

1 Water and microbial monitoring technologies towards the near future space exploration

2 Authors

3 Stefano Amalfitano^{1*}, Caterina Levantesi¹, Diego Copetti², Fabrizio Stefani², Ilaria
4 Locantore³, Vincenzo Guarneri³, Cesare Lobascio³, Francesca Bersani⁴, Donatella Giacosa⁴,
5 Emmanouil Detsis⁵, Simona Rossetti¹

6 Institutions

7 ¹ Water Research Institute – National Research Council of Italy (IRSA-CNR), Via Salaria
8 Km 29,300, 00015 Monterotondo, Roma, Italy

9 ² Water Research Institute – National Research Council of Italy (IRSA-CNR), Via del Mulino
10 19, 20861 Brugherio, Monza-Brianza, Italy

11 ³ Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146 Turin, Italy

12 ⁴ Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia
13 235/3, 10127 Torino, Italy

14 ⁵ European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080 Strasbourg Cedex,
15 France

16 * Corresponding author.

17 Tel.: +39 06 90672 854. Fax: +39 06 90672 787.

18 E-mail address: amalfitano@irsa.cnr.it

19 Abstract

20 Space exploration is demanding longer lasting human missions and water resupply from
21 Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring
22 systems will require technological advances to promptly identify and counteract contingent
23 events of waterborne microbial contamination, posing health risks to astronauts with lowered
24 immune responsiveness. The search for bio-analytical approaches, alternative to those applied
25 on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste
26 disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies
27 will be selected only if first validated in a flight-like environment, by following basic
28 principles, advantages, and limitations beyond their current applications on Earth. Starting
29 from the water monitoring activities applied on the International Space Station, we provide a
30 critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated
31 isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-
32 warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry),
33 already used at a high readiness level aboard crewed space vehicles. Our findings suggest that
34 the forthcoming space applications of mature technologies will be necessarily bounded by a
35 compromise between analytical performances (e.g., speed to results, identification depth,
36 reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent
37 usage, waste production, operator skills, crew time). As space exploration progresses toward
38 extended missions to Moon and Mars, miniaturized systems that also minimize crew
39 involvement in their end-to-end operation are likely applicable on the long-term and suitable
40 for the in-flight water and microbiological research.

41 Keywords:

42 International Space Station; space missions; biomonitoring; water biological contamination

48 **1 Introduction**

49 Liquid water is essential for all known Earth-derived life forms living in space conditions,
50 including microbes (McKay, 2014). The on-going space exploration has not yet demonstrated
51 whether the presence of extra-terrestrial water could indicate itself the occurrence of
52 microbial life, but the prevailing paradigm is that living microorganisms necessitate temporal
53 and spatial proximity with aqueous solutions for their metabolism (Martín-Torres et al., 2015;
54 Merino et al., 2019; Stevenson et al., 2015). In turn, the microbial contamination cannot be
55 thoroughly eliminated from Earth's waters but only controlled and attenuated on the long-
56 term time scale (Lopez et al., 2019; Rettberg et al., 2019). Since space exploration has been
57 demanding longer lasting missions, the analysis of waterborne microorganisms turned out of
58 utmost importance for future human spaceflights, planetary outposts, and life-support systems
59 (Horneck et al., 2010).

60 The prevention of crew infectious waterborne diseases is retained among the highest
61 priorities particularly for long duration missions (Ott et al., 2014), since emergency resupply
62 is unrealistic and recycled water could represent the only suitable source for the on-board
63 activities. Most of the aquatic microorganisms found aboard the International Space Station
64 (ISS) do not generally constitute a severe hazard for human health (Blaustein et al., 2019;
65 Checinska Sielaff et al., 2019; Sobisch et al., 2019). However, they may threat astronauts
66 with reduced immune response, mostly following the microgravity stress conditions (Garrett-
67 Bakelman et al., 2019; Ott et al., 2016). Other concerning issues arise from microbial
68 influences on spacecraft integrity and function, owing to the potential corrosion and
69 degradation of stainless steel and other materials associated with the electronic equipment
70 and life support systems (Horneck et al., 2010; Yang et al., 2018; Zea et al., 2018). Therefore,
71 there is an increasing interest to improve the spacecraft water monitoring systems to identify

72 and possibly counteract contingent events of microbial contamination (Van Houdt et al.,
73 2012; Yamaguchi et al., 2014).
74 The definition, identification, and test of the microbial monitoring approaches suitable for the
75 on-board water quality control are challenged by several technical constraints (e.g., material
76 safety compatibility, resistance to launch vibration) and a minimal availability for managing
77 excess power, storage, volume, mass, and crew time (Allen et al., 2018). Moreover, selected
78 devices and their supporting reagents must remain viable for years, while operating safely
79 and reliably in extreme conditions (e.g., in the absence of gravity). Technology flexibility is
80 also critical, since monitoring systems should be able to accept different kind of samples
81 spanning from biomedical (e.g., blood, urine, saliva samples, routine chemistry, cell cultures)
82 to water and environmental samples (Nelson, 2011).

83 In early 2020s, the Chinese modular space station, built on the experience gained from its
84 precursors Tiangong-1 and Tiangong-2, will be placed and operating in the Low Earth orbit
85 (Gibney, 2019). The sustainable human exploration of the Moon is programmed in the
86 meanwhile (El-Jaby et al., 2019; Pittman et al., 2016), whereas the human missions to the
87 surface of Mars are envisioned before 2040 (ISECG, 2018). Therefore, it is hypothesized that
88 only prospective methodological applications at a high technology readiness level (i.e., at
89 least validated in a flight-like environment; Straub, 2015) will be selected by following their
90 basic principles and current uses in Earth and space-analogue settings.

91 A number of review papers has recently emphasized the need for high-throughput
92 technologies to timely monitor and achieve the stringent microbial quality requirements of
93 future crewed space habitats (De Middeleer et al., 2019; Karouia et al., 2017; Liu, 2017;
94 Moissl-Eichinger et al., 2016; Mora et al., 2016; Yamaguchi et al., 2014).

95 In this article, we narrow the focus on promising bio-analytic technologies for quality
96 assessments of waters in space, with the aim to explore advantages and limitations beyond

97 their current applications on Earth. Starting from the rigorous housekeeping program and the
98 consolidated results of water monitoring activity on the ISS (Duncan et al., 2008; Limero and
99 Wallace, 2017), we provide a critical overview of the microbial monitoring approaches,
100 based on flexible technologies for the identification of microbial components and a total
101 contamination assessment (total microbial burden) in waters circulating on crewed space
102 vehicles.

103

104 **2 Water recycle and microbial monitoring aboard the International Space Station**

105 **2.1 The ISS water cycle**

106 The water recycling system innovations required to support ISS activities have been listed
107 among the major benefits for humanity (Detsis and Detsis, 2013; NASA et al., 2019). The
108 ISS is provided with potable water from different suppliers, coordinated by the space
109 agencies of United States (National Aeronautics and Space Administration - NASA), Russia
110 (Russian Federal Space Agency - Roscosmos), Europe (European Space Agency - ESA), and
111 Japan (Japanese Aerospace Exploration Agency - JAXA) (Bruce et al., 2005; Van Houdt et
112 al., 2012). All the possible necessary precautions to prevent external contamination are
113 applied throughout water transferring and loading steps over the entire treatment period
114 before the liftoff of supply modules. For instance, the American and Russian waters are
115 produced in conditioned and limited-access areas and preparation facilities, with no risk of
116 accidental water quality modifications during the production process. At the research center
117 of the Italian Società Metropolitana Acque Torino (SMAT), purified waters for space travels
118 are also processed upon selecting well and spring waters that most closely meet the physical,
119 chemical, and bacteriological quality standards for astronauts (Lobascio et al., 2004).
120 Currently on ISS, waters for direct human consumption are regularly delivered and recovered
121 in order to guarantee approximately 4 L per person per day (Figure 1). A reserve of potable

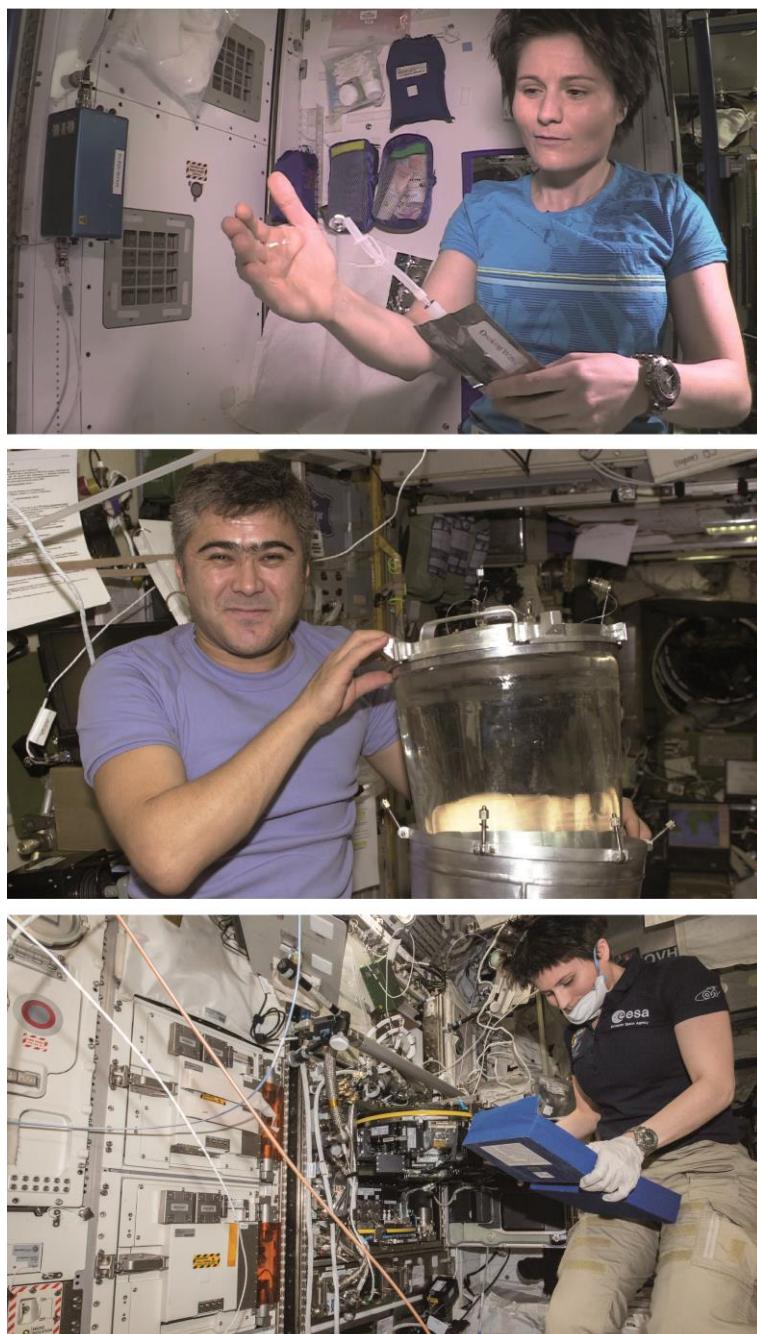
122 water (up to approx. 2000 L) is stored in contingency containers to maintain ISS operations in
123 response to emergency scenarios (Carter et al., 2018). Although routinely monitored and kept
124 constant, the overall water mass balance represents a recurrent major challenge owing to the
125 various ISS water needs.

126 Beside the on-demand crew consumption, on-board waters are distributed for different
127 purposes, comprising hygiene and cleaning practices, urinal flushing, oxygen generation via
128 electrolysis, life-support systems, and flexible water-based experimental activities (e.g.,
129 vegetable and food production systems, animal physiology and behavioral adaptation tests)
130 (Baiocco et al., 2018; Chatani et al., 2015; Massa et al., 2016; Niederwieser et al., 2018;
131 Ronca et al., 2019; Wolff et al., 2018). Wastewaters are continuously collected and recycled
132 at high efficiency level. In the US segment, the Water Recovery and Management System
133 was reported to recuperate up to 85% from crew urine and flush water, along with the water
134 content from liquid wastes and humidity condensate from the cabin. Various containers,
135 reservoirs, tanks and bellows are also necessary to maintain water pressure and circulation
136 through the distribution network (Carter et al., 2018).

137 Since microbial growth is unavoidable in persistent stagnation zones and at varying residence
138 times along the water distribution network (Lautenschlager et al., 2010; Ling et al., 2018), the
139 pre- and in-flight addition of biocides is used for residual microbial control. Molecular iodine
140 is applied in the U.S. segment, while the ionic silver level is amended in Russian waters, both
141 at low concentrations (i.e., not detrimental for human health) (Artemyeva, 2016; Lobascio et
142 al., 2004). Moreover, high temperature in the catalytic reactor, multifiltration beds within the
143 Water Processor Assembly, UV-C LEDs within the CO₂ Concentration Assembly of the
144 Advanced Closed Loop System, and novel antimicrobial coatings on various ISS surfaces
145 were proved effective against potential microbial biomass growth (Bockstahler et al., 2017;
146 Carter et al., 2018; Perrin et al., 2018; Roman et al., 2006; Sobisch et al., 2019). Finally, the

147 ISS is maintained at pressure and oxygen levels very close to those at sea level on Earth, with
148 a cabin temperature of about 22°C and a relative humidity of about 60%, in order to minimize
149 detrimental growth of microbial biofilms on cabin surfaces (Pierson et al., 2013).

150


151 **2.2 On-board water monitoring and microbial contamination**

152 The achievement and maintenance of water quality standards are evaluated by systematic
153 monitoring procedures (Limero and Wallace, 2017). Major water physical-chemical
154 parameters including conductivity, pH, total organic, total inorganic and total carbon, nitrate,
155 potassium, chloride and ammonium are monitored in-flight, together with iodine and silver
156 levels (Artemyeva, 2016). Moreover, a robust monitoring program was implemented to verify
157 that risks of microbial contamination were within acceptable limits in samples collected from
158 different sites of the Russian and US segments, respectively once every three months and
159 each month (Pierson et al., 2013; Van Houdt and Leys, 2012). Crewmembers use handheld
160 equipment to monitor ISS waters and humidity condensate from surfaces. Chemical and
161 biological samples are taken concurrently and at a frequency that may change due to real-
162 time flight necessities (Pierson et al., 2013).

163 Water samples can be processed on-board by cultivation-based methods using the US-
164 supplied Water Microbiology Kit for the quantification of total heterotrophic bacteria and
165 coliforms (Bruce et al., 2005). The maximum total number of aerobic heterotrophic viable
166 bacterial cells, counted as colony forming units on a rich agar medium, was internationally
167 defined according to the concentration levels that are achievable with the current prevention
168 and monitoring technologies available and applicable for space (i.e., HPC \leq 50 CFU/ml).
169 Microbial quality standards are also set for ISS internal surfaces, from which humidity
170 condensate is collected (maximum bacterial load = 10000 CFU/100 cm²; maximum fungal
171 load = 100 CFU/100 cm²) (Van Houdt and Leys, 2012). Along with the on-board monitoring

172 activities, archival water samples are regularly collected in teflon bags (Figure 1), preserved,
173 and returned to Earth approximately every three months for post-flight analyses (Limero and
174 Wallace, 2017).

175

176

177 **Figure 1.** The Italian astronaut Samantha Cristoforetti and the Russian cosmonaut Salizhan
178 Sharipov showing the Teflon bag, the water tank and removal system, used for drinking
179 purposes and water storage on the ISS (Credits: ESA and NASA).

180

181 The microbial contamination level was above the former acceptability limits several times
182 during previous in-flight monitoring surveys. Events of microbial biofilm growth within
183 space vehicles were mainly associated with the water layer covering internal surfaces and life
184 support systems (La Duc et al., 2004; Novikova et al., 2006; Roman et al., 2006). Thus,
185 waters collected from humidity condensate were retained among the major sources of
186 microbiological hazard for potable water quality deterioration (Horneck et al., 2010).

187 Several cultivable microbial isolates obtained from spaceflights were mainly affiliated to
188 Bacteria and Fungi (Bruce et al., 2005; Coil et al., 2016; Novikova et al., 2006). For the
189 purposes of this review, it is worth noting that the analysis of the microbial cultivable fraction
190 were likely to provide only a limited snapshot of the highly diverse community found on the
191 ISS by cultivation-independent methods (Checinska Sielaff et al., 2019; Coil et al., 2016; De
192 Middeleer et al., 2019; Ichijo et al., 2016; Lang et al., 2017; Mora et al., 2019; Morris et al.,
193 2012).

194 Despite major advantages arise from target-specific isolation and characterization of different
195 types of water-borne microorganisms and pathogens in pure culture, a number of technical
196 and logistic disadvantages characterizes the space application of cultivation-based methods.

197 The microgravity conditions provide conflicting results on microbial growth and virulence of
198 opportunistic human pathogens (Morrison et al., 2017; B. Zhang et al., 2019), while the
199 analysis of archival samples generates a detrimental time gap for a flight-supportive result
200 interpretation (Huang et al., 2018; Novikova et al., 2006). HPC was proved to be also
201 affected by carbon sources in cultivation media, the incubation time, and the initial microbial
202 load level (Amalfitano et al., 2018b). Finally, the prompt development and requirement
203 update of alternate bio-analytical technologies for microbial monitoring during space

204 exploration is pushed fundamentally by the need to avoid microbial regrowth from analytical
205 wastes (Wong et al., 2017).

206

207 **3 Nucleic acid amplification-based methods for microbial identification in space
208 waters**

209 Methods based on nucleic acid amplification offer the advantage of specific and fast
210 detection, easy automatization and standardization. Many of the limitations of cultivation-
211 based techniques adopted for bacterial detection and water quality monitoring are
212 overwhelmed by largely reducing the time required for the microbial identification including
213 also viable but not cultivable bacteria and un-cultivable pathogens.

214

215 **3.1 Sample pre-treatments and nucleic acid extraction in space**

216 Sample pre-treatment and nucleic acid extraction are systematic procedural steps and key
217 starting points for most of the downstream molecular approaches and product developments
218 for monitoring the water microbial quality. Nucleic acids extracted from unknown water
219 samples are amplified, either entirely or partly to specific portions conventionally chosen as
220 markers. The extraction and purification of nucleic acids from aquatic microorganisms rely
221 on cell lysis and the selective binding of cellular DNA and RNA to solid surfaces through
222 column-based protocols.

223 A fast independent biomolecular analysis can be entirely conducted in space settings with the
224 in-line implementation of optimized protocols for fast DNA and RNA extraction in
225 microgravity and sample preparation for sequencing. Published studies reported new
226 promising field-deployable amplification devices and approaches for on board applications
227 (Boguraev et al., 2017; Montague et al., 2018) (Figure 2). Simplified, sample processing and
228 DNA purification, strategies have currently been tested aboard the International Space Station

229 (ISS). The Wetlab-2 project has already developed and tested on the ISS a Sample
230 Preparation Module (SPM) to lyse cells, and to extract and purify RNA, by circumventing all
231 the issues related to microgravity, surface tension alteration, reduced operational space and
232 handling expertise, providing high quality extraction of nucleic acids (Parra et al., 2017).
233 A large research effort on Earth is devoted to address the demand for simpler and more rapid
234 nucleic acid-based detection methods to be applied outside the modern laboratory
235 environment. Numerous commercialized kits for solid-phase extraction offer the possibility
236 for handy and rapid nucleic acid purification procedures, in which potential contaminants are
237 removed through sequential washing steps based on centrifugation or DNA separation by
238 paramagnetic beads (Tan and Yiap, 2009). Methods for the direct PCR amplification without
239 DNA extraction were also developed, although mainly applied to pure cultures or matrices
240 without significant amount of inhibitors (Williams et al., 2017). Recent papers reported
241 simplified methods for nucleic acid purification using different types of membranes, followed
242 by the direct DNA amplification form the nucleic acid on the membranes (Kaliyappan et al.,
243 2012; Rodriguez et al., 2016). Notably, a cellulose-paper-based dipstick was used to
244 efficiently bind, wash, and elute purified nucleic acids from different matrices (e.g., plant,
245 animal, and microbial biomass) without requiring any pipetting or electrical equipment (Zou
246 et al., 2017).
247 Nevertheless, a major bottleneck for the in-flight application of amplification based
248 approaches still lies on the need for sample concentration and DNA extraction, which are
249 relatively time consuming procedures and increase the level of produced solid and liquid
250 waste (Girones et al., 2010). Suboptimal DNA extraction and purification are known to
251 largely affect results of biomolecular analysis, mainly owing to uncomplete lysis of more
252 resistant bacterial populations and poor removal of DNA polymerase inhibitors (Albertsen et
253 al., 2015; Girones et al., 2010). DNA purification requires effective cell disruption,

254 inactivation of nucleases, and purification of DNA from contaminants (e.g., protein,
255 carbohydrate, lipids, or other nucleic acid) that might interfere with the amplification
256 efficiency. Residual extracellular DNA could not be easily discriminated from that of viable
257 dangerous microorganisms, thus leading to an overestimation of risk for human health when
258 applied to pathogen detection (Girones et al., 2010). Moreover, waterborne substances can
259 concentrate together with DNA during sample processing and inhibit polymerase enzymes.
260 Therefore, the source and quality of the water sample can directly influence the sensitivity
261 and reliability of the PCR-based microbial detection.

262

263 **3.2 Target-based techniques for detection and quantification of nucleic acids**

264 The polymerase chain reaction (PCR) is widely used for detecting genes and microorganisms
265 of health concern in water environmental hygiene studies (Ramírez-Castillo et al., 2015). In
266 PCR-based approaches, specific nucleic acids sequences, recognized by the use of primers
267 complementary to the targeted base pair sequence, are exponentially amplified by sequential
268 thermal cycles that enable DNA denaturation and polymerase enzyme activity. Positive PCR
269 amplification of a DNA fragment at the expected size is successively visualized by gel
270 electrophoresis. Isothermal amplification methods for nucleic acid detection and
271 quantification were also successfully tested in flight-like settings.

272 Among these target-based detection approaches, the loop-mediated isothermal amplification
273 (LAMP) of nucleic acids was retained as a rapid and sensible option (Zhao et al., 2015), with
274 minimal requirements for the in-flight water quality monitoring and pathogen detection (Ott
275 et al., 2014). The amplification takes place at isothermal temperature (60-65°C) through the
276 use of DNA-polymerase enzymes (*Bst* polymerase from *Bacillus staerothermophilus* and
277 *Bsm* polymerase from *Bacillus smithii*), with high strand displacement activity in order to
278 avoid the denaturation step. LAMP reaction involves the use of 4 to 6 primers, which provide

279 high specificity and ultimately accelerate the reaction. Positive reactions can be visualised by
280 naked eye (i.e., without post-amplification steps) following the increase of sample turbidity
281 or colour owing to the addition of fluorescent dyes (Notomi et al., 2015). Being less sensible
282 than PCR to inhibition and not significantly influenced by non-target DNA, direct LAMP
283 assays are currently used for point of use diagnostic in clinical and environmental settings,
284 with good analytical performances on moderately pre-treated samples and in a range of
285 temperature, pH and elongation times (Etchebarne et al., 2017; Samhan et al., 2017). Low
286 amount of DNA can be amplified up to generating 10^9 copies within 1 h and producing as
287 final amplification product a complex stem-loop DNA, with several inverted repeats of the
288 target and cauliflower-like structures. Commercial kit for the rapid on-site detection of water
289 pathogens are already available for terrestrial applications, also comprising quantitative real-
290 time LAMP, reverse transcription RT-LAMP, *in situ* LAMP, and viable LAMP (Notomi et
291 al., 2015). For the scopes of this review, it is worth noting that a rapid method for detecting
292 approximately 1 CFU/100 ml of *Legionella pneumophila* in tap waters was developed and
293 efficiently applied on field in less than 2 working hours through a direct on-filter LAMP
294 amplification with live/dead propidium monoazide (PMA) differentiation (Samhan et al.,
295 2017).

296 Among the target-based quantification approaches, the quantitative PCR (qPCR) represents a
297 popular technique for the in-flight water quality monitoring (Oubre et al., 2013). The
298 quantification of target sequences is based on the development of a fluorescent signal
299 proportional to the amount of amplified produced during the PCR thermal cycles. Using
300 either SYBR-based or probe-based chemistry (e.g. TaqMan probe), DNA amplification can
301 be followed as an exponential increase of fluorescent intensity during the reaction. The
302 quantification is based on the number of amplification cycles (C_q quantification cycle or C_t
303 threshold cycle) that produce a fluorescence signal above the reaction background

304 fluorescence (threshold line). By the use of TaqMan probes labelled with different
305 fluorophores in a single reaction, the Multiplex qPCR is also suitable for the simultaneous
306 detection and quantification of multiple pathogens, consistently reducing analytical time and
307 costs (Ibekwe et al., 2002; LaGier et al., 2004). With low detection limits (<400 cells per
308 sample) and volume requirements (<100 µl of sample), qPCR assays are routinely applied
309 and approved by national and international agencies in monitoring plans for the detection and
310 quantification of waterborne pathogens (Girones et al., 2010; Ramírez-Castillo et al., 2015).
311 A large body of the scientific literature has documented the development and use of qPCR for
312 pathogenic viruses, bacteria, protozoa, and fungi (Kralik and Ricchi, 2017; Ramírez-Castillo
313 et al., 2015). Through a pre-treatment with cell membrane impermeant DNA intercalating
314 dyes, the so-called Viable qPCR was applied for discriminating between viable (with intact
315 membrane) and dead (with damaged membrane) bacteria, allowing the quantification of
316 water- and food-borne pathogens such as *Campylobacter*, *E. coli* O157:H7, *Legionella*
317 *pneumophila*, *Salmonella*, *Cryptosporidium* (Banihashemi et al., 2012; Brescia et al., 2009;
318 Delgado-Viscogliosi et al., 2009).

319 Given the versatile applications of the numerous available assays, both LAMP and qPCR
320 have been retained as suitable water monitoring methods for long-term exploration missions.
321 Owing to the high sensitivity, specificity, and simple post-amplification steps to detect the
322 amplified targets, LAMP was proposed by the Japan Aerospace Exploration Agency as
323 alternative microbial contamination monitoring system for the ISS (Ott et al., 2014). For the
324 analysis of crew health related genetic modifications, qPCR technologies have been
325 successfully tested on-board the ISS within the projects Gene in Space and Wet-lab2, devoted
326 to definition of a robust, user-friendly nucleic acid extraction and sequencing approach
327 aboard ISS by the use of spaceflight tested tools (Boguraev et al 2017;
328 <https://www.genesisinspace.org/>;

329 https://www.nasa.gov/mission_pages/station/research/experiments/1913.html;

330 <https://www.nasa.gov/ames/research/space-biosciences/wetlab-2>). Moreover, the RAZOR EX

331 PCR, launched on Space-X 9 (July 2016) within Water Monitoring Suite project will allow

332 performing direct PCR amplification from water samples.

333 In all current space applications, however, the selected target-based detection and

334 quantification approaches require the use of disposable materials and labour intense

335 protocols, which will inevitably reduce their long-term applicability in space conditions. The

336 general precautions used on Earth to limit contamination risks, including the most stringent

337 procedures applied in clean rooms (Rettberg et al., 2019), might also represent a limiting

338 practical issue in the small close spacecraft environment, since the high sensibility of PCR-

339 based detection increase the chance of amplifying carry over contamination, with the

340 consequent production of false positive results. This is crucial for LAMP owing to the limited

341 accessibility to degradation of DNA products, while a major limitation of qPCR is also the

342 occurrence of inhibitors that can be co-concentrated or extracted along with nucleic acids

343 from the target microorganisms (Gibson et al., 2012). The presence of qPCR inhibitors

344 introduces a number of problems, ranging from low amplification efficiency and reduced

345 assay sensitivity to complete reaction failure and false negative results (Radstrom et al.,

346 2008).

347

348 **3.3 Sequencing-based “-omics” approaches for microbial community characterization**

349 The High-Throughput Sequencing (HTS) encloses a popular suite of technologies,

350 methodological approaches, and data elaboration workflows used to characterize the

351 phylogenetic composition of the total microbial community in water samples and different

352 aquatic matrices. The taxonomic classification is based on the huge amount of sequences

353 generated by either a portion of the cellular nucleic acid content or the whole genome,

354 through the so-called amplicon and shotgun sequencing approaches, respectively (Peabody et
355 al., 2015).

356 The amplicon analysis represents the extension of sequencing based methods of organisms'
357 classification, defined by specific protocols under the general name of "genetic" or
358 "molecular barcoding" (Hebert and Gregory, 2005). A barcode marker is a conserved DNA
359 sequence, with some variation at interspecific level, such as the 16S rRNA for
360 microorganisms, mtDNA CoxI gene for most animals, or many chloroplast genes for plants
361 (Chakraborty et al., 2014; Valentini et al., 2009). A wide set of algorithms and pipelines have
362 been developed to compare an unknown barcode sequence with reference sequences of
363 known species stored in specific database, allowing samples classification with acceptable
364 sensitivity and specificity (Escobar-Zepeda et al., 2015; Gonzalez et al., 2019).

365 The shotgun sequencing consists in generating millions of DNA fragments of different
366 lengths from a starting pool of genomes. These fragments cover a quote of the original
367 genomes inversely proportional to the genome lengths, and taxonomic assignment may be
368 quantitative according to the proportion of fragments classified for each taxon. The amplified
369 products are sequenced, controlled for quality, and assembled in longer contigs. The obtained
370 sequences are classified at different taxonomic levels, according to the best match with a
371 reference sequence databases and following different similarity criteria (Segata et al., 2012).

372 Currently, the most used sequencing platforms are characterized by different technical
373 principles and include Roche 454 GS-FLX (pyrosequencing), Illumina MiSeq and HiSeq
374 (reversible terminator sequencing by synthesis), Ion PGM (semiconductor based sequencing
375 by synthesis), and the nanopore GridION and MinION™ (Check Hayden, 2015; Clooney et
376 al., 2016; Ghanbari et al., 2015; Glenn, 2011).

377 HTS-based technologies have been already tested under microgravity conditions and directly
378 on the ISS (Castro-Wallace et al., 2017; McIntyre et al., 2016). First studies entailed to test

379 the feasibility and performance of sequencing protocols, and to verify the potential
380 application of real time sequencing, genome assembly for metagenomics, infectious disease
381 diagnosis, and gene expression. In particular, the MinION pocket-size device was retained as
382 the most suitable candidate technology to be transported and mounted on the ISS (Figure 2).
383 Specific changes in base sequences are detected when DNA/RNA molecules pass through
384 nanopores (protein) embedded in membranes. Depending on the sequencing of single (1D) or
385 double strands (2D), the approach can provide real time identification up to 300 kb with 1D
386 and 60 kb with 2D reads (Jain et al., 2016). The integrity and activity of nanopores were not
387 adversely affected by storage conditions, launch, cosmic radiations or handling in
388 microgravity, and reusability of flow cells was warranted. Specific indications to avoid air
389 bubbles interference at the nanopores were implemented (Castro-Wallace et al., 2017;
390 Rizzardi et al., 2016). MinION performances were also evaluated in sequencing a mixture of
391 genomic DNA from a virus, a bacterium, and of mammal mtDNA, in comparison with
392 MinION, Illumina MiSeq and PacBio RSII sequencing runs made on ground. Accuracy in
393 base-calling on-board of the ISS was not significantly different respect to the runs obtained
394 on the ground, while accuracy respect to MiSeq and RSII was slightly inferior (89% identity
395 to the reference genome, respect to > 99%), but sufficient for sequence analysis. Sequencing
396 reads were successfully assigned to the correct reference sequences in 90% of cases, and 10%
397 of cases remained unassigned. Single-read error rates of 7-20%, intrinsic of the flow cell,
398 were likely caused by unidentified assignments. It is predictable that, with novel improved
399 versions of flow cells, the gap with other platforms will progressively become irrelevant.
400 Moreover, tests demonstrated that real-time metagenomics analysis, from read processing to
401 microbial identification and finally to genome assembly was also possible by using a laptop
402 device that can be integrated in the ISS hardware. Considering genomic data analysis, one of
403 the least demanding platform has been tested successfully simulating flight conditions and

404 hardware availability onboard of the ISS, demonstrating its realistic applicability even on a
405 laptop base (Castro-Wallace et al., 2017). Provided the adaptation of hardware and
406 instruments to the spatial and logistic limitations onboard, both the shotgun and amplicon
407 approaches with their intrinsic advantages and drawbacks, can be considered as suitable tools
408 for microbial community characterization and pathogen detection on the ISS.


409 In terrestrial applications, the use of HTS-based techniques for microbiological quality
410 assessments has been continuously growing (Tan et al., 2015), and the molecular detection of
411 aquatic microorganisms improved notably since the first implementations of the MinION
412 nanopore sequencing-based approach (Kilianski et al., 2015).

413 The amplicon approach requires straightforward PCR amplification protocols, downstream
414 bioinformatics, and database searches. Nevertheless, this technique is prone to fail to detect
415 unknown or highly divergent 16S rRNA gene sequences, which may be associated to novel
416 or previously undetected pathogens. A specific evaluation of 16Sr RNA gene resolution
417 highlighted that taxonomic assignment is highly sensitive to the gene region selected as a
418 marker and to the assignment method. Sequences of at least 250 bp in the variable regions
419 V2-V3 and V4-V5 allowed a correct taxonomic assignment nearly at the same level of full-
420 length sequences (Claesson et al., 2010; Liu et al., 2008; Tremblay et al., 2015). Another
421 known potential bias of 16S rRNA gene based detection is related to variability in the number
422 of gene copies between microbial taxon and even between individual cells of the same
423 species or strain, which may inflates and affect the accuracy of quantification (Větrovský and
424 Baldrian, 2013). A further important limitations of amplicon analysis and barcoding approach
425 is the lack of a common scientific view of suitable markers for viruses and, consequently, the
426 absence of a standardized and exhaustive reference database (Chakraborty et al., 2014).

427 In comparison to amplicon analysis, the shotgun sequencing offers a wide genome coverage
428 of organisms, without any selective constraints posed by marker choice, thus allowing the

429 detection of unknown contaminants and the possibility to screen for both bacteria and viruses.
430 In the field of water quality monitoring, the shotgun sequencing was used as the benchmark
431 method to assess the occurrence of potential multiple water-borne pathogens, novel indicators
432 for human sewage contamination, the relationships between the presence of fecal indicator
433 bacteria and pathogen-like sequences, and microbial safety of drinking waters in relation to
434 the efficiency of reclamation treatments (Chao et al., 2013; Lu et al., 2015; McLellan and
435 Eren, 2014; Newton et al., 2015). Although the possibility to obtain up to a few thousands of
436 base pairs for each read improved the microbial identification specificity, non-trivial
437 disadvantages include the initial skimming of the huge number of produced reads, their
438 quality check and assemblage in contigs useful for classification, which require high
439 computational effort and time (Tan et al., 2015).

440

441

442 **Figure 2.** The NASA astronaut Peggy Whitson performed the Genes in Space investigation
443 aboard the space station using the miniPCR and MinION. Credits: NASA
444

445 **4 Real-time technologies for early warning microbial monitoring**

446 The total contamination assessment (total microbial burden) through the accurate
447 quantification of microbial cell abundance and viability in waters circulating is a recognized
448 necessity on space crewed vehicles (Morris et al., 2012). Different early-warning real-time
449 methods that target parameters at the single-cell level (e.g., cellular biomolecules, membrane
450 integrity, enzyme activity, substrate uptake) have been developed for water monitoring, but
451 only few can efficiently operate in flight-like and space settings.

452

453 **4.1 ATP-metry**

454 An option for real-time monitoring of biological contamination in water samples is the
455 analysis of adenosine triphosphate (ATP) content. ATP represents the universal energy
456 source for the main cellular functions and plays a key role in energy exchange in every type
457 of cell by linking catabolic and anabolic processes. The analysis is carried out through the
458 chemical and/or enzymatic extraction of this molecule from microbial cells, followed by the
459 measurement of light emission derived when the dissolved ATP reacts with the luciferine
460 (substrate) - luciferase (enzyme) complex. In the presence of ATP and magnesium, the
461 enzyme catalyzes the oxidation of the substrate, which is associated with light emission. The
462 emitted light intensity is linearly related to the ATP concentration and easily measurable
463 using a luminometer. Measurement of bioluminescence gives virtually instant information
464 (within few minutes) of the metabolically active microbial population. This peculiarity makes
465 it suitable as an early-warning approach for the study of living processes and for measuring
466 bacterial contamination and monitoring water treatment efficacy in near real-time (Hammes
467 et al., 2010). The method is robust, easy to perform, and suitable to detect both cultivable and
468 uncultivable cells, with better estimates of total active microorganisms compared to
469 heterotrophic plate counts. The concomitant use of traditional cultivation-based approaches

470 showed levels of cultivable cells order of magnitude lower than those estimated by ATP
471 (Siebel et al., 2008; K. Zhang et al., 2019).
472 The ATP analysis was performed on pre-flight and post-flight ISS water samples and
473 revealed a biological contamination ranging between 0 (drinking water) and 4.9×10^4 cells/ml
474 (humidity condensate) (Bacci et al., 2019; La Duc et al., 2004). Recently, the viable microbial
475 contamination on-board ISS was reliably monitored on surface samples by intracellular ATP
476 measurement (Perrin et al., 2018; Venkateswaran et al., 2003). ATP assays were also proved
477 effective in monitoring microbial contamination on surfaces from an inflated lunar/Mars
478 analogous habitat during long-term human occupation (Mayer et al., 2016). The total (ATP
479 content from both dead and live microbes) and viable microorganisms (intracellular ATP
480 content) were in the range of 10^5 - 10^6 relative luminescence unit (RLU)/m². These results
481 were in line with ATP data measured directly on-board within the experiment T2 carried out
482 during Euromir-95 mission (Guarnieri et al., 1997). Recently, the ATP-metry was selected for
483 the real-time monitoring of the biological contamination on board ISS within the H2020
484 European project BIOWYSE (Biocontamination integrated control of wet systems for space
485 exploration, <http://biowyse.eu>), aimed at developing a compact, automatic, and microgravity-
486 compatible on-board systems for the prevention, monitoring and control of microbial load in
487 waters and on wet surfaces (Figure 3). A humid area sampler was recently developed and
488 patented (ref. 102018000009137, dated 03/10/2018) (Detsis et al., 2018; Guarnieri et al.,
489 2019).
490 Today, commercial kits for quantitative ATP-metry are available to monitor the microbial
491 biomass level in water and to validate cleaning and disinfection procedures, with a wide
492 number of bulk and intracellular ATP measurements on microbial communities reported from
493 natural and engineered aquatic environments (Abushaban et al., 2019; Fillinger et al., 2019;
494 van der Wielen and van der Kooij, 2010; Vang et al., 2014). However, most applications in

495 water monitoring on Earth have not been used as frequently as expected. Although the
496 apparent advantages, major technical limitations are related to the low sensitivity and result
497 reproducibility at low cell concentration and sample volume (< 100 μ l), along with the
498 susceptibility to environmental conditions (e.g., pH, temperature, occurrence of enzyme
499 inhibitors). Some drawbacks of the method are partly circumvented by using external and
500 internal standards and by operating under controlled reproducible settings. Therefore, the
501 correlation between intracellular ATP content and microbial cell counts will rely on a robust
502 cross-calibration with results from other reference methods (Amalfitano et al., 2018b;
503 Hammes et al., 2010). It has been calculated that the average ATP-per-cell content is
504 approximately 1.75×10^{-10} nmol/cell or 6.87×10^{-17} g ATP/cell (K. Zhang et al., 2019).
505 However, the amount of per-cell ATP can be significantly influenced by the phylogenetic
506 affiliation and the cellular physiological status, with diverse ATP-content reported between
507 either eukaryotic or prokaryotic cells from the same cultures (Bajerski et al., 2018; Yaginuma
508 et al., 2015).

509

510 4.2 Flow cytometry

511 Ubiquitously applied from the bio-medical research to environmental sciences, flow
512 cytometry (FCM) is considered an unparalleled high-throughput technology for single cell
513 analysis (Robinson and Roederer, 2015). This generic technology allows the measure (-
514 metry) of the optical properties of cells (cyto-) transported by a liquid sheath (flow).
515 Following sample intake, a pressurized laminar flow is generated by the fluidic system of the
516 instrument. The suspended particles are individually forced to cross a light source excitation
517 point for scanning and evaluation. At the interrogation point, any fluorophore on or in the cell
518 will absorb the laser beam energy and emit photons in a range of wavelengths, proportionally
519 to the amount of incident light and the number of fluorescent molecules. Light scatter and

520 fluorescence signals are detected at the single-cell level and instantly converted into digital
521 information to be shown on multidimensional plots, along with real-time data analysis and
522 statistics. The power of the technique comes also from the variety of laser light sources and
523 commercialized fluorophores that can be used for sample staining and illumination (Shapiro,
524 2005).

525 Flow cytometry is included in the roadmaps of national space agencies worldwide and
526 deemed as a necessary technology for defining and monitoring spaceflight-associated
527 requirements since early 80's. Owing to the high versatility for diagnostic medicine (e.g.,
528 hematology, immunology, and physiology), this technology was so far retained as a prime
529 asset for health monitoring and clinical laboratory diagnostics for astronauts, in view of the
530 upcoming deep-space exploration missions (Crucian and Sams, 2012). A flow cytometry
531 platform was already successfully tested on-board the ISS to monitor and understand the
532 physiological adaptations of astronauts to microgravity (Dubeau-Laramée et al., 2014; Phipps
533 et al., 2014) (Figure 3). Advanced developments of the prototype were based on
534 commercialized flow cytometer with significant additional engineering modifications, mostly
535 aimed to generate laminar particle flow (distinct from the standard sheath fluid based
536 method), and to reduce the significant amount of liquid biohazardous waste and energy
537 operating requirements. The laminar flow within the flow chamber was found to be
538 dramatically altered by microgravity. In turn, the unavoidable elimination of the fluid
539 mechanical setting for particle hydrodynamic focusing was proved to significantly reduced
540 liquid waste and the total system operational load, in terms either of instrument size and
541 weight or energy consumption (Cohen et al., 2011; Crucian and Sams, 2005).
542 Notwithstanding the recent system design improvements, peripheral blood cells has been
543 retained as the only target for first studies in space environments (McMonigal and Crucian,
544 2015). Since a flow cytometer can provide support to a wide range of scientific applications

545 (e.g., biology, microbiology, and environmental science), it is needless to point out that a
546 spaceflight compatible machine could satisfy the unmet flight requirements for water
547 monitoring and treatment to complete future long-duration missions in closed healthy
548 environments.

549 The high sensitivity for scanning very small objects (i.e., from virus-like-particles to
550 prokaryotes, to pico- and micro-eukaryotes) and the wide detectable cell concentration range
551 (generally between 10^2 and 10^7 cells ml^{-1} without concentrating or diluting the samples)
552 represent unmatched features of this technology for water monitoring. A broad suite of assays
553 is available for microbial quality assessments in natural and engineered aquatic ecosystems
554 (Amalfitano et al., 2014; Boi et al., 2016; Gasol and Morán, 2015; Van Nevel et al., 2017).

555 Successful applications are reported to provide early warning indications of unexpected water
556 contamination events through the rapid detection of a variety of microbiological threats,
557 including pathogenic and potentially toxic microorganisms (Vital et al., 2010; Weisse and
558 Bergkemper, 2018; Yang et al., 2010). Moreover, flow cytometric measurements are suitable
559 to evaluate the efficiency of various industrial microbial bioprocesses (e.g., food and
560 pharmaceutical preparations) (Díaz et al., 2010), and the performances of engineered systems
561 for water treatment (Besmer and Hammes, 2016; Safford and Bischel, 2019). Remarkably,
562 FCM was also useful to determine the presence of nonliving organic and inorganic
563 substances, including nano- and micro-sized particles, suspended solids, flocs and aggregates
564 of various origins (Aulenta et al., 2013; Casentini et al., 2016; Liu et al., 2016). On-going
565 instrumental developments for on-site applications are directed to install flow cytometers on
566 either mobile units (e.g., ships and vehicles) or fixed locations (e.g., treatment plants, marine
567 buoys, off-shore platforms), with the possibility for automatic programmable staining of
568 aquatic microorganisms and remote data transfer (Buysschaert et al., 2018; Pomati et al.,
569 2011; Thyssen et al., 2007).

570 Leaving aside the high costs of all sophisticated systems, the need for specially trained staff is
571 likely to represent a major drawback in the daily scheduled monitoring practices. Moreover,
572 the reproducibility of cytometric data was reported to be adversely affected by changing cell
573 staining protocols (e.g., fixatives, type of fluorescent dye), incubation conditions (e.g.,
574 temperature, time to analysis), instrumental settings (e.g., fluidic and signal amplification
575 systems), and the source water (e.g., from natural or engineered systems) (Nescerecka et al.,
576 2016; Prest et al., 2013). Further work is also required to establish user-independent strategies
577 for gating and data handling (Amalfitano et al., 2018a; Koch et al., 2014). One more specific
578 challenge is the lack of phylogenetic resolution. Despite the enumeration of targeted taxa may
579 rely on specific fluorescence staining procedures (Couradeau et al., 2019; Manti et al., 2011;
580 Neuenschwander et al., 2015), the cytometric information characterizing different
581 subpopulations of microbial cells is generally ataxonomic. A direct link between cytometric
582 fingerprinting and microbial diversity, assessed by 16S rRNA gene amplicon sequencing,
583 was demonstrated in recent studies (Props et al., 2017, 2016). However, the computational
584 workflows are convoluted and still under development (Rubbens et al., 2019).

585

586

587 **Figure 3.** Integrated breadboard of the ATP-metry system, developed within the European
588 H2020 project BIOWYSE. The hardware was designed (upper left photo) and built (upper
589 right photo) to fly within the European Drawer Rack Mark 2. The photo below shows the
590 Canadian astronaut Chris Hadfield holding the flow cytometry platform Microflow1,
591 successfully deployed and tested on the ISS (Credits: BIOWYSE project consortium and
592 NASA).

593

594 **5 Comparative analysis of space-relevant technological features**

595 The mature technologies, herein entitled for water microbial monitoring in space, showed
596 their own critical advantages and limitations (table 1). Both current and future applications in
597 space will be necessarily bounded by the definition of novel standards of microbial quality

598 (i.e., other than those applied on Earth by cultivation-dependent approaches) (Amalfitano et
599 al., 2018b), but also by a compromise between the best analytical performances and
600 detrimental technical issues to cope with during spaceflights.
601 From the one hand, analytical benefits for space applications will necessarily include the time
602 needed to achieve results (i.e., speed to results), the accuracy in detecting specifically-
603 selected microbial targets (i.e., identification depth) with reproducible consistent results (i.e.,
604 reproducibility), and the number and multiple type of achievable results (i.e., herein named
605 multiparametricity). On the other hand, the operating conditions can be particularly stringent
606 and limiting the direct applicability in space, unless addressing critical requirements such as
607 reagent usage, waste production, operator skills, and crew time. Using a simplistic pairwise
608 comparison, we sought to emphasize that few selected technological features have to be
609 consciously retained from the methodological proof-of-concept level up to the device
610 deployment, instrumental demonstration, and routine use in the on-board housekeeping
611 program. Although the comparative scores were assigned subjectively, it is likely evident that
612 the stringent requirements of microbial water monitoring in space cannot be met by a single
613 technological solution.

614

615 **Table 1.** Advantages and limitations of the most promising approaches for microbial
616 monitoring in space settings. The selected technologies are flexible (applicable to samples of
617 various origin), suitable for miniaturization and automation with limited maintenance, and
618 already tested in flight-like conditions. A comparative score was arbitrarily assigned through
619 a pairwise comparison matrix for each of selected space-relevant technological features,
620 including major analytical performances (i.e., speed to results, identification depth,
621 reproducibility, multiparametricity – green marks) and technical issues to cope with in space
622 (i.e., reagent usage, waste production, operator skills, crew time – red marks).

623

Technology	Advantages	Limitations	Analytical performances/ Technical issues	Comparative scores	Applications in space
Plate Cultivation	– No pretreatment	– No direct quantification	Speed to results	█ █	La Duc et al., 2004 Morrison et al., 2017 Pierson et al., 2013
	– Detection limit 1 cell/100 ml	– Risks of contamination	Identification depth	█ █ █	
	– Low equipment requirements	– Reliant on cultivation conditions	Reproducibility	█	
			Multiparametricity	█ █	
			Reagent usage	████	
			Waste production	██████	
			Operator skills	██████	
			Crew time	██████	
LAMP	– Detection limit $\sim 10^2$ gene copies/ml	– No direct quantification	Speed to results	█ █ █	Ott et al., 2014
	– Unaffected by template conc.	– Risks of contamination	Identification depth	█ █ █	
	– No effects of inhibitory compounds		Reproducibility	█ █ █	
			Multiparametricity	█ █ █	
			Reagent usage	████	
			Waste production	████	
			Operator skills	████	
			Crew time	████	
qPCR	– Target-specific and quantitative	– Pretreatment processing	Speed to results	█ █	Boguraev et al., 2017 Parra et al., 2017
	– Detection limit $\sim 10^3$ gene copies/ml	– Affected by template and inhibitory compounds	Identification depth	█ █ █	
		– Reliant on PCR related issues	Reproducibility	█ █ █	
			Multiparametricity	█ █ █	
			Reagent usage	████	
			Waste production	████	
			Operator skills	████	
			Crew time	████	
High Throughput Sequencing	– In-depth phylogenetic resolution	– Pretreatment processing	Speed to results	█ █	Castro-Wallace et al., 2017 McIntyre et al., 2016
	– Specific for unknown non targeted microorganisms	– Reliant on PCR related issues	Identification depth	█ █	
		– Complex data interpretation	Reproducibility	█ █	
			Multiparametricity	█ █ █	
			Reagent usage	████	
			Waste production	████	
			Operator skills	████	
			Crew time	████	
ATP-metry	– Real-time data (< 5 min)	– Unspecific detection	Speed to results	█ █ █	Guarnieri et al., 1997 La Duc et al., 2004
	– Detection limit ~ 0.1 pg/ml	– Destructive analysis	Identification depth	█	
		– Risks of contamination	Reproducibility	█ █ █	
			Multiparametricity	█	
			Reagent usage	████	
			Waste production	████	
			Operator skills	████	
			Crew time	████	
Flow cytometry	– No pretreatment	– Complex data interpretation	Speed to results	█ █ █	Dubeau-Laramée et al., 2014 Phipps et al., 2014
	– Quantitative and near-real time data (< 20 min)	– Clogging issues	Identification depth	█ █	
	– Detection limit $\sim 10^2$ cells/ml		Reproducibility	█ █ █	
			Multiparametricity	█ █ █	
			Reagent usage	█	
			Waste production	████	
			Operator skills	████	
			Crew time	████	

624

625

626 6 System miniaturization and future challenges

627 An important point is that the monitoring technologies can be mission-dependent, but only
628 those instruments that minimize crew involvement in their end-to-end operation are likely to
629 be applicable on the long-term (Karouia et al., 2017). Overall, the selected devices have to be
630 compact, suitable for automation, low power-consuming, and virtually invisible except when
631 needed (Limero and Wallace, 2017). The ground-based counterparts have already been
632 miniaturized using microfluidics, but the deployment of monitoring-effective tools onboard
633 spacecrafts will also require substantial reengineering and instrumental customization. The
634 instruments deployed so far have not been yet permanently used in spaceflight water
635 monitoring, yet numerous examples of successful international projects and commercial
636 partnerships dedicated to the human space exploration let argue that critical space water-
637 related tasks can be operatively accomplished at reasonable costs and times (< 5 years)
638 (Karouia et al., 2017).

639 Considerable progress has been made in miniature the onboard instrumentation to assess the
640 water microbiological contamination. This also includes microbial cultivation systems, such
641 as the AquaPad developed by the French CNES space agency (Augelli, 2018). The
642 microfluidic chips that allow cell isolation and incubation have been developed for ground-
643 based applications, and appear suitable for space uses. For example, the encapsulation of
644 single cells from a mixed microbial community into small droplet compartments of a water-
645 in-oil emulsion can offer further opportunities for physiological studies and viability assays
646 (e.g., metabolic by-products diffusion, resistance to toxicants, enzymatic activities) on clonal
647 populations isolated into plugs or micro-Petri dishes (Boedicker et al., 2008; Boitard et al.,
648 2015).

649 Considering the ability of microfluidic systems to efficiently conduct measurements on small
650 volumes of complex fluids without the need for a skilled operator, lab-on-a-chip technologies

651 and portable diagnostic devices have gained increased popularity for sensing a wide range of
652 water parameters and microbial pathogens even in the most remote settings (Mairhofer et al.,
653 2009). More recently, new qPCR platforms based on microfluidic technologies have been
654 developed allowing the simultaneous analysis of numerous genes and samples in volume
655 chambers of few nanoliters, placed at high density on a chip (Ricchi et al., 2017). Being less
656 sensitive to inhibitors than qPCR, the digital PCR (dPCR) is mainly applied to monitor gene
657 transcriptions in microbial cells without the need of a standard curve for gene copy
658 quantification (Devonshire et al., 2016).

659 The system miniaturization was also considered the most appealing trait for space
660 applications of the nanopore DNA sequencer MinION (Castro-Wallace et al., 2017). By
661 assembling miniaturized and lab-on-a-chip solutions, the Water Monitoring Suite developed
662 by NASA represents so far the best performing custom-built device applied successfully on
663 the ISS to monitor different water quality properties. Along with the HACH colorimeter and
664 the Organic Water Module, respectively used for inorganic and organic chemical
665 assessments, the hardware suite also includes the PCR-based instrument RAZOR EX, with
666 customized sample pouch kits containing all pre-loaded reagents necessary for sampling,
667 sample preparation, and real-time PCR

668 (https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1847). However, as space exploration progresses toward extended missions to cis-
669 lunar space and Mars, PCR-based and multi-omics instruments onboard spacecraft should not
670 be considered in separation from other technologies needed for the in-flight microbiological
671 research (Karouia et al., 2017).

672 In particular, microfluidic platforms developed for the direct cell detection showed promising
673 perspectives because of the potential for precise and easy-to-use analytical procedures. While
674 enhancing analytical performances, the system miniaturization presents also the advantages

676 of reduced consumption of reagents and the ability to integrate monitoring and isolation
677 procedures within a single device (Auroux et al., 2002). A simple microfluidic system was
678 successfully tested for rapid and semi-automated bacterial enumeration in freshwaters and
679 promising outcomes suggested its applicability to drinking waters under both ground and
680 space conditions (Yamaguchi et al., 2014). Moreover, both sensitivity and specificity of ATP-
681 metry and FCM can be also improved by miniaturizing the core systems down to scales
682 closer to the ones of microorganisms. A micro-fluorescence-activated cell sorting (μ FACS)
683 was used to sort out cells of interest by changing the flow direction after cell detection (Fu et
684 al., 1999). An integrated platform that combines two different force fields in a single
685 microfluidic device (Dielectrophoretic–Magnetic Activated Cell Sorter - iDMACS) was
686 applied for simultaneous sorting of multiple bacterial targets (Kim and Soh, 2009). More
687 recently, a high-throughput Raman flow cytometer was developed on a microfluidic chip for
688 the label-free molecular fingerprinting at the single-cell level (Hiramatsu et al., 2019).
689 The onboard laboratory miniaturization included also the fluidic components (e.g., pumps,
690 valves, electronics), thus paving the way to the use of advanced biosensors for screening food
691 safety and water quality in space (Roda et al., 2018). Following the proofs of concept and
692 wearable technologies suited to monitor astronauts' health, the biosensing diagnostic
693 instrumentation, most reasonably based on electrochemical and optical detectors, was argued
694 as a secondary future option for in-flight water biochemical analyses (Choi et al., 2018;
695 Limero and Wallace, 2017; Nelson, 2011). In particular, the amperometric biosensors were
696 proved sensitive to monitor different water analytes, chemical contaminants (e.g., pesticides,
697 organophosphates, carbamates), and numerous microbial biomarkers successfully targeted to
698 detect the major microbiological agents, food- and water-borne pathogens (e.g., *E. coli*,
699 *Salmonella*, *L. monocytogenes*, *C. jejuni*, *B. cereus*, *M. smegmatis*) (Grieshaber et al., 2008;
700 Velusamy et al., 2010). However, despite providing concrete benefits for health services and

701 our life on Earth and beyond, the biosensing devices are still at a low level of technological
702 readiness for in-flight applications (García-Descalzo et al., 2019; Roda et al., 2018), thus
703 falling out of the scopes of this review.

704 In general, a critical aspect of all microfluidic and lab-on-a-chip solutions is bound to the
705 very limited system reusability. Most miniaturized devices for terrestrial applications are of
706 single-use and, in many cases, based on disposable cartridges that cannot be safely stowed
707 onboard during long-term space missions. When cells are delivered to different system
708 compartments for collection, there is no clear approach for removal the analyzed samples
709 without compromising the system functioning and risking contamination. Clogging issues
710 may also interfere with the analyses due to the processing of large sample volumes. Reusable
711 systems have been tested, but their applications in space are likely constrained by the risk of
712 sample carryover, reduced analytical performance upon extended reuse, and the resources
713 required for cleaning and reactivation procedures. In this regard, the technological
714 development is highly demanding and still far from being accomplished in a near future.

715

716 7 Conclusions

717 Current technologies for water microbial monitoring can satisfy the needs of long-term space
718 exploration missions at reasonable costs and times, although substantial instrumental
719 reengineering has to be considered. The suitable methodological applications at a high
720 technology readiness level (i.e., at least validated in a flight-like environment) will require
721 reduced space to be allocated and can potentially provide rapid and specific responses
722 regarding the in-flight occurrence of the microbiological contamination. The advanced
723 biomolecular characterization of water samples from the ISS is promoting a better
724 understanding of the onboard levels and patterns of microbial contamination, thus
725 contributing to the development of space bound technologies for the rapid and specific

726 identification of microorganisms of health concerns. As space exploration progresses toward
727 longer missions, PCR-based and multi-omics approaches can be complemented by real-time
728 technologies needed for the in-flight microbiological research and suitable for the early-
729 warning microbial monitoring of space waters.

730

731 **Acknowledgements**

732 Authors wish to acknowledge H2020 Project called BIOWYSE “Biocontamination Integrated
733 cOntrol of Wet sYstems for Space Exploration” (<http://biowyse.eu>). Grant Agreement
734 number: 687447.

735

736 **References**

737 Abushaban, A., Salinas-Rodriguez, S.G., Mangal, M.N., Mondal, S., Goueli, S.A., Knezev,
738 A., Vrouwenvelder, J.S., Schippers, J.C., Kennedy, M.D., 2019. ATP measurement in
739 seawater reverse osmosis systems: Eliminating seawater matrix effects using a filtration-
740 based method. *Desalination* 453, 1–9. doi:10.1016/j.desal.2018.11.020

741 Albertsen, M., Karst, S.M., Ziegler, A.S., Kirkegaard, R.H., Nielsen, P.H., 2015. Back to
742 Basics – The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis
743 of Activated Sludge Communities. *PLoS One* 10, e0132783.
744 doi:10.1371/journal.pone.0132783

745 Allen, C.S., Giraudo, M., Moratto, C., Yamaguchi, N., 2018. Spaceflight environment, in:
746 Space Safety and Human Performance. Elsevier, pp. 87–138. doi:10.1016/B978-0-08-
747 101869-9.00004-2

748 Amalfitano, S., Del Bon, A., Zoppini, A., Ghergo, S., Fazi, S., Parrone, D., Casella, P., Stano,
749 F., Preziosi, E., 2014. Groundwater geochemistry and microbial community structure in
750 the aquifer transition from volcanic to alluvial areas. *Water Res.* 65, 384–394.
751 doi:10.1016/j.watres.2014.08.004

752 Amalfitano, S., Fazi, S., Ejarque, E., Freixa, A., Romaní, A.M., Butturini, A., 2018a.
753 Deconvolution model to resolve cytometric microbial community patterns in flowing
754 waters. *Cytom. Part A* 93, 194–200. doi:10.1002/cyto.a.23304

755 Amalfitano, S., Levantesi, C., Garrelly, L., Giacosa, D., Bersani, F., Rossetti, S., 2018b.

756 Water Quality and Total Microbial Load: A Double-Threshold Identification Procedure
757 Intended for Space Applications. *Front. Microbiol.* 9, 1–10.
758 doi:10.3389/fmicb.2018.02903

759 Artemyeva, A.A., 2016. Analytical chemistry in water quality monitoring during manned
760 space missions. *Acta Astronaut.* 126, 11–17. doi:10.1016/j.actaastro.2016.04.016

761 Augelli, M., 2018. CADMOS: the French USOC. From a Quarter Century History to New
762 Prospects, in: 15th International Conference on Space Operations. American Institute of
763 Aeronautics and Astronautics, Reston, Virginia, pp. 1–11. doi:10.2514/6.2018-2519

764 Aulenta, F., Rossetti, S., Amalfitano, S., Majone, M., Tandoi, V., 2013. Conductive
765 magnetite nanoparticles accelerate the microbial reductive dechlorination of
766 trichloroethene by promoting interspecies electron transfer processes. *ChemSusChem* 6,
767 433–6. doi:10.1002/cssc.201200748

768 Auroux, P.-A., Iossifidis, D., Reyes, D.R., Manz, A., 2002. Micro Total Analysis Systems. 2.
769 Analytical Standard Operations and Applications. *Anal. Chem.* 74, 2637–2652.
770 doi:10.1021/ac020239t

771 Bacci, G., Amalfitano, S., Levantesi, C., Rossetti, S., Garrelly, L., Canganella, F., Bianconi,
772 G., Di Pilato, V., Rossolini, G.M., Mengoni, A., Fani, R., Perrin, E., 2019. Microbial
773 community composition of water samples stored inside the International Space Station.
774 *Res. Microbiol.* doi:10.1016/j.resmic.2019.04.003

775 Baiocco, G., Giraudo, M., Bocchini, L., Barbieri, S., Locantore, I., Brussolo, E., Giacosa, D.,
776 Meucci, L., Steffenino, S., Ballario, A., Barresi, B., Barresi, R., Benassai, M.,
777 Ravagnolo, L., Narici, L., Rizzo, A., Carrubba, E., Carubia, F., Neri, G., Crisconio, M.,
778 Piccirillo, S., Valentini, G., Barbero, S., Giacci, M., Lobascio, C., Ottolenghi, A., 2018.
779 A water-filled garment to protect astronauts during interplanetary missions tested on
780 board the ISS. *Life Sci. Sp. Res.* 18, 1–11. doi:10.1016/j.lssr.2018.04.002

781 Bajerski, F., Stock, J., Hanf, B., Darienko, T., Heine-Dobbernack, E., Lorenz, M., Naujox, L.,
782 Keller, E.R.J., Schumacher, H.M., Friedl, T., Eberth, S., Mock, H.P., Kniemeyer, O.,
783 Overmann, J., 2018. ATP content and cell viability as indicators for cryostress across the
784 diversity of life. *Front. Physiol.* 9, 1–14. doi:10.3389/fphys.2018.00921

785 Banihashemi, A., Dyke, M.I., Huck, P.M., 2012. Long-amplicon propidium monoazide-PCR
786 enumeration assay to detect viable *Campylobacter* and *Salmonella*. *J. Appl. Microbiol.*
787 113, 863–873. doi:10.1111/j.1365-2672.2012.05382.x

788 Besmer, M.D., Hammes, F., 2016. Short-term microbial dynamics in a drinking water plant
789 treating groundwater with occasional high microbial loads. *Water Res.* 107, 11–18.

790 doi:10.1016/j.watres.2016.10.041

791 Blaustein, R.A., McFarland, A.G., Ben Maamar, S., Lopez, A., Castro-Wallace, S.,
792 Hartmann, E.M., 2019. Pangenomic Approach To Understanding Microbial Adaptations
793 within a Model Built Environment, the International Space Station, Relative to Human
794 Hosts and Soil. *mSystems* 4, 1–16. doi:10.1128/mSystems.00281-18

795 Bockstahler, K., Hartwich, R., Matthias, C.D., Laurini, D., Hovland, S., Witt, J., 2017. Status
796 of the Advanced Closed Loop System ACLS for Accommodation on the ISS. 47th
797 International Conference on Environmental Systems.

798 Boedicker, J.Q., Li, L., Kline, T.R., Ismagilov, R.F., 2008. Detecting bacteria and
799 determining their susceptibility to antibiotics by stochastic confinement in nanoliter
800 droplets using plug-based microfluidics. *Lab Chip* 8, 1265. doi:10.1039/b804911d

801 Boguraev, A.-S., Christensen, H.C., Bonneau, A.R., Pezza, J.A., Nichols, N.M., Giraldez,
802 A.J., Gray, M.M., Wagner, B.M., Aken, J.T., Foley, K.D., Copeland, D.S., Kraves, S.,
803 Alvarez Saavedra, E., 2017. Successful amplification of DNA aboard the International
804 Space Station. *npj Microgravity* 3, 26. doi:10.1038/s41526-017-0033-9

805 Boi, P., Amalfitano, S., Manti, A., Semprucci, F., Sisti, D., Rocchi, M.B., Balsamo, M., Papa,
806 S., 2016. Strategies for Water Quality Assessment: A Multiparametric Analysis of
807 Microbiological Changes in River Waters. *River Res. Appl.* 32, 490–500.
808 doi:10.1002/rra.2872

809 Boitard, L., Cottinet, D., Bremond, N., Baudry, J., Bibette, J., 2015. Growing microbes in
810 millifluidic droplets. *Eng. Life Sci.* 15, 318–326. doi:10.1002/elsc.201400089

811 Brescia, C.C., Griffin, S.M., Ware, M.W., Varughese, E.A., Egorov, A.I., Villegas, E.N.,
812 2009. Cryptosporidium Propidium Monoazide-PCR, a Molecular Biology-Based
813 Technique for Genotyping of Viable Cryptosporidium Oocysts. *Appl. Environ.*
814 *Microbiol.* 75, 6856–6863. doi:10.1128/AEM.00540-09

815 Bruce, R.J., Ott, C.M., Skuratov, V.M., Pierson, D.L., 2005. Microbial Surveillance of
816 Potable Water Sources of the International Space Station, in: SAE Technical Paper
817 Series. doi:10.4271/2005-01-2886

818 Buysschaert, B., Vermijs, L., Naka, A., Boon, N., De Gusseme, B., 2018. Online flow
819 cytometric monitoring of microbial water quality in a full-scale water treatment plant.
820 *npj Clean Water* 1, 16. doi:10.1038/s41545-018-0017-7

821 Carter, L., Williamson, J., Brown, C.A., Bazley, J., Gazda, D., Schaezler, R., Thomas, F.,
822 2018. Status of ISS Water Management and Recovery, in: 48th International Conference
823 on Environmental Systems. American Institute of Aeronautics and Astronautics,

824 Albuquerque, NM; United States, pp. 1–16. doi:10.2514/6.2013-3509

825 Casentini, B., Falcione, F.T., Amalfitano, S., Fazi, S., Rossetti, S., 2016. Arsenic removal by
826 discontinuous ZVI two steps system for drinking water production at household scale.
827 *Water Res.* 106, 135–145. doi:10.1016/j.watres.2016.09.057

828 Castro-Wallace, S.L., Chiu, C.Y., John, K.K., Stahl, S.E., Rubins, K.H., McIntyre, A.B.R.,
829 Dworkin, J.P., Lupisella, M.L., Smith, D.J., Botkin, D.J., Stephenson, T.A., Juul, S.,
830 Turner, D.J., Izquierdo, F., Federman, S., Stryke, D., Somasekar, S., Alexander, N., Yu,
831 G., Mason, C.E., Burton, A.S., 2017. Nanopore DNA Sequencing and Genome
832 Assembly on the International Space Station. *Sci. Rep.* 7, 18022. doi:10.1038/s41598-
833 017-18364-0

834 Chakraborty, C., Doss, C.G.P., Patra, B.C., Bandyopadhyay, S., 2014. DNA barcoding to
835 map the microbial communities: current advances and future directions. *Appl.*
836 *Microbiol. Biotechnol.* 98, 3425–3436. doi:10.1007/s00253-014-5550-9

837 Chao, Y., Ma, L., Yang, Y., Ju, F., Zhang, X.X., Wu, W.M., Zhang, T., 2013. Metagenomic
838 analysis reveals significant changes of microbial compositions and protective functions
839 during drinking water treatment. *Sci. Rep.* doi:10.1038/srep03550

840 Chatani, M., Mantoku, A., Takeyama, K., Abduweli, D., Sugamori, Y., Aoki, K., Ohya, K.,
841 Suzuki, H., Uchida, S., Sakimura, T., Kono, Y., Tanigaki, F., Shirakawa, M., Takano,
842 Y., Kudo, A., 2015. Microgravity promotes osteoclast activity in medaka fish reared at
843 the international space station. *Sci. Rep.* 5, 14172. doi:10.1038/srep14172

844 Checinska Sielaff, A., Urbaniak, C., Mohan, G.B.M., Stepanov, V.G., Tran, Q., Wood, J.M.,
845 Minich, J., McDonald, D., Mayer, T., Knight, R., Karouia, F., Fox, G.E.,
846 Venkateswaran, K., 2019. Characterization of the total and viable bacterial and fungal
847 communities associated with the International Space Station surfaces. *Microbiome* 7, 50.
848 doi:10.1186/s40168-019-0666-x

849 Check Hayden, E., 2015. Pint-sized DNA sequencer impresses first users. *Nature* 521, 15–16.
850 doi:10.1038/521015a

851 Choi, J., Ghaffari, R., Baker, L.B., Rogers, J.A., 2018. Skin-interfaced systems for sweat
852 collection and analytics. *Sci. Adv.* 4, eaar3921. doi:10.1126/sciadv.aar3921

853 Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., O’Toole,
854 P.W., 2010. Comparison of two next-generation sequencing technologies for resolving
855 highly complex microbiota composition using tandem variable 16S rRNA gene regions.
856 *Nucleic Acids Res.* doi:10.1093/nar/gkq873

857 Clooney, A.G., Fouhy, F., Sleator, R.D., O’Driscoll, A., Stanton, C., Cotter, P.D., Claesson,

858 M.J., 2016. Comparing apples and oranges?: next generation sequencing and its impact
859 on microbiome analysis. *PLoS One* 11, e0148028.

860 Cohen, L.Y., Fortin, M., Leclair, S., Mermut, O., Dubéau-Laramée, G., 2011. Cellular and
861 molecular biology during spaceflight. *Gravitational Sp. Res.* 25, 60–62.

862 Coil, D.A., Neches, R.Y., Lang, J.M., Brown, W.E., Severance, M., Cavalier, D.D., Eisen,
863 J.A., 2016. Growth of 48 built environment bacterial isolates on board the International
864 Space Station (ISS). *PeerJ* 4, 1–11. doi:10.7287/peerj.preprints.1654v1

865 Couradeau, E., Sasse, J., Goudeau, D., Nath, N., Hazen, T.C., Bowen, B.P., Chakraborty, R.,
866 Malmstrom, R.R., Northen, T.R., 2019. Probing the active fraction of soil microbiomes
867 using BONCAT-FACS. *Nat. Commun.* 10, 2770. doi:10.1038/s41467-019-10542-0

868 Crucian, B., Sams, C., 2012. Flow cytometry methods to monitor immune dysregulation
869 associated with spaceflight, *Stress Challenges and Immunity in Space: From*
870 *Mechanisms to Monitoring and Preventive Strategies*. Springer Berlin Heidelberg,
871 Berlin, Heidelberg. doi:10.1007/978-3-642-22272-6

872 Crucian, B., Sams, C., 2005. Reduced Gravity Evaluation of Potential Spaceflight-
873 Compatible Flow Cytometer Technology. *Cytom. Part B* 9, 1–9.
874 doi:10.1002/cyto.b.20057

875 De Middeleer, G., Leys, N., Sas, B., De Saeger, S., 2019. Fungi and Mycotoxins in Space—A
876 Review. *Astrobiology* 19, ast.2018.1854. doi:10.1089/ast.2018.1854

877 Delgado-Viscogliosi, P., Solignac, L., Delattre, J.-M., 2009. Viability PCR, a Culture-
878 Independent Method for Rapid and Selective Quantification of Viable *Legionella*
879 *pneumophila* Cells in Environmental Water Samples. *Appl. Environ. Microbiol.* 75,
880 3502–3512. doi:10.1128/AEM.02878-08

881 Detsis, B., Detsis, E., 2013. The benefits brought by space—General public versus space
882 agencies perspectives. *Acta Astronaut.* 88, 129–137.
883 doi:10.1016/j.actaastro.2013.03.021

884 Detsis, E., Guarneri, V., Lobascio, C., Saverino, A., Boscheri, G., Locantore, I., Garrelly, L.,
885 Simons, R., 2018. Biocontamination Integrated Control of Wet Systems for Space
886 Exploration (BIOWYSE).

887 Devonshire, A.S., O'Sullivan, D.M., Honeyborne, I., Jones, G., Karczmarczyk, M., Pavšič, J.,
888 Gutteridge, A., Milavec, M., Mendoza, P., Schimmel, H., Van Heuverswyn, F., Gorton,
889 R., Cirillo, D.M., Borroni, E., Harris, K., Barnard, M., Heydenrych, A., Ndusilo, N.,
890 Wallis, C.L., Pillay, K., Barry, T., Reddington, K., Richter, E., Mozioğlu, E., Akyürek,
891 S., Yalçinkaya, B., Akgöz, M., Žel, J., Foy, C.A., McHugh, T.D., Huggett, J.F., 2016.

892 The use of digital PCR to improve the application of quantitative molecular diagnostic
893 methods for tuberculosis. *BMC Infect. Dis.* doi:10.1186/s12879-016-1696-7

894 Díaz, M., Herrero, M., García, L.A., Quirós, C., 2010. Application of flow cytometry to
895 industrial microbial bioprocesses. *Biochem. Eng. J.* 48, 385–407.
896 doi:10.1016/j.bej.2009.07.013

897 Dubeau-Laramée, G., Rivière, C., Jean, I., Mermut, O., Cohen, L.Y., 2014. Microflow1, a
898 sheathless fiber-optic flow cytometry biomedical platform: Demonstration onboard the
899 international space station. *Cytom. Part A* 85, 322–331. doi:10.1002/cyto.a.22427

900 Duncan, J.M., Bogomolov, V.V., Castrucci, F., Koike, Y., Comtois, J.M., Sargsyan, A.E.,
901 2008. Organization and management of the International Space Station (ISS)
902 multilateral medical operations. *Acta Astronaut.* 63, 1137–1147.
903 doi:10.1016/j.actaastro.2007.12.001

904 El-Jaby, S., Lewis, B.J., Tomi, L., 2019. On the decision making criteria for cis-lunar
905 reference mission scenarios. *Life Sci. Sp. Res.* 21, 25–39. doi:10.1016/j.lssr.2019.02.008

906 Escobar-Zepeda, A., de León, A., Sanchez-Flores, A., 2015. The Road to Metagenomics:
907 From Microbiology to DNA Sequencing Technologies and Bioinformatics. *Front.*
908 *Genet.* 6, 348. doi:10.3389/fgene.2015.00348

909 Etchebarne, B.E., Li, Z., Stedtfeld, R.D., Nicholas, M.C., Williams, M.R., Johnson, T.A.,
910 Stedtfeld, T.M., Kostic, T., Khalife, W.T., Tiedje, J.M., Hashsham, S.A., Hughes, M.J.,
911 2017. Evaluation of Nucleic Acid Isothermal Amplification Methods for Human
912 Clinical Microbial Infection Detection. *Front. Microbiol.* 8, 2211.
913 doi:10.3389/fmicb.2017.02211

914 Fillinger, L., Hug, K., Trimbach, A.M., Wang, H., Kellermann, C., Meyer, A., Bendinger, B.,
915 Griebler, C., 2019. The D-A-(C) index: A practical approach towards the
916 microbiological-ecological monitoring of groundwater ecosystems. *Water Res.* 163,
917 114902. doi:10.1016/j.watres.2019.114902

918 Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H., Quake, S.R., 1999. A microfabricated
919 fluorescence-activated cell sorter. *Nat. Biotechnol.* doi:10.1038/15095

920 García-Descalzo, L., Parro, V., García-Villadangos, M., Cockell, C.S., Moissl-Eichinger, C.,
921 Perras, A., Rettberg, P., Beblo-Vranesovic, K., Bohmeier, M., Rabbow, E., Westall, F.,
922 Gaboyer, F., Amils, R., Malki, M., Marteinsson, V., Vannier, P., Ehrenfreund, P.,
923 Monaghan, E., Riedo, A., Cabezas, P., Walter, N., Gómez, F.G., 2019. Microbial
924 Markers Profile in Anaerobic Mars Analogue Environments Using the LDChip (Life
925 Detector Chip) Antibody Microarray Core of the SOLID (Signs of Life Detector)

926 Platform. *Microorganisms* 7, 365. doi:10.3390/microorganisms7090365

927 Garrett-Bakelman, F.E., Darshi, M., Green, S.J., Gur, R.C., Lin, L., Macias, B.R., McKenna,
928 M.J., Meydan, C., Mishra, T., Nasrini, J., Piening, B.D., Rizzardi, L.F., Sharma, K.,
929 Siamwala, J.H., Taylor, L., Vitaterna, M.H., Afkarian, M., Afshinnekoo, E., Ahadi, S.,
930 Ambati, A., Arya, M., Bezdan, D., Callahan, C.M., Chen, S., Choi, A.M.K., Chlipala,
931 G.E., Contrepois, K., Covington, M., Crucian, B.E., De Vivo, I., Dinges, D.F., Ebert,
932 D.J., Feinberg, J.I., Gandara, J.A., George, K.A., Goutsias, J., Grills, G.S., Hargens,
933 A.R., Heer, M., Hillary, R.P., Hoofnagle, A.N., Hook, V.Y.H., Jenkinson, G., Jiang, P.,
934 Keshavarzian, A., Laurie, S.S., Lee-McMullen, B., Lumpkins, S.B., MacKay, M.,
935 Maienschein-Cline, M.G., Melnick, A.M., Moore, T.M., Nakahira, K., Patel, H.H.,
936 Pietrzyk, R., Rao, V., Saito, R., Salins, D.N., Schilling, J.M., Sears, D.D., Sheridan,
937 C.K., Stenger, M.B., Tryggvadottir, R., Urban, A.E., Vaisar, T., Van Espen, B., Zhang,
938 J., Ziegler, M.G., Zwart, S.R., Charles, J.B., Kundrot, C.E., Scott, G.B.I., Bailey, S.M.,
939 Basner, M., Feinberg, A.P., Lee, S.M.C., Mason, C.E., Mignot, E., Rana, B.K., Smith,
940 S.M., Snyder, M.P., Turek, F.W., 2019. The NASA Twins Study: A multidimensional
941 analysis of a year-long human spaceflight. *Science* (80-.). 364.
942 doi:10.1126/science.aau8650

943 Gasol, J.M., Morán, X.A.G., 2015. Flow Cytometric Determination of Microbial Abundances
944 and Its Use to Obtain Indices of Community Structure and Relative Activity, in:
945 McGenity, T.J., Timmis, K.N., Nogales, B. (Eds.), *Hydrocarbon and Lipid Microbiology*
946 *Protocols: Single-Cell and Single-Molecule Methods*. Springer Berlin Heidelberg,
947 Berlin, Heidelberg, pp. 159–187. doi:10.1007/8623_2015_139

948 Ghanbari, M., Kneifel, W., Domig, K.J., 2015. A new view of the fish gut microbiome:
949 Advances from next-generation sequencing. *Aquaculture* 448, 464–475.
950 doi:10.1016/j.aquaculture.2015.06.033

951 Gibney, E., 2019. China reveals scientific experiments for its next space station. *Nature*.
952 doi:10.1038/d41586-019-01913-0

953 Gibson, K.E., Schwab, K.J., Spencer, S.K., Borchardt, M.A., 2012. Measuring and mitigating
954 inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from
955 large-volume environmental water samples. *Water Res.*
956 doi:10.1016/j.watres.2012.04.030

957 Girones, R., Ferrús, M.A., Alonso, J.L., Rodriguez-Manzano, J., Calgua, B., de Abreu
958 Corrêa, A., Hundesa, A., Carratala, A., Bofill-Mas, S., 2010. Molecular detection of
959 pathogens in water - The pros and cons of molecular techniques. *Water Res.*

960 doi:10.1016/j.watres.2010.06.030

961 Glenn, T.C., 2011. Field guide to next-generation DNA sequencers. *Mol. Ecol. Resour.* 11,
962 759–769. doi:10.1111/j.1755-0998.2011.03024.x

963 Gonzalez, E., Pitre, F.E., Brereton, N.J.B., 2019. ANCHOR: a 16S rRNA gene amplicon
964 pipeline for microbial analysis of multiple environmental samples. *Environ. Microbiol.*
965 21, 2440–2468. doi:10.1111/1462-2920.14632

966 Grieshaber, D., MacKenzie, R., Vörös, J., Reimhult, E., 2008. Electrochemical Biosensors -
967 Sensor Principles and Architectures. *Sensors* 8, 1400–1458. doi:10.3390/s80314000

968 Guarnieri, V., Gaia, E., Battocchio, L., Pitzurra, M., Savino, A., Pasquarella, C., Vago, T.,
969 Cotronei, V., 1997. New methods for microbial contamination monitoring: An
970 experiment on board the mir orbital station. *Acta Astronaut.* 40, 195–201.
971 doi:[https://doi.org/10.1016/S0094-5765\(97\)00102-1](https://doi.org/10.1016/S0094-5765(97)00102-1)

972 Guarnieri, V., Marchitelli, G., Boscheri, G., Locantore, I., 2019. Biocontamination Integrated
973 Control of Wet Systems for Space Exploration (BIOWYSE) – Test campaign results, in:
974 49th International Conference on Environmental Systems. Boston, Massachusetts, pp.
975 1–11.

976 Hammes, F., Goldschmidt, F., Vital, M., Wang, Y., Egli, T., 2010. Measurement and
977 interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.
978 *Water Res.* 44, 3915–3923. doi:10.1016/j.watres.2010.04.015

979 Hebert, P.D.N., Gregory, T.R., 2005. The Promise of DNA Barcoding for Taxonomy. *Syst.
980 Biol.* 54, 852–859. doi:10.1080/10635150500354886

981 Hiramatsu, K., Ideguchi, T., Yonamine, Y., Lee, S., Luo, Y., Hashimoto, K., Ito, T., Hase,
982 M., Park, J.-W., Kasai, Y., Sakuma, S., Hayakawa, T., Arai, F., Hoshino, Y., Goda, K.,
983 2019. High-throughput label-free molecular fingerprinting flow cytometry. *Sci. Adv.* 5,
984 eaau0241. doi:10.1126/sciadv.aau0241

985 Horneck, G., Klaus, D.M., Mancinelli, R.L., 2010. Space microbiology. *Microbiol Mol Biol
986 Rev* 74. doi:10.1128/MMBR.00016-09

987 Huang, B., Li, D.-G., Huang, Y., Liu, C.-T., 2018. Effects of spaceflight and simulated
988 microgravity on microbial growth and secondary metabolism. *Mil. Med. Res.* 5, 18.
989 doi:10.1186/s40779-018-0162-9

990 Ibekwe, A.M., Watt, P.M., Grieve, C.M., Sharma, V.K., Lyons, S.R., 2002. Multiplex
991 fluorogenic real-time PCR for detection and quantification of *Escherichia coli* O157:H7
992 in dairy wastewater wetlands. *Appl. Environ. Microbiol.* doi:10.1128/AEM.68.10.4853-
993 4862.2002

994 Ichijo, T., Yamaguchi, N., Tanigaki, F., Shirakawa, M., Nasu, M., 2016. Four-year bacterial
995 monitoring in the International Space Station—Japanese Experiment Module “Kibo”
996 with culture-independent approach. *npj Microgravity* 2, 16007.
997 doi:10.1038/npjmgrav.2016.7

998 ISEC, 2018. The Global Exploration Roadmap, National Aeronautics and Space
999 Administration. National Aeronautics and Space Administration, Washington, DC.

1000 Jain, M., Olsen, H.E., Paten, B., Akeson, M., 2016. The Oxford Nanopore MinION: delivery
1001 of nanopore sequencing to the genomics community. *Genome Biol.* 17, 239.
1002 doi:10.1186/s13059-016-1103-0

1003 Kaliyappan, K., Palanisamy, M., Govindarajan, R., Duraiyan, J., 2012. Microarray and its
1004 applications. *J. Pharm. Bioallied Sci.* 4, 310. doi:10.4103/0975-7406.100283

1005 Karouia, F., Peyvan, K., Pohorille, A., 2017. Toward biotechnology in space: High-
1006 throughput instruments for in situ biological research beyond Earth. *Biotechnol. Adv.*
1007 35, 905–932. doi:<https://doi.org/10.1016/j.biotechadv.2017.04.003>

1008 Kilianski, A., Haas, J.L., Corriveau, E.J., Liem, A.T., Willis, K.L., Kadavy, D.R.,
1009 Rosenzweig, C.N., Minot, S.S., 2015. Bacterial and viral identification and
1010 differentiation by amplicon sequencing on the MinION nanopore sequencer.
1011 *Gigascience* 4, 12. doi:10.1186/s13742-015-0051-z

1012 Kim, U., Soh, H.T., 2009. Simultaneous sorting of multiple bacterial targets using integrated
1013 Dielectrophoretic–Magnetic Activated Cell Sorter. *Lab Chip* 9, 2313.
1014 doi:10.1039/b903950c

1015 Koch, C., Harnisch, F., Schroeder, U., Müller, S., 2014. Cytometric fingerprints: Evaluation
1016 of new tools for analyzing microbial community dynamics. *Front. Microbiol.* 5, 1–12.
1017 doi:10.3389/fmicb.2014.00273

1018 Kralik, P., Ricchi, M., 2017. A Basic Guide to Real Time PCR in Microbial Diagnostics:
1019 Definitions, Parameters, and Everything. *Front. Microbiol.* 8.
1020 doi:10.3389/fmicb.2017.00108

1021 La Duc, M.T., Kern, R., Venkateswaran, K., 2004. Microbial monitoring of spacecraft and
1022 associated environments. *Microb. Ecol.* 47, 150–158.

1023 LaGier, M.J., Joseph, L.A., Passaretti, T. V., Musser, K.A., Cirino, N.M., 2004. A real-time
1024 multiplexed PCR assay for rapid detection and differentiation of *Campylobacter jejuni*
1025 and *Campylobacter coli*. *Mol. Cell. Probes.* doi:10.1016/j.mcp.2004.04.002

1026 Lang, J.M., Coil, D.A., Neches, R.Y., Brown, W.E., Cavalier, D., Severance, M., Hampton-
1027 Marcell, J.T., Gilbert, J.A., Eisen, J.A., 2017. A microbial survey of the International

1028 Space Station (ISS). *PeerJ* 5, e4029. doi:10.7717/peerj.4029

1029 Lautenschlager, K., Boon, N., Wang, Y., Egli, T., Hammes, F., 2010. Overnight stagnation of
1030 drinking water in household taps induces microbial growth and changes in community
1031 composition. *Water Res.* 44, 4868–4877. doi:10.1016/j.watres.2010.07.032

1032 Limero, T.F., Wallace, W.T., 2017. What Air and Water Quality Monitoring Is Needed to
1033 Protect Crew Health on Spacecraft? *New Sp.* 5, 67–78. doi:10.1089/space.2017.0004

1034 Ling, F., Whitaker, R., LeChevallier, M.W., Liu, W.-T., 2018. Drinking water microbiome
1035 assembly induced by water stagnation. *ISME J.* 12, 1520–1531. doi:10.1038/s41396-
1036 018-0101-5

1037 Liu, C., 2017. The theory and application of space microbiology: China's experiences in
1038 space experiments and beyond. *Environ. Microbiol.* doi:10.1111/1462-2920.13472

1039 Liu, G., Ling, F.Q., van der Mark, E.J., Zhang, X.D., Knezev, A., Verberk, J.Q.J.C., van der
1040 Meer, W.G.J., Medema, G.J., Liu, W.T., van Dijk, J.C., 2016. Comparison of particle-
1041 associated bacteria from a drinking water treatment plant and distribution reservoirs with
1042 different water sources. *Sci. Rep.* 6, 20367. doi:10.1038/srep20367

1043 Liu, Z., DeSantis, T.Z., Andersen, G.L., Knight, R., 2008. Accurate taxonomy assignments
1044 from 16S rRNA sequences produced by highly parallel pyrosequencers. *Nucleic Acids*
1045 *Res.* 36, e120–e120. doi:10.1093/nar/gkn491

1046 Lobascio, C., Bruno, G., Grizzaffi, L., Meucci, L., Fungi, M., Giacosa, D., 2004. Quality of
1047 ATV Potable Water for ISS Crew Consumption, in: SAE Technical Paper Series. SAE
1048 International, pp. 1–10. doi:10.4271/2004-01-2491

1049 Lopez, J. V., Peixoto, R.S., Rosado, A.S., 2019. Inevitable future: space colonization beyond
1050 Earth with microbes first. *FEMS Microbiol. Ecol.* 95, 1–9. doi:10.1093/femsec/fiz127

1051 Lu, X., Zhang, X.X., Wang, Z., Huang, K., Wang, Y., Liang, W., Tan, Y., Liu, B., Tang, J.,
1052 2015. Bacterial pathogens and community composition in advanced sewage treatment
1053 systems revealed by metagenomics analysis based on high-throughput sequencing. *PLoS*
1054 *One.* doi:10.1371/journal.pone.0125549

1055 Mairhofer, J., Roppert, K., Ertl, P., 2009. Microfluidic Systems for Pathogen Sensing: A
1056 Review. *Sensors* 9, 4804–4823. doi:10.3390/s90604804

1057 Manti, A., Boi, P., Amalfitano, S., Puddu, A., Papa, S., 2011. Experimental improvements in
1058 combining CARD-FISH and flow cytometry for bacterial cell quantification. *J.*
1059 *Microbiol. Methods* 87, 309–315. doi:10.1016/j.mimet.2011.09.003

1060 Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M.,
1061 Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J., Bo Madsen, M., Goetz, W.,

1062 McEwen, A.S., Hardgrove, C., Renno, N., Chevrier, V.F., Mischna, M., Navarro-
1063 González, R., Martínez-Frías, J., Conrad, P., McConnochie, T., Cockell, C., Berger, G.,
1064 R. Vasavada, A., Sumner, D., Vaniman, D., 2015. Transient liquid water and water
1065 activity at Gale crater on Mars. *Nat. Geosci.* 8, 357.

1066 Massa, G.D., Wheeler, R.M., Morrow, R.C., Levine, H.G., 2016. Growth chambers on the
1067 International Space Station for large plants. *Acta Hortic.*
1068 doi:10.17660/ActaHortic.2016.1134.29

1069 McIntyre, A.B.R., Rizzardi, L., Yu, A.M., Alexander, N., Rosen, G.L., Botkin, D.J., Stahl,
1070 S.E., John, K.K., Castro-Wallace, S.L., McGrath, K., Burton, A.S., Feinberg, A.P.,
1071 Mason, C.E., 2016. Nanopore sequencing in microgravity. *npj Microgravity* 2, 16035.
1072 doi:10.1038/npjmgrav.2016.35

1073 McKay, C.P., 2014. Requirements and limits for life in the context of exoplanets. *Proc. Natl.*
1074 *Acad. Sci.* 111, 12628–12633. doi:10.1073/pnas.1304212111

1075 McLellan, S.L., Eren, A.M., 2014. Discovering new indicators of fecal pollution. *Trends*
1076 *Microbiol.* 22, 697–706. doi:10.1016/j.tim.2014.08.002

1077 McMonigal, K., Crucian, B., 2015. Health Monitoring and Clinical Laboratory Diagnostics
1078 for Astronauts. *Crit. Values* 7, 24–27. doi:10.1093/criticalvalues/7.4.24

1079 Merino, N., Aronson, H.S., Bojanova, D.P., Feyhl-Buska, J., Wong, M.L., Zhang, S.,
1080 Giovannelli, D., 2019. Living at the Extremes: Extremophiles and the Limits of Life in a
1081 Planetary Context. *Front. Microbiol.* 10. doi:10.3389/fmicb.2019.00780

1082 Moissl-Eichinger, C., Cockell, C., Rettberg, P., 2016. Venturing into new realms ?
1083 Microorganisms in space INTERNATIONAL SPACE STATION. *FEMS Microbiol.*
1084 Rev. 40, 722–737. doi:10.1093/femsre/fuw015

1085 Montague, T.G., Almansoori, A., Gleason, E.J., Copeland, D.S., Foley, K., Kraves, S.,
1086 Alvarez Saavedra, E., 2018. Gene expression studies using a miniaturized thermal cycler
1087 system on board the International Space Station. *PLoS One* 13, e0205852.
1088 doi:10.1371/journal.pone.0205852

1089 Mora, M., Mahnert, A., Koskinen, K., Pausan, M.R., Oberauner-Wappis, L., Krause, R.,
1090 Perras, A.K., Gorkiewicz, G., Berg, G., Moissl-Eichinger, C., 2016. Microorganisms in
1091 confined habitats: Microbial monitoring and control of intensive care units, operating
1092 rooms, cleanrooms and the international space station. *Front. Microbiol.* 7, 1–20.
1093 doi:10.3389/fmicb.2016.01573

1094 Mora, M., Wink, L., Kögler, I., Mahnert, A., Rettberg, P., Schwendner, P., Demets, R.,
1095 Cockell, C., Alekhova, T., Klingl, A., Krause, R., Zolotariof, A., Alexandrova, A.,

1096 Moissl-Eichinger, C., 2019. Space Station conditions are selective but do not alter
1097 microbial characteristics relevant to human health. *Nat. Commun.* 10, 3990.
1098 doi:10.1038/s41467-019-11682-z

1099 Morris, H.C., Damon, M., Maule, J., Monaco, L.A., Wainwright, N., 2012. Rapid Culture-
1100 Independent Microbial Analysis Aboard the International Space Station (ISS) Stage
1101 Two: Quantifying Three Microbial Biomarkers. *Astrobiology* 12, 830–840.
1102 doi:10.1089/ast.2012.0863

1103 Morrison, M.D., Fajardo-Cavazos, P., Nicholson, W.L., 2017. Cultivation in space flight
1104 produces minimal alterations in the susceptibility of *Bacillus subtilis* cells to 72 different
1105 antibiotics and growth-inhibiting compounds. *Appl. Environ. Microbiol.* 83.
1106 doi:10.1128/AEM.01584-17

1107 NASA, CSA, ESA, JAXA, ROSCOSMOS, ASI, 2019. International Space Station Benefits
1108 for Humanity, 3rd ed. Houston.

1109 Nelson, E.S., 2011. Design principles for microfluidic biomedical diagnostics in space, in:
1110 Fazel, R. (Ed.), *Biomedical Engineering - From Theory to Applications*. InTech, Rijeka,
1111 Croatia, pp. 131–156. doi:10.5772/21669

1112 Nescerecka, A., Hammes, F., Juhna, T., 2016. A pipeline for developing and testing staining
1113 protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide
1114 viability staining. *J. Microbiol. Methods* 131, 172–180.
1115 doi:10.1016/j.mimet.2016.10.022

1116 Neuenschwander, S.M., Salcher, M.M., Pernthaler, J., 2015. Fluorescence in situ
1117 hybridization and sequential catalyzed reporter deposition (2C-FISH) for the flow
1118 cytometric sorting of freshwater ultramicrobacteria. *Front. Microbiol.* 6, 247.
1119 doi:10.3389/fmicb.2015.00247

1120 Newton, R.J., McLellan, S.L., Dila, D.K., Vineis, J.H., Morrison, H.G., Murat Eren, A.,
1121 Sogin, M.L., 2015. Sewage reflects the microbiomes of human populations. *MBio*.
1122 doi:10.1128/mBio.02574-14

1123 Niederwieser, T., Kociolek, P., Klaus, D., 2018. Spacecraft cabin environment effects on the
1124 growth and behavior of *Chlorella vulgaris* for life support applications. *Life Sci. Sp.*
1125 Res. 16, 8–17. doi:https://doi.org/10.1016/j.lssr.2017.10.002

1126 Notomi, T., Mori, Y., Tomita, N., Kanda, H., 2015. Loop-mediated isothermal amplification
1127 (LAMP): principle, features, and future prospects. *J. Microbiol.* 53, 1–5.
1128 doi:10.1007/s12275-015-4656-9

1129 Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N.,

1130 Coninx, I., Mergeay, M., 2006. Survey of environmental biocontamination on board the
1131 International Space Station, in: Research in Microbiology. pp. 5–12.
1132 doi:10.1016/j.resmic.2005.07.010

1133 Ott, C.M., Marshburn, T., Nickerson, C.A., 2016. The International Space Station: an
1134 Extreme Environment for Key Host-Microbe Discoveries. *Microbe Mag.* 11, 253–261.
1135 doi:10.1128/microbe.11.253.1

1136 Ott, M., Pierson, D., Shirakawa, M., Tanigaki, F., Hida, M., Yamazaki, T., Shimazu, T.,
1137 Ishioka, N., 2014. Space Habitation and Microbiology: Status and Roadmap of Space
1138 Agencies. *Microbes Environ.* 29, 239–242. doi:10.1264/jsme2.ME2903rh

1139 Oubre, C.M., Birmele, M.N., Castro, V.A., Venkateswaran, K.J., Vaishampayan, P.A., Jones,
1140 K.U., Singhal, A., Johnston, A.S., Ozbolt, T.A., Jett, D.X., Roberts, M.S., Ott, M.,
1141 Roman, M.C., 2013. Microbial Monitoring of Common Opportunistic Pathogens by
1142 Comparing Multiple Real-Time PCR Platforms for Potential Space Applications, in:
1143 43rd International Conference on Environmental Systems, International Conference on
1144 Environmental Systems (ICES). American Institute of Aeronautics and Astronautics,
1145 Reston, Virginia. doi:10.2514/6.2013-3314

1146 Parra, M., Jung, J., Boone, T.D., Tran, L., Blaber, E.A., Brown, M., Chin, M., Chinn, T.,
1147 Cohen, J., Doebler, R., Hoang, D., Hyde, E., Lera, M., Luzod, L.T., Mallinson, M.,
1148 Marcu, O., Mohamedaly, Y., Ricco, A.J., Rubins, K., Sgarlato, G.D., Talavera, R.O.,
1149 Tong, P., Uribe, E., Williams, J., Wu, D., Yousuf, R., Richey, C.S., Schonfeld, J.,
1150 Almeida, E.A.C., 2017. Microgravity validation of a novel system for RNA isolation
1151 and multiplex quantitative real time PCR analysis of gene expression on the
1152 International Space Station. *PLoS One* 12, e0183480. doi:10.1371/journal.pone.0183480

1153 Peabody, M.A., Van Rossum, T., Lo, R., Brinkman, F.S.L., 2015. Evaluation of shotgun
1154 metagenomics sequence classification methods using in silico and in vitro simulated
1155 communities. *BMC Bioinformatics* 16, 362. doi:10.1186/s12859-015-0788-5

1156 Perrin, E., Bacci, G., Garrelly, L., Canganella, F., Bianconi, G., Fani, R., Mengoni, A., 2018.
1157 Furnishing spaceship environment: evaluation of bacterial biofilms on different
1158 materials used inside International Space Station. *Res. Microbiol.* 169, 289–295.
1159 doi:10.1016/j.resmic.2018.04.001

1160 Phipps, W.S., Yin, Z., Bae, C., Sharpe, J.Z., Bishara, A.M., Nelson, E.S., Weaver, A.S.,
1161 Brown, D., McKay, T.L., Griffin, D., Chan, E.Y., 2014. Reduced-gravity Environment
1162 Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion
1163 Microfluidic Mixing Technology. *J. Vis. Exp.* 51743. doi:10.3791/51743

1164 Pierson, D.L., Botkin, D.J., Bruce, R.J., Castro, V.A., Smith, M.J., Oubre, C.M., Ott, C.M.,
1165 2013. Microbial monitoring of the international space station, in: Moldenhauer, J. (Ed.),
1166 Environmental Monitoring: A Comprehensive Handbook. DHI Publishing, River Grove,
1167 pp. 1–27.

1168 Pittman, R.B., Harper, L.D., Newfield, M.E., Rasky, D.J., 2016. Lunar Station: The Next
1169 Logical Step in Space Development. *New Sp.* 4, 7–14. doi:10.1089/space.2015.0031

1170 Pomati, F., Jokela, J., Simona, M., Veronesi, M., Ibelings, B.W., 2011. An automated
1171 platform for phytoplankton ecology and aquatic ecosystem monitoring. *Environ. Sci.*
1172 *Technol.* doi:10.1021/es201934n

1173 Prest, E.I., Hammes, F., Kotzsch, S., van Loosdrecht, M.C.M., Vrouwenvelder, J.S., 2013.
1174 Monitoring microbiological changes in drinking water systems using a fast and
1175 reproducible flow cytometric method. *Water Res.* 47, 7131–7142.
1176 doi:10.1016/j.watres.2013.07.051

1177 Props, R., Kerckhof, F.-M., Rubbens, P., De Vrieze, J., Hernandez Sanabria, E., Waegeman,
1178 W., Monsieurs, P., Hammes, F., Boon, N., 2017. Absolute quantification of microbial
1179 taxon abundances. *ISME J.*

1180 Props, R., Monsieurs, P., Mysara, M., Clement, L., Boon, N., 2016. Measuring the
1181 biodiversity of microbial communities by flow cytometry. *Methods Ecol. Evol.* 7, 1376–
1182 1385. doi:10.1111/2041-210X.12607

1183 Radstrom, P., Lofstrom, C., Lovenklev, M., Knutsson, R., Wolffs, P., 2008. Strategies for
1184 Overcoming PCR Inhibition. *Cold Spring Harb. Protoc.* 2008, pdb.top20-pdb.top20.
1185 doi:10.1101/pdb.top20

1186 Ramírez-Castillo, F., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-González, F., Harel,
1187 J., Guerrero-Barrera, A., 2015. Waterborne Pathogens: Detection Methods and
1188 Challenges. *Pathogens* 4, 307–334. doi:10.3390/pathogens4020307

1189 Rettberg, P., Antunes, A., Brucato, J., Cabezas, P., Collins, G., Haddaji, A., Kmínek, G.,
1190 Leuko, S., McKenna-Lawlor, S., Moissl-Eichinger, C., Fellous, J.-L., Olsson-Francis,
1191 K., Pearce, D., Rabbow, E., Royle, S., Saunders, M., Sephton, M., Spry, A., Walter, N.,
1192 Wimmer Schweingruber, R., Treuet, J.-C., 2019. Biological Contamination Prevention
1193 for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know?
1194 *Astrobiology* 19, 951–974. doi:10.1089/ast.2018.1996

1195 Ricchi, M., Bertasio, C., Boniotti, M.B., Vicari, N., Russo, S., Tilola, M., Bellotti, M.A.,
1196 Bertasi, B., 2017. Comparison among the quantification of bacterial pathogens by qPCR,
1197 dPCR, and cultural methods. *Front. Microbiol.* doi:10.3389/fmicb.2017.01174

1198 Rizzardi, L.F., Kunz, H., Rubins, K., Chouker, A., Quiriarte, H., Sams, C., Crucian, B.E.,
1199 Feinberg, A.P., 2016. Evaluation of techniques for performing cellular isolation and
1200 preservation during microgravity conditions. *npj Microgravity* 2, 16025.
1201 doi:10.1038/npjmgrav.2016.25

1202 Robinson, J.P., Roederer, M., 2015. Flow cytometry strikes gold. *Science* (80-.). 350, 739–
1203 740. doi:10.1126/science.aad6770

1204 Roda, A., Mirasoli, M., Guardigli, M., Zangheri, M., Caliceti, C., Calabria, D., Simoni, P.,
1205 2018. Advanced biosensors for monitoring astronauts' health during long-duration space
1206 missions. *Biosens. Bioelectron.* 111, 18–26. doi:10.1016/j.bios.2018.03.062

1207 Rodriguez, N.M., Wong, W.S., Liu, L., Dewar, R., Klapperich, C.M., 2016. A fully
1208 integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and
1209 detection of nucleic acids from clinical samples. *Lab Chip* 16, 753–763.
1210 doi:10.1039/C5LC01392E

1211 Roman, M.C., Weir, N.E., Wilson, M.E., Pyle, B.H., 2006. Microbial Characterization of
1212 Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years
1213 of Operation in the International Space Station. *SAE Trans.* 115, 396–402.

1214 Ronca, A.E., Moyer, E.L., Talyansky, Y., Lowe, M., Padmanabhan, S., Choi, S., Gong, C.,
1215 Cadena, S.M., Stodieck, L., Globus, R.K., 2019. Behavior of mice aboard the
1216 International Space Station. *Sci. Rep.* 9, 4717. doi:10.1038/s41598-019-40789-y

1217 Rubbens, P., Schmidt, M.L., Props, R., Biddanda, B.A., Boon, N., Waegeman, W., Denef,
1218 V.J., 2019. Randomized Lasso Links Microbial Taxa with Aquatic Functional Groups
1219 Inferred from Flow Cytometry. *mSystems* 4. doi:10.1128/mSystems.00093-19

1220 Safford, H.R., Bischel, H.N., 2019. Flow cytometry applications in water treatment,
1221 distribution, and reuse: A review. *Water Res.* 151, 110–133.
1222 doi:10.1016/j.watres.2018.12.016

1223 Samhan, F.A., Stedtfeld, T.M., Waseem, H., Williams, M.R., Stedtfeld, R.D., Hashsham,
1224 S.A., 2017. On-filter direct amplification of *Legionella pneumophila* for rapid
1225 assessment of its abundance and viability. *Water Res.* 121, 162–170.
1226 doi:10.1016/j.watres.2017.05.028

1227 Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., Huttenhower, C., 2012.
1228 Metagenomic microbial community profiling using unique clade-specific marker genes.
1229 *Nat. Methods*. doi:10.1038/nmeth.2066

1230 Shapiro, H.M., 2005. Using Flow Cytometry. *Pract. Flow Cytom.* 736.
1231 doi:10.1002/0471722731.fmatter

1232 Siebel, E., Wang, Y., Egli, T., Hammes, F., 2008. Correlations between total cell
1233 concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts
1234 during microbial monitoring of drinking water. *Drink. Water Eng. Sci. Discuss.* 1, 71–
1235 86. doi:10.5194/dwesd-1-71-2008

1236 Sobisch, L.-Y., Rogowski, K.M., Fuchs, J., Schmieder, W., Vaishampayan, A., Oles, P.,
1237 Novikova, N., Grohmann, E., 2019. Biofilm Forming Antibiotic Resistant Gram-
1238 Positive Pathogens Isolated From Surfaces on the International Space Station. *Front. Microbiol.* 10. doi:10.3389/fmicb.2019.00543

1239 Stevenson, A., Burkhardt, J., Cockell, C.S., Cray, J.A., Dijksterhuis, J., Fox-Powell, M., Kee,
1240 T.P., Kminek, G., McGenity, T.J., Timmis, K.N., Timson, D.J., Voytek, M.A., Westall,
1241 F., Yakimov, M.M., Hallsworth, J.E., 2015. Multiplication of microbes below 0.690
1242 water activity: implications for terrestrial and extraterrestrial life. *Environ. Microbiol.*
1243 17, 257–277. doi:10.1111/1462-2920.12598

1244 Straub, J., 2015. In search of technology readiness level (TRL) 10. *Aerosp. Sci. Technol.* 46,
1245 312–320. doi:10.1016/j.ast.2015.07.007

1246 Tan, B.F., Ng, C., Nshimyimana, J.P., Loh, L.L., Gin, K.Y.H., Thompson, J.R., 2015. Next-
1247 generation sequencing (NGS) for assessment of microbial water quality: Current
1248 progress, challenges, and future opportunities. *Front. Microbiol.*
1249 doi:10.3389/fmicb.2015.01027

1250 Tan, S.C., Yiap, B.C., 2009. DNA, RNA, and Protein Extraction: The Past and The Present.
1251 *J. Biomed. Biotechnol.* 2009, 1–10. doi:10.1155/2009/574398

1252 Thyssen, M., Tarran, G.A., Zubkov, M. V., Holland, R.J., Gregori, G., Burkhill, P.H., Denis,
1253 M., 2007. The emergence of automated high-frequency flow cytometry: revealing
1254 temporal and spatial phytoplankton variability. *J. Plankton Res.* 30, 333–343.
1255 doi:10.1093/plankt/fbn005

1256 Tremblay, J., Singh, K., Fern, A., Kirton, E.S., He, S., Woyke, T., Lee, J., Chen, F., Dangl,
1257 J.L., Tringe, S.G., 2015. Primer and platform effects on 16S rRNA tag sequencing.
1258 *Front. Microbiol.* 6. doi:10.3389/fmicb.2015.00771

1259 Valentini, A., Pompanon, F., Taberlet, P., 2009. DNA barcoding for ecologists. *Trends Ecol.*
1260 *Evol.* 24, 110–117. doi:10.1016/j.tree.2008.09.011

1261 van der Wielen, P., van der Kooij, D., 2010. Effect of water composition , distance and
1262 season on the adenosine triphosphate concentration in unchlorinated drinking water in
1263 the Netherlands. *Water Res.* 44, 4860–4867. doi:10.1016/j.watres.2010.07.016

1264 Van Houdt, R., Leys, N., 2012. Monitoring the Microbial Burden in Manned Space Stations,
1265

1266 in: Chouker, A. (Ed.), Stress Challenges and Immunity in Space. Springer Berlin
1267 Heidelberg, Berlin, Heidelberg, pp. 299–308. doi:10.1007/978-3-642-22272-6_22

1268 Van Houdt, R., Mijnendonckx, K., Leys, N., 2012. Microbial contamination monitoring and
1269 control during human space missions. *Planet. Space Sci.* 60, 115–120.
1270 doi:10.1016/j.pss.2011.09.001

1271 Van Nevel, S., Koetzsch, S., Proctor, C.R., Besmer, M.D., Prest, E.I., Vrouwenvelder, J.S.,
1272 Knezev, A., Boon, N., Hammes, F., 2017. Flow cytometric bacterial cell counts
1273 challenge conventional heterotrophic plate counts for routine microbiological drinking
1274 water monitoring. *Water Res.* 113, 191–206.

1275 Vang, Ó.K., Corfitzen, C.B., Smith, C., Albrechtsen, H.-J., 2014. Evaluation of ATP
1276 measurements to detect microbial ingress by wastewater and surface water in drinking
1277 water. *Water Res.* 64, 309–320. doi:<https://doi.org/10.1016/j.watres.2014.07.015>

1278 Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C., 2010. An overview of
1279 foodborne pathogen detection: In the perspective of biosensors. *Biotechnol. Adv.* 28,
1280 232–254. doi:10.1016/j.biotechadv.2009.12.004

1281 Venkateswaran, K., Hattori, N., La Duc, M.T., Kern, R., 2003. ATP as a biomarker of viable
1282 microorganisms in clean-room facilities. *J. Microbiol. Methods.* doi:10.1016/S0167-
1283 7012(02)00192-6

1284 Větrovský, T., Baldrian, P., 2013. The Variability of the 16S rRNA Gene in Bacterial
1285 Genomes and Its Consequences for Bacterial Community Analyses. *PLoS One* 8,
1286 e57923. doi:10.1371/journal.pone.0057923

1287 Vital, M., Stucki, D., Egli, T., Hammes, F., 2010. Evaluating the Growth Potential of
1288 Pathogenic Bacteria in Water. *Appl. Environ. Microbiol.* 76, 6477–6484.
1289 doi:10.1128/AEM.00794-10

1290 Weisse, T., Bergkemper, V., 2018. Rapid detection and quantification of the potentially toxic
1291 cyanobacterium *Planktothrix rubescens* by in-vivo fluorometry and flow cytometry.
1292 *Water Res.* 138, 234–240. doi:<https://doi.org/10.1016/j.watres.2018.03.052>

1293 Williams, M.R., Stedtfeld, R.D., Waseem, H., Stedtfeld, T., Upham, B., Khalife, W.,
1294 Etchebarne, B., Hughes, M., Tiedje, J.M., Hashsham, S.A., 2017. Implications of direct
1295 amplification for measuring antimicrobial resistance using point-of-care devices. *Anal.*
1296 *Methods* 9, 1229–1241. doi:10.1039/C6AY03405E

1297 Wolff, S., Palma, C., Marcelis, L., Kittang Jost, A.-I., van Delden, S., 2018. Testing New
1298 Concepts for Crop Cultivation in Space: Effects of Rooting Volume and Nitrogen
1299 Availability. *Life* 8, 45. doi:10.3390/life8040045

1300 Wong, W.C., Oubre, C., Mehta, S.K., Ott, C.M., Pierson, D.L., 2017. Preventing Infectious
1301 Diseases in Spacecraft and Space Habitats, in: Hurst, C.J. (Ed.), Modeling the
1302 Transmission and Prevention of Infectious Disease. Springer International Publishing,
1303 Cham, Switzerland, pp. 3–17. doi:10.1007/978-3-319-60616-3_1

1304 Yaginuma, H., Kawai, S., Tabata, K. V., Tomiyama, K., Kakizuka, A., Komatsuzaki, T.,
1305 Noji, H., Imamura, H., 2015. Diversity in ATP concentrations in a single bacterial cell
1306 population revealed by quantitative single-cell imaging. *Sci. Rep.* 4, 6522.
1307 doi:10.1038/srep06522

1308 Yamaguchi, N., Roberts, M., Castro, S., Oubre, C., Makimura, K., Leys, N., Grohmann, E.,
1309 Sugita, T., Ichijo, T., Nasu, M., 2014. Microbial Monitoring of Crewed Habitats in
1310 Space—Current Status and Future Perspectives. *Microbes Environ.* 29, 250–260.
1311 doi:10.1264/jmse2.ME14031

1312 Yang, J., Thornhill, S.G., Barrila, J., Nickerson, C.A., Ott, C.M., McLean, R.J.C., 2018.
1313 Microbiology of the Built Environment in Spacecraft Used for Human Flight, in:
1314 Methods in Microbiology. pp. 3–26. doi:10.1016/bs.mim.2018.07.002

1315 Yang, L., Wu, L., Zhu, S., Long, Y., Hang, W., Yan, X., 2010. Rapid, Absolute, and
1316 Simultaneous Quantification of Specific Pathogenic Strain and Total Bacterial Cells
1317 Using an Ultrasensitive Dual-Color Flow Cytometer. *Anal. Chem.* 82, 1109–1116.
1318 doi:10.1021/ac902524a

1319 Zea, L., Nisar, Z., Rubin, P., Cortesão, M., Luo, J., McBride, S.A., Moeller, R., Klaus, D.,
1320 Müller, D., Varanasi, K.K., Muecklich, F., Stodieck, L., 2018. Design of a spaceflight
1321 biofilm experiment. *Acta Astronaut.* 148, 294–300. doi:10.1016/j.actaastro.2018.04.039

1322 Zhang, B., Bai, P., Zhao, X., Yu, Y., Zhang, X., Li, D., Liu, C., 2019. Increased growth rate
1323 and amikacin resistance of *Salmonella enteritidis* after one-month spaceflight on China's
1324 Shenzhou-11 spacecraft. *Microbiol. Open* 8, e833. doi:10.1002/mbo3.833

1325 Zhang, K., Pan, R., Zhang, T., Xu, J., Zhou, X., Yang, Y., 2019. A novel method: using an
1326 adenosine triphosphate (ATP) luminescence-based assay to rapidly assess the biological
1327 stability of drinking water. *Appl. Microbiol. Biotechnol.* doi:10.1007/s00253-019-
1328 09774-3

1329 Zhao, Y., Chen, F., Li, Q., Wang, L., Fan, C., 2015. Isothermal Amplification of Nucleic
1330 Acids. *Chem. Rev.* 115, 12491–12545. doi:10.1021/acs.chemrev.5b00428

1331 Zou, Y., Mason, M.G., Wang, Y., Wee, E., Turni, C., Blackall, P.J., Trau, M., Botella, J.R.,
1332 2017. Nucleic acid purification from plants, animals and microbes in under 30 seconds.
1333 *PLOS Biol.* 15, e2003916. doi:10.1371/journal.pbio.2003916