1 Review

2

- 3 Redox regulation and oxidative stress: the particular case of
- 4 the stallion spermatozoa

5

- 6 ¹Fernando Juan Peña Vega, ²Cristian O'Flaherty, ¹ José M Ortiz Rodríguez, ¹
- 7 Francisco E. Martín Cano, ¹Gemma L. Gaitskell Phillips, ¹ María C. Gil, ¹Cristina
- 8 Ortega Ferrusola.

9

- 10 ¹Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching
- 11 Hospital, University of Extremadura, Cáceres, Spain. Departments of Surgery (Urology
- 12 Division) and Pharmacology and Therapeutics. ²Faculty of Medicine Mc Gill University
- 13 Montreal Canada.

14

- 15 *Correspondence to Dr. FJ Peña, Veterinary Teaching Hospital, Laboratory of
- 16 Equine Spermatology and Reproduction, Faculty of Veterinary Medicine University
- of Extremadura Adv. de la Universidad s/n 10003 Cáceres, Spain.
- 18 E-mail <u>fjuanpvega@unex.es</u>
- 19 Phone + 34 927-257167

20

- 21 Funding
- 22 The authors received financial support for their studies from the Ministerio de
- 23 Economía y Competitividad-FEDER, Madrid, Spain, grant AGL2017-83149-R and
- the Junta de Extremadura-FEDER (IB16030 and GR18008).

25

- 26 **Disclosure**: the authors declare that there is no conflict of interest that may affect the
- 27 impartiality of the information presented in this paper. "The funders had no role in

28 the design of the study; in the collection, analyses, or interpretation of data; in the 29

writing of the manuscript, or in the decision to publish the results"

Abstract

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of ROS, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an "on-off" switch controlling spermatic function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress leading to spermatic malfunction and ultimately death. Stallion spermatozoa are "professional producers" of ROS due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of this species. As a result, combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.

Key words: horses, spermatozoa, ROS, oxidative stress, redox regulation, equine

Introduction

The male gamete, the spermatozoon, is generated in the germinal epithelium of the testes in a process called spermatogenesis. This epithelium consists of germ cells in different stages of development, intermingled with Sertoli cells that provide

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

3 of 50

structural support, nursing, and protecting the germ cells. Spermatogenesis is initiated by the differentiation of spermatogonia from a stem cell pool. These cells initiate a proliferative phase entering a continuous process of mitotic division, dramatically increasing spermatogonial numbers. This process is usually termed spermatocytogenesis. In the next step, cells enter a meiotic phase that includes duplication and exchange of genetic information and two meiotic divisions which reduce the chromosome complement to form round haploid spermatids. During the spermiogenesis phase, round spermatids experience a dramatic transformation that includes compaction and silencing of DNA and elongation of the nucleus, development of specific structures such as the sperm tail and acrosome, relocation of the mitochondria in the midpiece in addition to the loss of other organelles and most of the cytoplasm. Fully developed spermatozoa are released in the lumen of the seminiferous tubules in a process termed spermiation. Recent reviews on this topic can be found elsewhere [1-4]. Chemically, oxidation is the loss of an electron, while reduction is the gain of an electron. This nomenclature reflects the tendency of oxygen, a highly electronegative atom, to partially or fully steal an electron from other molecules. Reactive oxygen species (ROS) [5,6] are atoms or molecules with a single unpaired electron, including, among others, superoxide (O₂•-), the hydroxyl radical (HO•) and the lipid peroxide radical (LOO•). Although hydrogen peroxide (H₂O₂) is not a free radical, it is a precursor of HO•. UV radiation and the presence of metal ions (Fe²⁺, Fe³⁺ or Cu⁺) generate HO[•]. All aerobic organisms depend on the generation of ATP from electrochemical energy generated in the four electron reduction of molecular oxygen into water. During this process the mitochondrial transport chain may lose electrons, leading to the formation of reactive oxygen species. Moreover mitochondrial dysfunction may exacerbate the loss of electrons and thus increase the production of reactive oxygen species to toxic levels disrupting redox homeostasis [6]. This particular effect is especially critical in horses. The stallion

spermatozoon is characterized by an unusually intense mitochondrial activity in comparison with other mammals [7-11].

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

85

86

Spermatozoa were the first cells known to be capable of generating reactive oxygen species (ROS) [12]. This early report demonstrated that bovine spermatozoa produce H₂O₂ as a consequence of cellular respiration. It also showed that the production of H₂O₂ inhibits respiration and concluded that bovine spermatozoa must be equipped with a mechanism for the elimination of H₂O₂ at a low rate, to keep it at physiological levels. For a long time the production of ROS was considered solely as a toxic byproduct of sperm metabolism; however nowadays extensive evidence indicates that crucial functions of the spermatozoa are redox regulated, and redox regulation has become a major area of research in sperm biology [13-20]. Since the discovery of ROS production by the spermatozoa, the concept of oxidative stress has evolved, and enormous research interest in this topic has developed in the last decade. As an example, a recent search in PubMed retrieved 215842 entries using the term oxidative stress, when this term was combined with spermatozoa 2777 entries were obtained (https://www.ncbi.nlm.nih.gov/pubmed/, accessed September, 1 2019). Under aerobic conditions, production of ROS is unavoidable. However organisms have evolved to develop complex mechanisms to maintain the production of ROS at physiological levels (oxidative eustress) and the redox signaling dependent on ROS regulated [21-23]. Interestingly the ability to respond to ROS appeared very early in the course of evolution, well before the increase of atmospheric oxygen, probably in response to low ozone levels, since U.V. radiation splits water into ROS [24].

108

Sources of ROS in the spermatozoa

110

111

112

113

109

In general terms, several pathways lead to the generation of ROS, including the production of O_2 - $^{\bullet}$, H_2O_2 , reactive nitrogen species (RNS), and OH^{\bullet} [25]. The superoxide anion is generated from the coupling of O_2 with an electron (e-). The

5 of 50

electron donor is usually NADH or NADPH, and the reaction is catalyzed by various oxidases; NADPH oxidases, xanthine oxidase and complex I/II/III/IV from the mitochondria [25]. The generation of H_2O_2 occurs after the dismutation of O_2^{\bullet} , mostly catalyzed by superoxide dismutases (SODs) although a small percentage occurs spontaneously, some oxidases also have dismutase activity, and may contribute to direct production of peroxide from superoxide. The reaction of O_2^{\bullet} with reduced transition metals may lead to formation of H_2O_2 [25]. Most of the OH $^{\bullet}$ is generated from H_2O_2 and O_2^{\bullet} in a reaction catalyzed by a metal ion (iron or cupper). This is known as the Habor-Weiss reaction. This reaction occurs in two steps, in the first step, O_2^{\bullet} reduces Fe^{3+} to Fe^{2+} ($Fe^{3+}O_2^{\bullet} \rightarrow Fe^{2+} + O_2$), and the second step is the Fenton reaction where Fe^{2+} reacts with H_2O_2 to generate OH $^{\bullet}$ and OH $^{\bullet}$ ($Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{\bullet} + OH^{\bullet}$) [25]. Nitric oxide and ONOO- (form by the combination of NO and O_2^{\bullet}) are the most important reactive nitrogen species in spermatozoa [25].

Several potential sources can be responsible for ROS production in the spermatozoa, including the spermatozoa itself and contaminating cells in the ejaculate. Dead spermatozoa are a major source of ROS, frequently overlooked in reproductive technologies[26]. L-amino oxidase (LAAO) is present in stallion spermatozoa, being able to generate significant amounts of reactive oxygen species; aromatic amino acids are substrates for this enzyme, producing substantial amounts of ROS, especially in the presence of dead spermatozoa [26]. Interestingly cryopreservation media contain sufficient amounts of aromatic amino acids to activate this enzyme. Ongoing proteomic studies in our laboratory have also confirmed the presence of this enzyme in stallion spermatozoa. A NADP oxidoreductase system has been detected in the membrane [27], however nowadays it is considered that the main source of reactive oxygen species are electron leakage in the mitochondrial electron transport chain (ETC) [7,8,10,28-31]. In particular, defective mitochondria may represent a hallmark of male infertility. Evidences of mitophagy in human sperm were described in our laboratory, suggesting that

activation of mitophagy is a mechanism that maintains proper sperm function [32]. The sources of reactive oxygen species in the electron transport chain of the stallion spermatozoa have also recently been investigated in our laboratory [9,10], confirming the role of the ETC as a main source of ROS in stallion spermatozoa.

147

143

144

145

146

Redox regulation and signaling

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

148

Although initially oxidative stress was defined as a disturbance in the pro-oxidantantioxidant balance in favor of the former, current knowledge has evolved and oxidative stress is better defined in terms of regulation of redox signaling. Numerous processes are redox regulated in biological systems. Redox regulation is similar to pH regulation, the pH varies in different cellular compartments, also the redox state is not an overall redox state and vary in different compartments of the spermatozoa[33]. Redox reactions consist of the transfer of electrons (e-) from one molecule (oxidation) to another molecule (reduction). Thus, reduction implies a decrease in overall charge (more e-) of the molecule, while oxidation implies an increase in overall charge (fewer e-). Reactive oxygen species, such as the superoxide anion O₂-•, are low molecular weight compounds that are chemically unstable, particularly in biological systems [21]. The hydroxyl radical is the most reactive and oxidizes virtually any closer molecule. The reactivity of HO• is 7x109 L mol⁻¹ s ⁻¹, while the rate constant for $O_2^{-\bullet}$ is <0.3 and is $2x10^{-2}$ L mol⁻¹ s⁻¹ for H_2O_2 [33]. Another electronically excited state of interest in spermatology is singlet molecular oxygen, generated by photoexcitation mainly by ultraviolet A and B light rays, but even infrared and visible light may also generate photobiological responses. This is the rationale of the customary procedure of avoiding light exposure during semen processing [33]. Other species include alkoxyl and peroxyl radicals, non-radical species such as hypochlorite, peroxynitrite, singlet oxygen and lipid peroxydes, among others [34]. To understand the basis of redox signaling it is important to bear in mind the characteristics of different ROS. As previously mentioned the HO• is the

most reactive, and has the shortest half life (10⁻¹⁵ s.)[24]. The HO•, is considered to be the most harmful oxidant, with no signaling functions. Although O2• may have difficulty diffusing through membranes due to its anionic charge, it may use specific channels in some tissues [35-37]. Hydrogen peroxide is a stable compound and in addition is a nonpolar molecule that can easily diffuse through membranes, and is also transported through aquaporin channels [24,38-40]; all of which make H₂O₂ a suitable molecule for redox signaling. *The primary target of hydrogen peroxide is the thiol group of the amino acid cysteine, which is oxidized in a reversible fashion*. The presence of glutathione and other thiols in spermatozoa is well known [41,42], also the role of oxidative regulation in significant biological processes occurs in very early stages of development. For example, studies in sea urchin, show an oxidative burst that occurs at the time of fertilization preventing polyspermy through the activation of a dual oxidase (Udx1), that induces cross linking of surface proteins on the egg surface [43,44]. Also oxidation reduction processes of sulfhydryl groups of protamines are critical for chromatin condensation during spermatogenesis [45].

Many cellular processes are redox regulated. In spermatozoa redox regulation has been extensively studied in relation to capacitation [13,15,46-51]. Capacitation is the maturational process that sensitizes spermatozoa to recognize and fertilize the oocyte. Capacitation involves, removal of cholesterol from the plasma membrane, removal of coating materials from the membrane, a rise in intracellular Ca²⁺, an increase in intracellular cAMP, and a dramatic increase in tyrosine phosphorylation. Also during capacitation the sperm plasma membrane potential (E(m)) hyperpolarizes [50,52,53], and spermatozoa experience alkalinization. Interestingly only a subpopulation of spermatozoa is able to experience capacitation. Tyrosine phosphorylation is a redox regulated process [17,20,48,54-59]. Other functions of the spermatozoa, such as activated motility may also be redox regulated [17,60], in relation to tyrosine phosphatases (PTPs), which are intracellular targets for ROS [61]. The activity of PTPs depends on a conserved Cys residue, where oxidation results

in the inactivation of the enzyme [22,62]. On the other hand, ROS can also activate kinases. In addition to hydrogen peroxide, other species such as GSSG, hydrogen sulphide and lipid peroxides can inactivate PTPs [63]. Reversible oxidation of target cysteine residues in specific proteins modulates its activity [22]. In order to function in a reversible manner oxidized cysteine (Cyss) residues need to be reduced. This reversibility depends on adequate availability of reducing molecules including the peroxiredoxin (PRDX) family of antioxidant enzymes [22]. Peroxirredoxins have been described in spermatozoa [13-15,64] and play a major role in sperm function, stressing the importance of redox signaling in these highly specialized cells. Reversing the oxidized Cys residue in this family of pathways involves thiorredoxin or GSH. Reduction of the higher oxidation state (sulphinic acid SO₂H) may require sulfiredoxin or sestrins [22,65]. This reversible sequential oxidation of PRDXs allows a tight regulation of the function of these proteins in a regulation described as a "floodgate" model [66,67]. Spermatozoa are rich in thiols [41], with the majority of thiol groups associated with proteins, which may suggest that redox regulation is an important regulatory mechanism in these cells. Spermatozoa are transcriptionally silent cells whose regulation depends on post transcriptional modification of proteins. One interesting example, since mitophagy has been recently described in spermatozoa [32], of proteins regulated by reversible oxidation of Cys residues, is the large family of Cys-dependent proteases [22]. In particular the cysteine protease HsAtg4 is a direct target for oxidation by H₂O₂, specifically a residue located near the protein's catalytic site [68]. The presence of a similar mechanism in spermatozoa is an intriguing possibility and deserves further research [32]. Other functions in the spermatozoa that are redox regulated, include control of motility [60], and binding to the oviductal epithelium to form the sperm reservoir [69-71].

226

227

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

Modern concept of oxidative stress applied to spermatozoa

Since redox regulation is being unveiled as a major mechanism regulating sperm function, probably at the same level as tyrosine phosphorylation and other post translational modifications of sperm proteins, sophisticated mechanisms must be present to maintain redox status under physiological control. Both seminal plasma and the spermatozoa itself contain enzymatic and non-enzymatic systems that contribute to maintenance of oxidative eustress. Recent research from our laboratory shows that in stallion spermatozoa seminal plasma plays a major role in regulating redox status. The steady state redox potential (Eh) can be estimated using the Nerst Equation: Eh= Eo+ RT/Ln [oxidized molecule/reduced molecule], where Eo is the standard reduction potential, R=gas constant, T is the absolute temperature, n= number of electrons transferred and F is the Faraday constant [23]. Recently, a system to easily measure the steady state in semen has become available and is being introduced into reproductive medicine and clinics. Using this system E_h is provided as the static oxidation reduction potential (sORP) and is expressed as millivolts per million spermatozoa. Eh in raw semen (seminal plasma present) was measured and was found to be 1.62 ± 0.06 mV/ 10^6 spermatozoa, when seminal plasma was removed, it was 7.9 ± 0.79 mV/ 10^6 spermatozoa, thus showing a much higher overall oxidation status [72]. This finding suggests that regulation of the extracellular medium may also be of great importance as is the case in other cells [72], from this viewpoint it is well recognized that equine seminal plasma is rich in antioxidants [73-78]. On the other hand is important to consider that once the semen is deposited in the mare's uterus or is processed, the antioxidants in seminal plasma are removed from close contact with the spermatozoa; meaning the importance of intrinsic antioxidant defenses in the spermatozoa become critical [13,15,79,80].

253

254

255

256

257

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

The spermatozoa itself also has antioxidant defenses, including glutathione, and other enzymatic antioxidant defenses such as the paraoxonase [81-85], thioredoxin [15,86-92] and peroxiredoxin [13,14,64,79,80,93-95] families of proteins. Ongoing proteomic studies in our laboratory have identified peroxiredoxins 5 and 6, and

271

281

10 of 50

258 thioredoxin reductase in stallion spermatozoa. Interestingly, the concentration of 259 intracellular GSH in the horse spermatozoa is higher than in most domestic species. 260 A recent study in our laboratory revealed that the mean concentration of GSH in stallions was $8.2 \pm 2.1 \, \mu M/10^9$ spermatozoa [96], while values reported in other 262 species are in the nanomolar ranges per billion spermatozoa [41]. These high levels of GSH in stallion spermatozoa, may be linked to the intense mitochondrial activity 263 264 of the spermatozoa in this species. Intense mitochondrial activity causes increased 265 ROS production, and thus sophisticated mechanisms to maintain redox homeostasis 266 may have evolved differently between species with spermatozoa less dependent on 267 oxidative phosphorylation for ATP production. In relation to this, evidence of the 268 presence and activity of the Cystine antiporter SLC7A11 in stallion spermatozoa has 269 been discovered [72]. This antiporter exchanges extracellular cystine (oxidized form 270 of cysteine) for intracellular glutamate. Once in the cell, cystine is reduced and used for GSH synthesis. Indirect evidence of the presence of a system exporting glutamate 272 in spermatozoa were reported as early as in 1959 [97]. Evidence of GSH synthesis in 273 stallion spermatozoa [96], include the presence of the enzymes glutathione 274 synthetase (GSS) and gamma glutamylcysteine synthetase (GCLC). In addition, 275 functional studies indicate their activity; the use of the specific inhibitor L-276 Buthioninine sulfoximide (BSO) reduced GSH synthesis from cysteine. In this 277 particular experiment mass spectrometry (MS) was used to specifically identify GSH 278 and avoid interference with other thiols. Overall these results point to a 279 sophisticated redox regulation in stallion spermatozoa. It is considered that most 280 extracellular cysteine is present in the disulfide form (cystine), thus the presence of the xCT /SLCTA11 antiporter may be a major mechanism of cystine incorporation 282 in the spermatozoa. This antiporter is present and active in stallion spermatozoa [72]. 283 In addition to its role in the incorporation of cysteine for GSH synthesis, a potential 284 role in an active Cys/Cyss redox node in the spermatozoa must be considered. 285 Overall, these recent findings support the hypothesis of a complex redox regulation 286 in the spermatozoa. Oxidative stress is thus better defined as the fail in the regulation

of redox signaling due either to overproduction of ROS, or exhaustion of regulatory mechanisms. This latter point has recently been addressed, and functionality of the stallion spermatozoa is linked to thiol content. When thiols are exhausted stallion spermatozoa rapidly enters senescence, which is characterized by increased production of lipid peroxides, activation of caspase 3, loss of motility and death [98,99]. The stallion spermatozoa is a paradigm of this sophisticated redox regulation; recent research has shown apparently paradoxical results, in this regard more fertile spermatozoa show increased ROS production [8], further underlining the concept that a tightly controlled redox regulation occurs in stallion spermatozoa.

296

297

287

288

289

290

291

292

293

294

295

The mitochondria in redox signaling

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Electrons can be prematurely leaked to oxygen in the ETC or associated to catabolism of substrates [100,101]. Depending of the number of electrons being leaked different outcomes are possible. If leaked one by one they generate superoxide radicals, if in pairs they generate hydrogen peroxide. When are properly transferred four at a time, they generate water and drive OXPHOS at complex IV of the ETC. A growing body of scientific evidence is stressing the role of proper mitochondrial function in sperm physiology [7,9-11,28,31,32,102-106]; moreover definition of oxidative stress as the result of mitochondrial malfunction, states that it is the result of "a dysfunction of electron transfer reactions leading to oxidant/antioxidant imbalance and oxidative damage to macromolecules"[107]. This theory states that O2-• does not accidentally leak from the ECT, but instead is a signaling molecule [107]. Recent research in our laboratory with an aryl hydrocarbon receptor deficient (AhR-/-) mouse strain showing males of unusually high fertility (also in terms of number of pups born) showed that this strain was characterized by higher mitochondrial activity [108], other reports also link mitochondrial activity with fertility in humans and equines [7,8,28,31,104,109,110]. Interestingly the mitochondria are the more sensitive structure in the spermatozoa to stress induced by different biotechnologies,

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Peer-reviewed version available at Antioxidants 2019, 8, 567; doi:10.3390/antiox8110567

12 of 50

and have been proposed as a sensitive marker of spermatic quality and fertilization ability [108]. Mitochondrial roles in the spermatozoa may include Ca₂⁺ storage and signaling, production of ATP, control of spermatic lifespan and activation of a specific form of apoptosis for silent, non-inflammatory elimination of redundant spermatozoa after insemination, and potentially control of redox signaling. Numerous evidence points to mitochondria as the hallmark of fertile spermatozoa. However proper evaluation of mitochondrial function in spermatozoa is still elusive, and rarely performed in clinical settings. Fluorescent probes and flow cytometry represent the method of choice to study mitochondrial function in spermatozoa, with the potential for analysis of thousands of spermatozoa and simultaneous functions in every single spermatozoon, together with the recent development of computational methods [29] to study sperm subpopulations makes this the gold standard. However technical difficulties preclude its wider use in reproductive medicine. These difficulties relate to special characteristics of commonly used probes, such as the JC-1. This dye is difficult to compensate using the 488 nm excitation laser due to the spectral characteristics of the fluorochrome, and the dual excitation depending on the formation of monomers (low mitochondrial membrane potential) of aggregates (high mitochondrial membrane potential). This particular issue can be addressed using dual excitation; monomers with the blue 488 nm laser, and aggregates with the 561nm yellow laser. The application of computational methods to the analysis of data, also improves the identification of specific spermatic subpopulations. The production of hydrogen peroxide in stallion mitochondria have been investigated in our laboratory [10], inhibition of complex I of the ETC increased the production of mitochondrial superoxide and hydrogen peroxide, suggesting that mitochondrial malfunction is a potential source of redox deregulation in stallion spermatozoa, inhibition of complex III also caused increased ROS production. In addition, the above-mentioned study underpinned the importance of cautious selection of probes to assess ROS in spermatozoa. However, mitochondrial dysfunction may lead to either reduced or

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

13 of 50

increased production of ROS [100] depending on the cause of the dysfunction and caution interpreting the results of the analysis of ROS production in spermatozoa is always advised. Specific antioxidant defenses in the mitochondria of the stallion spermatozoa include mitochondrial GSH, peroxiredoxin 5 and manganese dependent superoxide dismutase (Mn-SOD). Mitochondrial ROS have been implicated in numerous signaling pathways in somatic cells [100] and is also likely that these species may participate in signaling in spermatozoa. Together with its importance in sperm regulation, the special characteristics of the spermatozoa, a cell devoid of most organelles and a very limited cytoplasm, may also mean this cell is a suitable model for the study of mitochondrial function.

Redox regulation and sperm metabolism

Together with mitochondria, stallion sperm metabolism have been of increased interest for scientists focused in equine reproduction in recent years. Mitochondria play major roles in cellular metabolism, being the energetic power-house of the cell [111]. Oxidative phosphorylation (OXPHOS) and the tricarboxylic acid cycle (TCA cycle) are well known mitochondrial functions. Recent specific research in horses has underlined the importance of mitochondria as a provider of energy in the form of ATP, and the consequences it has for sperm physiology and the functional evaluation of the spermatozoa. Early studies suggested that spermatozoa were glycolytic cells, however the participation of oxidative phosphorylation in production of energy is now acknowledged. Early studies also suggested that ATPs produced by mitochondrial respiration could not reach distal parts of the flagellum. To solve this problem shuttle systems and/or glycolysis ought to be present. Also, species specific strategies occur in the predominance of one energy source. Recent proteomic studies indicate that the spermatozoa can use different substrates for energy, possessing the ability to oxidize fatty acids. The stallion spermatozoa is considered to predominantly use OXPHOS for the generation of energy [7,8,11,105].

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

14 of 50

The adenine nucleotide translocator (ANT) catalyzes the transmembrane exchange of ATP, generated by oxidative phosphorylation, for cytosolic ADP [112]. Inhibition of this protein leads to reduced sperm motility suggesting that ATP produced by OXPHOS in the mitochondria plays an important role in spermatic motility in horses. Further studies aimed to clarify the role of mitochondrial ATP in stallion sperm motility. Inhibition of OXPHOS reduced spermatic motility and ATP content in stallion but not in human spermatozoa suggesting species specific differences in energetic metabolism [8]. Moreover, this study showed paradoxical relations between fertility and oxidative stress, fertile stallions were characterized by spermatozoa showing increased levels of 8-hydroxiguanidine and the superoxide anion. These increased levels were attributed to increased mitochondrial activity in the spermatozoa of fertile stallions [8]. The relation between increased mitochondrial activity and ROS production has also been confirmed in independent studies [11]. In addition, and in line with these findings a dramatic decrease in sperm ATP content after mitochondrial uncoupling and inhibition of mitochondrial respiration was reported [9]. Reduction of ATP was accompanied by low motilities and velocities, and interestingly inhibition of mitochondrial respiration at the ATP synthase complex collapsed sperm membranes. This may relate to the high ATP consumption necessary to maintain the activity of the Na+-K+ ATPase pump in the spermatozoa [113]. The relation between ROS production and mitochondrial activity was also confirmed. Despite the predominance of OXPHOS, glycolysis and other sources of energy are also present in the spermatozoa. OXPHOS takes place in the mitochondria located in the sperm midpiece, while glycolysis occurs mainly in the flagellum in which the fibrous sheath is rich in glycolytic enzymes where they are anchored [114-116]. The substrate for glycolysis is glucose, which is incorporated into the spermatozoa through diverse glucose transporters (GLUTs) [117]. Oxidative phosphorylation uses diverse sources of substrates derived from the metabolism of carbohydrates, lipids and amino acids. While for a long time a debate has existed among spermatologists regarding the main source of energy in spermatozoa, the

Peer-reviewed version available at Antioxidants 2019, 8, 567; doi:10.3390/antiox8110567

15 of 50

403 existence of different bioenergetic strategies in different species is now becoming 404 clear [118], and thanks to the introduction of the omics technologies into 405 spermatology, the spermatozoa is being unveiled as a cell with much higher 406 bioenergetic plasticity that previously assumed [119,120]. In this regard, recent 407 proteomic studies in horses and humans reveal that beta oxidation of fatty acids 408 plays an important role in providing energy for the spermatozoa [120,121]. The 409 pentose phosphate cycle pathway (PPP) is also present in spermatozoa [118,122-127]. 410 NADPH produced by the PPP is important for the re-activation of 2-CysPRDXS.[79] 411 In human spermatozoa the pentose phosphate pathway can respond dynamically to 412 oxidative stress [128] and the inhibition glutathione reductase impairs the ability of 413 sperm to resist oxidative stress and lipid peroxidation [126]. Also, NADPH may play 414 a role in relation to the activity of an NADPH oxidase which plays a role in 415 capacitation [123]. The glutathione peroxidase-glutathione reductase-pentose 416 phosphate pathway system is functional and provides an effective antioxidant 417 defense in normal human spermatozoa [126,129]. Overall current knowledge on 418 sperm metabolism, suggests species specific differences and a great metabolic 419 plasticity in the spermatozoa, which are able to adapt their metabolism to the 420 changing environments that they are exposed to on their travels to fertilize the 421 oocyte. Recent research using the strategy of intervention on the metabolic flexibility 422 of stallion spermatozoa seem promising [7,11,26,105,130], both in the development of 423 new extenders for long time liquid storage, and as an intervention for the 424 development of thawing extenders. In this particular aspect, current extenders in 425 use for stallion spermatozoa contain high concentrations of glucose, around 270-300 426 mM, these concentrations are far from being physiological, and may preclude long 427 term preservation of liquid semen. It is well know that supraphysiological 428 concentrations of glucose may lead to cell death [131] due to accumulation of 429 advanced glycation end products (AGEs) [132-135]. The discovery of endocrine 430 features in the spermatozoa, also underlines the complex metabolism of these cells 431 that represent an area of great interest for research in the coming decade [124,136].

Finally, amino-acid metabolism ought to be considered, this has been reported in fish spermatozoa and anecdotal reports in mammals using amino-acids as semen additives support this possibility [137,138]. Additionally, indirect evidence of the role of the amino acid glutamine in stallion spermatozoa has been recently reported by our laboratory. Inhibition of the xCT antiporter, and thus increased intracellular glutamate improved sperm function in fresh extended stallion spermatozoa, but not in frozen thawed samples [72]. The amino-acid glutamine may enter the Krebs cycle and improve mitochondrial function under some circumstances [139]. Glutamine metabolism can provide considerable amounts of NADPH, through the pentose phosphate pathway, and can occur in parallel with aerobic glycolysis depending on glucose-6-phosphate availability [140]. The increase in sperm functionality after using de xCT antiporter inhibitor sulfasalazine can be explained through this mechanism.

Consequences of redox deregulation

In accordance with current biochemical literature, redox regulation is tightly regulated in the spermatozoa, with interactions between spermatic metabolism, mitochondrial production and scavenging of Reactive Oxygen Species. A summary of current knowledge on redox regulation in spermatozoa is presented in figure 1. Many factors can deregulate this complex network in humans and other animals, including aging, exposure to toxins, particularly alcohol and tobacco in humans, poor diet, lack of physical activity and systemic diseases including obesity and diabetes [30,141-144]. Also, current sperm biotechnologies such as cryopreservation cause redox deregulation of spermatozoa, mainly through a severe mitochondrial osmotic stress [99,106,113,145,146]. Deregulation of redox homeostasis has a profound impact on sperm physiology and fertility, all spermatic compartments and function may be affected, moreover impacts on the embryo and the offspring may also occur.

Effects on lipids

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

461

Lipid peroxidation is well recognized as a consequence of redox deregulation and loss of redox homeostasis in spermatozoa. In the stallion model, lipid peroxidation occurs as a consequence of aging (figure 2) and sperm biotechnologies such as cryopreservation and chromosomal sex sorting [78,98,99,147-150]. Deregulation of redox regulation and aging and cell senescence is well documented, and aged stallions show increased peroxidation of the lipids in spermatic membranes. Cryopreservation leads to a paradoxical situation, while osmotic induced damage in the mitochondria may lead to reduced production of ROS, lipid peroxidation increases after freezing and thawing. On the other hand spermatozoa that withstands cryopreservation better is also characterized by increased production of ROS [31]. Lipid peroxidation (LPO) occurs after the oxidative attack of lipids, mainly the phospholipids and cholesterol of membranes. Interestingly LPO induces changes in the permeability and fluidity of the membranes that can be easily monitored using probes like YoPro-1 [151,152]. LPO results in the production of lipid hydroperoxides, that are unstable and decompose to more stable and less reactive secondary compounds [153-155]. Lipid peroxidation occurs in three phases, in the initiation phase abstraction of H• from a lipid chain (LH) gives a lipid radical (L•). Formation of L* is favored in the membrane of the horse spermatozoa due to their abundance in PUFAs [156,157], in this type of lipid the resulting radical is resonance stabilized [153]. Following initiation the propagation phase continues and the lipid radical reacts with oxygen to generate a lipoperoxyl radical (LOO•), that reacts with a lipid to yield a L* and a lipid hydroperoxyde (LOOH), these are unstable molecules that generate new peroxyl and alkoxyl radicals and decompose to form secondary products [154]. (Figure 3) Finally the reaction ends when it gives a nonradical, or non-propagating species [155]. Among the secondary products formed upon lipid peroxidation of the polyunsaturated fatty acids (PUFAs) of the sperm membranes, aldehydes have received special attention due to their toxicity to

Peer-reviewed version available at Antioxidants 2019, 8, 567; doi:10.3390/antiox8110567

18 of 50

490 spermatozoa [98,99,158-165]. Depending on the oxidation of different PUFAs, distinct 491 compounds can originate, malondialdehyde originates from the oxidation of PUFAs 492 containing at least three double bonds, like arachidonic acid, 4 hydroxy-2(E)-493 nonenal (4-HNE) originates from the oxidation of ω6 fatty acids. The composition of 494 the sperm membrane, suggests that 4-HNE should be the prevalent compound upon 495 LPO, since docosopentanoic acid (C22: 5ω6) is the predominant PUFA in the 496 phospholipids of stallion spermatozoa [156]. Interestingly recently seasonal variation 497 in the lipid composition of the sperm membranes has been reported [166]. It should 498 also be noted that 4-HNE, while triggered by an initial oxidative step, can later 499 continue independent of oxidative stress and continues providing a source of ω-6 500 fatty acids is available [167]. 4-hydroxynonenal reacts with GSH by Michael addition 501 to form GSH conjugates, and although this reaction can happen spontaneously it 502 occurs much faster in the presence of glutathione-S-transferases. Also the aldehyde 503 function of 4-HNE can be reduced into alcohol or oxidized into acid, with the 504 participation of alcohol dehydrogenase and aldehyde dehydrogenase, forming 1, 4, 505 dihydroxinonene and 4-hydroxynonenoic acid, that can undergo beta oxidation 506 [153]. The role of GSH and aldehyde dehydrogenase has recently been investigated 507 in stallion spermatozoa in relation to oxidative stress [96,98,99,161] suggesting that 508 these mechanisms for 4-HNE detoxification are of pivotal importance for spermatic 509 function. The relation between GSH and 4-HNE in cryopreserved stallion 510 spermatozoa suggest that GSH is effectively a major mechanism for detoxifying 4-511 HNE [99]. Also, aldehyde dehydrogenase has proven to be a major detoxifying 512 mechanism for 4-HNE in stallion spermatozoa [161]. Lipid peroxidation has been 513 traditionally detected using BODIPY dyes [78,168], however its dual fluorescence and 514 its lipid binding can make this dye difficult to interpret upon flow cytometry 515 analysis. More recently, lipid peroxidation is being detected using antibodies against 516 4-hydroxynonenal (4-HNE) [99,161,169]. The availability of secondary antibodies 517 marked with different probes makes this technique suitable for multicolor panels, 518 and to study the relation between increased levels of 4-HNE and sperm functionality

using multiparametric analysis. Mass spectrometry is also a suitable tool for the study of lipid peroxidation induced changes in the spermatozoa and has recently been used in our laboratory to monitor GSH [96].

Effects on proteins

Oxidative modifications of structural and functional proteins are one of the major factors involved in protein dysfunction. Protein carbonyl content is a commonly used biomarker of oxidative damage of proteins. Toxic adducts derived from LPO can diffuse through membranes allowing the reactive aldehydes to covalently modify proteins [159,160,170,171]. In addition to advanced lipid peroxidation end products (ALEs), products derived from the glycoxidation of carbohydrates, that will form advanced glycation end products (AGEs) can also induce protein carbonylation [155]. There is an excellent recent review of this particular topic focused on the spermatozoa [93] and the reader is referred to it for complete details.

Oxidative DNA damage

Spermatozoa harbor the haploid paternal genome and also important epigenetic information with regulatory roles of early embryo development [172]. Recently, it has been reported that biotechnologies such as cryopreservation damage sperm genes with important roles in fertilization and early embryo development, even in the absence of detectable DNA fragmentation [173,174]. Cryopreservation can also damage the sperm epigenome [175]. Many assays have been developed to investigate DNA integrity in the spermatozoa [176,177]. It is considered that most of the DNA damage is caused by an oxidative mechanism. Oxidation of nucleotides can cause abasic pairs in DNA, increasing the risk of replication errors. Loss of a base in DNA, i.e., creation of an abasic site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously, or under the action of radiation or

alkylating agents, or enzymatically as an intermediate in the repair of modified or abnormal bases. The abasic site lesion is mutagenic or lethal if not repaired. From a chemical view point, the abasic site is an alkali-labile residue that leads to strand breakage through beta- and delta- elimination [178,179]. More recently, multiple consequences of the electrophilic nature of abasic lesions have been revealed [180], and oxidized abasic sites are nowadays considered irreparable, leading to the most deleterious form of DNA damage, inter-strand cross links and double strand breaks [181,182]. Detection of oxidized nucleotides in sperm with flow cytometry has been reported using a specific antibody against the oxidative derivative of guanosine, 8hydroxyguanosine [98,183], and threshold values for fertility have recently been reported in humans [184]. Another newly developed flow cytometry based assay, for evaluation of oxidative stress in sperm DNA, is the γHA2AX assay [185]. Although most histones are replaced by protamines, a small fraction remain in the nucleosome (5-15% in humans). This fraction contains the H2AH histone that is phosphorylated in Ser139 when under oxidative stress. The detection of γHA2AX (the phosphorylated form of the histone) has proven to be more sensitive than the TUNEL assay to detect DNA fragmentation, and also to be better correlated with pregnancy outcome in humans [186].

566

567

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

Impact of Early Embryo Development (EED)

568

569

570

571

572

573

574

575

576

Fecundation of the egg by spermatozoa with compromised redox regulation or experiencing non-lethal oxidative stress has important consequences with regard to embryo viability and the health and well-being of the offspring [187]. Assisted reproductive technologies such as in vitro fertilization and ICSI are associated with an increased incidence of birth defects in offspring [188]. Animal studies indicate that fecundation with spermatozoa experiencing oxidative stress may cause embryonic death [189], an effect that has been linked to oxidative damage in the spermatozoa [190]. Recent research from our laboratory has compared the effect of

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Peer-reviewed version available at Antioxidants 2019, 8, 567; doi:10.3390/antiox8110567

21 of 50

cryopreservation on the transcriptome of early equine embryos [191]. Using the same ejaculate, half processed as fresh sperm and the other half frozen and thawed we obtained embryos from the same mare and stallion after artificial insemination with the aliquot of fresh sperm and in the mare's next cycle using the frozen thawed semen aliquot. The transcriptional profile of embryos obtained with frozen thawed spermatozoa differed significantly from that of embryos obtained with the fresh sperm aliquot of the same ejaculate. Significant downregulation of genes involved in biological pathways related to oxidative phosphorylation, DNA binding, DNA replication, and immune response. Interestingly many genes with reduced expression were orthologs of genes in which knockouts are embryonic lethal in mice [191]. While the exact mechanism behind these changes remains to be elucidated, redox deregulation and oxidative stress in the spermatozoa seem to be an important factor. The spermatozoa is known to carry proteins [187], and numerous ncRNAs [192] to the oocyte, with important functions in early embryogenesis. However, it has recently been reported that caput epidydimal mouse sperm, which has not yet incorporated RNAs, can support full development [193]. The impact of redox deregulation on sperm proteins is well recognised and has recently been reviewed [93,194], so it is not unlikely that oxidized proteins can be incorporated by the embryo impacting its development. Recently, preimplantation proteins in the human embryo with potential sperm origin have been identified [187]. In particular, 93 different proteins have been proposed as related to zygote and early embryo development before implantation in humans, moreover up to 560 sperm proteins with known roles in the regulation of gene expression in other cells or tissues have also been identified [187]. Even though further investigation is needed in this field, oxidative damage to sperm proteins with important functions during early embryo development may occur. Further supporting this hypothesis is the fact that biological processes such as DNA binding and replication, and Histone Acetylation were downregulated in embryos obtained with cryopreserved spermatozoa [191], and many of the proteins mentioned above have roles in these processes [187].

22 of 50

606 607 **Concluding remarks** 608 609 Redox regulation plays a major role in controlling spermatic functionality, recent 610 research is unveiling the existence of sophisticated redox regulation systems that 611 may constitute targets for the treatment of the male factor subfertility. In addition, 612 the interaction between metabolism and redox regulation may offer alternatives to 613 traditional methods of sperm conservation. The increasing use of proteomic 614 techniques in research in spermatology will provide significant advances in the 615 understanding of redox regulation in the spermatozoa in coming years 616 617 618 References 619 620 1. Staub, C.; Johnson, L. Review: Spermatogenesis in the bull. *Animal* **2018**, 12, 621 s27-s35, doi:10.1017/S1751731118000435. 622 2. Bose, R.; Sheng, K.; Moawad, A.R.; Manku, G.; O'Flaherty, C.; Taketo, T.; 623 Culty, M.; Fok, K.L.; Wing, S.S. Ubiquitin Ligase Huwe1 Modulates Spermatogenesis by Regulating Spermatogonial Differentiation and Entry 624 625 into Meiosis. Sci Rep **2017**, 7, 17759, doi:10.1038/s41598-017-17902-0. 626 3. Gervasi, M.G.; Visconti, P.E. Molecular changes and signaling events 627 occurring in spermatozoa during epididymal maturation. Andrology 2017, 5, 628 204-218, doi:10.1111/andr.12320. 629 4. Shiraishi, K.; Matsuyama, H. Gonadotoropin actions on spermatogenesis 630 and hormonal therapies for spermatogenic disorders [Review]. Endocr J **2017**, *64*, 123-131, doi:10.1507/endocrj.EJ17-0001. 631 632 5. Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Bennett, B.; Zielonka, J. 633 Teaching the basics of reactive oxygen species and their relevance to cancer

biology: Mitochondrial reactive oxygen species detection, redox signaling,

- and targeted therapies. *Redox Biol* **2018**, *15*, 347-362,
- 636 doi:10.1016/j.redox.2017.12.012.
- 637 6. Kalyanaraman, B. Teaching the basics of redox biology to medical and
- graduate students: Oxidants, antioxidants and disease mechanisms. *Redox*
- 639 *Biol* **2013**, 1, 244-257, doi:10.1016/j.redox.2013.01.014.
- 640 7. Swegen, A.; Lambourne, S.R.; Aitken, R.J.; Gibb, Z. Rosiglitazone Improves
- Stallion Sperm Motility, ATP Content, and Mitochondrial Function. *Biol*
- 642 Reprod **2016**, 95, 107, doi:10.1095/biolreprod.116.142687.
- 643 8. Gibb, Z.; Lambourne, S.R.; Aitken, R.J. The paradoxical relationship between
- stallion fertility and oxidative stress. *Biol Reprod* **2014**, 91, 77,
- 645 doi:10.1095/biolreprod.114.118539.
- 646 9. Davila, M.P.; Munoz, P.M.; Bolanos, J.M.; Stout, T.A.; Gadella, B.M.; Tapia,
- J.A.; da Silva, C.B.; Ferrusola, C.O.; Pena, F.J. Mitochondrial ATP is required
- for the maintenance of membrane integrity in stallion spermatozoa, whereas
- motility requires both glycolysis and oxidative phosphorylation.
- 650 Reproduction **2016**, 152, 683-694, doi:10.1530/REP-16-0409.
- 651 10. Plaza Davila, M.; Martin Munoz, P.; Tapia, J.A.; Ortega Ferrusola, C.; Balao
- da Silva, C.C.; Pena, F.J. Inhibition of Mitochondrial Complex I Leads to
- Decreased Motility and Membrane Integrity Related to Increased Hydrogen
- Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis
- Has Less Impact on Sperm Motility. *PLoS One* **2015**, 10, e0138777,
- 656 doi:10.1371/journal.pone.0138777.
- 657 11. Darr, C.R.; Varner, D.D.; Teague, S.; Cortopassi, G.A.; Datta, S.; Meyers, S.A.
- Lactate and Pyruvate Are Major Sources of Energy for Stallion Sperm with
- Dose Effects on Mitochondrial Function, Motility, and ROS Production. *Biol*
- Reprod **2016**, 95, 34, doi:10.1095/biolreprod.116.140707.
- 661 12. Tosic, J.; Walton, A. Formation of hydrogen peroxide by spermatozoa and
- its inhibitory effect of respiration. *Nature* **1946**, *158*, 485.

- 663 13. Lee, D.; Moawad, A.R.; Morielli, T.; Fernandez, M.C.; O'Flaherty, C.
- Peroxiredoxins prevent oxidative stress during human sperm capacitation.
- 665 *Mol Hum Reprod* **2017**, 23, 106-115, doi:10.1093/molehr/gaw081.
- 666 14. Liu, Y.; O'Flaherty, C. In vivo oxidative stress alters thiol redox status of
- peroxiredoxin 1 and 6 and impairs rat sperm quality. Asian J Androl 2017, 19,
- 668 73-79, doi:10.4103/1008-682X.170863.
- 669 15. O'Flaherty, C. Redox regulation of mammalian sperm capacitation. Asian J
- 670 Androl **2015**, 17, 583-590, doi:10.4103/1008-682X.153303.
- 671 16. O'Flaherty, C.; de Souza, A.R. Hydrogen peroxide modifies human sperm
- peroxiredoxins in a dose-dependent manner. *Biol Reprod* **2011**, *84*, 238-247,
- 673 doi:10.1095/biolreprod.110.085712.
- 674 17. de Lamirande, E.; O'Flaherty, C. Sperm activation: role of reactive oxygen
- species and kinases. Biochim Biophys Acta 2008, 1784, 106-115,
- doi:10.1016/j.bbapap.2007.08.024.
- 677 18. O'Flaherty, C.; de Lamirande, E.; Gagnon, C. Positive role of reactive oxygen
- species in mammalian sperm capacitation: triggering and modulation of
- phosphorylation events. Free Radic Biol Med 2006, 41, 528-540,
- doi:10.1016/j.freeradbiomed.2006.04.027.
- 681 19. O'Flaherty, C.; de Lamirande, E.; Gagnon, C. Reactive oxygen species and
- protein kinases modulate the level of phospho-MEK-like proteins during
- 683 human sperm capacitation. *Biol Reprod* **2005**, 73, 94-105,
- 684 doi:10.1095/biolreprod.104.038794.
- 685 20. O'Flaherty, C.M.; Beorlegui, N.B.; Beconi, M.T. Reactive oxygen species
- requirements for bovine sperm capacitation and acrosome reaction.
- Theriogenology **1999**, 52, 289-301, doi:10.1016/S0093-691X(99)00129-6.
- 688 21. Fujii, S.; Sawa, T.; Nishida, M.; Ihara, H.; Ida, T.; Motohashi, H.; Akaike, T.
- Redox signaling regulated by an electrophilic cyclic nucleotide and reactive
- 690 cysteine persulfides. Arch Biochem Biophys **2016**, 595, 140-146,
- 691 doi:10.1016/j.abb.2015.11.008.

- 692 22. Holmstrom, K.M.; Finkel, T. Cellular mechanisms and physiological
- consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014, 15,
- 694 411-421, doi:10.1038/nrm3801.
- 695 23. Go, Y.M.; Jones, D.P. The redox proteome. *J Biol Chem* **2013**, 288, 26512-
- 696 26520, doi:10.1074/jbc.R113.464131.
- 697 24. Briehl, M.M. Oxygen in human health from life to death--An approach to
- teaching redox biology and signaling to graduate and medical students.
- 699 *Redox Biol* **2015**, *5*, 124-139, doi:10.1016/j.redox.2015.04.002.
- 700 25. Zhang, L.; Wang, X.; Cueto, R.; Effi, C.; Zhang, Y.; Tan, H.; Qin, X.; Ji, Y.;
- Yang, X.; Wang, H. Biochemical basis and metabolic interplay of redox
- regulation. *Redox Biol* **2019**, 26, 101284, doi:10.1016/j.redox.2019.101284.
- 703 26. Aitken, J.B.; Naumovski, N.; Curry, B.; Grupen, C.G.; Gibb, Z.; Aitken, R.J.
- 704 Characterization of an L-amino acid oxidase in equine spermatozoa. *Biol*
- 705 Reprod **2015**, 92, 125, doi:10.1095/biolreprod.114.126052.
- 706 27. Vernet, P.; Fulton, N.; Wallace, C.; Aitken, R.J. Analysis of reactive oxygen
- species generating systems in rat epididymal spermatozoa. *Biol Reprod* **2001**,
- 708 *65,* 1102-1113.
- 709 28. Cueto, R.; Zhang, L.; Shan, H.M.; Huang, X.; Li, X.; Li, Y.F.; Lopez, J.; Yang,
- 710 W.Y.; Lavallee, M.; Yu, C., et al. Identification of homocysteine-suppressive
- 711 mitochondrial ETC complex genes and tissue expression profile Novel
- 712 hypothesis establishment. *Redox Biol* **2018**, 17, 70-88,
- 713 doi:10.1016/j.redox.2018.03.015.
- 714 29. Ortega-Ferrusola, C.; Anel-Lopez, L.; Martin-Munoz, P.; Ortiz-Rodriguez,
- J.M.; Gil, M.C.; Alvarez, M.; de Paz, P.; Ezquerra, L.J.; Masot, A.J.; Redondo,
- E., et al. Computational flow cytometry reveals that cryopreservation
- 717 induces spermptosis but subpopulations of spermatozoa may experience
- 718 capacitation-like changes. Reproduction 2017, 153, 293-304, doi:10.1530/REP-
- 719 16-0539.

- 720 30. Aitken, R.J.; Gibb, Z.; Baker, M.A.; Drevet, J.; Gharagozloo, P. Causes and
- 721 consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016, 28,
- 722 1-10, doi:10.1071/RD15325.
- 723 31. Yeste, M.; Estrada, E.; Rocha, L.G.; Marin, H.; Rodriguez-Gil, J.E.; Miro, J.
- 724 Cryotolerance of stallion spermatozoa is related to ROS production and
- mitochondrial membrane potential rather than to the integrity of sperm
- 726 nucleus. *Andrology* **2015**, *3*, 395-407, doi:10.1111/andr.291.
- 727 32. Aparicio, I.M.; Espino, J.; Bejarano, I.; Gallardo-Soler, A.; Campo, M.L.;
- Salido, G.M.; Pariente, J.A.; Pena, F.J.; Tapia, J.A. Autophagy-related
- proteins are functionally active in human spermatozoa and may be involved
- in the regulation of cell survival and motility. Sci Rep 2016, 6, 33647,
- 731 doi:10.1038/srep33647.
- 732 33. Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu Rev Biochem 2017,
- 733 10.1146/annurev-biochem-061516-045037, doi:10.1146/annurev-biochem-
- 734 061516-045037.
- 735 34. Schmidt, H.H.; Stocker, R.; Vollbracht, C.; Paulsen, G.; Riley, D.; Daiber, A.;
- 736 Cuadrado, A. Antioxidants in Translational Medicine. *Antioxid Redox Signal*
- 737 **2015**, 23, 1130-1143, doi:10.1089/ars.2015.6393.
- 738 35. Han, D.; Antunes, F.; Canali, R.; Rettori, D.; Cadenas, E. Voltage-dependent
- anion channels control the release of the superoxide anion from
- 740 mitochondria to cytosol. *J Biol Chem* **2003**, 278, 5557-5563,
- 741 doi:10.1074/jbc.M210269200.
- 742 36. Han, D.; Antunes, F.; Daneri, F.; Cadenas, E. Mitochondrial superoxide
- anion production and release into intermembrane space. *Methods Enzymol*
- 744 **2002**, *349*, 271-280.
- 745 37. Han, D.; Williams, E.; Cadenas, E. Mitochondrial respiratory chain-
- dependent generation of superoxide anion and its release into the
- 747 intermembrane space. *Biochem J* **2001**, 353, 411-416.

- 748 38. Vieceli Dalla Sega, F.; Zambonin, L.; Fiorentini, D.; Rizzo, B.; Caliceti, C.;
- Landi, L.; Hrelia, S.; Prata, C. Specific aquaporins facilitate Nox-produced
- hydrogen peroxide transport through plasma membrane in leukaemia cells.
- 751 *Biochim Biophys Acta* **2014**, 1843, 806-814, doi:10.1016/j.bbamcr.2014.01.011.
- 752 39. Mubarakshina Borisova, M.M.; Kozuleva, M.A.; Rudenko, N.N.; Naydov,
- 753 I.A.; Klenina, I.B.; Ivanov, B.N. Photosynthetic electron flow to oxygen and
- diffusion of hydrogen peroxide through the chloroplast envelope via
- 755 aquaporins. *Biochim Biophys Acta* **2012**, 1817, 1314-1321,
- 756 doi:10.1016/j.bbabio.2012.02.036.
- 757 40. Bienert, G.P.; Moller, A.L.; Kristiansen, K.A.; Schulz, A.; Moller, I.M.;
- 758 Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of
- hydrogen peroxide across membranes. J Biol Chem 2007, 282, 1183-1192,
- 760 doi:10.1074/jbc.M603761200.
- 761 41. Li, T.K. The glutathione and thiol content of mammalian spermatozoa and
- 762 seminal plasma. *Biol Reprod* **1975**, 12, 641-646.
- 763 42. Ortega Ferrusola, C.; Martin Munoz, P.; Ortiz-Rodriguez, J.M.; Anel-Lopez,
- L.; Balao da Silva, C.; Alvarez, M.; de Paz, P.; Tapia, J.A.; Anel, L.; Silva-
- Rodriguez, A., et al. Depletion of thiols leads to redox deregulation,
- production of 4-hydroxinonenal and sperm senescence: a possible role for
- GSH regulation in spermatozoa. *Biol Reprod* **2018**, 10.1093/biolre/ioy241,
- 768 doi:10.1093/biolre/ioy241.
- 769 43. Wong, J.L.; Creton, R.; Wessel, G.M. The oxidative burst at fertilization is
- dependent upon activation of the dual oxidase Udx1. Dev Cell 2004, 7, 801-
- 771 814, doi:10.1016/j.devcel.2004.10.014.
- 772 44. Wong, J.L.; Wessel, G.M. Free-radical crosslinking of specific proteins alters
- the function of the egg extracellular matrix at fertilization. *Development* **2008**,
- 774 135, 431-440, doi:10.1242/dev.015503.

- Chapman, J.C.; Michael, S.D. Proposed mechanism for sperm chromatin
 condensation/decondensation in the male rat. *Reprod Biol Endocrinol* 2003, 1,
- 777 20.
- 778 46. Luque, G.M.; Dalotto-Moreno, T.; Martin-Hidalgo, D.; Ritagliati, C.; Puga
- 779 Molina, L.C.; Romarowski, A.; Balestrini, P.A.; Schiavi-Ehrenhaus, L.J.;
- Gilio, N.; Krapf, D., et al. Only a subpopulation of mouse sperm displays a
- rapid increase in intracellular calcium during capacitation. J Cell Physiol
- 782 **2018**, 233, 9685-9700, doi:10.1002/jcp.26883.
- 783 47. Alvau, A.; Battistone, M.A.; Gervasi, M.G.; Navarrete, F.A.; Xu, X.; Sanchez-
- Cardenas, C.; De la Vega-Beltran, J.L.; Da Ros, V.G.; Greer, P.A.; Darszon,
- A., et al. The tyrosine kinase FER is responsible for the capacitation-
- associated increase in tyrosine phosphorylation in murine sperm.
- 787 Development **2016**, 143, 2325-2333, doi:10.1242/dev.136499.
- 788 48. Stival, C.; Puga Molina Ldel, C.; Paudel, B.; Buffone, M.G.; Visconti, P.E.;
- 789 Krapf, D. Sperm Capacitation and Acrosome Reaction in Mammalian
- 790 Sperm. *Adv Anat Embryol Cell Biol* **2016**, 220, 93-106, doi:10.1007/978-3-319-
- 791 30567-7 5.
- 792 49. Stival, C.; La Spina, F.A.; Baro Graf, C.; Arcelay, E.; Arranz, S.E.; Ferreira,
- 793 J.J.; Le Grand, S.; Dzikunu, V.A.; Santi, C.M.; Visconti, P.E., et al. Src Kinase
- 794 Is the Connecting Player between Protein Kinase A (PKA) Activation and
- 795 Hyperpolarization through SLO3 Potassium Channel Regulation in Mouse
- 796 Sperm. *J Biol Chem* **2015**, 290, 18855-18864, doi:10.1074/jbc.M115.640326.
- 797 50. Escoffier, J.; Navarrete, F.; Haddad, D.; Santi, C.M.; Darszon, A.; Visconti,
- P.E. Flow cytometry analysis reveals that only a subpopulation of mouse
- sperm undergoes hyperpolarization during capacitation. *Biol Reprod* **2015**,
- 92, 121, doi:10.1095/biolreprod.114.127266.
- 801 51. Visconti, P.E.; Krapf, D.; de la Vega-Beltran, J.L.; Acevedo, J.J.; Darszon, A.
- 802 Ion channels, phosphorylation and mammalian sperm capacitation. *Asian J*
- 803 *Androl* **2011**, *13*, 395-405, doi:10.1038/aja.2010.69.

804 52. Battistone, M.A.; Da Ros, V.G.; Salicioni, A.M.; Navarrete, F.A.; Krapf, D.; 805 Visconti, P.E.; Cuasnicu, P.S. Functional human sperm capacitation requires 806 both bicarbonate-dependent PKA activation and down-regulation of 807 Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 2013, 19, 570-808 580, doi:10.1093/molehr/gat033. 809 53. Chavez, J.C.; Hernandez-Gonzalez, E.O.; Wertheimer, E.; Visconti, P.E.; 810 Darszon, A.; Trevino, C.L. Participation of the Cl-/HCO(3)- exchangers 811 SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor 812 SLC9A3R1 in mouse sperm capacitation. Biol Reprod 2012, 86, 1-14, 813 doi:10.1095/biolreprod.111.094037. 814 54. Salicioni, A.M.; Platt, M.D.; Wertheimer, E.V.; Arcelay, E.; Allaire, A.; 815 Sosnik, J.; Visconti, P.E. Signalling pathways involved in sperm capacitation. 816 Soc Reprod Fertil Suppl 2007, 65, 245-259. 817 55. Hernandez-Gonzalez, E.O.; Sosnik, J.; Edwards, J.; Acevedo, J.J.; Mendoza-818 Lujambio, I.; Lopez-Gonzalez, I.; Demarco, I.; Wertheimer, E.; Darszon, A.; 819 Visconti, P.E. Sodium and epithelial sodium channels participate in the 820 regulation of the capacitation-associated hyperpolarization in mouse sperm. 821 *J Biol Chem* **2006**, *281*, 5623-5633, doi:10.1074/jbc.M508172200. 822 56. Lefievre, L.; Jha, K.N.; de Lamirande, E.; Visconti, P.E.; Gagnon, C. 823 Activation of protein kinase A during human sperm capacitation and 824 acrosome reaction. J Androl 2002, 23, 709-716. 825 57. Visconti, P.E.; Stewart-Savage, J.; Blasco, A.; Battaglia, L.; Miranda, P.; Kopf, 826 G.S.; Tezon, J.G. Roles of bicarbonate, cAMP, and protein tyrosine 827 phosphorylation on capacitation and the spontaneous acrosome reaction of 828 hamster sperm. Biol Reprod 1999, 61, 76-84. 829 58. O'Flaherty, C.; de Lamirande, E.; Gagnon, C. Phosphorylation of the 830 Arginine-X-X-(Serine/Threonine) motif in human sperm proteins during 831 capacitation: modulation and protein kinase A dependency. *Mol Hum* 832 Reprod **2004**, 10, 355-363, doi:10.1093/molehr/gah046.

833 59. O'Flaherty, C.; Beorlegui, N.; Beconi, M.T. Participation of superoxide anion 834 in the capacitation of cryopreserved bovine sperm. Int J Androl 2003, 26, 109-835 114. 836 60. Freitas, M.J.; Vijayaraghavan, S.; Fardilha, M. Signaling mechanisms in 837 mammalian sperm motility. Biol Reprod 2017, 96, 2-12, 838 doi:10.1095/biolreprod.116.144337. 839 61. Gonzalez-Fernandez, L.; Ortega-Ferrusola, C.; Macias-Garcia, B.; Salido, 840 G.M.; Pena, F.J.; Tapia, J.A. Identification of protein tyrosine phosphatases 841 and dual-specificity phosphatases in mammalian spermatozoa and their 842 role in sperm motility and protein tyrosine phosphorylation. Biol Reprod 843 **2009**, 80, 1239-1252, doi:10.1095/biolreprod.108.073486. 844 62. Denu, J.M.; Tanner, K.G. Specific and reversible inactivation of protein 845 tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid 846 intermediate and implications for redox regulation. Biochemistry 1998, 37, 847 5633-5642, doi:10.1021/bi973035t. 848 63. Frijhoff, J.; Dagnell, M.; Godfrey, R.; Ostman, A. Regulation of protein 849 tyrosine phosphatase oxidation in cell adhesion and migration. *Antioxid* 850 Redox Signal **2014**, 20, 1994-2010, doi:10.1089/ars.2013.5643. 851 Ozkosem, B.; Feinstein, S.I.; Fisher, A.B.; O'Flaherty, C. Advancing age 64. 852 increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 853 null mice. *Redox Biol* **2015**, *5*, 15-23, doi:10.1016/j.redox.2015.02.004. 854 65. Jeong, W.; Bae, S.H.; Toledano, M.B.; Rhee, S.G. Role of sulfiredoxin as a 855 regulator of peroxiredoxin function and regulation of its expression. Free 856 Radic Biol Med **2012**, 53, 447-456, doi:10.1016/j.freeradbiomed.2012.05.020. 857 66. Wood, Z.A.; Schroder, E.; Robin Harris, J.; Poole, L.B. Structure, mechanism 858 and regulation of peroxiredoxins. *Trends Biochem Sci* **2003**, 28, 32-40. 859 67. Wood, Z.A.; Poole, L.B.; Karplus, P.A. Peroxiredoxin evolution and the 860 regulation of hydrogen peroxide signaling. Science 2003, 300, 650-653, 861 doi:10.1126/science.1080405.

- 862 68. Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive
- oxygen species are essential for autophagy and specifically regulate the
- activity of Atg4. EMBO J **2007**, 26, 1749-1760, doi:10.1038/sj.emboj.7601623.
- 865 69. Gualtieri, R.; Mollo, V.; Duma, G.; Talevi, R. Redox control of surface
- protein sulphhydryls in bovine spermatozoa reversibly modulates sperm
- adhesion to the oviductal epithelium and capacitation. *Reproduction* **2009**,
- 868 138, 33-43, doi:10.1530/REP-08-0514.
- 869 70. Gualtieri, R.; Iaccarino, M.; Mollo, V.; Prisco, M.; Iaccarino, S.; Talevi, R.
- Slow cooling of human oocytes: ultrastructural injuries and apoptotic status.
- 871 Fertil Steril **2009**, 91, 1023-1034, doi:10.1016/j.fertnstert.2008.01.076.
- 71. Talevi, R.; Zagami, M.; Castaldo, M.; Gualtieri, R. Redox regulation of sperm
- surface thiols modulates adhesion to the fallopian tube epithelium. *Biol*
- 874 *Reprod* **2007**, *76*, 728-735, doi:10.1095/biolreprod.106.056028.
- 875 72. Ortiz-Rodriguez, J.M.; Martin-Cano, F.E.; Ortega-Ferrusola, C.; Masot, J.;
- Redondo, E.; Gazquez, A.; Gil, M.C.; Aparicio, I.M.; Rojo-Dominguez, P.;
- Tapia, J.A., et al. The incorporation of cystine by the soluble carrier family 7
- member 11 (SLC7A11) is a component of the redox regulatory mechanism in
- stallion spermatozoa. *Biol Reprod* **2019**, 10.1093/biolre/ioz069,
- 880 doi:10.1093/biolre/ioz069.
- 881 73. Ball, B.A.; Gravance, C.G.; Medina, V.; Baumber, J.; Liu, I.K. Catalase
- activity in equine semen. *Am J Vet Res* **2000**, *61*, 1026-1030.
- 883 74. Baumber, J.; Ball, B.A. Determination of glutathione peroxidase and
- superoxide dismutase-like activities in equine spermatozoa, seminal plasma,
- and reproductive tissues. *Am J Vet Res* **2005**, *66*, 1415-1419.
- 886 75. Brummer, M.; Hayes, S.; Dawson, K.A.; Lawrence, L.M. Measures of
- antioxidant status of the horse in response to selenium depletion and
- repletion. *J Anim Sci* **2013**, *91*, 2158-2168, doi:10.2527/jas.2012-5794.
- 889 76. Leone, E. Ergothioneine in the equine ampullar secretion. *Nature* **1954**, 174,
- 890 404-405, doi:10.1038/174404b0.

891 77. Mann, T. Biochemistry of stallion semen. J Reprod Fertil Suppl 1975, 47-52. 892 78. Ortega Ferrusola, C.; Gonzalez Fernandez, L.; Morrell, J.M.; Salazar 893 Sandoval, C.; Macias Garcia, B.; Rodriguez-Martinez, H.; Tapia, J.A.; Pena, 894 F.J. Lipid peroxidation, assessed with BODIPY-C11, increases after 895 cryopreservation of stallion spermatozoa, is stallion-dependent and is 896 related to apoptotic-like changes. Reproduction 2009, 138, 55-63, 897 doi:10.1530/REP-08-0484. 898 79. Fernandez, M.C.; O'Flaherty, C. Peroxiredoxin 6 is the primary antioxidant 899 enzyme for the maintenance of viability and DNA integrity in human 900 spermatozoa. Hum Reprod 2018, 10.1093/humrep/dey221, 901 doi:10.1093/humrep/dey221. 902 80. Moawad, A.R.; Fernandez, M.C.; Scarlata, E.; Dodia, C.; Feinstein, S.I.; 903 Fisher, A.B.; O'Flaherty, C. Deficiency of peroxiredoxin 6 or inhibition of its 904 phospholipase A2 activity impair the in vitro sperm fertilizing competence 905 in mice. Sci Rep **2017**, 7, 12994, doi:10.1038/s41598-017-13411-2. 906 81. Efrat, M.; Stein, A.; Pinkas, H.; Breitbart, H.; Unger, R.; Birk, R. Paraoxonase 907 1 (PON1) attenuates sperm hyperactivity and spontaneous acrosome 908 reaction. Andrology 2018, 10.1111/andr.12552, doi:10.1111/andr.12552. 909 82. Barranco, I.; Tvarijonaviciute, A.; Perez-Patino, C.; Alkmin, D.V.; Ceron, J.J.; 910 Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. The activity of paraoxonase 911 type 1 (PON-1) in boar seminal plasma and its relationship with sperm 912 quality, functionality, and in vivo fertility. Andrology **2015**, 3, 315-320, 913 doi:10.1111/andr.309. 914 83. Barranco, I.; Roca, J.; Tvarijonaviciute, A.; Ruber, M.; Vicente-Carrillo, A.; 915 Atikuzzaman, M.; Ceron, J.J.; Martinez, E.A.; Rodriguez-Martinez, H. 916 Measurement of activity and concentration of paraoxonase 1 (PON-1) in 917 seminal plasma and identification of PON-2 in the sperm of boar ejaculates. 918 *Mol Reprod Dev* **2015**, *82*, 58-65, doi:10.1002/mrd.22444.

919 84. Lazaros, L.A.; Xita, N.V.; Hatzi, E.G.; Kaponis, A.I.; Stefos, T.J.; Plachouras, 920 N.I.; Makrydimas, G.V.; Sofikitis, N.V.; Zikopoulos, K.A.; Georgiou, I.A. 921 Association of paraoxonase gene polymorphisms with sperm parameters. *J* 922 Androl 2011, 32, 394-401, doi:10.2164/jandrol.110.010348. 923 85. Verit, F.F.; Verit, A.; Ciftci, H.; Erel, O.; Celik, H. Paraoxonase-1 activity in 924 subfertile men and relationship to sperm parameters. J Androl 2009, 30, 183-925 189, doi:10.2164/jandrol.108.004929. 926 86. Moradi, M.N.; Karimi, J.; Khodadadi, I.; Amiri, I.; Karami, M.; Saidijam, M.; 927 Vatannejad, A.; Tavilani, H. Evaluation of the p53 and Thioredoxin 928 reductase in sperm from asthenozoospermic males in comparison to 929 normozoospermic males. Free Radic Biol Med 2018, 116, 123-128, 930 doi:10.1016/j.freeradbiomed.2017.12.038. 931 87. Emelyanov, A.V.; Fyodorov, D.V. Thioredoxin-dependent disulfide bond 932 reduction is required for protamine eviction from sperm chromatin. *Genes* 933 *Dev* **2016**, 30, 2651-2656, doi:10.1101/gad.290916.116. 934 88. Tirmarche, S.; Kimura, S.; Dubruille, R.; Horard, B.; Loppin, B. Unlocking 935 sperm chromatin at fertilization requires a dedicated egg thioredoxin in 936 Drosophila. *Nat Commun* **2016**, 7, 13539, doi:10.1038/ncomms13539. 937 89. Su, D.; Novoselov, S.V.; Sun, Q.A.; Moustafa, M.E.; Zhou, Y.; Oko, R.; 938 Hatfield, D.L.; Gladyshev, V.N. Mammalian selenoprotein thioredoxin-939 glutathione reductase. Roles in disulfide bond formation and sperm 940 maturation. J Biol Chem 2005, 280, 26491-26498, doi:10.1074/jbc.M503638200. 941 90. Miranda-Vizuete, A.; Tsang, K.; Yu, Y.; Jimenez, A.; Pelto-Huikko, M.; 942 Flickinger, C.J.; Sutovsky, P.; Oko, R. Cloning and developmental analysis of 943 murid spermatid-specific thioredoxin-2 (SPTRX-2), a novel sperm fibrous 944 sheath protein and autoantigen. J Biol Chem 2003, 278, 44874-44885, 945 doi:10.1074/jbc.M305475200. 946 91. Yu, Y.; Oko, R.; Miranda-Vizuete, A. Developmental expression of 947 spermatid-specific thioredoxin-1 protein: transient association to the

948 longitudinal columns of the fibrous sheath during sperm tail formation. Biol 949 Reprod 2002, 67, 1546-1554. 950 92. Kuribayashi, Y.; Gagnon, C. Effect of catalase and thioredoxin addition to 951 sperm incubation medium before in vitro fertilization on sperm capacity to 952 support embryo development. Fertil Steril 1996, 66, 1012-1017. 953 93. O'Flaherty, C.; Matsushita-Fournier, D. Reactive oxygen species and protein 954 modifications in spermatozoa. Biol Reprod 2017, 97, 577-585, 955 doi:10.1093/biolre/iox104. 956 94. Ozkosem, B.; Feinstein, S.I.; Fisher, A.B.; O'Flaherty, C. Absence of 957 Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and 958 SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of 959 Mouse Spermatozoa. Biol Reprod 2016, 94, 68, 960 doi:10.1095/biolreprod.115.137646. 961 95. O'Flaherty, C. Peroxiredoxins: hidden players in the antioxidant defence of 962 human spermatozoa. Basic Clin Androl **2014**, 24, 4, doi:10.1186/2051-4190-24-963 4. 964 96. Ortega-Ferrusola, C.; Martin Munoz, P.; Ortiz-Rodriguez, J.M.; Anel-Lopez, 965 L.; Balao da Silva, C.; Alvarez, M.; de Paz, P.; Tapia, J.A.; Anel, L.; Silva-966 Rodriguez, A., et al. Depletion of thiols leads to redox deregulation, 967 production of 4-hydroxinonenal and sperm senescence: a possible role for 968 GSH regulation in spermatozoadagger. Biol Reprod 2019, 100, 1090-1107, 969 doi:10.1093/biolre/ioy241. 970 97. Keil, M.; Wetterauer, U.; Heite, H.J. Glutamic acid concentration in human 971 semen--its origin and significance. *Andrologia* **1979**, *11*, 385-391. 972 98. Munoz, P.M.; Ferrusola, C.O.; Lopez, L.A.; Del Petre, C.; Garcia, M.A.; de 973 Paz Cabello, P.; Anel, L.; Pena, F.J. Caspase 3 Activity and Lipoperoxidative 974 Status in Raw Semen Predict the Outcome of Cryopreservation of Stallion 975 Spermatozoa. *Biol Reprod* **2016**, 95, 53, doi:10.1095/biolreprod.116.139444.

976 99. Martin Munoz, P.; Ortega Ferrusola, C.; Vizuete, G.; Plaza Davila, M.; 977 Rodriguez Martinez, H.; Pena, F.J. Depletion of Intracellular Thiols and 978 Increased Production of 4-Hydroxynonenal that Occur During 979 Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss 980 of Motility, and Cell Death. Biol Reprod 2015, 93, 143, 981 doi:10.1095/biolreprod.115.132878. 982 100. Brand, M.D. Mitochondrial generation of superoxide and hydrogen 983 peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 984 **2016**, 100, 14-31, doi:10.1016/j.freeradbiomed.2016.04.001. 985 101. Goncalves, R.L.; Bunik, V.I.; Brand, M.D. Production of 986 superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate 987 dehydrogenase complex. Free Radic Biol Med 2016, 91, 247-255, 988 doi:10.1016/j.freeradbiomed.2015.12.020. 989 102. Samanta, L.; Agarwal, A.; Swain, N.; Sharma, R.; Gopalan, B.; Esteves, S.C.; 990 Durairajanayagam, D.; Sabanegh, E. Proteomic Signatures of Sperm 991 Mitochondria in Varicocele: Clinical Use as Biomarkers of Varicocele 992 Associated Infertility. J Urol 2018, 200, 414-422, 993 doi:10.1016/j.juro.2018.03.009. 994 103. Lu, X.; Zhang, Y.; Bai, H.; Liu, J.; Li, J.; Wu, B. Mitochondria-targeted 995 antioxidant MitoTEMPO improves the post-thaw sperm quality. *Cryobiology* 996 **2018**, 80, 26-29, doi:10.1016/j.cryobiol.2017.12.009. 997 104. Amaral, S.; R, S.T.; Baptista, M.; Sousa, M.I.; Silva, A.; Escada-Rebelo, S.; 998 Paiva, C.P.; Ramalho-Santos, J. Mitochondrial Functionality and Chemical 999 Compound Action on Sperm Function. Curr Med Chem **2016**, 23, 3575-3606. 1000 105. Gibb, Z.; Lambourne, S.R.; Quadrelli, J.; Smith, N.D.; Aitken, R.J. L-carnitine 1001 and pyruvate are prosurvival factors during the storage of stallion 1002 spermatozoa at room temperature. Biol Reprod 2015, 93, 104, 1003 doi:10.1095/biolreprod.115.131326.

1004 106. Pena, F.J.; Plaza Davila, M.; Ball, B.A.; Squires, E.L.; Martin Munoz, P.; 1005 Ortega Ferrusola, C.; Balao da Silva, C. The Impact of Reproductive 1006 Technologies on Stallion Mitochondrial Function. Reprod Domest Anim 2015, 1007 50, 529-537, doi:10.1111/rda.12551. 1008 107. Jones, D.P. Disruption of mitochondrial redox circuitry in oxidative stress. 1009 *Chem Biol Interact* **2006**, 163, 38-53, doi:10.1016/j.cbi.2006.07.008. 1010 108. Rico-Leo, E.M.; Moreno-Marin, N.; Gonzalez-Rico, F.J.; Barrasa, E.; Ortega-1011 Ferrusola, C.; Martin-Munoz, P.; Sanchez-Guardado, L.O.; Llano, E.; 1012 Alvarez-Barrientos, A.; Infante-Campos, A., et al. piRNA-associated 1013 proteins and retrotransposons are differentially expressed in murine testis 1014 and ovary of aryl hydrocarbon receptor deficient mice. Open Biol 2016, 6, 1015 doi:10.1098/rsob.160186. 1016 109. Losano, J.D.A.; Angrimani, D.S.R.; Ferreira Leite, R.; Simoes da Silva, B.D.C.; 1017 Barnabe, V.H.; Nichi, M. Spermatic mitochondria: role in oxidative 1018 homeostasis, sperm function and possible tools for their assessment. Zygote 1019 **2018**, 26, 251-260, doi:10.1017/S0967199418000242. 1020 Amaral, A.; Lourenco, B.; Marques, M.; Ramalho-Santos, J. Mitochondria 110. 1021 functionality and sperm quality. Reproduction 2013, 146, R163-174, 1022 doi:10.1530/REP-13-0178. 1023 111. Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of 1024 mitochondria in metabolism and cell death. Biochem Biophys Res Commun 1025 2017, 482, 426-431, doi:10.1016/j.bbrc.2016.11.088. 1026 Klingenberg, M. The ADP and ATP transport in mitochondria and its 112. 1027 carrier. Biochim Biophys Acta 2008, 1778, 1978-2021, doi:10.1016/j.bbamem.2008.04.011. 1028 1029 113. Ortega Ferrusola, C.; Anel-Lopez, L.; Ortiz-Rodriguez, J.M.; Martin Munoz, 1030 P.; Alvarez, M.; de Paz, P.; Masot, J.; Redondo, E.; Balao da Silva, C.; 1031 Morrell, J.M., et al. Stallion spermatozoa surviving freezing and thawing

doi:10.1074/mcp.M112.020552.

1058

1032 experience membrane depolarization and increased intracellular Na(). 1033 *Andrology* **2017**, *5*, 1174-1182, doi:10.1111/andr.12419. 1034 114. Moscatelli, N.; Lunetti, P.; Braccia, C.; Armirotti, A.; Pisanello, F.; De 1035 Vittorio, M.; Zara, V.; Ferramosca, A. Comparative Proteomic Analysis of 1036 Proteins Involved in Bioenergetics Pathways Associated with Human 1037 Sperm Motility. *Int J Mol Sci* **2019**, 20, doi:10.3390/ijms20123000. 1038 115. Ferramosca, A.; Zara, V. Bioenergetics of mammalian sperm capacitation. 1039 Biomed Res Int **2014**, 2014, 902953, doi:10.1155/2014/902953. 1040 116. Piomboni, P.; Focarelli, R.; Stendardi, A.; Ferramosca, A.; Zara, V. The role 1041 of mitochondria in energy production for human sperm motility. *Int J* 1042 *Androl* **2012**, 35, 109-124, doi:10.1111/j.1365-2605.2011.01218.x. 1043 117. Bucci, D.; Rodriguez-Gil, J.E.; Vallorani, C.; Spinaci, M.; Galeati, G.; 1044 Tamanini, C. GLUTs and mammalian sperm metabolism. J Androl 2011, 32, 1045 348-355, doi:10.2164/jandrol.110.011197. 1046 118. Marin, S.; Chiang, K.; Bassilian, S.; Lee, W.N.; Boros, L.G.; Fernandez-1047 Novell, J.M.; Centelles, J.J.; Medrano, A.; Rodriguez-Gil, J.E.; Cascante, M. 1048 Metabolic strategy of boar spermatozoa revealed by a metabolomic 1049 characterization. FEBS Lett 2003, 554, 342-346, doi:10.1016/s0014-1050 5793(03)01185-2. 1051 119. Asghari, A.; Marashi, S.A.; Ansari-Pour, N. A sperm-specific proteome-scale 1052 metabolic network model identifies non-glycolytic genes for energy 1053 deficiency in asthenozoospermia. Syst Biol Reprod Med 2017, 63, 100-112, 1054 doi:10.1080/19396368.2016.1263367. 1055 120. Amaral, A.; Castillo, J.; Estanyol, J.M.; Ballesca, J.L.; Ramalho-Santos, J.; 1056 Oliva, R. Human sperm tail proteome suggests new endogenous metabolic 1057 pathways. Mol Cell Proteomics 2013, 12, 330-342,

- 1059 121. Swegen, A.; Curry, B.J.; Gibb, Z.; Lambourne, S.R.; Smith, N.D.; Aitken, R.J.
- Investigation of the stallion sperm proteome by mass spectrometry.
- 1061 Reproduction **2015**, 149, 235-244, doi:10.1530/REP-14-0500.
- 1062 122. Qiu, J.H.; Li, Y.W.; Xie, H.L.; Li, Q.; Dong, H.B.; Sun, M.J.; Gao, W.Q.; Tan,
- J.H. Effects of glucose metabolism pathways on sperm motility and
- oxidative status during long-term liquid storage of goat semen.
- *Theriogenology* **2016**, *86*, 839-849, doi:10.1016/j.theriogenology.2016.03.005.
- 1066 123. Miraglia, E.; Lussiana, C.; Viarisio, D.; Racca, C.; Cipriani, A.; Gazzano, E.;
- Bosia, A.; Revelli, A.; Ghigo, D. The pentose phosphate pathway plays an
- 1068 essential role in supporting human sperm capacitation. Fertil Steril 2010, 93,
- 1069 2437-2440, doi:10.1016/j.fertnstert.2009.09.005.
- 1070 124. Ando, S.; Aquila, S. Arguments raised by the recent discovery that insulin
- and leptin are expressed in and secreted by human ejaculated spermatozoa.
- 1072 *Mol Cell Endocrinol* **2005**, 245, 1-6, doi:10.1016/j.mce.2005.09.011.
- 1073 125. Urner, F.; Sakkas, D. Involvement of the pentose phosphate pathway and
- redox regulation in fertilization in the mouse. *Mol Reprod Dev* **2005**, *70*, 494-
- 1075 503, doi:10.1002/mrd.20222.
- 1076 126. Williams, A.C.; Ford, W.C. Functional significance of the pentose phosphate
- pathway and glutathione reductase in the antioxidant defenses of human
- sperm. *Biol Reprod* **2004**, *71*, 1309-1316, doi:10.1095/biolreprod.104.028407.
- 1079 127. Urner, F.; Sakkas, D. A possible role for the pentose phosphate pathway of
- spermatozoa in gamete fusion in the mouse. *Biol Reprod* **1999**, *60*, 733-739,
- 1081 doi:10.1095/biolreprod60.3.733.
- 1082 128. Evdokimov, V.V.; Barinova, K.V.; Turovetskii, V.B.; Muronetz, V.I.;
- Schmalhausen, E.V. Low Concentrations of Hydrogen Peroxide Activate the
- 1084 Antioxidant Defense System in Human Sperm Cells. *Biochemistry (Mosc)*
- 1085 **2015**, 80, 1178-1185, doi:10.1134/S0006297915090084.
- 1086 129. Ford, W.C.; Whittington, K.; Williams, A.C. Reactive oxygen species in
- human sperm suspensions: production by leukocytes and the generation of

1088 NADPH to protect sperm against their effects. Int J Androl 1997, 20 Suppl 3, 1089 44-49. 1090 130. Ortiz-Rodriguez, J.M.; Balao da Silva, C.; Masot, J.; Redondo, E.; Gazquez, 1091 A.; Tapia, J.A.; Gil, C.; Ortega-Ferrusola, C.; Pena, F.J. Rosiglitazone in the 1092 thawing medium improves mitochondrial function in stallion spermatozoa 1093 through regulating Akt phosphorylation and reduction of caspase 3. PLoS 1094 One **2019**, 14, e0211994, doi:10.1371/journal.pone.0211994. 1095 131. Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, 1096 J.A. Cellular death, reactive oxygen species (ROS) and diabetic 1097 complications. Cell Death Dis **2018**, 9, 119, doi:10.1038/s41419-017-0135-z. 1098 132. Allaman, I.; Belanger, M.; Magistretti, P.J. Methylglyoxal, the dark side of 1099 glycolysis. Front Neurosci 2015, 9, 23, doi:10.3389/fnins.2015.00023. 1100 133. Nevin, C.; McNeil, L.; Ahmed, N.; Murgatroyd, C.; Brison, D.; Carroll, M. 1101 Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal 1102 on Human Sperm. *Sci Rep* **2018**, *8*, 9002, doi:10.1038/s41598-018-27108-7. 1103 134. Chen, M.C.; Lin, J.A.; Lin, H.T.; Chen, S.Y.; Yen, G.C. Potential effect of 1104 advanced glycation end products (AGEs) on spermatogenesis and sperm 1105 quality in rodents. Food Funct 2019, 10, 3324-3333, doi:10.1039/c9fo00240e. 1106 135. Karimi, J.; Goodarzi, M.T.; Tavilani, H.; Khodadadi, I.; Amiri, I. Relationship 1107 between advanced glycation end products and increased lipid peroxidation 1108 in semen of diabetic men. Diabetes Res Clin Pract 2011, 91, 61-66, 1109 doi:10.1016/j.diabres.2010.09.024. 1110 Aquila, S.; Gentile, M.; Middea, E.; Catalano, S.; Ando, S. Autocrine 136. 1111 regulation of insulin secretion in human ejaculated spermatozoa. 1112 Endocrinology 2005, 146, 552-557, doi:10.1210/en.2004-1252. 1113 137. Sangeeta, S.; Arangasamy, A.; Kulkarni, S.; Selvaraju, S. Role of amino acids 1114 as additives on sperm motility, plasma membrane integrity and lipid 1115 peroxidation levels at pre-freeze and post-thawed ram semen. *Anim Reprod* 1116 Sci **2015**, 161, 82-88, doi:10.1016/j.anireprosci.2015.08.008.

1117 138. Lahnsteiner, F. The role of free amino acids in semen of rainbow trout 1118 Oncorhynchus mykiss and carp Cyprinus carpio. J Fish Biol 2009, 75, 816-1119 833, doi:10.1111/j.1095-8649.2009.02317.x. 1120 139. Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter 1121 SLC7A11/xCT at the crossroads of regulating redox homeostasis and 1122 nutrient dependency of cancer. Cancer Commun (Lond) 2018, 38, 12, 1123 doi:10.1186/s40880-018-0288-x. 1124 140. Breda, C.N.S.; Davanzo, G.G.; Basso, P.J.; Saraiva Camara, N.O.; Moraes-1125 Vieira, P.M.M. Mitochondria as central hub of the immune system. *Redox* 1126 Biol 2019, 26, 101255, doi:10.1016/j.redox.2019.101255. 1127 141. Bromfield, E.G.; Aitken, R.J.; Anderson, A.L.; McLaughlin, E.A.; Nixon, B. 1128 The impact of oxidative stress on chaperone-mediated human sperm-egg 1129 interaction. Hum Reprod 2015, 30, 2597-2613, doi:10.1093/humrep/dev214. 1130 142. Gharagozloo, P.; Aitken, R.J. The role of sperm oxidative stress in male 1131 infertility and the significance of oral antioxidant therapy. Hum Reprod 2011, 1132 26, 1628-1640, doi:10.1093/humrep/der132. 1133 143. Aitken, R.J.; De Iuliis, G.N.; Finnie, J.M.; Hedges, A.; McLachlan, R.I. 1134 Analysis of the relationships between oxidative stress, DNA damage and 1135 sperm vitality in a patient population: development of diagnostic criteria. 1136 *Hum Reprod* **2010**, 25, 2415-2426, doi:10.1093/humrep/deq214. 1137 144. Aitken, R.J.; Baker, M.A. Oxidative stress, sperm survival and fertility 1138 control. Mol Cell Endocrinol **2006**, 250, 66-69, doi:10.1016/j.mce.2005.12.026. 1139 145. Thomson, L.K.; Fleming, S.D.; Aitken, R.J.; De Iuliis, G.N.; Zieschang, J.A.; 1140 Clark, A.M. Cryopreservation-induced human sperm DNA damage is 1141 predominantly mediated by oxidative stress rather than apoptosis. Hum 1142 *Reprod* **2009**, 24, 2061-2070, doi:10.1093/humrep/dep214. 1143 Garcia, B.M.; Moran, A.M.; Fernandez, L.G.; Ferrusola, C.O.; Rodriguez, 146. 1144 A.M.; Bolanos, J.M.; da Silva, C.M.; Martinez, H.R.; Tapia, J.A.; Pena, F.J. The 1145 mitochondria of stallion spermatozoa are more sensitive than the

1146 plasmalemma to osmotic-induced stress: role of c-Jun N-terminal kinase 1147 (JNK) pathway. J Androl 2012, 33, 105-113, doi:10.2164/jandrol.110.011957. 1148 147. Pena, F.J.; Ball, B.A.; Squires, E.L. A new method for evaluating stallion 1149 sperm viability and mitochondrial membrane potential in fixed semen 1150 samples. Cytometry B Clin Cytom 2016, 10.1002/cyto.b.21506, 1151 doi:10.1002/cyto.b.21506. 1152 148. Balao da Silva, C.M.; Ortega Ferrusola, C.; Morillo Rodriguez, A.; Gallardo 1153 Bolanos, J.M.; Plaza Davila, M.; Morrell, J.M.; Rodriguez Martinez, H.; 1154 Tapia, J.A.; Aparicio, I.M.; Pena, F.J. Sex sorting increases the permeability 1155 of the membrane of stallion spermatozoa. Anim Reprod Sci 2013, 138, 241-1156 251, doi:10.1016/j.anireprosci.2013.02.021. 1157 Rodriguez, A.M.; Ferrusola, C.O.; Garcia, B.M.; Morrell, J.M.; Martinez, 149. 1158 H.R.; Tapia, J.A.; Pena, F.J. Freezing stallion semen with the new Caceres 1159 extender improves post thaw sperm quality and diminishes stallion-to-1160 stallion variability. *Anim Reprod Sci* **2011**, 127, 78-83, 1161 doi:10.1016/j.anireprosci.2011.07.009. 1162 150. Ortega Ferrusola, C.; Gonzalez Fernandez, L.; Salazar Sandoval, C.; Macias 1163 Garcia, B.; Rodriguez Martinez, H.; Tapia, J.A.; Pena, F.J. Inhibition of the 1164 mitochondrial permeability transition pore reduces "apoptosis like" changes 1165 during cryopreservation of stallion spermatozoa. Theriogenology 2010, 74, 1166 458-465, doi:10.1016/j.theriogenology.2010.02.029. 1167 Ortega-Ferrusola, C.; Gil, M.C.; Rodriguez-Martinez, H.; Anel, L.; Pena, F.J.; 151. 1168 Martin-Munoz, P. Flow cytometry in Spermatology: A bright future ahead. 1169 Reprod Domest Anim **2017**, 52, 921-931, doi:10.1111/rda.13043. 1170 Gallardo Bolanos, J.M.; Miro Moran, A.; Balao da Silva, C.M.; Morillo 152. 1171 Rodriguez, A.; Plaza Davila, M.; Aparicio, I.M.; Tapia, J.A.; Ortega 1172 Ferrusola, C.; Pena, F.J. Autophagy and apoptosis have a role in the survival 1173 or death of stallion spermatozoa during conservation in refrigeration. PLoS 1174 One **2012**, 7, e30688, doi:10.1371/journal.pone.0030688.

1175 153. Gueraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P.M.; Huc, L.; Jouanin, 1176 I.; Siems, W.; Uchida, K. Chemistry and biochemistry of lipid peroxidation 1177 products. Free Radic Res 2010, 44, 1098-1124, 1178 doi:10.3109/10715762.2010.498477. 1179 154. Uchida, K. Lipid peroxidation and redox-sensitive signaling pathways. Curr 1180 Atheroscler Rep **2007**, 9, 216-221. 1181 155. Uchida, K. Cellular response to bioactive lipid peroxidation products. *Free* 1182 Radic Res 2000, 33, 731-737. 1183 156. Macias Garcia, B.; Gonzalez Fernandez, L.; Ortega Ferrusola, C.; Morillo 1184 Rodriguez, A.; Gallardo Bolanos, J.M.; Rodriguez Martinez, H.; Tapia, J.A.; 1185 Morcuende, D.; Pena, F.J. Fatty acids and plasmalogens of the 1186 phospholipids of the sperm membranes and their relation with the post-1187 thaw quality of stallion spermatozoa. Theriogenology 2011, 75, 811-818, 1188 doi:10.1016/j.theriogenology.2010.10.021. 1189 157. Garcia, B.M.; Fernandez, L.G.; Ferrusola, C.O.; Salazar-Sandoval, C.; 1190 Rodriguez, A.M.; Martinez, H.R.; Tapia, J.A.; Morcuende, D.; Pena, F.J. 1191 Membrane lipids of the stallion spermatozoon in relation to sperm quality 1192 and susceptibility to lipid peroxidation. Reprod Domest Anim 2011, 46, 141-1193 148, doi:10.1111/j.1439-0531.2010.01609.x. 1194 158. Martin Munoz, P.; Anel-Lopez, L.; Ortiz-Rodriguez, J.M.; Alvarez, M.; de 1195 Paz, P.; Balao da Silva, C.; Rodriguez Martinez, H.; Gil, M.C.; Anel, L.; Pena, 1196 F.J., et al. Redox cycling induces spermptosis and necrosis in stallion 1197 spermatozoa while the hydroxyl radical (OH*) only induces spermptosis. 1198 Reprod Domest Anim **2018**, 53, 54-67, doi:10.1111/rda.13052. 1199 Hall, S.E.; Aitken, R.J.; Nixon, B.; Smith, N.D.; Gibb, Z. Electrophilic 159. 1200 aldehyde products of lipid peroxidation selectively adduct to heat shock 1201 protein 90 and arylsulfatase A in stallion spermatozoa. Biol Reprod 2017, 96, 1202 107-121, doi:10.1095/biolreprod.116.145292.

1203 160. Bromfield, E.G.; Aitken, R.J.; McLaughlin, E.A.; Nixon, B. Proteolytic 1204 degradation of heat shock protein A2 occurs in response to oxidative stress 1205 in male germ cells of the mouse. Mol Hum Reprod 2017, 23, 91-105, 1206 doi:10.1093/molehr/gaw074. 1207 161. Gibb, Z.; Lambourne, S.R.; Curry, B.J.; Hall, S.E.; Aitken, R.J. Aldehyde 1208 Dehydrogenase Plays a Pivotal Role in the Maintenance of Stallion Sperm 1209 Motility. *Biol Reprod* **2016**, 94, 133, doi:10.1095/biolreprod.116.140509. 1210 162. Moazamian, R.; Polhemus, A.; Connaughton, H.; Fraser, B.; Whiting, S.; 1211 Gharagozloo, P.; Aitken, R.J. Oxidative stress and human spermatozoa: 1212 diagnostic and functional significance of aldehydes generated as a result of 1213 lipid peroxidation. Mol Hum Reprod 2015, 21, 502-515, 1214 doi:10.1093/molehr/gav014. 1215 163. Baker, M.A.; Weinberg, A.; Hetherington, L.; Villaverde, A.I.; Velkov, T.; 1216 Baell, J.; Gordon, C.P. Defining the mechanisms by which the reactive 1217 oxygen species by-product, 4-hydroxynonenal, affects human sperm cell 1218 function. Biol Reprod 2015, 92, 108, doi:10.1095/biolreprod.114.126680. 1219 164. Aitken, R.J.; Baker, M.A. Causes and consequences of apoptosis in 1220 spermatozoa; contributions to infertility and impacts on development. *Int J* 1221 Dev Biol 2013, 57, 265-272, doi:10.1387/ijdb.130146ja. 1222 165. Aitken, R.J.; Smith, T.B.; Lord, T.; Kuczera, L.; Koppers, A.J.; Naumovski, N.; 1223 Connaughton, H.; Baker, M.A.; De Iuliis, G.N. On methods for the detection 1224 of reactive oxygen species generation by human spermatozoa: analysis of 1225 the cellular responses to catechol oestrogen, lipid aldehyde, menadione and 1226 arachidonic acid. *Andrology* **2013**, *1*, 192-205, doi:10.1111/j.2047-1227 2927.2012.00056.x. 1228 166. Aurich, C.; Ortega Ferrusola, C.; Pena Vega, F.J.; Schrammel, N.; 1229 Morcuende, D.; Aurich, J. Seasonal changes in the sperm fatty acid 1230 composition of Shetland pony stallions. Theriogenology 2018, 107, 149-153, 1231 doi:10.1016/j.theriogenology.2017.11.004.

1232 167. Zimniak, P. Relationship of electrophilic stress to aging. Free Radic Biol Med 1233 **2011**, *51*, 1087-1105, doi:10.1016/j.freeradbiomed.2011.05.039. 1234 168. Martinez-Pastor, F.; Mata-Campuzano, M.; Alvarez-Rodriguez, M.; Alvarez, 1235 M.; Anel, L.; de Paz, P. Probes and techniques for sperm evaluation by flow 1236 cytometry. Reprod Domest Anim 2010, 45 Suppl 2, 67-78, doi:10.1111/j.1439-1237 0531.2010.01622.x. 1238 169. Aitken, R.J.; Gibb, Z.; Mitchell, L.A.; Lambourne, S.R.; Connaughton, H.S.; 1239 De Iuliis, G.N. Sperm motility is lost in vitro as a consequence of 1240 mitochondrial free radical production and the generation of electrophilic 1241 aldehydes but can be significantly rescued by the presence of nucleophilic 1242 thiols. *Biol Reprod* **2012**, *87*, 110, doi:10.1095/biolreprod.112.102020. 1243 170. Bromfield, E.G.; McLaughlin, E.A.; Aitken, R.J.; Nixon, B. Heat Shock 1244 Protein member A2 forms a stable complex with angiotensin converting 1245 enzyme and protein disulfide isomerase A6 in human spermatozoa. *Mol* 1246 *Hum Reprod* **2016**, 22, 93-109, doi:10.1093/molehr/gav073. 1247 171. Aitken, R.J.; Flanagan, H.M.; Connaughton, H.; Whiting, S.; Hedges, A.; 1248 Baker, M.A. Involvement of homocysteine, homocysteine thiolactone, and 1249 paraoxonase type 1 (PON-1) in the etiology of defective human sperm 1250 function. Andrology **2016**, 4, 345-360, doi:10.1111/andr.12157. 1251 172. Teperek, M.; Simeone, A.; Gaggioli, V.; Miyamoto, K.; Allen, G.E.; Erkek, S.; 1252 Kwon, T.; Marcotte, E.M.; Zegerman, P.; Bradshaw, C.R., et al. Sperm is 1253 epigenetically programmed to regulate gene transcription in embryos. 1254 *Genome Res* **2016**, 26, 1034-1046, doi:10.1101/gr.201541.115. 1255 173. Valcarce, D.G.; Carton-Garcia, F.; Riesco, M.F.; Herraez, M.P.; Robles, V. 1256 Analysis of DNA damage after human sperm cryopreservation in genes 1257 crucial for fertilization and early embryo development. Andrology 2013, 1, 1258 723-730, doi:10.1111/j.2047-2927.2013.00116.x. 1259 174. Valcarce, D.G.; Carton-Garcia, F.; Herraez, M.P.; Robles, V. Effect of 1260 cryopreservation on human sperm messenger RNAs crucial for fertilization

- and early embryo development. *Cryobiology* **2013**, *67*, 84-90,
- 1262 doi:10.1016/j.cryobiol.2013.05.007.
- 1263 175. Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the
- genome of gametes and embryos: principles of cryobiology and critical
- appraisal of the evidence. *Hum Reprod Update* **2015**, 21, 209-227,
- 1266 doi:10.1093/humupd/dmu063.
- 1267 176. Rex, A.S.; Aagaard, J.; Fedder, J. DNA fragmentation in spermatozoa: a
- historical review. *Andrology* **2017**, *5*, 622-630, doi:10.1111/andr.12381.
- 1269 177. Evenson, D.P.; Kasperson, K.; Wixon, R.L. Analysis of sperm DNA
- fragmentation using flow cytometry and other techniques. Soc Reprod Fertil
- 1271 Suppl **2007**, 65, 93-113.
- 1272 178. Lhomme, J.; Constant, J.F.; Demeunynck, M. Abasic DNA structure,
- reactivity, and recognition. *Biopolymers* **1999**, *52*, 65-83, doi:10.1002/1097-
- 1274 0282(1999)52:2<65::AID-BIP1>3.0.CO;2-U.
- 1275 179. Belmont, P.; Jourdan, M.; Demeunynck, M.; Constant, J.F.; Garcia, J.;
- 1276 Lhomme, J.; Carez, D.; Croisy, A. Abasic site recognition in DNA as a new
- strategy to potentiate the action of anticancer alkylating drugs? *J Med Chem*
- **1999**, *42*, 5153-5159.
- 1279 180. Greenberg, M.M. Looking beneath the surface to determine what makes
- DNA damage deleterious. Curr Opin Chem Biol 2014, 21, 48-55,
- doi:10.1016/j.cbpa.2014.03.018.
- 1282 181. San Pedro, J.M.; Greenberg, M.M. 5,6-Dihydropyrimidine peroxyl radical
- reactivity in DNA. J Am Chem Soc **2014**, 136, 3928-3936,
- 1284 doi:10.1021/ja412562p.
- 1285 182. Greenberg, M.M. Abasic and oxidized abasic site reactivity in DNA: enzyme
- inhibition, cross-linking, and nucleosome catalyzed reactions. *Acc Chem Res*
- 1287 **2014**, 47, 646-655, doi:10.1021/ar400229d.
- 1288 183. Balao da Silva, C.M.; Ortega-Ferrusola, C.; Morrell, J.M.; Rodriguez
- Martinez, H.; Pena, F.J. Flow Cytometric Chromosomal Sex Sorting of

1290 Stallion Spermatozoa Induces Oxidative Stress on Mitochondria and 1291 Genomic DNA. Reprod Domest Anim **2016**, 51, 18-25, doi:10.1111/rda.12640. 1292 184. Vorilhon, S.; Brugnon, F.; Kocer, A.; Dollet, S.; Bourgne, C.; Berger, M.; 1293 Janny, L.; Pereira, B.; Aitken, R.J.; Moazamian, A., et al. Accuracy of human 1294 sperm DNA oxidation quantification and threshold determination using an 1295 8-OHdG immuno-detection assay. Hum Reprod 2018, 33, 553-562, 1296 doi:10.1093/humrep/dey038. 1297 185. Li, Z.; Yang, J.; Huang, H. Oxidative stress induces H2AX phosphorylation 1298 in human spermatozoa. FEBS Lett 2006, 580, 6161-6168, 1299 doi:10.1016/j.febslet.2006.10.016. 1300 186. Garolla, A.; Cosci, I.; Bertoldo, A.; Sartini, B.; Boudjema, E.; Foresta, C. DNA 1301 double strand breaks in human spermatozoa can be predictive for assisted 1302 reproductive outcome. Reprod Biomed Online 2015, 31, 100-107, 1303 doi:10.1016/j.rbmo.2015.03.009. 1304 187. Castillo, J.; Jodar, M.; Oliva, R. The contribution of human sperm proteins to 1305 the development and epigenome of the preimplantation embryo. Hum 1306 *Reprod Update* **2018**, 24, 535-555, doi:10.1093/humupd/dmy017. 1307 188. Aitken, R.J.; Curry, B.J. Redox regulation of human sperm function: from the 1308 physiological control of sperm capacitation to the etiology of infertility and 1309 DNA damage in the germ line. *Antioxid Redox Signal* **2011**, 14, 367-381, 1310 doi:10.1089/ars.2010.3186. 1311 189. Burruel, V.; Klooster, K.L.; Chitwood, J.; Ross, P.J.; Meyers, S.A. Oxidative 1312 damage to rhesus macaque spermatozoa results in mitotic arrest and 1313 transcript abundance changes in early embryos. *Biol Reprod* **2013**, *89*, 72, 1314 doi:10.1095/biolreprod.113.110981. 1315 190. McCarthy, M.J.; Baumber, J.; Kass, P.H.; Meyers, S.A. Osmotic stress induces 1316 oxidative cell damage to rhesus macaque spermatozoa. Biol Reprod 2010, 82, 1317 644-651, doi:10.1095/biolreprod.109.080507.

Peer-reviewed version available at Antioxidants 2019, 8, 567; doi:10.3390/antiox8110567

1318	191.	Ortiz-Rodriguez, J.M.; Ortega-Ferrusola, C.; Gil, M.C.; Martin-Cano, F.E.;
1319		Gaitskell-Phillips, G.; Rodriguez-Martinez, H.; Hinrichs, K.; Alvarez-
1320		Barrientos, A.; Roman, A.; Pena, F.J. Transcriptome analysis reveals that
1321		fertilization with cryopreserved sperm downregulates genes relevant for
1322		early embryo development in the horse. PLoS One 2019, 14, e0213420,
1323		doi:10.1371/journal.pone.0213420.
1324	192.	Jodar, M. Sperm and seminal plasma RNAs: What roles do they play
1325		beyond fertilization? Reproduction 2019, 10.1530/REP-18-0639,
1326		doi:10.1530/REP-18-0639.
1327	193.	Zhou, D.; Suzuki, T.; Asami, M.; Perry, A.C.F. Caput Epididymidal Mouse
1328		Sperm Support Full Development. Dev Cell 2019, 50, 5-6,
1329		doi:10.1016/j.devcel.2019.05.012.
1330	194.	Morielli, T.; O'Flaherty, C. Oxidative stress impairs function and increases
1331		redox protein modifications in human spermatozoa. Reproduction 2015, 149,
1332		113-123, doi:10.1530/REP-14-0240.
1333		
1334		
1335		
1336		
1337		
1338		
1339		
1340		
1341		
1342		
1343		
1344		
1345		
1346		

48 of 50

Figure legends

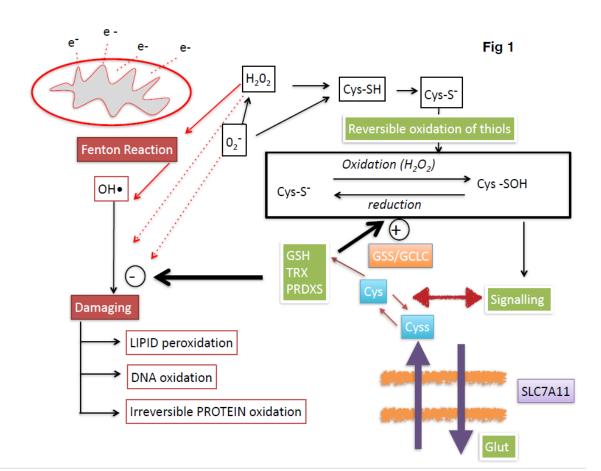


Fig 1.- Redox regulation in stallion spermatozoa. Electron leakage at the mitochondria is one of the main sources of ROS. Mechanisms to maintain redox homeostasis include thioredoxin and peroxiredoxin systems and GSH. The stallion spermatozoa can incorporate cyss to contribute to the intracellular GSH pool. Controlled levels of ROS regulate sperm functionality through reversible oxidation of thiols in cysteine containing proteins. If redox regulation is lost, irreversible oxidation of thiols and oxidative attack to lipids DNA and proteins occurs leading to sperm malfunction and finally death.

1360

1361

1362

1363

1364

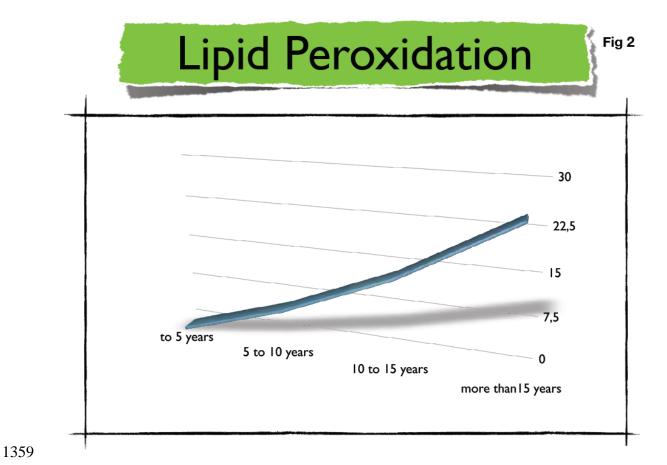


Fig 2.- Effect of stallion age in the peroxidation of sperm membranes, semen was collected from stallions of different ages and lipid peroxidation was assessed flow cytometrically after BODIPY 581/591 C11, as seen in the figure, lipid peroxidation increases with age

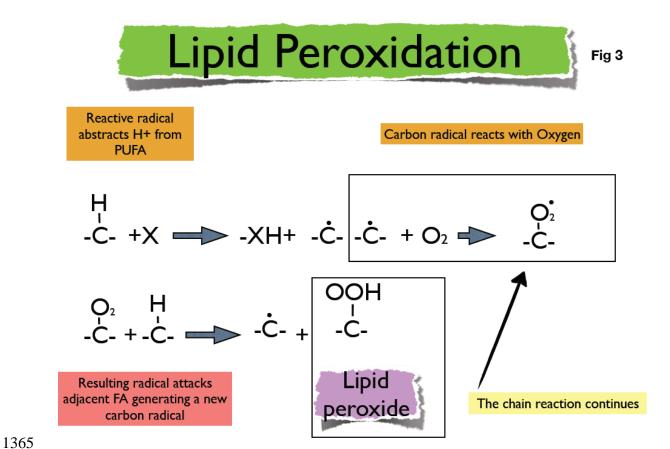


Fig 3.- Schematic overview of lipid peroxidation of the membranes; a lipid radical abstracts and hydrogen from a PUFA, generating a carbon centered radical reacts with and oxygen forming an oxygen centered radical, that abstracts another hydrogen from an adjacent PUFA, forming a lipid peroxide and propagating the cycle