were averaged.

2

3

4 **Figure 1.** Terpenoids chemical structure.

5 **4.5. QSAR model development**6 **4.5.1. Geometry optimization and molecular descriptors calculation**

7 The three-dimensional terpenoids chemical structures were drawn and pre-optimized using the
8 AMBER force field model available in HYPERCUBE 7.0 software (Hypercube Inc, Gainsville, FL,
9 USA). The final molecular geometries were refined using the quantum chemical program package
10 MOPAC 6.0. The AM1 parameterization with eigenvector following geometry optimization
11 procedure at a precision level 0.01 kcal/Å gradient norm was used to calculate electronic and
12 thermodynamic descriptors.

13 The CODESSA (Semichem Inc, Shawnee, KS, USA) was used to calculate a pool of different
14 molecular descriptors using MOPAC output files, HyperChem structure files and additional
15 descriptor calculated using DRAGON software package [25]. In total, more than 280 molecular
16 descriptors were generated for each structure, which could be organized into five groups, namely
17 constitutional, topological, geometrical, electrostatic and quantum chemical. These molecular
18 descriptors contain information about the connections, shape, symmetry, charge distribution and
19 quantum chemical properties of the chemical structures under study.

20

21 **4.5.2. QSAR models development and validation**

22 An important step of the QSAR model development is the selection of the best multilinear
23 regression equation among a given descriptor set. Once molecular descriptors are calculated, the
24 selection was performed using heuristic method (HM) available in the framework of the CODESSA
25 software, which reduces the descriptors pool by eliminating that: (i) were not available for all
26 structure studied; (ii) have a constant value for all structure studied; (iii) the F-value was below 1; (iv)
27 the t-test value lower than 0.1 at a probability level of 0.05; (v) highly correlated descriptors provide
28 approximately identical information, if their pair-wise correlation coefficient exceeded 0.80 [26]. The
29 selected descriptors were then used for developing the QSAR prediction models by multiple linear
30 regressions (MLRs), with a training subset composed by 22 terpenoids. The predictive power of the
31 resulting models was evaluated by a test subset of five terpenoids representative biological activity
32 of data set. For the 22 terpenoids training subset, not more than four descriptors were considered for
33 correlation analysis, thereby keeping the ratio to a maximum of 4:1 [27].

34 The QSAR models derived from MLR analysis were used for further validation study (in order
35 to select the reliable and robust models) by taking into account of highest squared correlation
36 coefficient (r^2), square coefficient of cross validation (Q^2), Fisher F-criterion value (ratio of regression
37 and residual variances and reflects the significance of the model) and Student t-test (reflects the
38 significance of the parameter within the model), as well as the lowest standard deviation (S).
39 Generally, Q^2 is used as a criterion of both robustness and predictive ability of the QSAR model.
40 Many researches considered high Q^2 (for instance, Q^2 higher than 0.50) as an indicator or even as the
41 ultimate proof of the high predictive power of the QSAR model [25,28].

42

43 **3. Results and discussion**44 **3.1. Toxicity of terpenoids**

45 Previously terpenoids toxicity assessment, a correlation between the colony-forming units (CFU)
46 and the bioluminescent signal (in relative light units, RLU) of overnight cultures of *V. fischeri*
47 bioluminescent strain was performed in order to evaluate the viable bacterial abundance. A linear
48 correlation was observed (**Figure 2**), which reflect the viable bacterial abundance. This section may
49 be divided by subheadings. It should provide a concise and precise description of the experimental
50 results, their interpretation as well as the experimental conclusions that can be drawn. **Figures 3 to 5**
51 shows the inhibitory percentage of *V. fischeri* exposed to 27 terpenoids (16 mono-, 8 sesquiterpenic
52 compounds and 3 norisoprenoids) at different concentrations (1, 10, 50 and 100 μ M) and incubation
53 times (0, 20, 40, 60, 80 and 100 min).

54

55 **Figure 2.** Relationship between the bioluminescence signal and viable counts of an overnight culture of *V. fischeri*
 56 ($\approx 10^9$ CFU/mL) serially diluted in PBS with 3 % of NaCl. Bioluminescence is expressed in relative light units
 57 (RLU) and viable counts in CFU/mL. Values represent the mean of two independent experiments; error bars
 58 indicate the standard deviation.

59 At concentration of 1 μ M, geranic acid (20 %), (\pm)- α -terpinyl acetate (11 %), citral (9 %) and (S)-
 60 citronellal (8 %) showed higher toxicity level than the remaining terpenoids tested. At concentration
 61 of 10 μ M, β -citronellol (52 %) showed a considerable toxicity level, followed by (\pm)- α -terpinyl acetate
 62 (32 %), β -ionone (31 %), geranyl acetone (28 %) ~ (Z)-nerolidol (28 %) ~ limonene (28 %), geranic acid
 63 (26 %) ~ (-)- α -bisabolol (26 %), (S)-citronellal (25 %), and the remaining terpenoids under study
 64 showed toxicity lower than 21 %. The results showed that toxicity was proportional to standard
 65 concentration, and at concentration of 100 μ M, the majority of terpenoids tested showed toxicity
 66 higher than 50 %, with exception of (+)-valencene (14 %), eucalyptol (15 %), (+)-borneol (16 %),
 67 guaiazulene (16 %), β -caryophellene (19 %), linalool oxide (20 %), (-)-menthol (29 %), (+)-theaspirane
 68 (30 %), (R)-carvone (39 %) and (-)- α -neoclovene (46 %). Regarding to incubation time, in terms of
 69 toxicity, no remarkable differences were observed between 20 and 100 min, which means that greater
 70 toxicity occurs during the first 20 min. For this fact, this incubation time was selected to develop the
 71 QSAR models to predict the terpenoids toxicity. An overview could be achieved based on
 72 relationship of terpenoids toxicity and their chemical structure as well as functional groups.
 73 Concerning to the functional groups, the highest toxicity level was observed in the following order:
 74 alcohol (e.g., geraniol) > aldehyde (e.g., (S)-citronellal) ~ ketone (e.g., geranyl acetone) > ester (e.g.,
 75 (\pm)- α -terpinyl acetate) > hydrocarbons (e.g., (+)-valencene). The toxicity of some C₁₀ and C₁₅
 76 terpenoids alcohols has been previously reported [29], being the presence of hydroxyl groups crucial
 77 to toxicity level, suggesting that the binding sites may contain both hydrogen bond donors as well as
 78 hydrogen bond receptors [30]. According to the obtained data, the importance of hydroxyl group in
 79 terpenoids chemical structure was confirmed in terms of toxicity, when α -terpineol was compared to
 80 eucalyptol. The toxicity of terpenoids chemical structure could also increase due to the presence of
 81 oxygen related function (e.g., geranyl acetone, β -ionone, (S)-citronellal, citral). The presence of these
 82 functional groups increases the structure electronegativity, which may interfere in biological process
 83 involving electron transfer and react with vital nitrogen components, such as proteins and nucleic
 84 acid, consequently inhibit the bacterial growth [31]. The presence of the acetate moiety in the
 85 terpenoid chemical structure was also crucial to increase toxicity, which was confirmed when their
 86 activity of α -terpineol against *V. fischeri* was compared to (\pm)- α -terpinyl acetate (**Figure 3**). Similar
 87 results were reported to geraniol and (+)-borneol, where their toxicity was lower than the acetates
 88 against a diversity of bacteria [31]. The bacterial activity also depends on the alkyl substituent on the
 89 ring structure, which could be confirmed when (R)-(+)-limonene (alkenyl substituent) was compared
 90 to *p*-cymene (alkyl substituent). The presence of a double bound on C₁₀, C₁₅ terpenoids and
 91 norisoprenoids chemical structure contributed to toxicity increases.

95 Finally, the terpene hydrocarbons (e.g., (+)-valencene, guaiazulene, β -caryophyllene) compared
 96 to the other tested terpenoids in this study showed low toxicity, which could be explained by their
 97 low water solubility that limits their diffusion through the medium. This data are in agreement with
 98 previous studies, where C_{10} and C_{15} terpene hydrocarbons tend to be relatively inactive
 99 independently of their chemical structure, due to their limited hydrogen capacity and water solubility
 100 [32]. Their action site appeared to be at the lipid bilayer, caused by biochemical mechanism catalyzed
 101 by the lipid bilayers of the cell. These processes included the inhibition of electron transport, protein
 102 translocation, phosphorylation steps, and other enzyme-dependent reactions.

103
 104 **Figure 4.** Bioluminescence monitoring of *V. fischeri* exposed to sesquiterpenic compounds at different
 105 concentration. The values are expressed as the means of three independent experiments.

107

108 **Figure 5.** Bioluminescence monitoring of *V. fischeri* exposed to norisoprenoids at different concentration. The
 109 values are expressed as the means of three independent experiments.

110

111 The presence of these functional groups increases the structure electronegativity, which may
 112 interfere in biological process involving electron transfer and react with vital nitrogen components,
 113 such as proteins and nucleic acid, consequently inhibit the bacterial growth [31]. The presence of the
 114 acetate moiety in the terpenoid chemical structure was also crucial to increase toxicity, which was
 115 confirmed when their activity of α -terpineol against *V. fischeri* was compared to (\pm) - α -terpinyl acetate
 116 (Figure 3). Similar results were reported to geraniol and (+)-borneol, where their toxicity was lower
 117 than the acetates against a diversity of bacteria [31]. The bacterial activity also depends on the alkyl
 118 substituent on the ring structure, which could be confirmed when (*R*)-(+)-limonene (alkenyl
 119 substituent) was compared to *p*-cymene (alkyl substituent). The presence of a double bound on C₁₀,
 120 C₁₅ terpenoids and norisoprenoids chemical structure contributed to toxicity increases. Finally, the
 121 terpene hydrocarbons (e.g., (+)-valencene, guaiazulene, β -caryophyllene) compared to the other
 122 tested terpenoids in this study showed low toxicity, which could be explained by their low water
 123 solubility that limits their diffusion through the medium. This data are in agreement with previous
 124 studies, where C₁₀ and C₁₅ terpene hydrocarbons tend to be relatively inactive independently of their
 125 chemical structure, due to their limited hydrogen capacity and water solubility [32]. Their action site
 126 appeared to be at the lipid bilayer, caused by biochemical mechanism catalyzed by the lipid bilayers
 127 of the cell. These processes included the inhibition of electron transport, protein translocation,
 128 phosphorylation steps, and other enzyme-dependent reactions.

129

130 3.2. QSAR models to predict the toxicity of terpenoids

131 The heuristic method (HM) was applied to generate QSAR models with four descriptors. A
 132 subset composed by 22 terpenoids was built, and the remaining five terpenoids were used as external
 133 validation subset, and the HM results are shown in Table 1. The QSAR models performed well, with
 134 a training correlation coefficient (r^2_{training}) and test (r^2_{test}) subset higher than 0.810 and 0.535,
 135 respectively, and square coefficient of cross validation (Q^2) values higher than 0.689, which suggests
 136 high predictive power. Although, the QSAR models developed to predict the terpenoids related
 137 chemical structure toxicity were characterized by good statistical parameters, such as r^2_{training} , r^2_{test} and
 138 Q^2 , a good QSAR model fit depends on the experimental data quality. An extreme outlier was found

139 in the QSAR model generated for terpenoids concentration of 10 μ M, and for this QSAR model (Z)-
 140 nerolidol (outlier) was removed in order to improve the statistical result (**Table 1**). The four
 141 descriptors involved in the QSAR models obtained for the each terpenoids concentration are listed
 142 in **Table 1**, and include constitutional, topological, geometrical, electrostatic and quantum chemical
 143 descriptors.

144

145 **Table 1.** QSAR models obtained for the different terpenoids concentration against *V. fischeri* bacterial at
 146 exposition time of 20 min.

[Terpenoids] (μ M)	Nº	B	t-Test	Molecular descriptors	Statistical parameters
1	0	18.36	8.56	Intercept	$r^2_{\text{training}} = 0.952$
	1	209.81	14.73	Max partial charge for a C atom [Zefirov's PC]	$r^2_{\text{test}} = 0.923$
	2	-10.28	-8.28	Max atomic orbital electronic population	$F = 84.14$
	3	0.93	6.70	Kier shape index (3 rd order)	$s^2 = 1.05$
10^a	4	-0.11	-3.90	WNSA-1 Weighted PNSA (PNSA1×TMSA/1000) [Zefirov's PC]	$Q^2 = 0.900$
	0	31.85	7.68	Intercept	$r^2_{\text{training}} = 0.873$
	1	42.92	8.06	Asphericity	$r^2_{\text{test}} = 0.6987$
	2	-0.30	-6.50	PNSA-1 Partial negative surface area [Zefirov's PC]	$F = 27.57$
50	3	148.82	4.50	Max partial charge for a C atom [Zefirov's PC]	$s^2 = 11.25$
	4	-3.92	-4.48	Log P	$Q^2 = 0.794$
	0	39.71	1.07	Intercept	$r^2_{\text{training}} = 0.810$
	1	110.40	7.40	Asphericity	$r^2_{\text{test}} = 0.535$
100	2	7.53	3.71	Kier&Hall index (2 nd order)	$F = 18.17$
	3	-0.28	-2.81	PNSA-1 Partial negative surface area [Zefirov's PC]	$s^2 = 62.05$
	4	-77.99	-1.95	Min atomic orbital electronic population	$Q^2 = 0.689$
	0	19.48	0.94	Intercept	$r^2_{\text{training}} = 0.846$
	1	195.98	8.58	Asphericity	$r^2_{\text{test}} = 0.676$
	2	21.01	0.21	Kier&Hall index (2 nd order)	$F = 23.39$
	3	-1.17	-4.54	XY shadow	$s^2 = 103.69$
	4	-72.04	3.96	Relative number of single bonds	$Q^2 = 0.734$

147 ^a $N_{\text{training}} = 21$, $N_{\text{test}} = 5$

148

149 For terpenoids concentration 1 μ M (equation 1), the QSAR model was constituted by two
 150 electronic (max partial charge for a C atom [Zefirov's PC], Q^c_{max} , and WNSA-1 Weighted PNSA
 151 (PNSA1×TMSA/1000) [Zefirov's PC]), one topological (Kier shape index 3rd order, $^3\kappa$) and one
 152 quantum chemical (max atomic orbital electronic population, Max-OP) descriptors. According to the
 153 t-test, the most significant descriptor to predict terpenoids toxicity was Q^c_{max} , followed by max atomic
 154 orbital electronic population, $^3\kappa$ and WNSA-1. Q^c_{max} is an electronic descriptor calculated from
 155 Zerirov's electronegativity equation, and described the most positively charged C atom in the
 156 molecule that is usually connected to the electron withdrawing functional group or atom [33]. The
 157 Max-OP descriptor for a given atomic species in the molecule is a simplified index to describe the
 158 nucleophilicity of the molecule and could be interpreted as its ability to undergo oxidation and start
 159 degenerative metabolic process [34]. The negative coefficient obtained for this quantum chemical
 160 descriptor indicates that the terpenoids toxicity increased with the decrease of Max-OP magnitude.

161 In $^3\kappa$, the shape of molecule depends on the number of skeletal atoms, molecular branching, and
 162 the ratio of the atomic radius and the radius on the carbon atom in the sp^3 hybridization state [33].
 163 The positive coefficient of $^3\kappa$ descriptor suggested that the increase in molecule branching and the
 164 presence of heteroatoms promoted the terpenoids toxicity. WNSA-1 descriptor describes the negative
 165 partial charge distribution information in the molecule and then could account for the electrostatic
 166 interaction between the compound and the receptor [33]. A negative coefficient of the WNSA-1
 167 descriptor implies that the activity increases as the value of this descriptor decreases. As observed
 168 the electronic descriptors involved in this model indicated they are charged partial surface area

169 (CPSA) descriptors, which suggested that surface area alone as a geometric descriptor was not
170 sufficient to predict terpenoids toxicity. This is in agreement with previous studies that use CPSA
171 descriptors to assess the molecule lipophilicity [27].

172 For terpenoids concentration 10 μM (equation 2), QSAR model was constituted by one geometric
173 (asphericity), two electronic ($Q^{\text{c}_{\text{max}}}$, PNSA-1 Partial negative surface area [Zefirov's PC]) and
174 physicochemical ($\log P$) descriptors. According to the t-test, these descriptors obey the following
175 order of significance: asphericity > PNSA-1 > $Q^{\text{c}_{\text{max}}} \sim \log P$. Asphericity (Ω) is a geometric descriptor
176 which describes the molecule deviation from the spherical shape, and calculated from the eigenvalue
177 λ_i of the inertia matrix [35]. The positive sign of asphericity indicates that terpenoids toxicity was
178 promoted by linear ($\Omega = 1$) and oblate ($\Omega \sim 1$) molecules structure. PNSA-1 describes the sum of the
179 surface area of negative atoms, and as observed for the first model (equation 1, **Table 1**), the negative
180 sign of this electronic descriptor highlights that a decrease in the magnitude of PNSA favors the
181 terpenoids toxicity. Again, $Q^{\text{c}_{\text{max}}}$ showed a positively correlation with terpenoids toxicity. This result
182 is in agreement with literature as the Gram-negative outer layer membrane is composed primarily
183 by lipopolysaccharide molecules, and forms a hydrophilic permeability barrier providing protection
184 against the effects of highly hydrophobic compounds [30].

185 At 50 μM terpenoids concentration (equation 3), QSAR model was also constituted by one
186 geometric (asphericity), one topological (Kier&Hall index 2nd order, ${}^2\chi^v$), one electronic (PNSA-1) and
187 one quantum chemical (min atomic orbital electronic population, Min-OP) descriptors. According to
188 the t-test, these descriptors obey the following order of significance: asphericity > ${}^2\chi^v$ > PNSA-1 > Min-
189 OP (equation 3, **Table 1**). As observed in QSAR model 2, the asphericity and PNSA-1 showed a
190 positive and negative correlation, respectively, with terpenoids toxicity. ${}^2\chi^v$ is a valence connectivity
191 topological descriptor, which reflects the branching molecule and also encodes the molecule size. The
192 positive sign of this descriptor indicates that high molecular branching promote less London
193 dispersion; consequently increases the terpenoids toxicity. The Min-OP descriptor for a given atomic
194 species in the molecule is a simplified index to describe the electrophilic ability of the molecule and
195 connected to the hydrogen donor capabilities of the molecule.

196 At 100 μM terpenoids concentration (equation 4, **Table 1**), based on t-test, the most significant
197 descriptor in this model affecting the terpenoids toxicity was asphericity followed by XY shadow,
198 number of single bonds (C_1) and ${}^2\chi^v$, which indicate that toxicity was effect by geometric, topological
199 and constitutional descriptors, but not any electrostatic and quantum chemical descriptor. Again,
200 asphericity showed a positive correlation with terpenoids toxicity, which indicates that toxicity was
201 favored by the increase of asphericity magnitude, as observed in QSAR models 2 and 3 (**Table 1**). XY
202 shadow is defined as the area of shadows of the molecule as projected on the XY plane by the
203 orientation of the molecule in the space along the axes of inertia, which characterizes the size and
204 geometrical shape of the molecule. Thus, it can act as a descriptor of van der Waals and dispersion
205 interactions between chemical compound and lipid [36].

206 The QSAR models generated for each concentration suggest that the charge distribution over
207 the molecule as well as shape, size and orientation of substituents remarkably influence the terpenoid
208 toxicity. Moreover, it can be concluded that the developed models corresponding to the terpenoids
209 concentration of 10, 50 and 100 μM , followed the same tendency, as according to the t-test values the
210 toxicity was mainly affected by steric effects (e.g., asphericity), being β -citronellol ($\Omega = 0.71$), (*E,E*)-
211 farnesol ($\Omega = 0.69$), (*S*)-citronellal ($\Omega = 0.68$), geranic acid ($\Omega = 0.63$), (*Z*)-nerolidol ($\Omega = 0.63$), geranyl
212 acetone ($\Omega = 0.61$), citral ($\Omega = 0.61$), (-)- α -bisabolol ($\Omega = 0.60$), geraniol ($\Omega = 0.58$), nerol ($\Omega = 0.57$),
213 linalool ($\Omega = 0.56$) and (\pm)- α -terpinyl acetate ($\Omega = 0.56$) the most toxicity. In sum, the presence of
214 hydroxyl group as well as oxygen related function is crucial to terpenoids toxicity level, since the
215 presence of these functional groups increases the structure electronegativity, which may interfere in
216 biological process involving electron transfer and react with vital nitrogen components (e.g., proteins,
217 nucleic acids).

218

219 **4. Conclusions**

220 The current study reports the toxicity of terpenoids against *V. fischeri* bacteria. Concerning to the
221 functional groups, the terpenoids toxicity decreased in the order alcohol (e.g., geraniol) > aldehyde
222 (e.g., (S)-citronellal) ~ ketone (e.g., geranyl acetone) > ester (e.g., (±)- α -terpinyl acetate) > hydrocarbons
223 (e.g., (+)-valencene). The high sensibility of *V. fischeri* to the cytotoxic effect of terpene alcohols could
224 be explained by the involvement of the hydroxyl group in the formation of hydrogen bonds with the
225 membrane polar part. Whereas, the low sensibility of *V. fischeri* to the cytotoxic effect of hydrocarbons
226 terpenes could be explained by the fact of Gram-negative outer layer membrane be composed
227 primarily by lipopolysaccharide molecules, and forms a hydrophilic permeability barrier providing
228 protection against the effects of highly hydrophobic compounds.

229 The previous experimental data set was used to generate the QSAR models. The models
230 performed well, with high significant correlation obtained using heuristic method indicating that a
231 combination of different molecular descriptors types originated the best correlation which could be
232 used to predict the terpenoids related chemical structure toxicity. Among the obtained models
233 common descriptors were found namely two electronic (max partial charge for a C atom [Zefirov's
234 PC], PNSA-1 Partial negative surface area [Zefirov's PC]), one geometric (asphericity) and one
235 topological (Kier&Hall index 2nd order). Their statistical significance depends on the terpenoids
236 concentration, as it was observed for the lowest concentration (1 μ M) tested the most significant is an
237 electronic descriptor (max partial charge for a C atom [Zefirov's PC]), whereas for the remaining
238 tested concentrations is a geometric (asphericity) descriptor. Both descriptors showed a positive
239 correlation with toxicity, suggests that molecule branching, heteroatoms presence and
240 electronegativity play dominant role in terpenoids toxicity, and the most potential terpenoids toxicity
241 were β -citronellol, (E,E)-farnesol, (S)-citronellal, geranic acid, (Z)-nerolidol, (-)- β -bisabolol, geraniol,
242 nerol, linalool, geranyl acetone, β -ionone, citral, geranic acid and (±)- α -terpinyl acetate. The
243 developed QSAR models provided a suitable and rapid tool to predict the terpenoids toxicity present
244 in a diversity of food products.

245 **Author Contributions:** Rosa Perestrelo and Catarina Silva did the experimental assays, performed manuscript
246 writing and preparation; Miguel X. Fernandes develop the QSAR model, correction and editing of manuscript;
247 José S. Câmara performed the conception of study, manuscript preparation, correction and editing of manuscript.

248 **Funding:** This research was funded by FCT-Fundaão para a Ciéncia e a Tecnologia (projects PEst-
249 OE/QUI/UI0674/2019, CQM, Portuguese Government funds), and Madeira 14-20 Program, project
250 PROEQUIPRAM - Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (M1420-01-
251 0145-FEDER-000008) and ARDITI-Agênciа Regional para o Desenvolvimento da Investigação Tecnologia e
252 Inovação, through the project M1420-01-0145-FEDER-000005 - Centro de Química da Madeira - CQM⁺ (Madeira
253 14-20).

254 **Conflicts of Interest:** The authors declare no conflict of interest.

255

256 **References**

257 1. Vermaas, J. V.; Bentley, G. J.; Beckham, G. T.; Crowley, M. F. Membrane permeability of terpenoids explored
258 with molecular simulation. *J. Phys. Chem. B* **2018**, *122*, 10349–10361.

259 2. Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. I. Terpenoids. In *Pharmacognosy*; Academic Press,
260 2017; pp. 233–266 ISBN 9780128021040.

261 3. Mbaveng, A. T.; Hamm, R. Harmful and protective effects of terpenoids from african medicinal plants. In
262 *Toxicological Survey of African Medicinal Plants*; Elsevier, 2014; pp. 557–576 ISBN 9780128000182.

263 4. Shakya, A. K. Medicinal plants: Future source of new drugs. *Int. J. Herb. Med.* **2016**, *4*, 59–64.

264 5. Nevzorova, Y. A.; Grossmann, J.; Trautwein, C. Anti-tumorigenic and anti-angiogenic effects of natural
265 conifer *Abies sibirica* terpenoids in vivo and in vitro. *Biomed. Pharmacother.* **2017**, *89*, 386–395.

266 6. Lim, C.; Park, S.; Park, J.; Ko, J.; Lee, D. W.; Hwang, D. S. Probing nanomechanical interaction at the
267 interface between biological membrane and potentially toxic chemical. *J. Hazard. Mater.* **2018**, *353*, 271–279.

268 7. Blaskó, Á.; Gazdag, Z.; Gróf, P.; Máté, G.; Sárosi, S.; Krisch, J.; Vágvölgyi, C.; Makszin, L.; Pesti, M. Effects
269 of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of *Candida*
270 *albicans*: an *in vivo* EPR study. *Apoptosis* **2017**, *22*, 175–187.

271 8. Hac-Wydro, K.; Flasiński, M. F.; Broniatowski, M.; Sołtys, M. Studies on the behavior of eucalyptol and
272 terpinen-4-ol - natural food additives and ecological pesticides- in model lipid membranes. *Langmuir* **2017**,
273 *33*, 6916–6924.

274 9. Mobed, A.; Hasanzadeh, M.; Agazadeh, M.; Mokhtarzadeh, A.; Rezaee, M. A.; Sadeghi, J. Bioassays: The
275 best alternative for conventional methods in detection of *Legionella pneumophila*. *Int. J. Biol. Macromol.* **2019**,
276 *121*, 1295–1307.

277 10. Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G. A.; Asif Tahir, M.;
278 Iqbal, M. *Vibrio fischeri* bioluminescence inhibition assay for ecotoxicity assessment: A review. *Sci. Total
279 Environ.* **2018**, *626*, 1295–1309.

280 11. Jarque, S.; Masner, P.; Klánová, J.; Prokeš, R.; Bláha, L. Bioluminescent *Vibrio fischeri* assays in the
281 assessment of seasonal and spatial patterns in toxicity of xontaminated river sediments. *Front. Microbiol.*
282 **2016**, *7*, 1738.

283 12. Parvez, S.; Venkataraman, C.; Mukherji, S. A review on advantages of implementing luminescence
284 inhibition test (*Vibrio fischeri*) for acute toxicity prediction of chemicals. *Environ. Int.* **2006**, *32*, 265–268.

285 13. Kusumahastuti, D. K. A.; Sihtmäe, M.; Kapitanov, I. V.; Karpichev, Y.; Gathergood, N.; Kahru, A. Toxicity
286 profiling of 24 l-phenylalanine derived ionic liquids based on pyridinium, imidazolium and cholinium
287 cations and varying alkyl chains using rapid screening *Vibrio fischeri* bioassay. *Ecotoxicol. Environ. Saf.*
288 **2019**, *172*, 556–565.

289 14. Luis, P.; Garea, A.; Irabien, A. Quantitative structure–activity relationships (QSARs) to estimate ionic
290 liquids ecotoxicity EC₅₀ (*Vibrio fischeri*). *J. Mol. Liq.* **2010**, *152*, 28–33.

291 15. Pandith, A. H.; Giri, S.; Chattaraj, P. K. A comparative study of two quantum chemical descriptors in
292 predicting toxicity of aliphatic compounds towards *Tetrahymena pyriformis*. *Org. Chem. Int.* **2010**, *2010*,
293 1–17.

294 16. Shahlaei, M. Descriptor selection methods in quantitative structure–activity relationship studies: A review
295 study. *Chem. Rev.* **2013**, *113*, 8093–8103.

296 17. Moorthy, N. S. H. N.; Ramos, M. J.; Fernandes, P. A. Topological, hydrophobicity, and other descriptors on
297 α -glucosidase inhibition: a QSAR study on xanthone derivatives. *J. Enzyme Inhib. Med. Chem.* **2011**, *26*,
298 755–766.

299 18. Das, R. N.; Sintra, T. E.; Coutinho, J. A. P.; Ventura, S. P. M.; Roy, K.; Popelier, P. L. A. Development of
300 predictive QSAR models for *Vibrio fischeri* toxicity of ionic liquids and their true external and experimental
301 validation tests. *Toxicol. Res. (Camb.)* **2016**, *5*, 1388–1399.

302 19. Parvez, S.; Venkataraman, C.; Mukherji, S. Toxicity assessment of organic pollutants: Reliability of
303 bioluminescence inhibition assay and univariate QSAR models using freshly prepared *Vibrio fischeri*.
304 *Toxicol. Vitr.* **2008**, *22*, 1806–1813.

305 20. Agrawal, V. K.; Khadikar, P. V. QSAR study on narcotic mechanism of action and toxicity: a molecular
306 connectivity approach to *Vibrio fischeri* toxicity testing. *Bioorg. Med. Chem.* **2002**, *10*, 3517–3522.

307 21. Couling, D. J.; Bernot, R. J.; Docherty, K. M.; Dixon, J. K.; Maginn, E. J. Assessing the factors responsible for
308 ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. *Green
309 Chem.* **2006**, *8*, 82–90.

310 22. Ghanem, O. Ben; Mutalib, M. I. A.; Lévêque, J.-M.; El-Harbawi, M. Development of QSAR model to predict
311 the ecotoxicity of *Vibrio fischeri* using COSMO-RS descriptors. *Chemosphere* **2017**, *170*, 242–250.

312 23. Peric, B.; Sierra, J.; Martí, E.; Cruañas, R.; Garau, M. A. Quantitative structure–activity relationship (QSAR)
313 prediction of (eco)toxicity of short aliphatic protic ionic liquids. *Ecotoxicol. Environ. Saf.* **2015**, *115*, 257–262.

314 24. Alves, E.; Rodrigues, J. M. M.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Lin, Z.; Cunha,
315 Â.; Nadais, M. H.; Tomé, J. P. C.; Almeida, A. A new insight on nanomagnet–porphyrin hybrids for
316 photodynamic inactivation of microorganisms. *Dye. Pigment.* **2014**, *110*, 80–88.

317 25. Beheshti, A.; Pourbasheer, E.; Nekoei, M.; Vahdani, S. QSAR modeling of antimalarial activity of urea
318 derivatives using genetic algorithm–multiple linear regressions. *J. Saudi Chem. Soc.* **2016**, *20*, 282–290.

319 26. Lather, V.; Kairys, V.; Fernandes, M. X. Quantitative Structure–Activity Relationship models with receptor-
320 dependent descriptors for predicting peroxisome proliferator-activated receptor activities of
321 thiazolidinedione and oxazolidinedione derivatives. *Chem. Biol. Drug Des.* **2009**, *73*, 428–441.

322 27. Grover, M.; Gulati, M.; Singh, B.; Singh, S. RP-HPLC determination of lipophilicity of 22 penicillins, their
323 correlation with reported values and establishment of quantitative structure-log Kw relationships. *QSAR*
324 *Comb. Sci.* **2005**, *24*, 639–648.

325 28. Larsson, M.; van den Berg, M.; Brenerová, P.; van Duursen, M. B. M.; van Ede, K. I.; Lohr, C.; Luecke-
326 Johansson, S.; Machala, M.; Neser, S.; Pěnčíková, K.; Poellinger, L.; Schrenk, D.; Strapáčová, S.; Vondráček,
327 J.; Andersson, P. L. Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and
328 biphenyls combining in silico models and extensive in Vitro screening of AhR-mediated effects in human
329 and rodent cells. *Chem. Res. Toxicol.* **2015**, *28*, 641–650.

330 29. Trombetta, D.; Castelli, F.; Sarpietro, M. G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.;
331 Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. *Antimicrob. Agents Chemother.*
332 **2005**, *49*, 2474–8.

333 30. Cristani, M.; D'Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M. G.; Micieli, D.; Venuti, V.; Bisignano, G.;
334 Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes:
335 implications for their antibacterial activity. *J. Agric. Food Chem.* **2007**, *55*, 6300–6308.

336 31. Group, M. P.; Ayrshire, S.; Estadual, U.; Julio, P.; Filho, D. M.; Safety, F. Antimicrobial agents from plants:
337 antibacterial activity of plant volatile oils. *J. Appl. Microbiol.* **2006**, *88*, 25–27.

338 32. Dambolena, J. S.; López, A. G.; Cánepa, M. C.; Theumer, M. G.; Zygaldo, J. A.; Rubinstein, H. R. Inhibitory
339 effect of cyclic terpenes (limonene, menthol, menthone and thymol) on *Fusarium verticillioides* MRC 826
340 growth and fumonisin B1 biosynthesis. *Toxicon* **2008**, *51*, 37–44.

341 33. Maran, U.; Sild, S. QSAR modeling of mutagenicity on non-congeneric sets of organic compounds. In
342 Artificial Intelligence Methods And Tools For Systems Biology; Springer Netherlands: Dordrecht, **2004**; pp.
343 19–35.

344 34. Bruzzone, S.; Chiappe, C.; Focardi, S. E.; Pretti, C.; Renzi, M. Theoretical descriptor for the correlation of
345 aquatic toxicity of ionic liquids by quantitative structure–toxicity relationships. *Chem. Eng. J.* **2011**, *175*, 17–
346 23.

347 35. Goudarzi, N.; Fatemi, M. H.; Samadi-Maybodi, A. Quantitative structure–properties relationship study of
348 the ²⁹Si-NMR chemical shifts of some silicate species. *Spectrosc. Lett.* **2009**, *42*, 186–193.

349 36. Liu, H. X.; Yao, X. J.; Zhang, R. S.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Prediction of the tissue/blood partition
350 coefficients of organic compounds based on the molecular structure using least-squares support vector
351 machines. *J. Comput. Aided. Mol. Des.* **2005**, *19*, 499–508.

352