

1 Article

2 Optimal Network Reconfiguration in Active 3 Distribution Networks with Soft Open Points and 4 Distributed Generation

5 Ibrahim M. Diaaeldin ¹, Shady H. E. Abdel Aleem^{2,*}, Ahmed El-Rafei ³, Almoataz Y. Abdelaziz ⁴
6 and Ahmed F. Zobaa ^{5,*}

7 ¹ Engineering Physics and Mathematics Department, Ain Shams University, Cairo, Egypt;
8 ibrahimmohamed@eng.asu.edu.eg; ibrahimmohamed@ieee.org

9 ² Mathematical, Physical and Engineering Sciences Department, 15th of May Higher Institute of
10 Engineering, Cairo, Egypt; engyshady@ieee.org; shossam@theiet.org

11 ³ Engineering Physics and Mathematics Department, Ain Shams University, Cairo, Egypt;
12 ahmed.elrafei@eng.asu.edu.eg

13 ⁴ Electric Power and Machines Department, Ain Shams University, Cairo, Egypt;
14 almoataz_abdelaziz@eng.asu.edu.eg; almoataz.abdelaziz@fue.edu.eg; almoataz.abdelaziz@ieee.org

15 ⁵ Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, U.K.;
16 azobaa@ieee.org

17 * Correspondence: engyshady@ieee.org; Tel.: +2-01227567489

18

19 **Abstract:** In this paper, a recent meta-heuristic optimization algorithm called the discrete-
20 continuous hyper-spherical search algorithm is used to solve the mixed-integer nonlinear problem
21 of soft open points (SOPs) and renewable distributed generators allocation along with new network
22 reconfiguration methodology under different loading conditions to minimize the total power loss
23 in balanced distribution systems. Multi-scenario studies, which aim to improve the investigation of
24 the overall performance of the strategies, are conducted on IEEE 33-node and 83-node balanced
25 distribution systems. The contributions of SOP losses to the total active losses, as well as the effect
26 of increasing the number of SOPs connected to the system, are investigated to determine the real
27 benefits gained from their allocation. The results obtained validate, with proper justifications, the
28 effectiveness of allocating both SOPs and renewable distributed generators with the proposed
29 network reconfiguration methodology to provide the best operation of distribution networks with
30 minimum losses and enhanced power quality performance. It was also shown that SOPs
31 successfully assist the growing integration plans of the renewable distributed generators units and
32 can address issues related to voltage violations and network losses efficiently.

33 **Keywords:** Distributed generator, load balancing, network reconfiguration, optimization, power
34 loss minimization, soft open points.

35 **Abbreviations:**

ADN	Active distribution network
B2B VSC	Back-to-back voltage source converter
BLP	Bi-level programming
CB	Capacitor bank
D-HSS	Discrete hyper-spherical search algorithm
DC-HSS	Discrete-continuous HSS algorithm
DG	Distributed generation
EA	Evolutionary algorithm
ESS	Energy storage system
HC	Hosting capacity
HSS	Hyper-spherical search algorithm

HSA	Harmony search algorithm
MHM	Modified honeybee mating
MINLP	Mixed-integer nonlinear programming
MISOCP	Mixed-integer second-order cone programming
NR	Network reconfiguration
PF	Power factor
PQ	Power quality
PSO	Particle swarm optimization
SOP	Soft open point
SOCP	Second-order cone programming
SC	Sphere-center
VSC	Voltage source converter
VD	Voltage deviation
GA	Genetic algorithm

36

Nomenclature:

A_{loss}^{SOP}	Loss coefficient of VSCs
$AVDI$	Aggregate voltage deviation index
AP	The assigning probability
D_{SC}	Normalized dominance for each SC
$DSOF$	Difference of set objective functions for each set of particles and their sphere-center
f_{SC}	Objective function value for each SC
$f_{particles\ of\ SC}$	Objective function value for each particle assigned to a SC
I_b	line current flowing in line b
I_b^{rated}	Rated line current flowing in line b
LBI_b	Load balancing index of line b
LBI_{tot}	Total load balancing index
Max_{iter}	Maximum number of iterations
M	Incidence matrix
N_{br}	Number of lines existing in the distribution network
N_n	Number of nodes existing in the distribution network
N_f	Number of feeders
N_{DG}	Number of distributed generators
N_{SOP}	Number of allocated SOPs
N_{pop}	Population size
N_{SC}	Number of sphere-centers
N_{newpar}	Number of new generated particles
N	Number of decision variables
OFD	Objective function difference
Pr_{angle}	Probability of changing particle's angle
P_i, Q_i	Active and reactive power injected at the i^{th} node
P_i^L, Q_i^L	Active and reactive power of the connected load to the i^{th} node
P_i^{DG}, Q_i^{DG}	Active and reactive DG power injected at the i^{th} node
P_i^{SOP}, Q_i^{SOP}	SOP active and reactive power injected to the i^{th} feeder
$P_i^{SOP-loss}$	Internal power loss of the converter connected to the i^{th} feeder
P_{loss}^{tot}	Total active power losses
$P_{loss}^{SOP-loss}$	SOP's internal power losses

$Q_I^{SOP-min}$	Minimum and maximum SOP reactive injected to the I^{th} feeder
$Q_I^{SOP-max}$	
$r_{i,i+1}, x_{i,i+1}$	Line resistance and reactance between nodes i and $i + 1$
r, θ	Distance and angle between the particle and the sphere-center
r_{min}, r_{max}	Minimum and maximum radius of the sphere-center for continuous HSS
$r_{d,min}, r_{d,max}$	Minimum and maximum radius of the sphere-center for discrete HSS
S_I^{SOP}	Maximum capacity limit of the planned SOP
S^{DG}	Maximum capacity limit of the installed DGs
SOF	Set objective function
μ	Binary variable set to 1 if the SOP loss is considered and to 0 if the SOP loss is not considered.
$ V_i $	Magnitude of the voltage at the i^{th} node
V_{min}, V_{max}	Minimum and maximum voltage limits
X_{rand}	Random binary vector
X_{temp}	Temporary binary vector
D_{temp}	A vector equal to the difference between the temporary and random vectors
X_{check}	Reconfiguration checking vector
X_{best}^{rec}	Best reconfiguration vector
x_i	A vector of decision variables
$X_{i,min}, X_{i,max}$	Minimum and maximum values of continuous decision variables
$X_{id,min}, X_{id,max}$	Minimum and maximum values of discrete decision variables
β_{min}	Minimum lagging power factor

37

38 **1. Introduction**

39 The high penetration of distributed generation (DG) units has resulted in new challenges for the
 40 planning and operation of power distribution systems, such as power loss increase, harmonic
 41 distortion aggregation, equipment overloads, and voltage quality problems. Thus, there is significant
 42 room for improvement and new perceptions to face these challenges are needed to cope with future
 43 advances in order to realize resilient electrical distribution systems with high renewables penetration
 44 and guarantee reliable and efficient network performance. In this regard, transmission and
 45 distribution network operators are facing a great challenge to identify the sources of network losses,
 46 utilize appropriate solutions to ensure reduced losses, operational costs and emissions, while keeping
 47 future energy losses as low as possible through proper planning of distribution systems with low
 48 carbon technologies [1], [2].

49 Traditionally, power loss can be minimized via several methods such as using power quality
 50 (PQ) devices to enhance the PQ performance of a system by limiting inefficiencies in the way power
 51 is transferred and reducing harmonic distortion, which result in increased loss in distribution
 52 networks [3]; reducing network imbalance, as an unbalanced power system will have higher currents
 53 in one or more phases compared to balanced power systems [4]; improving the power factor (PF)
 54 where low PF circuits suffer from a significant increase in the current at the same power delivered
 55 [5]; configuring power system networks to provide a flexible framework to transfer electrical loads
 56 between feeders that result in minimized loss and improved balancing of loads [6]; upgrading
 57 networks to higher voltage levels while expanding reinforcement plans to guarantee significant loss
 58 savings [7], [8] considering enhanced demand response programs to reschedule energy usage and
 59 improve the reliability and efficiency of electrical networks and consequently reduce losses [9]; and
 60 allocating DG units and power electronic devices in the distribution network [10] to control power
 61 delivery between interlinked feeders and reduce power loss efficiently. However, it is prudent to

62 ensure that DGs or electronic devices are optimally sized and connected to suitable locations in power
63 systems to take full advantage of their positive benefits [1], [6].

64 Power systems are electrically separated via open points (switches). These open points are
65 strategically positioned to balance loads and hence reduce losses. Hence, network reconfiguration
66 (NR) can be performed by changing the state of sectionalized (closed) and tie (open) switches,
67 considering the need not to lose the radiality of the system. In the literature, NR has been applied in
68 different works to minimize network losses, improve the voltage profile, balance loads between two
69 or more feeders, and reduce the need for network reinforcement, while considering the influence and
70 increase of penetration of the DG units [6]. Also, the NR problem can be solved while taking into
71 account the optimal placement of shunt capacitors [11], harmonic filters [12] and power electronic
72 devices [13] to control the flow of either reactive and active powers or both between the feeders they
73 are connected to, because the extra power conditioners may be beneficial in some cases to enhance
74 the operational flexibility of the existing configurations, leading to more cumulative benefits of
75 reduced losses.

76 In this regard, soft open points (SOPs) are power electronic devices that can be placed instead of
77 normally open/closed points to provide a fast response, frequent actions and enhanced control
78 scheme for power flow between adjacent feeders they are connected to. In the near past, the optimal
79 operation of SOPs was investigated in balanced and unbalanced active distribution networks [14],
80 [15]. Several design strategies are manipulated for their optimal operation, such as the minimization
81 of energy loss [15] or annual expense [16] in a system, loads balancing [17], voltage profile
82 enhancement [18], and increasing the renewables hosting capacity [19] in distribution systems.
83 Various single-objective and multi-objective optimization techniques were used to solve these
84 optimization problems. Table 1 presents an overview of research works that have addressed SOPs
85 design and operation [15]–[34].

86 Some researchers such as Xiao et al. [34] did not consider the active power loss of the SOP
87 although there is active power loss in the SOP itself. However, they assumed that the active power
88 loss of the SOP is relatively small when compared to the entire distribution system losses. On the
89 other hand, the impact of the internal active losses of SOPs was presented in many research works,
90 but the influence of SOPs' power loss on the system performance, its share in the total active power
91 loss, and the effect of increasing the number of SOPs connected to the system are not investigated in
92 these works. Also, throughout the literature, one can see that most of the studies concerned with NR
93 and SOPs assume a fixed number and location of the SOP, which might not result in optimal
94 operational performance, in addition to permitting reverse power flow in the systems considered in
95 these studies. Moreover, optimizing the NR, DGs allocation and SOPs placement strategies separately
96 has some drawbacks, such as the lack of collaboration between strategies, which may lead to sub-
97 optimal overall performance and an inability to model the correlation between the benefits of each
98 strategy. To redress these gaps, in this study, we are motivated to allocate SOPs and DGs
99 simultaneously with and without NR and investigate the contribution of SOP losses to the total active
100 losses, as well as the effect of increasing the number of SOPs connected to the studied systems under
101 different loading conditions to determine the real benefits gained from each strategy. In addition, an
102 analytical NR approach is proposed to obtain radial configurations in an efficient manner without
103 the possibility of getting trapped in local minima. Further, multi-scenario studies, which aim to
104 improve the investigation of the overall performance of the strategies, are conducted on an IEEE 33-
105 node balanced benchmark distribution system and an 83-node balanced distribution system from a
106 power company in Taiwan.

Table 1. Overview of research works addressing SOPs design and operation

Ref.	Scope*	Year	Objective	Optimization technique	SOP	NR	DG	CB	ESS	OLTC	System	Remarks
[15]	PS	2016	Loss minimization and LBI	Improved Powell's Direct Set	✓	✓	✓	✗	✗	✗	33-node	A study was conducted to compare NR and SOP. A new methodology was proposed to combine NR and SOP.
[19]	PS	2017	HC maximization	Strengthened SOCP	✓	✗	✓	✗	✗	✗	33-node	A strengthened SOCP was proposed to verify the exactness of the optimality gap to maximize the HC of the system.
[20]	PE	2016	Studying the operation of SOPs	✗	✓	✗	✗	✗	✗	✗	MV distribution network	The operating principles for the placement of SOPs under normal, fault and post-fault conditions were discussed.
[21]	PE	2018	Fault detection	✗	✓	✗	✗	✗	✗	✗	✗	A new index was proposed to detect faults based on local measurements of the symmetrical voltages.
[24]	PS	2017	Power loss minimization	PSO	✓	✗	✓	✗	✗	✗	Anglesey network	The main aim was to convert an existing double 33 kV AC circuit to DC operation to increase the HC of the network.
[22]	PS	2016	Annual costs minimization	MISOCP	✓	✗	✓	✗	✗	✗	33-node	A mixed-integer SOCP was proposed to minimize annual expenses, which comprise the investment cost of SOPs, operation cost of SOPs and power loss expenses.
[23]	PS	2017	DGs penetration maximization	Ant colony	✓	✓	✓	✗	✗	✗	33-node	Different scenarios were conducted to maximize DGs penetration.
[16]	PS	2017	Minimization of annual cost and power loss	BLP	✓	✗	✓	✓	✗	✗	33-node	Bi-level programming was used to find the optimal allocation of DGs, CBs and a SOP where the annual costs and power losses were considered as the problem levels.
[25]	PS	2019	Combined minimization of total power loss and VD	MISOCP	✓	✗	✓	✗	✗	✗	69-node and 123-node	A decentralization method was proposed to reduce the dependency on a massive communication and computation burden.
[26]	PS	2018	Power loss minimization	Sequential optimization	✓	✗	✓	✗	✓	✗	33-node	A new approach was introduced to gain the benefits of both SOPs and ESS. A sequential optimization model was used to minimize network losses, converter losses and ESS losses.

Ref.	Scope*	Year	Objective	Optimization technique	SOP	NR	DG	CB	ESS	OLTC	System	Remarks
[27]	PS	2016	HC maximization	×	√	×	√	×	×	×	Generic system	HC maximization gained from insertion of a SOP between two distinct 33 kV networks were presented.
[28]	PS	2016	Power loss minimization	MISOCP	√	√	√	×	×	×	33-node	A new methodology to allocate a SOP along with NR simultaneously considering the cost of switching actions and SOP losses was presented.
[29]	PS	2017	Minimization of ESS costs	MISOCP	√	√	√	×	√	√	33-node	Optimally sited and sized ESSs in an ADN that includes SOP and DGs smart inverters were presented.
[30]	PS	2017	LBI and power loss minimization	SOCP	√	×	√	×	×	×	33-node	Installation of a multi-terminal SOP using an enhanced SOCP-based method was proposed.
[31]	PS	2018	Restored loads maximization	Primal-dual interior-point	√	×	√	×	√	×	33-node and 123-node	SOP islanding partitioning of ADNs with DGs, loads and ESSs time series characteristics was presented.
[32]	PS	2017	Operation cost and VD minimization	MISOCP	√	×	√	√	√	√	33-node and 123-node	Optimal coordination between OLTC, CBs and SOP using a time-series model was presented.
[17]	PE	2016	VD, LBI and energy loss minimization	Interior-point	√	×	√	×	×	×	MV distribution network	A Jacobian matrix-based sensitivity method was proposed to operate a SOP under various conditions.
[18]	PS	2017	Power loss, LBI and VD minimization	MOPSO and Taxicab	√	√	√	×	×	×	69-node	Optimal allocation of SOP with NR at various DGs penetrations was presented.
[33]	PS	2017	Annual expenses minimization	MISOCP	√	√	√	×	×	×	33-node and 83-node	A new concept was presented to install SOPs in normally closed lines as well as normally open lines.
[34]	PS	2018	Voltage imbalance	Improved differential evolution algorithm	√	×	√	×	×	×	Hybrid distribution system	Optimal allocation of SOPs to improve 3-phase imbalance with DGs and loads uncertainties were proposed using an improved differential evolution algorithm.

109 The multi-scenario studies investigated in this work are: 1) NR as a stand-alone strategy, 2) DGs
110 allocation as a stand-alone strategy, 3) simultaneous NR and DGs allocation, 4) SOPs allocation
111 without NR, 5) SOPs allocation after NR is performed, 6) simultaneous SOPs allocation and NR, 7)
112 simultaneous SOPs and DGs allocation without NR, 8) simultaneous SOPs and DGs allocation after
113 NR is performed, and 9) simultaneous NR and SOPs and DGs allocation.

114 A recent meta-heuristic optimization algorithm called the discrete-continuous hyper-spherical
115 search (DC-HSS) algorithm is used to solve the mixed-integer nonlinear problem (MINLP) of SOPs
116 and DGs allocation along with NR to minimize power loss in the distribution systems. The DC-HSS
117 has the advantages of fast convergence to the optimal/near-optimal solutions [35], [36].

118 The contribution of this work is twofold. First, we propose a new NR methodology to obtain the
119 possible radial configurations from random configurations to minimize power loss in two
120 distribution systems, taking into account different strategies for DGs, SOPs, and NR while
121 considering multi-scenarios to improve the investigation of the overall performance of the
122 strategies, and in turn their priorities. Second, the contribution of SOP losses to the total active losses
123 as well as the effect of increasing the number of SOPs connected to the system are investigated under
124 different loading conditions to determine the real benefits gained from SOPs and DGs allocation with
125 network reconfiguration to provide the best operation of distribution networks with minimum losses
126 and enhanced power quality performance. It was clear from the results obtained that placing SOPs
127 and DGs into a distribution system creates a hybrid configuration that merges the benefits offered by
128 radial and meshed distribution systems and mitigates drawbacks related to losses, PQ, and voltage
129 violations, while offering far more efficient and optimal network operation.

130 The rest of the paper is organized as follows: Section II presents the problem statement, proposed
131 NR methodology, modeling of SOPs and DGs, and PQ indices that evaluate the system performance.
132 Further, Section III presents the problem formulation and the search algorithm used to solve the
133 mixed-integer nonlinear problem. Section IV presents the results and discusses them, and Section V
134 presents the conclusions and limitations of our study as well as a preview of future works.

135 2. Problem Statement

136 The NR, SOPs and DGs modeling, and PQ performance indices, namely the load balancing index
137 (*LBI*), and aggregate voltage deviation index (*AVDI*), are presented and discussed. Hence, the
138 formulation of the load flow calculations, the objective function to minimize the network active
139 power loss, the constraint conditions of voltage, current, SOP capacity, active and reactive powers,
140 and the DC-HSS algorithm proposed to solve the formulated MINLP problem are presented.

141 2.1. Proposed Network Reconfiguration

142 Distribution systems have sectionalizing switches (normally closed switches) that connect line
143 sections and tie switches (normally open switches) that connect two primary feeders, two substation
144 buses, or loop-type laterals. Each line is assumed a sectionalized line with a normally closed
145 sectionalized switch in the line. Also, each normally open tie switch is assumed to be in each tie line.
146 Thus, NR is the change that occurs in the status of tie and sectionalized switches to reconnect
147 distribution feeders to form a new radial structure for a certain operation goal without violating the
148 condition of having a radial structure. In this study, the procedure of NR to generate possible radial
149 configurations in a fast and efficient manner is implemented analytically and is clarified as follows:
150 **Step 1:** A binary vector $X_{rand}^{(0)} = [1\ 0\ 0\ 1\ 1\ \dots\ 1]_{1 \times N_{br}}$ is initialized with random binary values, in
151 which its length is equal to the number of lines (N_{br}) with its sectionalized and tie switches. The
152 sectionalized switches are denoted "1" and the tie switches are denoted "0".

153 **Step 2:** The best reconfiguration vector of the system (X_{best}^{rec}), which represents the best vector that
154 meets the radiality requirements (described in Step 6) and achieves the desired goal, is initialized
155 with the base configuration of the system.

156 **Step 3:** A temporary vector $X_{temp}^{(0)}$ that is equal to X_{best}^{rec} is created. At that point, each element in
157 $X_{temp}^{(0)}$ is compared with the corresponding element in $X_{rand}^{(0)}$ to create a new vector $D_{temp}^{(0)}$, in which

158 $D_{temp}^{(0)} = X_{temp}^{(0)} - X_{rand}^{(0)}$. Further, $\forall b \in N_{br}$, if $D_{temp}^{(0)}(b) = 1$, it means that this b th line is changed to
 159 a tie line in the random vector; also if $D_{temp}^{(0)}(b) = -1$, it means that the b th line is changed to a
 160 sectionalized line in the random vector. Otherwise, if $D_{temp}^{(0)}(b) = 0$, this indicates that no change has
 161 occurred.

162 **Step 4:** Starting from the first element in $D_{temp}^{(0)}$, if $D_{temp}^{(0)}(b) = 1$ and $D_{temp}^{(0)}(j) = -1$, where j
 163 denotes a random line selected from the remaining lines in the system with the condition that $b \neq j$,
 164 a vector $X_{check}^{(0)}$ is generated so that $X_{check}^{(0)}$ is equal to $X_{temp}^{(0)}$ subjected to $X_{check}^{(0)}(b) = 0$ and
 165 $X_{check}^{(0)}(j) = 1$. The vector $X_{check}^{(0)}$ is then checked for radiality described in Step 6. If it is found to be
 166 radial, then b is updated so that $b = b + 1$, and the vector $X_{temp}^{(1)}$ is generated equal to $X_{best}^{rec(1)}$. It
 167 should be mentioned that a set of $X_{check}^{(0)}$ vectors may be generated as soon as b is smaller than or
 168 equal to N_{br} , and the vectors found to be radial in this set are evaluated based on their fitness value
 169 to give the best X_{best}^{rec} .

170 **Step 5:** The steps will terminate when we achieve a very small distance among serial solutions by
 171 evaluation of the objective function.

172 **Step 6:** The procedure of radiality check is done as follows:

- 173 • Build an incidence matrix M where its rows and columns represent the lines and nodes of the
 174 distribution network, respectively. The nodes of each line are denoted "1" in M , and the rest of
 175 the elements in the row are denoted "0".
- 176 • Elements in the rows of each tie line are set to "0". Then, we create a vector S , in which its length
 177 is equal to the number of nodes, and each element e in S is equal to the sum of its corresponding
 178 e^{th} column in M . If an element in S is equal to "1", it means that this element represents an end
 179 node. Further, the row that corresponds to this end node in M is set to "0".
- 180 • Recalculate S and repeat the former process as soon as an element in S is equal to 1. At that
 181 point, calculate the sum of all the elements in M . If the sum is equal to zero, this means that the
 182 configuration is radial, otherwise, it is not radial.

183 An illustrative example for a 19-node system is given in Table 2 to clarify the proposed
 184 reconfiguration procedure, in which the lines changed to ties are shaded blue, and the lines changed
 185 to sectionalized are shaded yellow. Fig. 1(a) shows the initial configuration of the 19-node system.
 186 Figs. 1(b) and 1(c) show two possible attempts to obtain a new configuration of the system in the first
 187 two generations of the reconfiguration procedure. From that, it can be noted that the proposed
 188 algorithm can produce a series of radial configurations and modify the obtained non-radial
 189 configurations to be radial.

190 **Table 2.** Proposed NR Procedure

Line	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Radiality
First generation																					
$X_{best}^{rec(0)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	Yes	
$X_{temp}^{(0)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	Yes	
$X_{rand}^{(0)}$	1	0	1	0	0	1	1	0	1	1	0	0	1	0	1	1	0	1	0	NA*	
$D_{temp}^{(0)}$	0	1	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	1	-1	0	NA
$X_{check}^{(0)}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Yes
Second generation																					
$X_{best}^{rec(1)}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Yes	
$X_{temp}^{(1)}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Yes
$X_{rand}^{(1)}$	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	0	1	1	NA	
$D_{temp}^{(1)}$	0	0	1	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	0	-1	NA
$X_{check}^{(1)}$	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	No
Third generation																					
$X_{best}^{rec(2)}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Yes	

191 *NA: not applicable

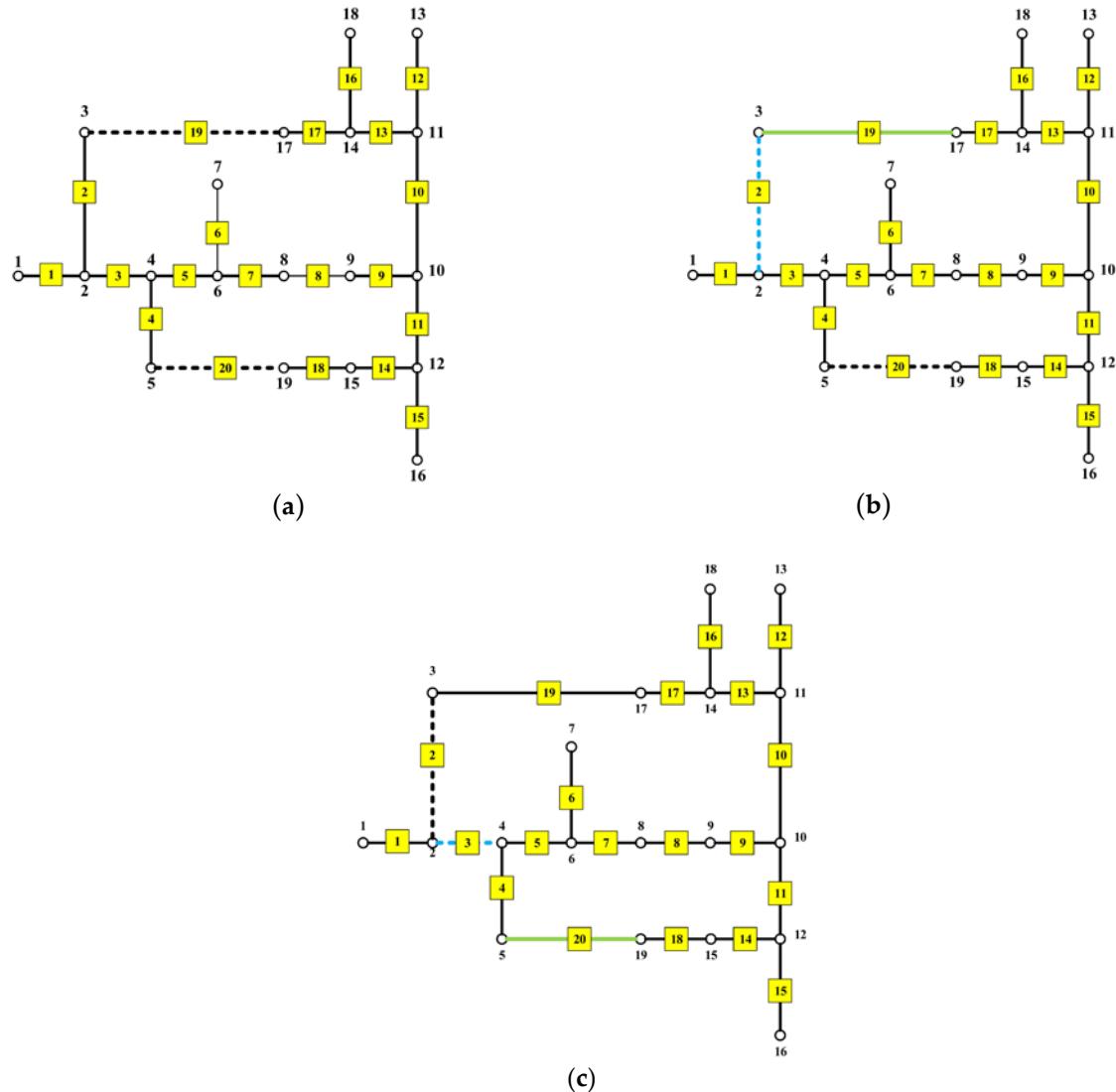
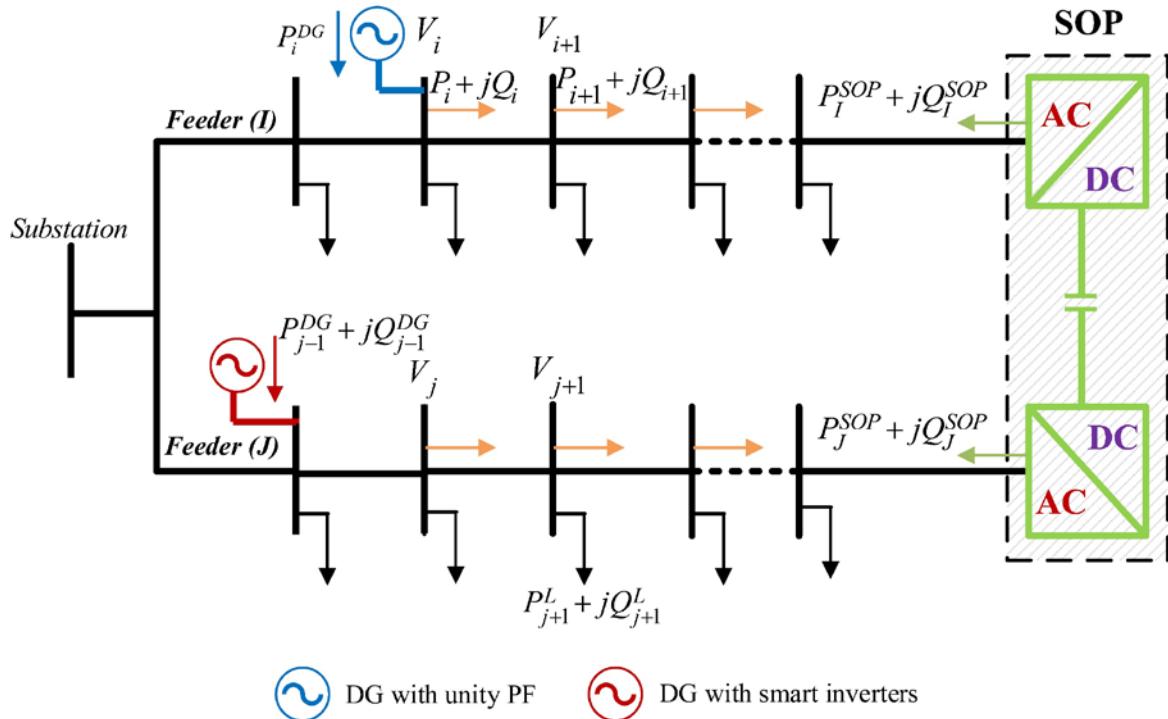


Figure 1. Illustrative 19-node distribution system: (a) base configuration, (b) radial configuration generated ($X_{check}^{(0)}$), and (c) non-radial configuration generated ($X_{check}^{(1)}$).

192
193
194
195
196

197 2.2. SOP Modeling


198 SOPs were first presented in 2011 [39] to provide resilience between distribution feeders. They
199 can be integrated in distribution networks using three topologies, comprising a back-to-back (B2B)
200 voltage source converter (VSC), static series synchronous compensator and unified power flow
201 controller [40]. In this work, we used a B2B-VSC as the integration topology for SOPs connected to
202 the studied systems because of its flexibility and dynamic capability to enhance the power quality.
203 Fig. 2 shows an illustration of SOPs integration into a distribution system. To model a SOP, the main
204 equations to model the flow of power in the network under study are expressed as follows:

$$205 P_{i+1} = P_i - P_{i+1}^L - r_{i,i+1} \cdot \frac{P_i^2 + Q_i^2}{|V_i|^2} \quad (1)$$

$$206 Q_{i+1} = Q_i - Q_{i+1}^L - x_{i,i+1} \cdot \frac{P_i^2 + Q_i^2}{|V_i|^2} \quad (2)$$

$$207 |V_{i+1}|^2 = |V_i|^2 - 2(r_{i,i+1} \cdot P_i + x_{i,i+1} \cdot Q_i) + (r_{i,i+1}^2 + x_{i,i+1}^2) \frac{P_i^2 + Q_i^2}{|V_i|^2} \quad (3)$$

208 where P_i and Q_i are the injected active and reactive powers at the i^{th} node, P_{i+1}^L and Q_{i+1}^L are the

209
210 DG with unity PF DG with smart inverters

Figure 2. Illustration of SOPs integration into a distribution system

211 active and reactive powers of the connected loads onto node $i + 1$, $|V_i|$ is the magnitude of the i^{th}
212 node voltage and $r_{i,i+1}$ and $x_{i,i+1}$ are the feeder resistance and reactance between nodes i and $i +$
213 1.

214 Then, the SOP is integrated using its active and reactive powers injected at its terminals as
215 presented in Fig. 2, in which the summation of the injected powers at the SOP terminals and the
216 internal power loss of its converters must equal zero, as expressed in (4). Thus:

$$217 P_I^{SOP} + P_J^{SOP} + P_I^{SOP-loss} + P_J^{SOP-loss} = 0 \quad (4)$$

218 The reactive power limits are given in (5) and the SOP capacity limit is shown in (6). Thus:

$$219 Q_I^{SOP-min} \leq Q_I^{SOP} \leq Q_I^{SOP-max}, \forall I, J \in N_f \quad (5)$$

$$220 \sqrt{(P_I^{SOP})^2 + (Q_I^{SOP})^2} \leq S_I^{SOP}, \forall I \in N_f \quad (6)$$

221 where N_f is the number of feeders, P_I^{SOP} is the SOP's active power injected to the I^{th} feeder, P_J^{SOP}
222 is the SOP's active power to the J^{th} feeder, $P_I^{SOP-loss}$ is the active power loss of the converter
223 connected to the I^{th} feeder, $P_J^{SOP-loss}$ is the internal power loss of the converter connected to the
224 J^{th} feeder, Q_I^{SOP} is the SOP's reactive power injected to the I^{th} feeder, Q_J^{SOP} is the SOP's reactive
225 power injected to the J^{th} feeder, $Q_I^{SOP-min}$ and $Q_I^{SOP-max}$ are the minimum and maximum limits
226 of the SOP's reactive power injected to the I^{th} feeder, and S_I^{SOP} is the maximum capacity limit of
227 the planned SOP. Further, the active loss of each converter ($P_I^{SOP-loss}$ and $P_J^{SOP-loss}$) and the total
228 SOPs active power loss ($P^{SOP-loss}$) are formulated in (7) and (8) as follows [32]:

$$229 P^{SOP-loss} = \sum_{I=1}^{N_f} P_I^{SOP-loss} \quad (7)$$

$$230 P_I^{SOP-loss} = A_{loss}^{SOP} \sqrt{(P_I^{SOP})^2 + (Q_I^{SOP})^2}, \forall I \in N_f \quad (8)$$

231 where A_{loss}^{SOP} is the loss coefficient of VSCs, which represents leakage in the transferred power to the
232 total power transferred between feeders [32]-[34].

233 Mathematically, to represent the SOP variables, first, we can consider a lossless SOP, i.e.
234 $P_I^{SOP-loss} = 0, \forall I \in N_f$; hence, a SOP can be represented by its injected active and reactive powers
235 ($P_I^{SOP}, Q_I^{SOP}, Q_J^{SOP}$), where $P_J^{SOP} = -P_I^{SOP}$. Therefore, multiple SOPs can be modeled by the vector
236 $[P_I^{SOP}(1), Q_I^{SOP}(1), Q_J^{SOP}(1), \dots, P_M^{SOP}(n), Q_M^{SOP}(n), Q_K^{SOP}(n)]$ such that the first three variables in the
237 vector represent the first SOP connected between the I^{th} and J^{th} feeders, while the last three variables
238 represent the n^{th} SOP connected between the M^{th} and K^{th} feeders.

239 Second, we can consider the SOP with its losses taken into account, i.e. $P_I^{SOP-loss} \neq 0, \forall I \in N_f$;
 240 hence, starting from (4), we can get $P_I^{SOP-loss}$ as follows:

$$241 P_J^{SOP} = -P_I^{SOP} - P_I^{SOP-loss} - P_J^{SOP-loss} \quad (9)$$

242 Substituting (8) into (9), then

$$243 P_J^{SOP} = -P_I^{SOP} - A_{loss}^{SOP} \sqrt{(P_I^{SOP})^2 + (Q_I^{SOP})^2} - A_{loss}^{SOP} \sqrt{(P_J^{SOP})^2 + (Q_J^{SOP})^2} \quad (10)$$

244 Accordingly, if we set P_I^{SOP} , Q_I^{SOP} and Q_J^{SOP} as the SOP's decision variables, (10) will be a
 245 nonlinear equation with one unknown (P_J^{SOP}). So, it can be independently solved using numerical
 246 analysis methods such as Newton's method to find the value of the root (P_J^{SOP}) of (10). Therefore,
 247 assuming that A_{loss}^{SOP} is known; a SOP can be represented by its injected active and reactive powers
 248 (P_I^{SOP} , Q_I^{SOP} , Q_J^{SOP}) as the lossless SOP case.

249 2.3. DG Modeling

250 In this study, we used two types of DGs. The first type includes generators with unity power
 251 factor and the second is DGs with smart inverters with a reactive power compensation capability
 252 within specified limits of the reactive power.

253 The DGs with unity PF are limited by the maximum capacity limit (S^{DG}) of the installed DGs as
 254 follows:

$$255 0 \leq P_i^{DG} \leq S^{DG} \quad (11)$$

256 where P_i^{DG} is the active DG power injected at the i^{th} node.

257 In the second type of DG, the reactive power varies based on specified PF limits, so that $-\beta_{min}$ and
 258 β_{min} are the minimum leading and lagging PF values.

$$259 \sqrt{(P_i^{DG})^2 + (Q_i^{DG})^2} \leq S^{DG} \quad (12)$$

$$260 -\tan(\cos^{-1} \beta_{min}) \cdot P_i^{DG} \leq Q_i^{DG} \leq \tan(\cos^{-1} \beta_{min}) \cdot P_i^{DG} \quad (13)$$

261 where Q_i^{DG} is the reactive DG power injected at the i^{th} node.

262 2.4. PQ Indices

263 In power distribution systems, apart from the functions that describe the objective and
 264 constraints that assess the operational performance, there are other indices that evaluate the impacts
 265 of the proposed solution on the PQ performance of the studied systems, such as the load balancing
 266 index (*LBI*), and aggregate voltage deviation index (*AVDI*). The mathematical expressions for these
 267 quantities are given as follows:

268 2.4.1. Load Balancing Index (*LBI*)

269 Changing the state of the switches of a distribution system will change its topography. In turn,
 270 the loads between the feeders can be distributed to balance the system and avoid the overloading of
 271 feeders. In this work, the balancing index (*LBI*) is used to reflect the loading level of each line in the
 272 distribution network [15]. The *LBI* of the b^{th} line is formulated as follows:

$$273 LBI_b = \left(\frac{I_b}{I_b^{rated}} \right)^2, \forall b \in N_{br} \quad (14)$$

274 where I_b is the current flowing in line b and is limited by its rated value I_b^{rated} and N_{br} is the
 275 number of lines. Hence, the total load balancing index LBI_{tot} is expressed as the sum of the balancing
 276 indices of the lines, thus:

$$277 LBI_{tot} = \sum_{b=1}^{N_{br}} LBI_b \quad (15)$$

278 *LBI* of a certain line decreases if the total load connected to this line decreases, and hence, the
 279 line current decreases. However, line currents may increase in other lines, increasing their *LBI*s. For
 280 that, the LBI_{tot} is calculated for all branches to help determine the overall load balancing of all lines
 281 in the distribution network.

282 2.4.2. Aggregate voltage deviation index (*AVDI*)

283 Voltage deviation is a measure of the voltage quality in the system. It is formulated as the
 284 summation of voltage deviations at all nodes in the system from a reference value of 1 per unit, and
 285 it is given as:

$$286 \quad AVDI = \sum_{i=1}^{N_n} |V_i - 1| \quad (16)$$

287 where i and N_n are the node number and total number of nodes, respectively. A system with lower
 288 *AVDI* indicates a secure system with reduced voltage violations.

289 3. Problem Statement

290 3.1. Objective Function

291 The main aim of this work is to minimize the total power loss (P_{loss}^{tot}). The objective function P_{loss}^{tot}
 292 is divided into two parts, namely the feeder losses due to current flowing in the lines and the SOP's
 293 internal power loss ($P^{SOP-loss}$) as expressed in (17).

$$294 \quad \text{Min } P_{loss}^{tot} = \sum_{i=1}^{N_n} \left(\frac{P_i^2 + Q_i^2}{|V_i|^2} \cdot r_{i,i+1} \right) + \mu \cdot P^{SOP-loss} \quad (17)$$

295 where $\mu=0$ with no SOP losses considered and $\mu=1$ if SOP losses are considered.

296 3.2. Constraints and Operation Conditions

297 In addition to the radiality requirements described in Section II. A, power flow equality given in
 298 (4), SOP reactive power limits given in (5), SOP capacity limit given in (6), SOP active power loss
 299 given in (8), DG capacity limit given in (11) for the first type and (12) for the second type, and DG
 300 reactive power limits given in (13), the following constraints regarding voltage magnitudes, lines
 301 thermal capacities and the total reactive power injected by DGs and/or SOPs into the system are
 302 expressed, respectively, as follows:

$$303 \quad V_{min} \leq |V_i| \leq V_{max} \quad (18)$$

$$304 \quad |I_b| \leq I_b^{\text{rated}}, \forall b \in N_{br} \quad (19)$$

$$305 \quad \sum_{i=1}^{N_{DG}} Q_i^{DG} + \sum_{k=1}^{N_{SOP}} (Q_i^{SOP}(k) + Q_j^{SOP}(k)) \leq \sum_{u=1}^{N_n} Q_u^L \quad (20)$$

306 where V_{min} and V_{max} represent minimum and maximum voltage limits respectively, and N_{DG} is the
 307 number of connected DGs. It should be noted that the total reactive power injected by DGs and SOPs
 308 must not exceed the total demand reactive power, as expressed in (20), to avoid the system's over-
 309 compensation, and to maintain the PF to be within higher lagging values [35], [36]. Also, no reverse
 310 power flow is permitted in the system, as expressed in (21). Otherwise, further precautions should
 311 be taken by network operators to control excessive reverse power flows and the associated problems
 312 resulting from high DG penetration levels.

$$313 \quad P_i^L - a \cdot P_i^{DG} - b \cdot P_i^{SOP} - c \cdot P_j^{SOP} \geq 0, \forall i \in N_n \quad (21)$$

314 where a equals 1 in the case of node i connected to a DG unit, b equals 1 in the case of node i
 315 connected to a SOP through feeder I , and c equals 1 in the case of node i connected to a SOP
 316 through feeder J ; otherwise, $a = b = c = 0$.

317 3.3. Search Algorithm

318 The hyper-spherical search (HSS) algorithm was developed by Karami *et al.* in 2014 [37] to solve
 319 nonlinear functions and was further enhanced in 2016 [38] to consider mixed continuous-discrete
 320 decision variables to solve MINLP problems. The DC-HSS has the advantages of fast convergence to
 321 the optimal/near-optimal solutions and good performance in solving mixed continuous-discrete
 322 problems. Therefore, we have used the DC-HSS algorithm to solve our optimization problem.

323 3.3.1. Continuous HSS

324 The population is categorized into two types: particles and sphere-centers (SCs). The algorithm
 325 searches in the inner space of the hyper-sphere to find a new particle position with a better value of
 326 the objective function as follows:

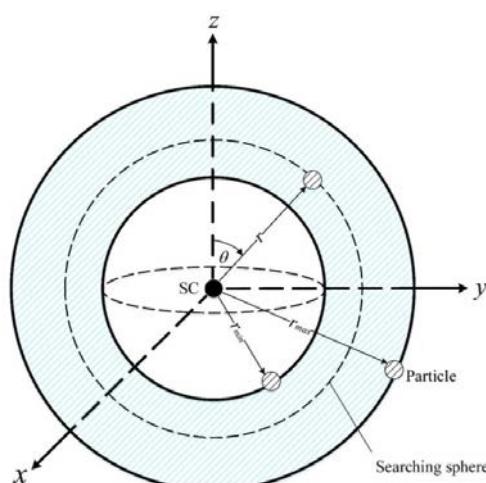
327 **Step 1:** Initialization: the algorithm starts by assigning the population size (N_{pop}), the distance
 328 between the particle and the sphere-center (r), taking into account random values between $[r_{min},$
 329 $r_{max}]$, the number of sphere-centers (N_{SC}), the number of decision variables (N), the probability of
 330 changing the particle's angle (Pr_{angle}), and the maximum number of iterations (Max_{iter}). Then, a
 331 vector of decision variables (x_i) is initialized with random values between $[X_{i,min}, X_{i,max}]$ by a
 332 uniform probability function. A set equal to N_{pop} containing the objective function values is formed
 333 for each vector, in which each vector of the decision variables $[x_1, x_2, \dots, x_N]$ is named as a particle.
 334 Further, the particles are sorted according to their objective function values, and then the best N_{SC}
 335 particles with the lowest objective function are selected as the initial sphere-centers. The rest of the
 336 particles ($N_{pop} - N_{SC}$) are then distributed among the sphere-centers. Finally, a distribution of the
 337 ($N_{pop} - N_{SC}$) particles among the SCs is performed by the objective function difference (OFD) for each
 338 SC, where the OFD is equal to the objective function of SC (f_{SC}) subtracted from the maximum
 339 objective value of SCs ($OFD = f_{SC} - \max_{SCs} f$). The normalized dominance for each SC is defined as:

$$340 D_{SC} = \left| \frac{OFD_{SC}}{\sum_{i=1}^{N_{SC}} OFD_i} \right| \quad (22)$$

341 A randomly chosen $round\{D_{SC} \times (N_{pop} - N_{SC})\}$ number of particles is assigned to each SC.

342 **Step 2:** Searching: each particle seeks to find a better solution by searching the bounding sphere
 343 whose center is the assigned SC. The radius of this sphere is r . The particle parameters (r and θ) are
 344 changed to perform the searching procedure as shown in Fig. 3. The dashed space in Fig. 3 shows the
 345 possible positions for a particle. The angle of the particle is changed by α , which ranges between
 346 $(0, 2\pi)$ with a probability equal to Pr_{angle} . For each particle, r is changed between $[r_{min}, r_{max}]$,
 347 where r_{max} can be calculated from (23):

$$348 r_{max} = \sqrt{\sum_{i=1}^N (x_{i,SC} - x_{i,particle})^2} \quad (23)$$


349 After the search for particles, if a new particle position has a lower objective function value than that
 350 of its SC, both the SC and particle will exchange their roles, *i.e.* the particle becomes the new SC and
 351 the old SC becomes the new particle.

352 **Step 3:** Dummy particles recovery: An SC with its particles forms a set of particles.

353 The values of the set objective function (SOF) for each set of particles sort these sets to find the worst
 354 sets, in which dummy (inactive) particles are located. The SOF is given by (24).

$$355 SOF = f_{SC} + (\gamma \cdot \text{mean}\{f_{\text{particles of } SC}\}) \quad (24)$$

356 where γ is scalar. If γ is small, SOF will be biased towards f_{SC} , otherwise, SOF will be biased
 357 towards $f_{\text{particles of } SC}$.

358
 359 **Figure 3.** Sphere-center and particle positions indicated by the dashed space

360 To assign dummy particles to other SCs, two parameters are calculated: the first parameter represents
 361 the difference of *SOF* (*DSOF*) for each set and the second one represents the assigning probability
 362 (*AP*) for each SC. These parameters are expressed as follows:

$$363 \quad DSOF = SOF - \max_{groups} \{SOF of groups\} \quad (25)$$

$$364 \quad AP = [AP_1, AP_2, \dots, AP_{N_{SC}}] \quad (26)$$

365 Further, a preset number of particles N_{newpar} with the worst function values are exchanged with the
 366 new generated N_{newpar} particles. Hence, after several iterations, the particles and their SCs will
 367 become close.

368 **Step 4:** Termination: the termination criterion is fulfilled if the number of iterations reaches its
 369 Max_{iter} or the difference between the function values of the best SCs is smaller than a pre-set
 370 tolerance value.

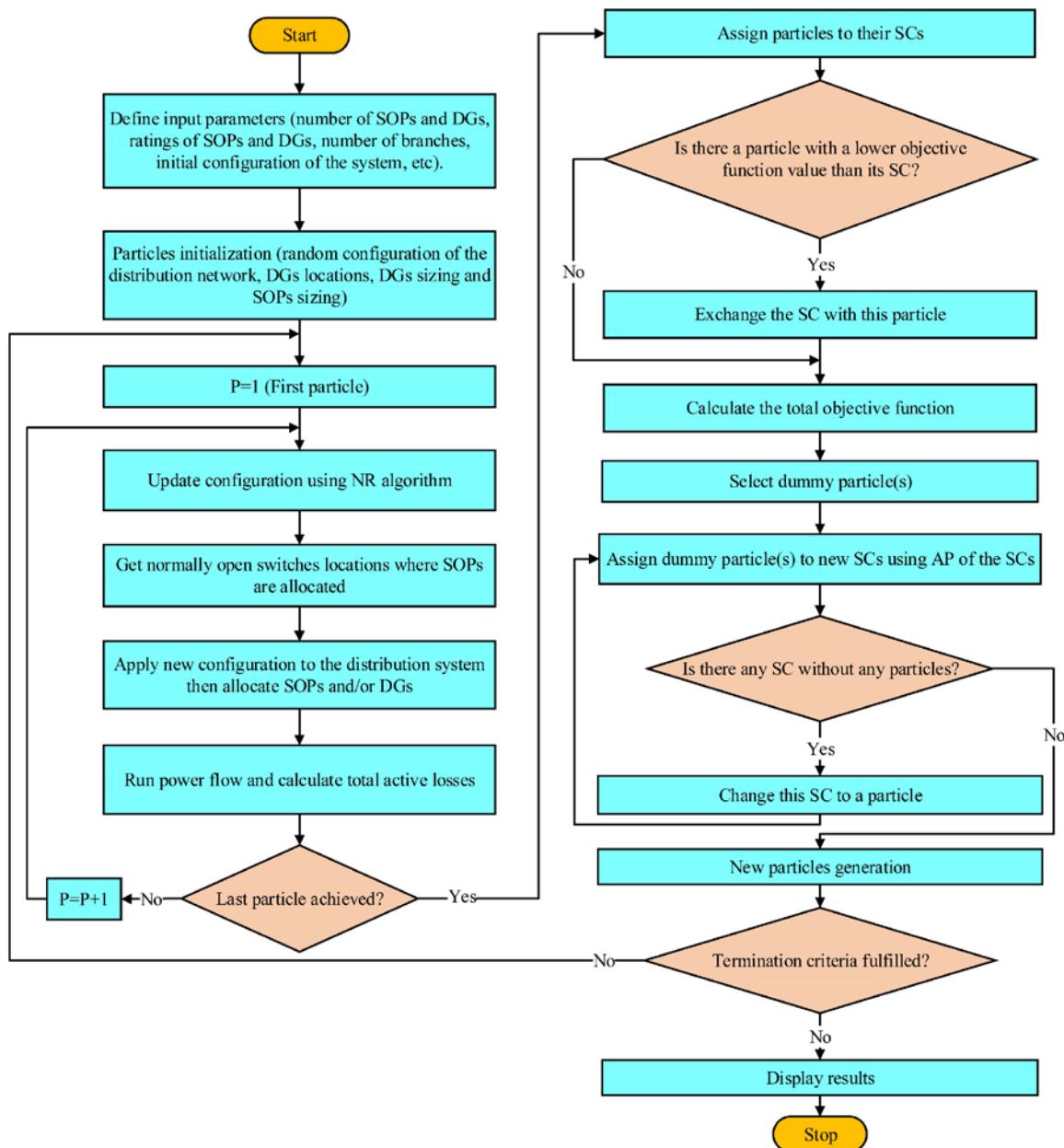
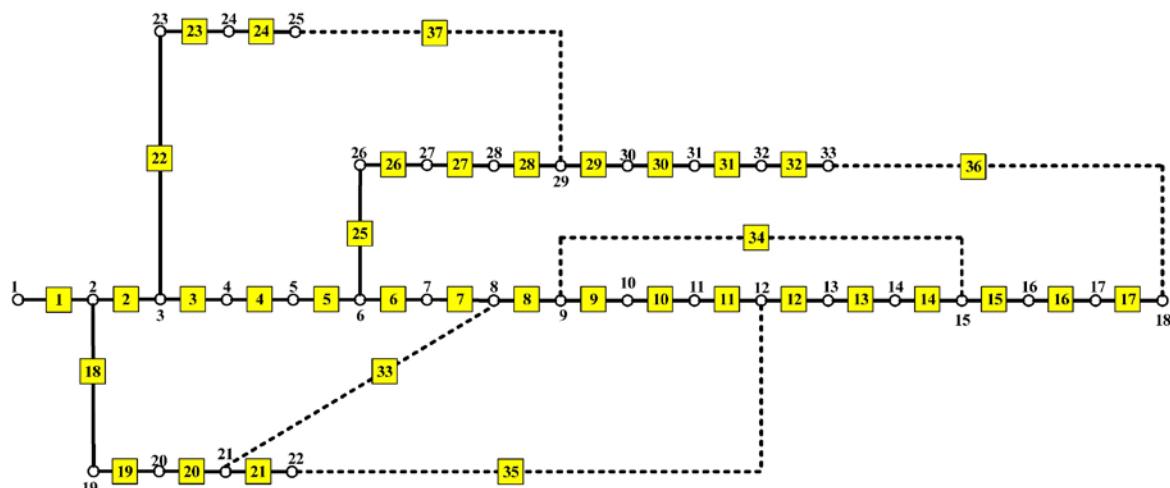
371 3.3.2. Discrete HSS

372 Like the continuous HSS, the discrete HSS starts with the initialization of particles, but with
 373 discrete variables. Solutions are then generated randomly from the discrete variables
 374 ($X_{id,min}, X_{id,min} + 1, \dots, X_{id,max} - 1, X_{id,max}$) with a uniform probability. N_{SC} particles with the lowest
 375 function values are assigned as SCs. The rest of the particles are distributed among the SCs. Then, the
 376 same searching procedure as the continuous HSS is performed. It should be mentioned that the angle
 377 α is not considered in the searching procedure of the discrete HSS and the only parameter used is
 378 the radius r_d , where r_d is selected between $(r_{d,min}, r_{d,min} + 1, \dots, r_{d,max} - 1, r_{d,max})$. $r_{d,max}$ is
 379 calculated as follows:

$$380 \quad r_{d,max} = \sqrt{\sum_{i=1}^N (x_{i_d,SC} - x_{i_d,particle})^2} \quad (27)$$

381 The other steps will be performed as presented in the continuous HSS algorithm.

382 3.3.3. Discrete-continuous HSS (DC-HSS)



383 DC-HSS combines both continuous and discrete HSS algorithms, in which the particles contain both
 384 continuous and discrete variables. The procedure for the continuous variables is structured as
 385 presented in the continuous HSS formulation, whilst the procedure for the discrete variables is
 386 structured as presented in the discrete HSS formulation. To sum up, the optimization parameters of
 387 DC-HSS are as follows: $N_{pop}=1000$, $N_{SC} = 100$, $r_{min} = 0$, $r_{max} = 1$, $r_{d,min} = 0$, $r_{d,max} = 1$, $N_{newpar} =$
 388 5, $Pr_{angle} = 75\%$ and $Max_{iter} = 1000$. Fig. 4 illustrates a comprehensive flowchart for the proposed
 389 problem formulation using the DC-HSS algorithm.

390 3. Problem Statement

391 In this section, the results obtained in the nine scenarios are presented for IEEE 33-node and 83-
 392 node systems under different loading conditions. Further, the contribution of SOP loss to the total
 393 active power loss as well as the effect of increasing the number of SOPs connected to the systems are
 394 studied. Case studies are carried out on an Intel Core i7 CPU, second generation, at 2.2 GHz and 3
 395 GHz maximum turbo boost speed, with 6 GB of RAM with speed 1333 MHz, 6 MB cache memory
 396 and contains SSD hard disk at 550 MB per second.

397 3.1. IEEE 33-node distribution system

398 The IEEE 33-node base configuration consists of 32 sectionalized lines and 5 tie-lines as shown in Fig.
 399 5. The number of SOPs that can be installed ranges from 1 to 5, i.e. $N_{SOP} \in [1,5]$, where the individual
 400 SOP rating ($S_l^{SOP} = S^{SOP}$) is 1 MVA and A_{loss}^{SOP} equals 0.02 [32], [41], [42]. N_{DG} is set to 3 while
 401 S^{DG} equals 1 MVA with unity PF. V_{min} and V_{max} values are 0.95 and 1.05 p.u., respectively. Also,
 402 I_b^{rated} is set to 300 A.

403
404
405**Figure 4.** A comprehensive flowchart for the proposed problem formulation using the DC-HSS algorithm406
407**Figure 5.** IEEE 33-node distribution system

408 First, the results obtained for the system in the first three scenarios with no SOPs installed are
 409 given in Table 3.

410
 411 **Table 3**
 Total power losses and PQ indices for scenarios 1, 2 and 3: IEEE 33-node system

Loading level	Scenario	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
Light (50%)	1	33.646	0.058	0.678
	2	41.212	0.376	0.862
	3	21.346	0.178	0.500
Normal (100%)	1		NA	
	2			
	3	90.013	0.765	1.064
Heavy (160%)	1		NA	
	2			
	3			

412
 413 On the one hand, the results clarify that optimizing the NR and DGs allocation strategies
 414 separately cannot satisfy the voltage requirements in either the normal or heavy loading conditions,
 415 and only a sub-optimal performance can be achieved in the light loading case. On the other hand,
 416 simultaneous NR and DGs allocation can meet the problem limits in light and normal loading
 417 conditions only. Hence, one can conclude that the first three scenarios cannot guarantee acceptable
 418 performance level of the IEEE 33-node system with loads alteration.

419 Second, the results obtained for scenarios 4 to 9 with lossless SOPs installed in the system are
 420 presented in Table 4 under the three loading conditions.

421
 422 **Table 4.** Total Power Losses and PQ Indices for Scenarios 4 to 9 with Lossless SOPs Installed:
 IEEE 33-node system


Scenario	N_{SOP}	Light loading (50%)			Normal loading (100%)			Heavy loading (160%)		
		P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
4	1	38.723	0.343	0.745				NA		
	2	33.686	0.303	0.709						
	3	32.097	0.292	0.701	144.337	1.285	1.085		NA	
	4	29.481	0.271	0.603	143.107	1.255	0.973			
	5	27.420	0.252	0.572	128.576	1.145	1.093			
5	1	23.936	0.211	0.565				NA		
	2	22.323	0.199	0.427	91.206	0.823	0.928		NA	
	3	22.613	0.204	0.444	93.576	0.842	0.969			
	4	22.028	0.205	0.413	89.932	0.833	0.877	269.511	2.317	0.977
	5	22.323	0.209	0.403	89.942	0.832	0.830	267.975	2.275	1.081
6	1	23.709	0.215	0.536	98.803	0.897	1.126		NA	
	2	22.689	0.202	0.464	90.777	0.824	0.931			
	3	23.384	0.213	0.502	90.303	0.839	0.914	254.480	2.228	1.281
	4	22.586	0.205	0.443	89.092	0.823	0.882	255.053	2.255	1.239
	5	23.961	0.204	0.399	89.429	0.853	0.848	258.36	2.220	1.141
7	1	20.548	0.179	0.583				NA		
	2	20.548	0.179	0.583					NA	
	3	19.796	0.175	0.524	87.745	0.759	1.142			

Scenario	N_{SOP}	Light loading (50%)			Normal loading (100%)			Heavy loading (160%)		
		P_{loss}^{tot} (kW)	LBI_{tot}	AVDI	P_{loss}^{tot} (kW)	LBI_{tot}	AVDI	P_{loss}^{tot} (kW)	LBI_{tot}	AVDI
	4	19.454	0.172	0.546	77.212	0.681	1.076			
	5	17.884	0.162	0.512	73.512	0.670	1.050			
8	1	15.299	0.121	0.495		NA			NA	
	2	13.760	0.114	0.428	55.498	0.461	0.822	153.348	1.262	1.261
	3	13.674	0.114	0.443	54.750	0.464	0.785	142.402	1.217	1.221
	4	14.503	0.123	0.416	56.238	0.482	0.798	166.628	1.478	1.302
	5	14.565	0.129	0.387	52.306	0.456	0.764	170.249	1.358	1.141
9	1	14.269	0.122	0.433	57.851	0.508	0.752	160.812	1.412	1.303
	2	13.840	0.118	0.373	51.748	0.445	0.742	144.826	1.265	1.165
	3	13.295	0.116	0.359	49.954	0.448	0.653	125.768	1.133	1.066
	4	11.869	0.110	0.312	50.176	0.444	0.634	137.325	1.241	1.091
	5	12.087	0.106	0.353	45.885	0.433	0.601	122.062	1.131	1.034

423

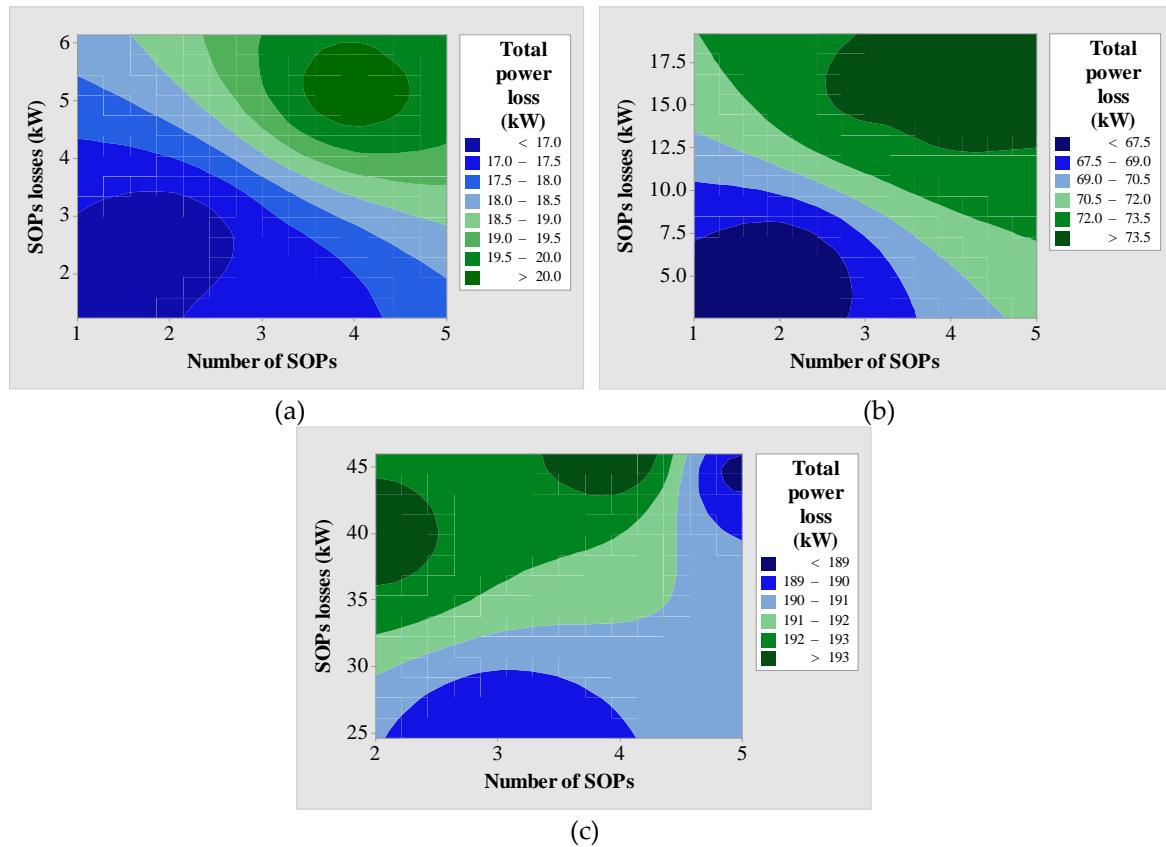
424 On the one hand, the results obtained with one SOP installed in the system with or without NR
 425 in the case of no DGs connected exhibit poor performance, which can be explained by the lack of
 426 getting an acceptable solution to the problem because of minimum voltage value violation under
 427 both the normal and heavy loading conditions, as shown in scenarios 4 and 5. Therefore, to meet the
 428 minimum voltage requirement, the reactive power should be compensated by installing additional
 429 SOPs, as presented in scenario 6, with 3 to 5 SOPs when NR was considered. On the other hand, the
 430 results obtained when DGs were connected into the system without NR (scenario 7) decreased the
 431 need for an increasing number of installed SOPs. Further, when NR is enabled, an additional
 432 reduction of the number of SOPs is noticed, which will result in reducing the power losses, as
 433 revealed by the proposed scenario 9 because it allows freedom in locating SOPs.

434 To sum up, the results obtained for scenario 9 (simultaneous NR with DGs and SOPs allocation)
 435 resulted in the best solutions, highlighted in bold in Table 4, with 5 SOPs at the normal and heavy
 436 loading levels and 4 SOPs at the light loading level compared to the results obtained by the other
 437 scenarios, in which the power losses are reduced by 74.787% at normal, 77.362% at light, and 78.788%
 438 at heavy loading levels with respect to the corresponding base system values. Also, the improvement
 439 of the voltage profile obtained in scenario 9 for the system at the normal loading condition is shown
 440 in Fig. 6.

441

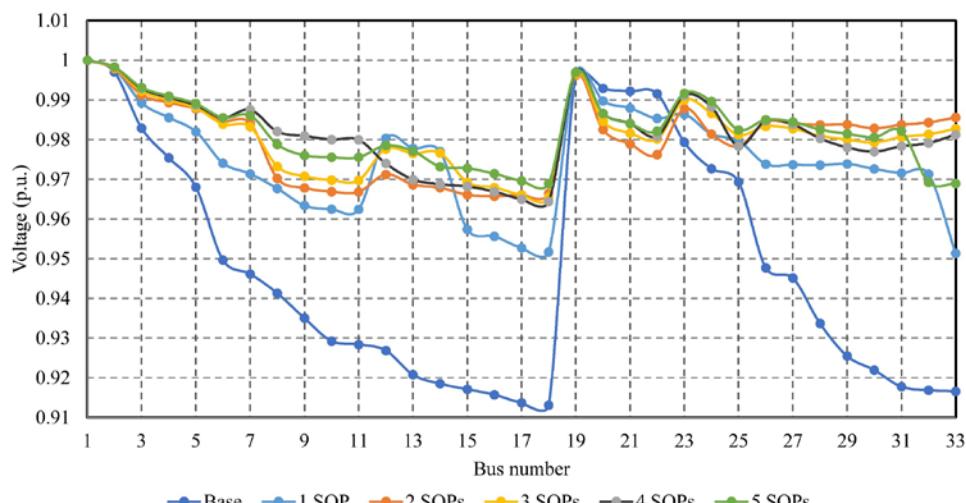
442 **Figure 6.** Improvement of the voltage profile at normal loading condition: scenario 9

443 Thirdly, the results obtained for scenarios 4 to 9 with the SOPs' internal power losses considered
 444 are presented in Table 5 at the three loading levels.


445
446**Table 5.** Total Power Losses and PQ Indices for Scenarios 4 to 9 with SOP Losses Considered:
IEEE 33-node system

Scenario	N_{SOP}	Light loading (50%)			Normal loading (100%)			Heavy loading (160%)		
		P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
4	1	45.414	0.376	0.859				NA		
	2	45.796	0.361	0.819						
	3	35.479	0.292	0.699	177.087	1.099	1.042		NA	
	4	35.083	0.281	0.641	133.125	1.057	1.194			
	5	39.932	0.289	0.635	162.892	1.093	1.049			
5	1	27.184	0.219	0.572				NA		
	2	27.185	0.219	0.573	110.805	0.925	1.147		NA	
	3	30.747	0.209	0.533	113.375	0.887	1.100			
	4	37.655	0.221	0.445	126.837	0.964	0.887	415.433	2.497	0.811
	5	38.209	0.282	0.537	165.753	0.938	1.047	461.002	2.689	0.751
6	1	26.753	0.212	0.526	106.317	0.921	1.125			
	2	26.753	0.212	0.526	104.076	0.881	1.015			
	3	26.754	0.212	0.525	104.774	0.858	0.934	427.952	2.525	1.283
	4	26.824	0.205	0.456	106.070	0.897	1.060	386.968	2.338	1.216
	5	29.629	0.220	0.544	119.559	0.915	1.058	377.700	2.295	1.166
7	1	23.883	0.188	0.592						
	2	27.727	0.201	0.659						
	3	27.669	0.209	0.609				NA		
	4	29.336	0.213	0.632						
	5	36.100	0.234	0.579	114.118	0.783	1.123			
8	1	18.489	0.129	0.502				NA		
	2	18.489	0.129	0.501	68.064	0.509	0.899	204.716	1.131	1.239
	3	19.670	0.118	0.417	72.782	0.494	0.853	196.995	1.279	1.249
	4	29.082	0.129	0.385	86.147	0.508	0.966	317.274	1.712	1.309
	5	25.052	0.129	0.336	94.222	0.578	0.769	220.982	1.289	1.189
9	1	16.828	0.126	0.441	67.019	0.525	0.911			
	2	16.575	0.119	0.375	66.131	0.527	0.804	193.316	1.362	1.322
	3	17.144	0.126	0.446	73.735	0.483	0.782	189.168	1.352	1.238
	4	20.329	0.127	0.390	74.077	0.500	0.746	193.753	1.211	1.029
	5	19.819	0.118	0.408	74.695	0.469	0.602	188.831	1.176	1.135

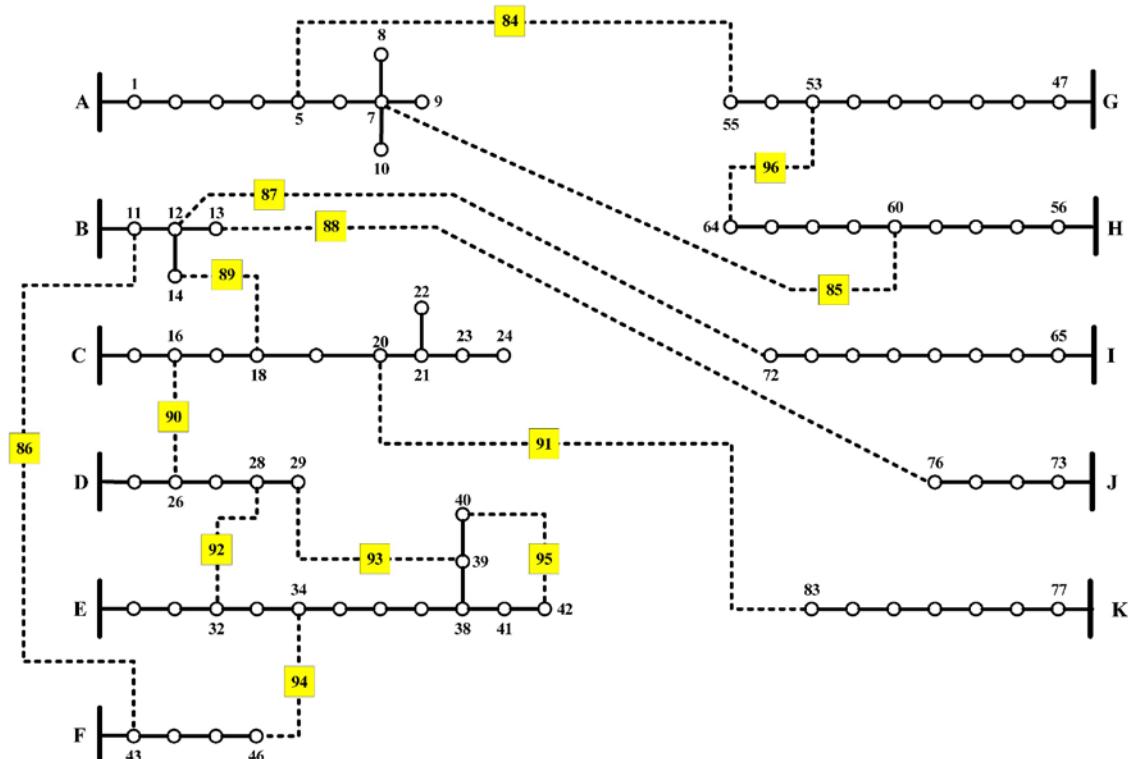
447


448
449
450
451
452
453
454
455
456
457
458

Regardless of economic aspects, in the lossless SOP scenarios, the system with an increased number of installed SOPs becomes more efficient because of the considerable power loss reduction. However, this is not the case if the SOPs' internal losses are considered, because power loss minimization is considerably affected by the SOPs' internal losses. This makes clear that loss minimization is not guaranteed by installing more SOPs. In addition, one cannot simply suppose that increasing the number of installed SOPs will increase the SOPs' internal losses proportionally, as this depends on the power transferred by the SOPs and also on the SOPs' locations, as clarified in Fig. 7, with results obtained in scenario 9 that make clear that choosing an appropriate number of SOPs is a matter of optimization. Moreover, after considering the internal power losses of the SOPs, it is obvious that the results obtained for scenario 9 are the best results obtained so far compared to the results obtained for the other scenarios, in which the power losses are reduced by 67.374% using two

459 **Figure 7.** Contour plots of total power loss versus SOPs losses and N_{SOP} : (a) light loading,
460 (b) normal loading, and (c) heavy loading.

461 SOPs at normal, 64.374% using two SOPs at light, and 67.184% using five SOPs at heavy loading
462 levels. All values are given with respect to the corresponding base system values. Furthermore, all
463 the considered PQ indices are enhanced using the same scenario by different values as presented in
464 Table 5, which validates the effectiveness of the proposed solution. The improvement of the voltage
465 profile obtained in scenario 9 for the system at the normal loading condition with the SOPs' power
466 loss considered is shown in Fig. 8. A detailed summary of the optimal results obtained for scenarios
467 4 to 9 at the normal loading condition is given in Tables A.1 and A.2 in the Appendix. Also, the IEEE
468 33-node system after applying scenario 9 at normal loading condition is shown in Fig. 12. Finally,
469 optimizing the NR, DGs and SOPs allocation strategies collectively facilitates collaboration between
470 strategies, which will enable the best performance level of the system to be achieved.


471 **Figure 8.** Improvement of the voltage profile at normal loading condition with SOPs power loss considered:
472 scenario 9
473

474 3.2. 83-node distribution system

475 In order to validate the effectiveness of scenario 9 proposed in this work, it was examined on an
 476 83-node balanced distribution system from a power company in Taiwan, in which the 83-node base
 477 configuration consists of 83 sectionalized lines and 13 tie-lines as shown in Fig. 9. The number of
 478 SOPs that can be installed ranges from 1 to 5, i.e. $N_{SOP} \in [1,5]$, where the individual SOP rating
 479 ($S_i^{SOP} = S_j^{SOP}$) is 1.5 MVA and A_{loss}^{SOP} equals 0.02 [32], [41], [42]. N_{DG} is set to 8 with S^{DG} equal to 3
 480 MVA and PF ranges from 0.95 lagging to unity. The V_{min} and V_{max} values are 0.95 and 1.05 p.u.,
 481 respectively. Also, I_b^{rated} is set to 310 A.

482 First, the results obtained for the system in the first three scenarios with no SOPs installed in the
 483 system are given in Table 6. Once more, the results make clear that optimizing the NR and DGs
 484 allocation strategies separately cannot satisfy the voltage requirements at the heavy loading level,
 485 and only a sub-optimal performance can be achieved at the light and normal loading levels. However,
 486 simultaneous NR and DGs allocation can meet the problem limits considered in the normal and light
 487 loading conditions only.

488

489

490

Figure 9. The 83-node distribution system

491 Table 6. Total power losses and PQ indices for scenarios 1, 2 and 3: 83-node system

Loading level	Scenario	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
Light (50%)	1	113.382	3.237	1.303
	2	97.496	2.713	1.249
	3	87.033	2.425	1.128
Normal (100%)	1	470.241	13.259	2.654
	2		NA	
	3	368.364	10.699	2.309
Heavy (130%)	1			
	2		NA	
	3			

492

493 Second, the results obtained for scenarios 4 to 9 with/without SOPs internal losses in the system
 494 are presented in Tables 7 and 8 at the three loading levels.

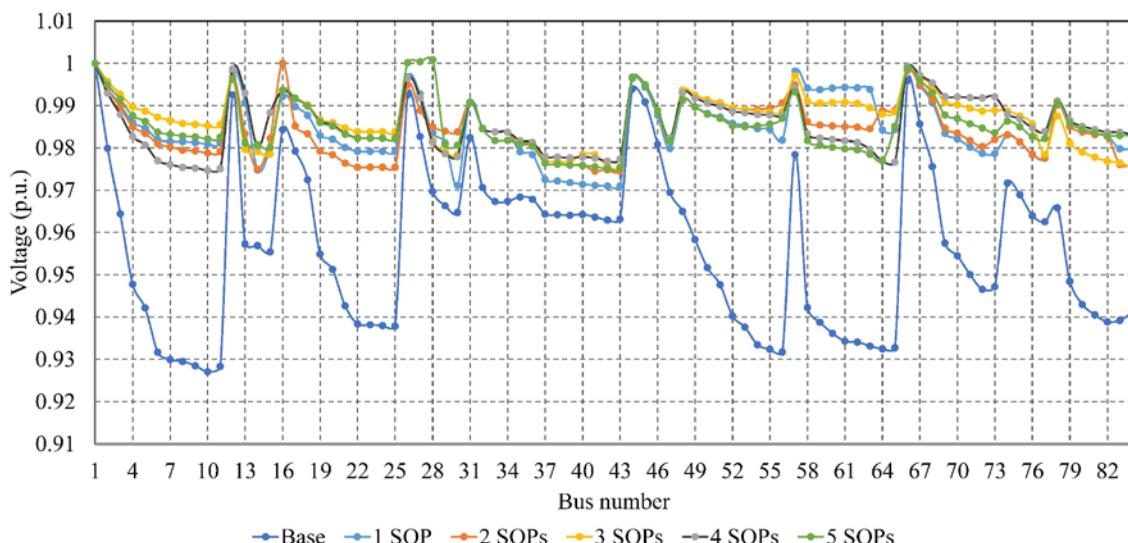
495

Table 7. Total power losses and PQ indices for scenarios 4 to 9 without SOP losses: 83-node system

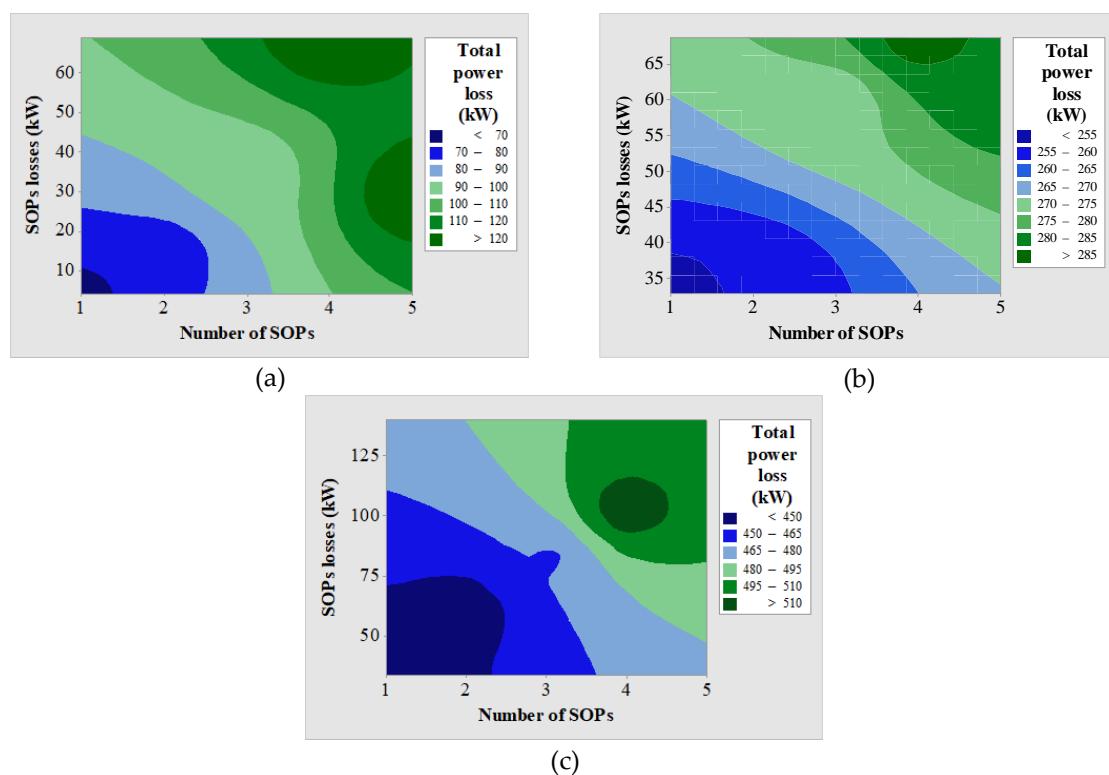
Scenario	N_{SOP}	Light loading (50%)			Normal loading (100%)			Heavy loading (130%)		
		P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
4	1	112.236	3.035	1.163						
	2	107.777	2.929	0.976						
	3	106.452	2.911	0.847			NA			
	4	98.345	2.662	0.958						
	5	99.079	2.697	0.779						
5	1	106.662	3.000	1.213	441.694	12.273	2.501			
	2	103.194	2.898	1.137	427.829	12.010	2.373			
	3	104.861	2.945	1.029	421.891	11.660	2.297			NA
	4	101.766	2.773	1.062	412.534	11.248	2.171			
	5	96.026	2.769	0.811	390.587	11.017	1.893			
6	1	105.558	3.014	1.034	442.042	12.584	2.293			
	2	100.563	2.878	0.969	425.271	12.106	2.229			
	3	96.450	2.747	0.823	405.221	11.232	2.137			
	4	92.742	2.661	0.825	385.354	10.501	1.836			
	5	89.949	2.484	0.696	407.074	10.428	2.109			
7	1	54.413	1.511	0.895	231.704	6.396	1.879	439.890	12.036	2.773
	2	54.935	1.511	0.887	226.485	6.284	1.614	387.021	10.649	2.325
	3	52.594	1.496	0.680	214.617	6.000	1.668	394.187	10.901	2.233
	4	49.215	1.382	0.688	192.775	5.519	1.464	371.243	10.239	2.214
	5	52.882	1.512	0.632	197.090	5.579	1.562	333.774	9.363	1.816
8	1	60.405	1.797	1.019	253.559	7.358	2.019			
	2	58.648	1.755	0.928	240.294	7.059	1.925			
	3	62.326	1.822	0.899	249.926	7.224	1.979			NA
	4	57.268	1.679	0.879	243.006	6.816	1.795			
	5	54.513	1.681	0.723	210.822	6.284	1.584			
9	1	51.425	1.456	0.792	219.131	6.282	1.713	379.446	10.806	2.345
	2	49.481	1.382	0.667	203.24	5.821	1.550	345.422	10.022	1.997
	3	46.868	1.321	0.641	192.115	5.392	1.463	348.556	9.905	2.196
	4	43.469	1.238	0.587	189.128	5.084	1.379	345.018	10.815	2.080
	5	45.122	1.309	0.566	189.073	5.140	1.386	302.561	9.163	1.571

496

497 From Tables 7 and 8, it can be observed that installing SOPs without NR optimization and DGs
 498 allocation (scenario 4) failed to operate the system within the specified limits, even after increasing
 499 the number of SOPs. On the one hand, for the lossless SOPs cases, scenario 7 succeeded in finding
 500 acceptable solutions for the problem, contrary to scenarios 4, 5, 6 and 8, all of which failed to find an
 acceptable solution even with an increased number of SOPs. On the other hand, taking SOPs losses


501 **Table 8.** Total power losses and PQ indices for scenarios 4 to 9 with SOP losses considered: 83-node
 502 system

Scenario	N_{SOP}	Light loading (50%)			Normal loading (100%)			Heavy loading (130%)		
		P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$	P_{loss}^{tot} (kW)	LBI_{tot}	$AVDI$
4	1	126.023	3.313	1.349						
	2	134.346	3.219	1.060						
	3	139.039	3.364	1.201			NA			
	4	144.968	3.049	1.279						
	5	145.084	2.893	1.090						
5	1	117.084	3.250	1.287	473.623	12.788	2.610			
	2	119.178	3.170	1.267	478.019	12.783	2.568			
	3	133.988	3.187	1.227	491.723	12.480	2.504			
	4	142.552	2.934	1.188	512.955	12.595	2.374			
	5	145.349	3.024	1.156	518.085	11.919	2.181			
6	1	114.048	3.263	1.278	472.069	13.065	2.646			
	2	116.980	3.218	1.254	470.112	12.527	2.539			
	3	122.259	3.117	1.157	469.115	12.495	2.513			NA
	4	119.642	3.049	1.163	497.125	12.839	2.593			
	5	116.877	2.939	1.158	502.876	11.627	2.284			
7	1	65.706	1.787	1.078	271.560	6.292	1.969			
	2	81.718	1.531	0.822	286.725	6.845	1.868			
	3	105.414	1.595	0.742	308.381	7.518	1.889			
	4	100.211	1.451	0.719	317.376	5.966	1.637			
	5	115.202	1.432	0.696	343.568	5.853	1.574			
8	1	66.890	1.827	1.039	271.865	7.287	2.058			
	2	77.613	1.909	1.048	310.045	7.159	1.977			
	3	90.195	1.914	1.002	343.867	7.744	2.030			
	4	122.116	1.906	0.972	348.229	7.929	2.073			
	5	154.082	1.918	0.825	344.441	6.647	1.716			
9	1	67.280	1.764	1.043	253.076	6.244	1.836	436.212	11.325	2.654
	2	76.316	1.718	0.888	255.124	6.227	1.836	443.586	10.939	2.389
	3	95.475	1.693	0.942	272.452	5.754	1.737	464.298	11.017	2.451
	4	127.245	1.529	0.924	287.265	5.949	1.758	517.269	11.613	2.551
	5	96.895	1.847	0.976	284.899	6.240	1.619	509.753	10.066	2.306


503 into account, scenarios 4 to 8 were not capable of finding an acceptable solution for the problem at
 504 a heavy loading level. Still, scenario 9 remains the most successful scenario as it has the ability to
 505 improve the system performance and keep it within the specified limits. The improvement of the
 506 voltage profile obtained in scenario 9 for the system at the normal loading condition with SOPs power
 507 loss considered is shown in Fig. 10. The contribution of SOPs losses to the total power losses with
 508 different numbers of SOPs is clarified in Fig. 11, where the contour plots agree with the conclusions
 509 drawn in the IEEE 33-node case study. A detailed summary of the optimal results obtained in
 510 scenarios 5 to 9 at the normal loading condition is given in Tables A.3 and A.4 in the Appendix. Also,
 511 83-node system is shown in Fig. 13 after applying scenario 9 at normal loading condition. Considering
 512 the main point, we conclude that the combination of NR, SOPs and DGs allocation strategies led to

513 the best solution with minimum losses and noticeably enhanced PQ indices rather than the sub-
 514 optimal solutions provided by the individual strategies, particularly at the different loading levels.

515 In addition, a comparison of the results obtained using the proposed algorithm and the results
 516 obtained using three conventional optimization algorithms presented in previous works [6]: genetic
 517 algorithm (GA), harmony search algorithm (HSA) and modified honeybee mating (MHM), is
 518 conducted to show the effectiveness of the DC-HSS algorithm. The proposed NR methodology is
 519 used in these optimization algorithms to find the optimal/near-optimal solutions of the NR problem
 520 for both the IEEE 33-node and 83-node distribution systems as presented in Tables 11 and 12,
 521 respectively. It can be noted that the optimal/ near-optimal (best) result is obtained using the other
 522 conventional algorithms due to usage of the proposed NR methodology but with a lower

523
 524 **Figure 10.** Improvement of the voltage profile at normal loading condition with SOPs power loss considered:
 525 scenario 9

526
 527 **Figure 11.** Contour plots of total power loss versus SOPs losses and N_{SOP} : (a) light loading, (b) normal loading,
 528 and (c) heavy loading.

529 computational time to find the best value compared to the other three algorithms, which validate the
 530 effectiveness of the proposed NR methodology regardless of the optimization technique used.

531
 532 **Table 11.** Results obtained using the proposed and conventional optimization algorithms: IEEE
 533 33-node distribution network

Method	DC-HSS	GA	HSA	MHM
Number of runs	30	30	30	30
Population size	2	2	2	2
Number of iterations	10	10	10	10
Best	139.55	139.55	139.55	139.55
Worst	158.4013	158.4013	158.4013	158.4013
Mean	141.6454	145.6523	151.318	149.1727
Standard deviation	5.766383	5.942117	5.231613	7.353027
Average time (s)	0.3	1	0.3	0.6

534
 535 **Table 12.** Results obtained using the proposed and conventional optimization algorithms: 83-
 536 node distribution network

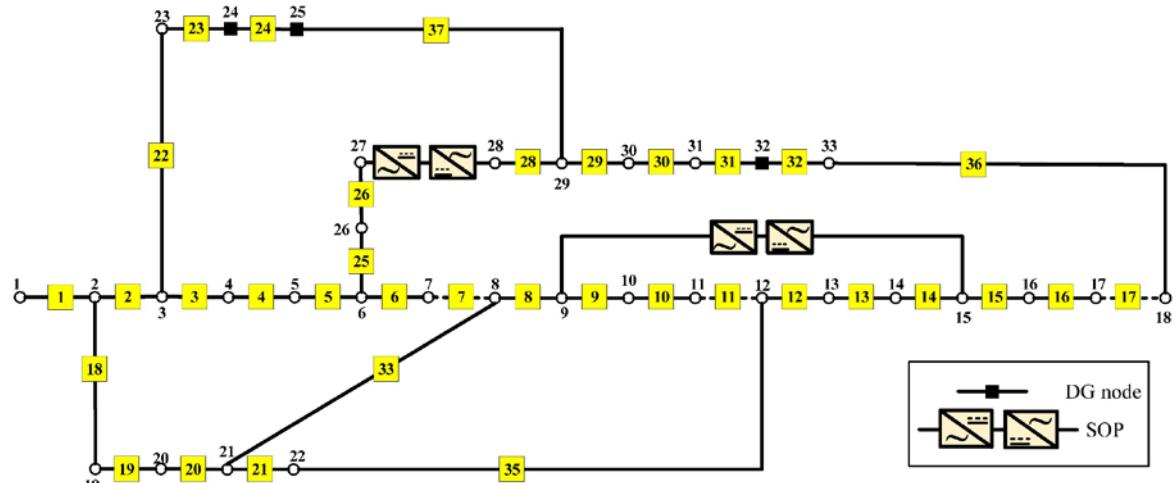
Method	DC-HSS	GA	HSA	MHM
Number of runs	30	30	30	30
Population size	2	2	2	2
Number of iterations	10	10	10	10
Best	470.241	470.241	470.241	470.241
Worst	509.7132	509.7132	509.7132	509.7132
Mean	475.5788	481.3519	506.4081	488.0029
Standard deviation	8.066826	12.24191	11.59983	12.97165
Average time (s)	0.49	2	0.5	1.7

537
 538 Finally, the minimum power losses obtained by applying scenario 9 for both the IEEE 33-node
 539 and 83-node systems are presented in Table 13 compared to the power loss reported in previous
 540 works.

541 **Table 13.** Comparison of Previous Works with The Proposed Scenario 9

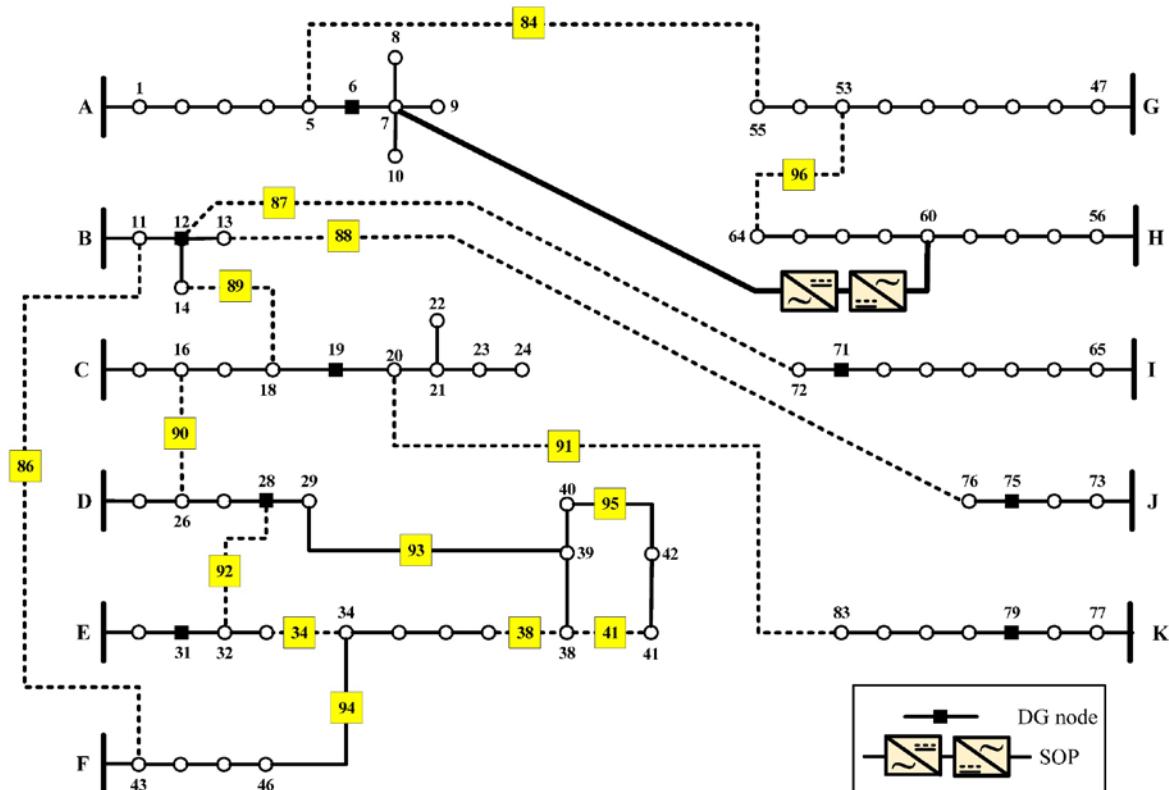
IEEE 33-node system				83-node system			
Ref.	Year	μ	P_{loss}^{tot} (kW)	Ref.	Year	μ	P_{loss}^{tot} (kW)
[46]	2013	NA	73.050	[43]	1996	NA	383.520
[47]	2009	NA	139.500	[44]	2005	NA	469.880
[48]	2015	NA	72.230	[45]	2014	NA	375.716
Proposed		0	45.885	Proposed		0	189.073
Proposed		1	66.131	Proposed		1	253.076

542 4. Conclusion


543 This article presents a multi-scenario analysis of optimal reconfiguration and DGs allocation in
 544 distribution networks with SOPs. The DC-HSS algorithm was used to solve the MINLP of SOPs and
 545 DGs allocation along with NR at different loading conditions to minimize the total power loss in
 546 balanced distribution systems. A new NR methodology is proposed to obtain the possible radial
 547 configurations from random configurations to minimize the power loss in two distribution systems:
 548 the IEEE 33-node and an 83-node balanced distribution system from a power company in Taiwan.
 549 Nine scenarios were investigated to find the best solution that provides the lowest power loss while
 550 improving the system performance and enhancing the PQ measures. The contribution of SOP losses
 551 to the total active losses, as well as the effect of increasing the number of SOPs connected to the

552 system, are investigated at different loading conditions to determine the real benefits gained from
553 their allocation. It was clear from the results obtained for scenario 9 that simultaneous NR, SOP and
554 DG allocation into a distribution system creates a hybrid configuration that merges the benefits
555 offered by radial distribution systems and mitigates drawbacks related to losses, PQ, and voltage
556 violations while offering far more efficient and optimal network operation. Also, it was found that
557 the contribution of the internal loss of SOPs to the total loss for different numbers of installed SOPs
558 is not dependent on the number of SOPs and that loss minimization is not always guaranteed by
559 installing more SOPs or DGs along with NR. Finally, SOPs can address issues related to voltage
560 violations, HC, and network losses efficiently to assist the integration of DGs into distribution
561 systems. The cost-benefit analysis was beyond the framework of the study, but it will be included in
562 a future study using a large-scale multi-objective MINLP model of cost and benefits gained by
563 optimal siting and sizing of SOPs and DGs in the engineering practice for large-scale balanced and
564 unbalanced reconfigured distribution systems.

565 **Author Contributions:** Ibrahim M. Diaaeldin and Shady H.E. Abdel Aleem designed the problem under study;
566 Ibrahim M. Diaaeldin performed the simulations and obtained the results. Shady H.E. Abdel Aleem analyzed
567 the obtained results. Ibrahim M. Diaaeldin wrote the paper, which was further reviewed by Shady H.E. Abdel
568 Aleem, Ahmed El-Rafei, Almoataz Y. Abdelaziz, and Ahmed F. Zobaa.


569 **Conflicts of Interest:** The authors declare no conflict of interest.

570 Appendix A

571

Figure 12. IEEE 33-node distribution system after NR, SOPs and DGs allocation with SOPs internal losses considered: scenario 9

574

577 **Table A.1.** Optimal system configuration, sizing and locations of SOPs and DGs for scenarios 4 to 9
 578 without SOPs internal losses at normal loading level: IEEE 33-node distribution system

Scenario	tie-lines	SOPs locations (lines)	SOPs sizing			DG node	DG sizing (MW)
			P_I^{SOP} (MW)	Q_I^{SOP} (MVAr)	Q_J^{SOP} (MVAr)		
4	-	33	0.2000	0.0818	0		
		34	0	0	0.0933		
		35	0.0600	0.2432	0.6847	NA	
		36	0.0900	0.0344	0.5634		
		37	0	0	0		
5	7	11	0.0450	0.0263	0.0171		
		14	-0.0600	0.2924	0.0117	NA	
		32	-0.0600	0.3360	0.1729		
		37	-0.1200	0.2272	0.6886		
		11	0.0450	0	0		
6	7	14	0	0	0.0920	NA	
		32	-0.0600	0.3123	0.0885		
		37	-0.1200	0.3670	0.6980		
		33	0	0	0.088	24	0.4200
7	-	34	0	0	0	24	0.4200
		35	0.06	0	0	25	0.4200
		36	0.09	0	0	32	0.2100
		37	-0.0913	0.394984	0.521994		
		7	-0.0131	0	0.173922	24	0.4200
8	-	11	0.045	0	0	24	0.4200
		14	-0.06	0.071586	0	25	0.4200
		32	-0.06	0.366156	0.196486	32	0.2100
		37	-0.12	0.28405	0.521668		
		7	-0.2	0.126	0.06107	24	0.4200
9	-	11	-0.06	0	0	24	0.4200
		28	-0.12	0	0.812957	25	0.4200
		34	-0.06	0.036864	0.077424	32	0.2100
		36	0.09	0.286571	0.239091		

579 **Table A.2.** Optimal system configuration, sizing and locations of SOPs and DGs for scenarios 4 to 9
 580 with SOPs internal losses considered at normal loading level: IEEE 33-node distribution system

Scenario	tie-lines	SOPs locations (lines)	SOPs sizing			DG node	DG sizing (MW)
			P_I^{SOP} (MW)	Q_I^{SOP} (MVAr)	Q_J^{SOP} (MVAr)		
4	36	33	0.2000	0.0333	0.0538	NA	NA
		34	-0.0652	0.0066	0.3065		
		35	0.0600	0.1494	0.0480		
		37	-0.1252	0	0		
5	7-11-32	14	0	0	0.1582	NA	NA
		37	-0.1261	0.0918	0.0138		
6	7-11-32	14	-0.0628	0.0315	0.2978	NA	NA
		37	-0.1249	0.0009	0.8776		
7	-	33	0	0	0.082994	24	0.4200
		34	-0.06245	0	0.120284		
		35	0.06	0	0	25	0.4200
		36	0.09	0	0	32	0.2100
		37	-0.12568	0.071358	0.166987		
8	7-11-14	32	-0.0624	0	0.1901	24	0.4200
		37	-0.1260	0.0853	0.3983	32	0.2100
9	7-11-17	27	-0.0624	0.000293	0.6938	24	0.4200
		34	-0.0626	0.0243	0.2831	32	0.2100

581 **Table A.3.** Optimal system configuration, sizing and locations of SOPs and DGs for scenarios 5 to 9
582 without SOPs internal losses at normal loading level: 83-node distribution System

Scenario	tie-lines	SOPs locations (lines)	SOPs sizing			DG node	DG sizing (MVA)	PF
			P_i^{SOP} (MW)	Q_i^{SOP} (MVar)	Q_j^{SOP} (MVar)			
5	13-34-39-55- 63-83-86-89	7	-0.4	1.5	0.9757			
		42	0.2	0.4398	0.4719			
		72	0.4184	1.4214	1.3143			
		90	0.3	0.1856	0.5016			
		92	0.7229	0.3661	1.1009		NA	
6	13-34-39-42- 84-86-89-90- 96	72	1.1439	0.3959	1.4468			
		82	-0.1	1.1822	0.3869			
		85	0.4	1.4312	0.6977			
		92	-0.2	1.4781	0.6503			
7	84-86-88-89- 90-91-94-95- 96	85	0.1547	1.492	0.8203	6	1.100	0.9658
		87	0.2941	1.0794	0.7539	12	1.200	0.9500
		92	-0.2	0.9864	1.0761	19	1.200	0.9500
		93	0.2	0.4686	0.6413	28	1.547	0.9817
		96				31	1.799	0.9502
						71	2.000	0.9500
8	13-34-39-55- 63-83-86-89	93				75	1.200	0.9500
		7	-0.4	0.5959	0.7569	79	2.000	0.9500
		42	0.200	0.4948	0.5371	6	1.100	0.9747
		72	0.3509	0.8314	0.3136	12	0.995	0.9503
		90	-0.1	1.2025	1.1796	19	1.200	0.9535
9	7-13-16-32-34- 72-86-95	92	-0.200	0.350	1.3027	28	1.800	0.9501
		38	-0.02	0.239	0.493	31	1.800	0.9501
		55	0.500	1.399	0.804	71	1.274	0.9501
		64	0.300	0.9497	0.576	75	1.200	0.9502
		89	-0.091	0.764	1.236	79	2.000	0.9500
		91	0.300	0.8106	1.033	28	1.782	0.9500
						31	1.678	0.9501
						71	2.000	0.9500
						75	1.200	0.9500
						79	2.000	0.9500

583 **Table A.4.** Optimal system configuration, sizing and locations of SOPs and DGs for scenarios 5 to 9
 584 with SOPs internal losses considered at normal loading level: 83-node distribution system

Scenario	tie-lines	SOPs locations (lines)	SOPs sizing			DG node	DG sizing (MVA)	PF
			P_i^{SOP} (MW)	Q_i^{SOP} (MVAr)	Q_j^{SOP} (MVAr)			
5	7-13-34-39-42- 55-63-83-86- 89-90-92	72	0.2605	0.4347	0.1784	NA	1.100	0.9550
			-0.208	0.0098	0.5608			
6	7-13-14-34-38- 40-55-63-86-90	32 82 87	-0.108	0.1785	1.2975	NA	1.200	0.9500
			-0.209	0.133	1.1108			
7	84-86-87-88- 89-90-91-92- 93-94-95-96	85	0.3367	1.4617	0.4298	6	1.100	0.9550
						12	1.200	0.9500
						19	1.200	0.9500
						28	1.800	0.9500
						31	1.800	0.9905
						71	2.000	0.9500
						75	1.200	0.9500
						79	2.000	0.9505
8	7-13-34-39-42- 55-63-83-86- 89-90-92	72	0.2879	0.4032	0.4376	6	1.100	0.9500
						12	1.200	0.9500
						19	1.200	0.9507
						28	1.800	0.9500
						31	1.800	0.9747
						71	2.000	0.9500
						75	1.200	0.9519
						79	2.000	0.9639
9	34-38-41-84- 86-87-88-89- 90-91-92-96	85	0.2091	1.3189	0.1894	6	1.100	0.9501
						12	1.200	0.9500
						19	1.200	0.9501
						28	1.800	0.9500
						31	1.800	0.9500
						71	2.000	0.9500
						75	1.200	0.9500
						79	2.000	0.9500

585 **References**

586 1. Ismael, S.; Abdel Aleem, S.; Abdelaziz, A.; Zobaa, A. Probabilistic hosting capacity enhancement in non-
587 sinusoidal power distribution systems using a hybrid PSOGSA optimization algorithm. *Energies* **2019**, *12*,
588 1018.

589 2. Home-Ortiz, J.M.; Melgar-Dominguez, O.D.; Pourakbari-Kasmaei, M.; Mantovani, J.R.S. A stochastic
590 mixed-integer convex programming model for long-term distribution system expansion planning
591 considering greenhouse gas emission mitigation. *Int. J. Electr. Power Energy Syst.* **2019**, *108*, 86–95.

592 3. Sakar, S.; Balci, M.E.; Abdel Aleem, S.H.E.; Zobaa, A.F. Integration of large- scale PV plants in non-
593 sinusoidal environments: considerations on hosting capacity and harmonic distortion limits. *Renew. Sustain.*
594 *Energy Rev.* **2018**, *82*, 176–186.

595 4. Chicco, G.; Mazza, A. 100 years of symmetrical components. *Energies* **2019**, *12*, 450.

596 5. H.E. Abdel Aleem, S.; T. Elmathan, M.; F. Zobaa, A. Different design approaches of shunt passive harmonic
597 filters based on IEEE std. 519-1992 and IEEE Std. 18-2002. *Recent Patents Electr. Electron. Eng.* **2013**, *6*, 68–75.

598 6. Badran, O.; Mekhilef, S.; Mokhlis, H.; Dahalan, W. Optimal reconfiguration of distribution system connected
599 with distributed generations: A review of different methodologies. *Renew. Sustain. Energy Rev.* **2017**, *73*, 854–
600 867.

601 7. Elders, I.; Ault, G.; Barnacle, M.; Galloway, S. Multi-objective transmission reinforcement planning
602 approach for analysing future energy scenarios in the Great Britain network. *IET Gener. Transm. Distrib.*
603 **2015**, *9*, 2060–2068.

604 8. Ismael, S.M.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Zobaa, A.F. Practical considerations for optimal
605 conductor reinforcement and hosting capacity enhancement in radial distribution systems. *IEEE Access* **2018**,
606 *6*, 27268–27277.

607 9. CHEN, S.; LIU, C.-C. From demand response to transactive energy: state of the art. *J. Mod. Power Syst. Clean*
608 *Energy* **2017**, *5*, 10–19.

609 10. Qi, Q.; Wu, J.; Long, C. Multi-objective operation optimization of an electrical distribution network with soft
610 open point. *Appl. Energy* **2017**, *208*, 734–744.

611 11. Namachivayam, G.; Sankaralingam, C.; Perumal, S.K.; Devanathan, S.T. Reconfiguration and capacitor
612 placement of radial distribution systems by modified flower pollination algorithm. *Electr. Power Components*
613 *Syst.* **2016**, *44*, 1492–1502.

614 12. Kazemi-Robati, E.; Sepasian, M.S. Passive harmonic filter planning considering daily load variations and
615 distribution system reconfiguration. *Electr. Power Syst. Res.* **2019**, *166*, 125–135.

616 13. Schnelle, T.; Schmidt, M.; Schegner, P. Power converters in distribution grids - new alternatives for grid
617 planning and operation. In Proceedings of the 2015 IEEE Eindhoven PowerTech; IEEE, 2015; pp. 1–6.

618 14. Wang, C.; Song, G.; Li, P.; Ji, H.; Zhao, J.; Wu, J. Optimal siting and sizing of soft open points in active
619 electrical distribution networks. *Appl. Energy* **2017**, *189*, 301–309.

620 15. Cao, W.; Wu, J.; Jenkins, N.; Wang, C.; Green, T. Benefits analysis of soft open points for electrical
621 distribution network operation. *Appl. Energy* **2016**, *165*, 36–47.

622 16. Zhang, L.; Shen, C.; Chen, Y.; Huang, S.; Tang, W. Coordinated Optimal Allocation of DGs, Capacitor Banks
623 and SOPs in Active Distribution Network Considering Dispatching Results Through Bi-level Programming.
624 *Energy Procedia* **2017**, *142*, 2065–2071.

625 17. Long, C.; Wu, J.; Thomas, L.; Jenkins, N. Optimal operation of soft open points in medium voltage electrical
626 distribution networks with distributed generation. *Appl. Energy* **2016**, *184*, 427–437.

627 18. Qi, Q.; Wu, J.; Long, C. Multi-objective operation optimization of an electrical distribution network with soft
628 open point. *Appl. Energy* **2017**, *208*, 734–744.

629 19. Ji, H.; Li, P.; Wang, C.; Song, G.; Zhao, J.; Su, H.; Wu, J. A strengthened SOCP-based approach for evaluating
630 the distributed generation hosting capacity with soft open Points. *Energy Procedia* **2017**, *142*, 1947–1952.

631 20. Cao, W.; Wu, J.; Jenkins, N.; Wang, C.; Green, T. Operating principle of soft open points for electrical
632 distribution network operation. *Appl. Energy* **2016**, *164*, 245–257.

633 21. Aithal, A.; Li, G.; Wu, J.; Yu, J. Performance of an electrical distribution network with soft open point during
634 a grid side AC fault. *Appl. Energy* **2018**, *227*, 262–272.

635 22. Wang, C.; Song, G.; Li, P.; Ji, H.; Zhao, J.; Wu, J. Optimal configuration of soft open point for active
636 distribution network based on mixed-integer second-order cone programming. *Energy Procedia* **2016**, *103*,
637 70–75.

638 23. Qi, Q.; Wu, J. Increasing distributed generation penetration using network reconfiguration and soft open
639 points. *Energy Procedia* **2017**, *105*, 2169–2174.

640 24. Qi, Q.; Long, C.; Wu, J.; Smith, K.; Moon, A.; Yu, J. Using an MVDC link to increase DG hosting capacity of
641 a distribution network. *Energy Procedia* **2017**, *142*, 2224–2229.

642 25. Li, P.; Ji, H.; Yu, H.; Zhao, J.; Wang, C.; Song, G.; Wu, J. Combined decentralized and local voltage control
643 strategy of soft open points in active distribution networks. *Appl. Energy* **2019**, *241*, 613–624.

644 26. Yao, C.; Zhou, C.; Yu, J.; Xu, K.; Li, P.; Song, G. A sequential optimization method for soft open point
645 integrated with energy storage in active distribution networks. *Energy Procedia* **2018**, *145*, 528–533.

646 27. Thomas, L.J.; Burchill, A.; Rogers, D.J.; Guest, M.; Jenkins, N. Assessing distribution network hosting
647 capacity with the addition of soft open points. In Proceedings of the 5th IET International Conference on
648 Renewable Power Generation (RPG) 2016; Institution of Engineering and Technology, 2016; pp. 1–6.

649 28. Guo, X.B.; Wei, W.X.; Xu, A.D. A coordinated optimization method of snop and tie switch operation
650 simultaneously based on cost in active distribution network. In Proceedings of the IET Conference
651 Publications; 2016.

652 29. Bai, L.; Jiang, T.; Li, F.; Chen, H.; Li, X. Distributed energy storage planning in soft open point based active
653 distribution networks incorporating network reconfiguration and DG reactive power capability. *Appl.*
654 *Energy* **2018**, *210*, 1082–1091.

655 30. Ji, H.; Wang, C.; Li, P.; Zhao, J.; Song, G.; Ding, F.; Wu, J. An enhanced SOCP-based method for feeder load
656 balancing using the multi-terminal soft open point in active distribution networks. *Appl. Energy* **2017**, *208*,
657 986–995.

658 31. Ji, H.; Wang, C.; Li, P.; Song, G.; Wu, J. SOP-based islanding partition method of active distribution networks
659 considering the characteristics of DG, energy storage system and load. *Energy* **2018**, *155*, 312–325.

660 32. Li, P.; Ji, H.; Wang, C.; Zhao, J.; Song, G.; Ding, F.; Wu, J. Coordinated control method of voltage and reactive
661 power for active distribution networks based on soft open point. *IEEE Trans. Sustain. Energy* **2017**, *8*, 1430–
662 1442.

663 33. Wang, C.; Song, G.; Li, P.; Ji, H.; Zhao, J.; Wu, J. Optimal siting and sizing of soft open points in active
664 electrical distribution networks. *Appl. Energy* **2017**, *189*, 301–309.

665 34. Xiao, H.; Pei, W.; Li, K. Optimal sizing and siting of soft open point for improving the three phase unbalance
666 of the distribution network. In Proceedings of the 2018 21st International Conference on Electrical Machines
667 and Systems (ICEMS); IEEE, 2018; pp. 2080–2084.

668 35. El-Fergany, A.A. Optimal capacitor allocations using evolutionary algorithms. *IET Gener. Transm. Distrib.*
669 **2013**, *7*, 593–601.

670 36. Abdelaziz, A.Y.; Ali, E.S.; Abd Elazim, S.M. Optimal sizing and locations of capacitors in radial distribution
671 systems via flower pollination optimization algorithm and power loss index. *Eng. Sci. Technol. an Int. J.* **2016**,
672 *19*, 610–618.

673 37. Karami, H.; Sanjari, M.J.; Gharehpetian, G.B. Hyper-Spherical Search (HSS) algorithm: a novel meta-
674 heuristic algorithm to optimize nonlinear functions. *Neural Comput. Appl.* **2014**, *25*, 1455–1465.

675 38. Ahmadi, S.A.; Karami, H.; Sanjari, M.J.; Tarimoradi, H.; Gharehpetian, G.B. Application of hyper-spherical
676 search algorithm for optimal coordination of overcurrent relays considering different relay characteristics.
677 *Int. J. Electr. Power Energy Syst.* **2016**, *83*, 443–449.

678 39. Bloemink, J.M.; Green, T.C. Increasing photovoltaic penetration with local energy storage and soft normally-
679 open points. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting; IEEE, **2011**; pp.
680 1–8.

681 40. Bloemink, J.M.; Green, T.C. Benefits of distribution-level power electronics for supporting distributed
682 generation growth. *IEEE Trans. Power Deliv.* **2013**, *28*, 911–919.

683 41. Ji, H.; Wang, C.; Li, P.; Ding, F.; Wu, J. Robust operation of soft open points in active distribution networks
684 with high penetration of photovoltaic integration. *IEEE Trans. Sustain. Energy* **2019**, *10*, 280–289.

685 42. PCS 6000 for large wind turbines: Medium voltage, full power converters up to 9 MVA. ABB, brochure
686 3BHS351272 E01 Rev. A. **2012**, [Online]. Available: <http://new.abb.com/docs/default-source/ewea-doc/pcs6000wind.pdf>

688 43. Peponis, G.J.; Papadopoulos, M.P.; Hatziaargyriou, N.D. Optimal operation of distribution networks. *IEEE*
689 *Trans. Power Syst.* **1996**, *11*, 59–67.

690 44. Chiou, J.-P.; Chang, C.-F.; Su, C.-T. Variable scaling hybrid differential evolution for solving network
691 reconfiguration of distribution systems. *IEEE Trans. Power Syst.* **2005**, *20*, 668–674.

692 45. Esmaeili, S.; Dehnavi, H.D.; Karimzadeh, F. Simultaneous reconfiguration and capacitor placement with
693 harmonic consideration using fuzzy harmony search algorithm. *Arab. J. Sci. Eng.* **2014**, *39*, 3859–3871.

694 46. Rao, R.S.; Ravindra, K.; Satish, K.; Narasimham, S.V.L. Power loss minimization in distribution system using
695 network reconfiguration in the presence of distributed generation. *IEEE Trans. Power Syst.* **2013**, *28*, 317–325.

696 47. Abdelaziz, A.Y.; Mekhamer, S.F.; Badr, M.A.L.; Mohamed, F.M.; El-Saadany, E.F. A modified particle
697 swarm Algorithm for distribution systems reconfiguration. In Proceedings of the 2009 IEEE Power & Energy
698 Society General Meeting; IEEE, **2009**; pp. 1–8.

699 48. Rajaram, R.; Sathish Kumar, K.; Rajasekar, N. Power system reconfiguration in a radial distribution network
700 for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with
701 Distributed Generation (DG). *Energy Reports* **2015**, *1*, 116–122.