

1 Article

2 **Development and Evaluation of a Reynolds-
3 Averaged Navier-Stokes Solver in WindNinja for
4 Operational Wildland Fire Applications**5 **Natalie S. Wagenbrenner^{1,*}, Jason M. Forthofer¹, Wesley G. Page¹, and Bret W. Butler¹**6 ¹ US Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, 5775 W Highway
7 10, Missoula, MT 59808, USA; jason.forthofer@usda.gov (J.M.F.); wesley.g.page@usda.gov (W.G.P.);
8 bret.butler@usda.gov (B.W.B.)

9 * Correspondence: natalie.s.wagenbrenner@usda.gov

10

11 **Abstract:** An open source computational fluid dynamics (CFD) solver has been incorporated into
12 the WindNinja modeling framework widely used by wildland fire managers as well as researchers
13 and practitioners in other fields, such as wind energy, wind erosion, and search and rescue. Here
14 we describe incorporation of the CFD solver and evaluate its performance compared to the
15 conservation of mass (COM) solver in WindNinja and previously published large-eddy simulations
16 (LES) for three field campaigns conducted over isolated terrain obstacles of varying terrain
17 complexity: Askervein Hill, Bolund Hill, and Big Southern Butte. We also compare the effects of two
18 important model settings in the CFD solver and provide guidance on model sensitivity to these
19 settings. Additionally, we investigate the computational mesh and difficulties regarding terrain
20 representation. Two important findings from this work are: (1) the choice of discretization scheme
21 for advection has a significantly larger effect on the simulated winds than the choice of turbulence
22 model and (2) CFD solver predictions are significantly better than the COM solver predictions at
23 windward and lee side observation locations, but no difference was found in predicted speed-up at
24 ridgeline locations between the two solvers.25 **Keywords:** microscale wind modeling; RANS modeling; complex terrain; wildland fire

26

27 **1. Introduction**28 WindNinja is a microscale diagnostic wind model developed for and widely used in operational
29 wildland fire applications both in the United States (U.S.) and abroad [1-2]. Microscale wind
30 modeling is used for a variety of tasks in wildland fire management including planning,
31 reconstructing past events, and exploring what-if scenarios. Often many, even thousands of
32 simulations, must be run in a short time frame depending on the modeling objectives. WindNinja
33 was developed over 15 years ago specifically for these types of tasks and, to our knowledge, is the
34 most widely used microscale wind model in wildland fire. WindNinja is embedded within a number
35 of operational systems routinely used by U.S. Interagency Wildland Fire response teams, including
36 the Wildland Fire Decision Support System [3] and FlamMap [4] and is also regularly used as a stand-
37 alone model by both fire managers and on-the-ground firefighters.38 The original version of WindNinja employs a numerical solver that enforces conservation of
39 mass (hereafter referred to as the 'COM' solver) to simulate mechanical effects of the terrain on the
40 near-surface wind [1]. Evaluations against field data have shown that the COM solver can simulate
41 many terrain-induced near-surface flow effects, including speed-up over ridges, terrain channeling,
42 and reduced lee side velocities [1-2, 5]; however, it is well-documented that COM solvers, including
43 the one in WindNinja, have difficulties simulating the flow field in regions where momentum effects

44 dominate, notably on the lee side of terrain obstacles where flow separation can lead to areas of
45 recirculation [1, 6].

46 Due to its success in the operational wildland fire community, WindNinja has been under
47 continuous development and has evolved over the last ten years into a robust wind modeling
48 framework. This framework includes a modern graphical user interface, flexible initialization options,
49 the ability to download data required for model initialization, user-selectable thermal
50 parameterizations, and multiple easy-to-use output products. As a part of ongoing development
51 efforts, a second numerical solver based on computational fluid dynamics (CFD) has been added to
52 the framework. This new solver is similar to the CFD model described by Forthofer et al. [1], but is
53 based on free, open-source software embedded directly within the WindNinja framework. This new
54 CFD solver is expected to improve predictions, particularly in lee side flow regions, with only a
55 marginal increase in computational effort such that simulations are still affordable on typical laptop
56 computers.

57 This paper describes the new CFD solver and provides an initial evaluation of its performance
58 against field measurements, the COM solver in WindNinja, and previously published large-eddy
59 simulation (LES) results. We investigate two commonly-used discretization schemes for the
60 advection term in the momentum equation, three turbulence model configurations, and assess the
61 impact of these numerical settings on the results. The effect of the numerical mesh on results is also
62 discussed. The specific goals of this study are to: (1) determine the most appropriate combination of
63 numerical settings for the CFD solver and (2) compare the CFD solver predictions to predictions from
64 the COM solver and LES observations in order to put the CFD results into context and demonstrate
65 the error associated with each solver type.

66 2. WindNinja Framework

67 The WindNinja code is written primarily in the C/C++ programming language and is open
68 source and available on GitHub (github.com/firelab/windninja). It is cross-platform and runs on both
69 the Linux and Windows operating systems. The framework includes a graphical user interface (GUI),
70 command line interface (CLI), and an application programming interface (API) that allows efficient
71 integration into other software. Additional model information can be found at
72 weather.firelab.org/windninja.

73 WindNinja has seen broad and increasing use (e.g., more than 7 million simulations in 30
74 countries during 2018), largely due to its user-friendly interface and suite of auxiliary features that
75 minimize the effort required by the user and enhance the user experience. WindNinja has simple
76 input requirements, which include a digital elevation model for the terrain, specification of the
77 dominant vegetation in the domain, and an input wind. All of these inputs can be downloaded from
78 online sources via WindNinja. WindNinja allows three options for specification of the initial wind:
79 (1) a domain-average wind, which is an average wind for the domain specified at a single height
80 above the ground; (2) wind information from one or more observation points (e.g., weather stations);
81 and (3) a coarser resolution wind field from a numerical weather prediction model.

82 The core of the WindNinja framework are the two numerical solvers used to solve for the
83 flow field. Both solve for a neutrally-stratified flow; however, thermal parameterizations are available
84 to approximate some thermal effects including diurnal slope winds and non-neutral atmospheric
85 stability. The slope flow parameterization is described in Forthofer et al. [7]. The stability
86 parameterization adjusts the Gauss precision moduli in the governing equation solved in the COM
87 solver based on the estimated Pasquill stability class following recommendations in Chan and
88 Sugiyama [8] and Homicz [9]. As described in Forthofer et al. [1], the Gauss precision moduli control
89 the relative amount of change allowed by the solver in the horizontal and vertical directions. If the
90 stability parameterization is not used, the Gauss precision moduli are set to 1, which creates a
91 numerical situation representative of neutral atmospheric conditions.

92 Since the current implementation of the stability parameterization is based on modifications to
93 parameters in the governing equation solved in the COM solver, this parameterization is not
94 available for use with the CFD solver. Future work is intended to allow non-neutral simulations with

95 the CFD solver. The diurnal slope flow parameterization is incorporated into CFD simulations by
 96 first running a neutral CFD simulation, then adding in the diurnal slope flow component to the CFD
 97 solution in each cell of the domain, and finally running a COM simulation on the slope flow-adjusted
 98 CFD solution. This chaining together of CFD and COM simulations allows approximation of
 99 thermally-driven slope flows without explicitly solving an energy equation in the CFD solver, which
 100 keeps the simulation times affordable.

101 3. CFD Solver Description

102 The CFD solver in WindNinja is based on OpenFOAM version 2.2.0 [10] (www.openfoam.org).
 103 The formulation of this solver is similar to that of the mass and momentum conserving solver
 104 described in Forthofer et al. [1] which has been previously used in operational wildland fire
 105 applications under the name “WindWizard”. Differences between the Fluent-based Forthofer et al.
 106 [1] solver and the CFD solver described here include the computational mesh structure, turbulence
 107 closure scheme, treatment of the ground boundary condition, and that all code used in the current
 108 CFD model is free and open source, which allows WindNinja to continue to be released without
 109 licensing restrictions or fees. This last point regarding software licensing is a major issue for
 110 operational wildland fire, particularly for government personnel who may not have access to funds
 111 or approval to purchase software licenses for their work.

112 As in Forthofer et al. [1], the flow is assumed to be steady, viscous, incompressible, turbulent,
 113 and neutrally-stratified, and the Coriolis force is ignored. WindNinja employs the simpleFoam solver,
 114 which is an implementation of the semi-implicit method for pressure-linked equations (SIMPLE)
 115 method, to approximate solutions to the steady-state, incompressible Reynolds-Averaged Navier-
 116 Stokes (RANS) equations. Using the Boussinesq approximation [11], the RANS equations are:
 117

$$118 \quad \frac{\partial \bar{u}_i}{\partial x_i} = 0 \quad (1)$$

$$120 \quad \frac{\partial(\bar{u}_j \bar{u}_i)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left[\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right] \right) + \frac{\partial}{\partial x_j} (-\rho \bar{u}'_i \bar{u}'_j) \quad (2)$$

122 In Eqs. (1) and (2) \bar{u}_i and \bar{u}_j are the time-averaged velocity components in the i and j coordinate
 123 directions, u'_i and u'_j are the instantaneous velocity components in the i and j coordinate directions,
 124 p is pressure, ρ is density, and ν is the laminar viscosity. A two-equation eddy viscosity turbulence
 125 model is used to model the contribution of the instantaneous velocity components. This introduces a
 126 turbulent viscosity, ν_t , to account for the effects of the instantaneous velocity components:
 127

$$128 \quad \frac{\partial(\bar{u}_j \bar{u}_i)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu + \nu_t \left[\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right] \right) \quad (3)$$

130 Three two-equation turbulence models are investigated, the standard k-epsilon model [12], a
 131 modified k-epsilon model that allows production and dissipation of turbulent kinetic energy (TKE)
 132 to be out of equilibrium at the ground, and the renormalization group (RNG) k-epsilon model [13].
 133 In all cases, the turbulent viscosity is calculated as:
 134

$$135 \quad \nu_t = C_\mu \frac{k^2}{\varepsilon} \quad (4)$$

137 In Eq. (4) C_μ is a constant (see Table 1), k is the TKE, and ε is the dissipation of TKE. Two
 138 additional transport equations are solved, one for k and one for ε . For the standard k-epsilon model
 139 the additional equations are:
 140

141
$$\frac{\partial(k\bar{u}_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right] + P - \varepsilon \quad (5)$$

142
$$143 \frac{\partial(\varepsilon\bar{u}_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\frac{v_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} \frac{P\varepsilon}{k} - C_{\varepsilon 2} \frac{\varepsilon^2}{k} \quad (6)$$

144
145 In Eq. (5) P is the production of TKE and is given by:
146

147
$$148 P = 2v_t S_{ij} S_{ij} \quad (7)$$

149 where S_{ij} is the mean rate of strain tensor:
150

151
$$152 S_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \quad (8)$$

153 The conservation equations are the same for the other two turbulence models, except the
154 modified k-epsilon model uses a wall function for the production term in the dissipation equation
155 and the RNG k-epsilon model treats the constant $C_{\varepsilon 1}$ as a variable that depends on the ratio of the
156 production of TKE to its dissipation:
157

158
$$159 C_{\varepsilon 1 RNG} = 1.42 - \frac{\eta(1 - (\eta/4.38))}{1 + \beta_{RNG}\eta^3} \quad (9)$$

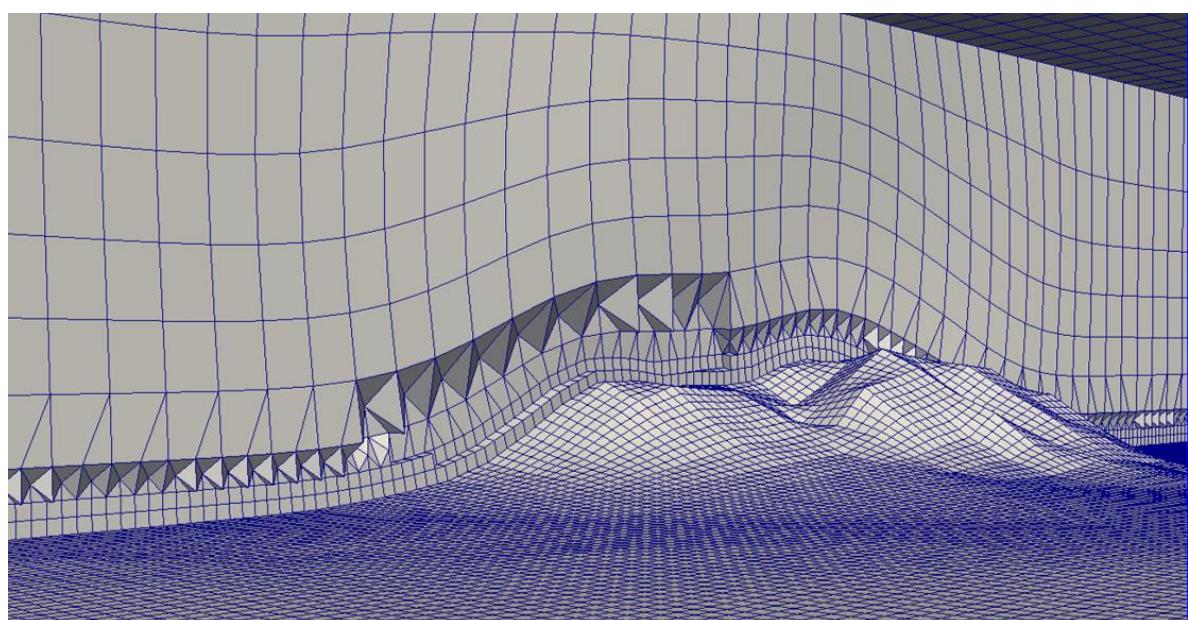
160 where:
161

162
$$163 \eta = \sqrt{P_k / \rho C_{\mu RNG} \varepsilon} \quad (10)$$

164 and the production of TKE is:
165

166
$$167 P_k = \tau_{ij} \frac{\partial \bar{u}_i}{\partial x_j} = \mu_t \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \frac{\partial \bar{u}_i}{\partial x_j} \quad (11)$$

168 Model constants are listed in Table 1. The custom OpenFOAM code used in the modified k-
169 epsilon model is available in the WindNinja GitHub repository.
170


171 **Table 1.** Constants used in the governing equations.

Parameter	Standard k-epsilon	RNG k-epsilon
C_μ	0.09	0.085
σ_k	1.0	0.7179
σ_ε	1.3	0.7179
$C_{\varepsilon 1}$	1.44	calculated
$C_{\varepsilon 2}$	1.92	1.68
β	-	0.012

172 The governing equations are discretized using the finite volume method. Two second-order
173 discretization schemes for advection of the mean wind, linear upwind and the Quadratic Upstream
174 Interpolation for Convective Kinematics (QUICK), are investigated in this work and described in
175 Section 3.1. A first-order bounded Gauss upwind scheme is used for all other advection terms. A
176 second-order Gauss linear limited discretization scheme is used for all diffusion terms.
177

178 The discretized equations are solved on a terrain-following, unstructured mesh with
179 predominantly hexahedral cells (Figure 1). WindNinja employs a three-step meshing scheme using
180 OpenFOAM mesh generation and manipulation utilities. The number of cells in the mesh is set based

181 on a user-specified choice of the mesh resolution. The four choices available to the user are 'coarse',
 182 'medium', 'fine' or the user can directly set the number of cells to use. The coarse, medium, and fine
 183 options correspond to 25K, 50K, and 100K cells, respectively. In the first step of the meshing scheme
 184 a blockMesh is generated above the terrain using the blockMesh utility. Then moveDynamicMesh is
 185 used to stretch the lower portion of the blockMesh down to the terrain. Finally, the near-ground cells
 186 are refined in all three directions using the refineMesh utility. The total number of cells are divided
 187 equally between the blockMesh and the refined layer at the ground. The refineMesh utility is
 188 executed repeatedly until the specified number of cells have been allocated. This has proven to be a
 189 robust approach for automated meshing over complex terrain; however, there are limitations to this
 190 approach which are discussed in Section 5.6. A comprehensive investigation of computational mesh
 191 quality is beyond the scope of this work, but key considerations regarding the current meshing
 192 algorithm are described for the reader and will be the focus of future work.
 193

194
 195 **Figure 1.** Slice through the computational mesh used for Big Southern Butte.
 196

197 The inlet boundary conditions are specified as follows per Richards and Norris [14]:
 198

$$199 \quad U = \frac{u_*}{\kappa_{k-\varepsilon}} \ln \left(\frac{z}{z_0} \right) \quad (12)$$

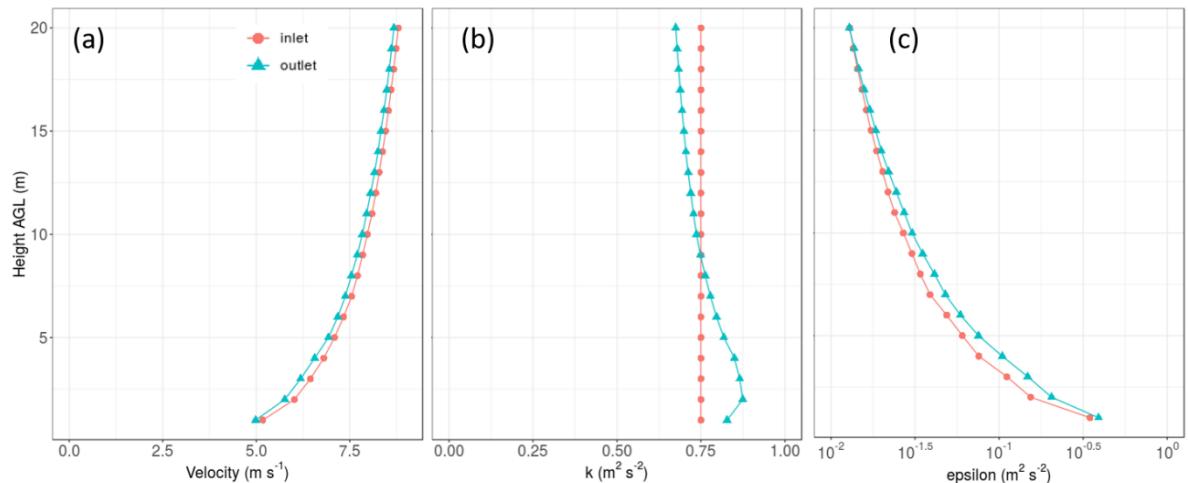
$$201 \quad k = \frac{u_*^2}{\sqrt{C_\mu}} \quad (13)$$

$$203 \quad \varepsilon = \frac{u_*^3}{\kappa_{k-\varepsilon} z} \quad (14)$$

204 The friction velocity, u_* , is calculated as:
 205

$$207 \quad u_* = \frac{\kappa U_h}{\ln \left(\frac{h}{z_0} \right)} \quad (15)$$

209 where U_h is the input wind velocity at a specified height h above the ground and the von
 210 Karman constant, κ , is taken as 0.41.


211 The inlet is terrain-following. The non-inlet side boundaries are set to pressureInletOutlet for
 212 velocity and zero-gradient for TKE and dissipation of TKE. The pressureInletOutlet boundary

213 condition assigns a zero-gradient condition if the flow is out of the domain and a velocity based on
 214 the flux in the cell face-normal direction if the flow is into the domain. The top boundary is
 215 specified as zero-gradient for velocity, TKE, and dissipation of TKE. Rough wall functions are used
 216 for the ground boundary condition. The boundary condition imposed at the ground for turbulent
 217 viscosity is nutkAtmRoughWallFunction, for TKE is kqRWallFunction, for dissipation of TKE is
 218 epsilonWallFunction, and for velocity is a fixed value of 0. The roughness is set based on the
 219 vegetation selection in WindNinja, where the choices “grass”, “brush”, and “trees” corresponds to a
 220 roughness of 0.01, 0.43, and 1.0 m, respectively.

221 Two departures from the Richards and Norris [14] boundary condition recommendations
 222 are that we do not specify a shear stress at the top boundary and we use a value of 0.41 for the von
 223 Karman constant, rather than the values determined by the turbulence model, which turn out to be
 224 0.433 for the standard k-epsilon model and 0.4 for the RNG k-epsilon model. Implementation of
 225 these recommendations will be undertaken in future work.

226 The implemented boundary conditions were tested on a flat terrain case and the inlet and
 227 outlet profiles are compared (Figure 2). The results shown in Fig. 2 are for the standard k-epsilon
 228 turbulence model with the linear upwind discretization scheme. The horizontal extent of the
 229 computational mesh is 800 x 400 m, with a top height of 80 m above sea level, and cell horizontal
 230 spacing and cell height of 1 m in the near-ground cells. For a horizontally homogenous flat terrain,
 231 the inlet and outlet profiles should be identical. There is a slight decay in the velocity profile over
 232 the length of the domain (Figure 2), which could potentially be mitigated with specification of a
 233 shear stress rather than zero-gradient at the top boundary as suggested by Richards and Norris [14].
 234 The kink in the near-ground layer of the TKE profile is commonly observed in RANS modeling and
 235 may be due to one or more issues, including the near-ground cell height, inconsistency in the
 236 discretization used for TKE production term versus that used for the shear stresses in the
 237 momentum equation, or perhaps the turbulence model itself [14-16]. Future work will investigate
 238 improvements to the top boundary condition and approaches to mitigate the kink in the TKE
 239 profile, but overall, these results are satisfactory for our typical use case in wildland fire
 240 applications.

241

242
 243 **Figure 2.** Profiles for (a) velocity, (b) turbulent kinetic energy (TKE), and (c) dissipation of TKE
 244 over flat terrain.
 245

246 4. Methods

247 4.1. CFD Configuration and Settings Investigated

248 Preliminary testing was conducted with meshes containing up to 2M cells, but no appreciable
 249 differences were found as compared with results from meshes built using the fine mesh setting in
 250 WindNinja. Therefore, all CFD simulations were run with a fine mesh resolution, corresponding to

251 100K cells. Mesh considerations and terrain representation are further discussed in Section 5.6. The
 252 diurnal slope flow parameterization was not used. The vegetation option was set to “grass”, which
 253 corresponds to a roughness length of 0.01 m. The “domain average” initialization method was used to
 254 initialize the CFD simulations using an average wind speed and direction measured at a single height
 255 above ground level at an upstream location at each site.

256 Two second-order discretization schemes are investigated for the advection of the mean wind, the
 257 linear upwind scheme and the QUICK scheme. The linear upwind scheme, which is the simplest and
 258 most commonly used second-order scheme, uses linear interpolation from the nearest upwind cell
 259 center [17]. The QUICK scheme uses a parabola to approximate the profile using the two nearest
 260 upwind cell centers. Three k-epsilon-based turbulence models are investigated, the standard k-epsilon
 261 model, a modified k-epsilon model that allows production and dissipation of TKE to be out of
 262 equilibrium at the ground, and the RNG k-epsilon model as described in Section 3. Table 2 summarizes
 263 the settings investigated and provides abbreviations for the six combinations used throughout the
 264 paper.

265

266

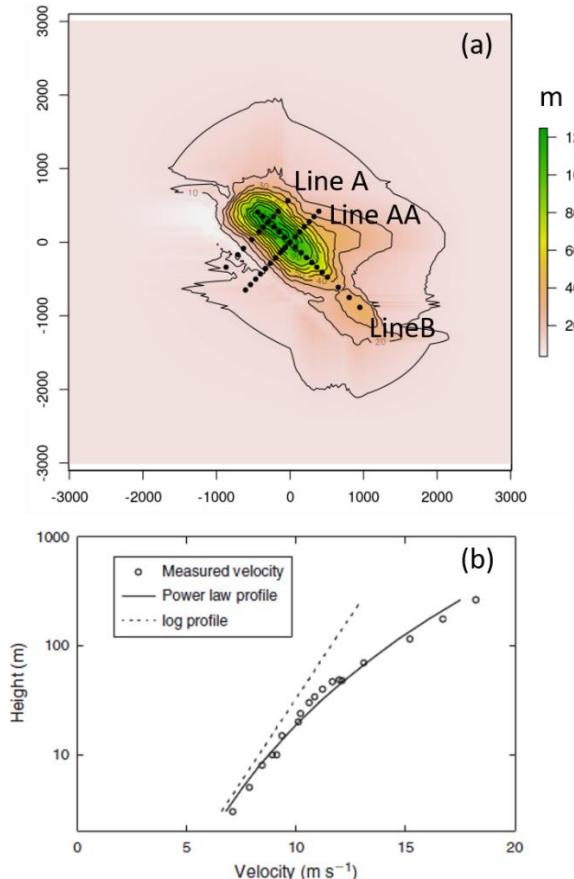
Table 2. CFD settings investigated.

Abbreviation	Turbulence Model	Discretization Scheme used for Advection of Mean Wind
myKELU	modified k-epsilon	linear upwind
KELU	standard k-epsilon	linear upwind
RNGKELU	RNG k-epsilon	linear upwind
myKEQUICK	modified k-epsilon	QUICK
KEQUICK	standard k-epsilon	QUICK
RNGKEQUICK	RNG k-epsilon	QUICK

267

268 4.2. COM Settings

269 WindNinja version 3.5.3 was used for the COM simulations. The diurnal slope flow
 270 parameterization was not used. The non-neutral stability parameterization was used only for the
 271 Askervein Hill case, which had slightly stable atmospheric conditions (see Section 4.3.1). As with the
 272 CFD solver, the fine mesh resolution option was used (which corresponds to 20K cells in the COM
 273 mesh), the vegetation option was set to “grass”, and the “domain average” initialization method was
 274 used.


275 4.3. Field Observations

276 We evaluate the CFD and COM solvers against data from three field campaigns. Two are classic
 277 benchmark datasets, Askervein Hill [18-19] and Bolund Hill [20-21]. The third site, Big Southern Butte
 278 [22], represents a more complex geometry with steeper slopes, higher ridgetops, and terrain
 279 bifurcations that are more representative of rugged terrain where wildland fires frequently occur, but
 280 is surrounded by relatively simple, flat terrain which eases characterization of the approach flow and
 281 minimizes issues regarding model boundary conditions. Results are also compared with published
 282 LES results for Askervein Hill and Bolund Hill. We are not aware of published LES results for Big
 283 Southern Butte.

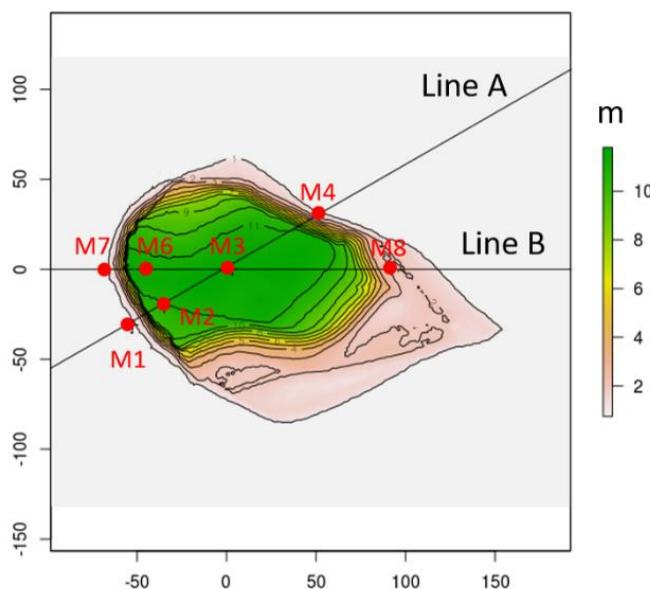
284 4.3.1. Askervein Hill

285 Askervein Hill ($57^{\circ}11.313'N$, $7^{\circ}22.360'W$) is a geometrically-simple hill rising 108 m above the
 286 surrounding terrain with a horizontal scale of about 3000 m (Figure 3a). Data were collected at 10 m
 287 above ground level along three transects, Lina A, Line AA, and Line B (Figure 3a). The MF03-D and
 288 TU03B datasets [19] are used for evaluations. The average approach flow measured at a reference
 289 location 3 km upstream was 8.9 m s^{-1} from a direction of 210° . The atmospheric stability was slightly
 290 stable (Figure 3b) with average Richardson numbers between -0.0110 and -0.0074. The ground

291 roughness length was estimated as 0.03 m [23]. Elevation data at 23-m horizontal resolution on a 6 x
 292 6 km domain from Walmsley and Taylor [24] are used for the simulations.
 293

294
 295 **Figure 3.** Askervein Hill (a) terrain and measurement locations with axes labeled in meters
 296 with north toward the top of the figure and (b) the observed velocity profile measured at an
 297 upwind reference station compared to logarithmic and power law profiles; reproduced with
 298 permission from Forthofer et al. [1].
 299

300 Characteristics of the computational mesh are shown in Table 3. The horizontal extent of the
 301 CFD computational mesh is 6 x 6 km with the hill roughly centered in the domain. The mesh top
 302 height is 727 m above sea level (Table 3). The average horizontal spacing and cell height of the near-
 303 ground cells is 20 m. The COM mesh has the same horizontal extent as the CFD mesh, but has a 742
 304 m top height, 43 m horizontal spacing, and a cell height of 0.4 m in the near-ground cells. The non-
 305 neutral stability parameterization was used for the COM simulation to approximate a slightly stable
 306 atmosphere as measured at the upstream reference site.
 307


308 **Table 3.** Computational mesh characteristics.

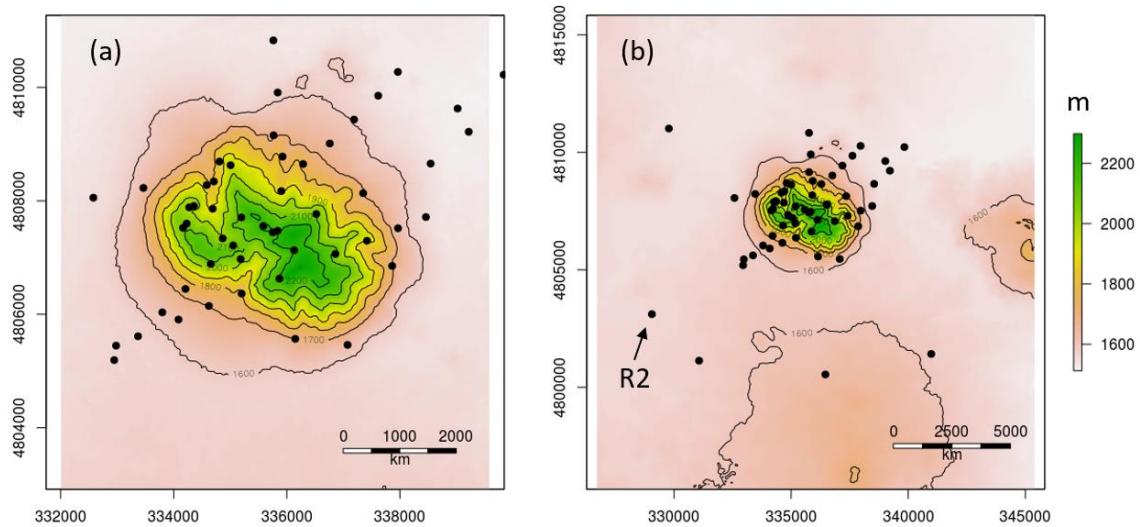
Site	Solver	Top Height ASL (m)	Horizontal Grid Spacing (m)	Near-Ground Cell Height (m)
Askervein Hill	CFD	727	20	20
	COM	742	43	0.4
Bolund Hill	CFD	92	3.8	3.8
	COM	26	4	0.1
Big Southern Butte	CFD	4318	68	68
	COM	2508	138	1.6

309

310 4.3.2. Bolund Hill

311 Bolund Hill ($55^{\circ}42.21'N$, $12^{\circ}5.892'E$) is smaller than Askervein Hill, with only 12 m of relief and
 312 a horizontal scale of about 200 m, but it has a steep, cliff-like west face, which makes its geometry
 313 slightly more complex (Figure 4). Measurements were made along two transects, Line A and Line B
 314 (Figure 4). Three cases from the blind comparison study described in Bechmann et al. [21] are chosen
 315 for this work (Table 4). The chosen cases are cases 1, 3, and 4, which correspond to wind speeds and
 316 directions of 10.9 m s^{-1} from 270° , 8.7 m s^{-1} from 239° , and 7.6 m s^{-1} from 90° , respectively. The
 317 upstream roughness was estimated as 0.0003 m for cases 1 and 3 (approach flow over water) and
 318 0.015 m for case 4 (approach flow over land) [21]. Atmospheric stability was characterized as near-
 319 neutral for all three cases [21]. Elevation data with a horizontal resolution of 0.25 m and a horizontal
 320 extent of 800×400 m are used for the simulations.
 321

322
 323 **Figure 4.** Bolund Hill terrain and measurement locations. Axes labels are in meters and north
 324 is toward the top of the figure.
 325
 326


Table 4. Bolund Hill cases investigated.

Case	Wind Speed (m s^{-1})	Wind Direction ($^{\circ}$)
1	10.9	270
3	8.7	239
4	7.6	90

327
 328 The CFD mesh has a horizontal extent of 800×400 m with the hill centered in the domain. The
 329 mesh top height is 92 m above sea level (Table 3). The average horizontal spacing and cell height of
 330 the near-ground cells is 3.8 m (Table 3). The COM mesh has the same horizontal extent as the CFD
 331 mesh, but has a top height of 26 m, 4 m horizontal grid spacing, and a near-ground cell height of 0.1
 332 m (Table 3).
 333

4.3.3. Big Southern Butte

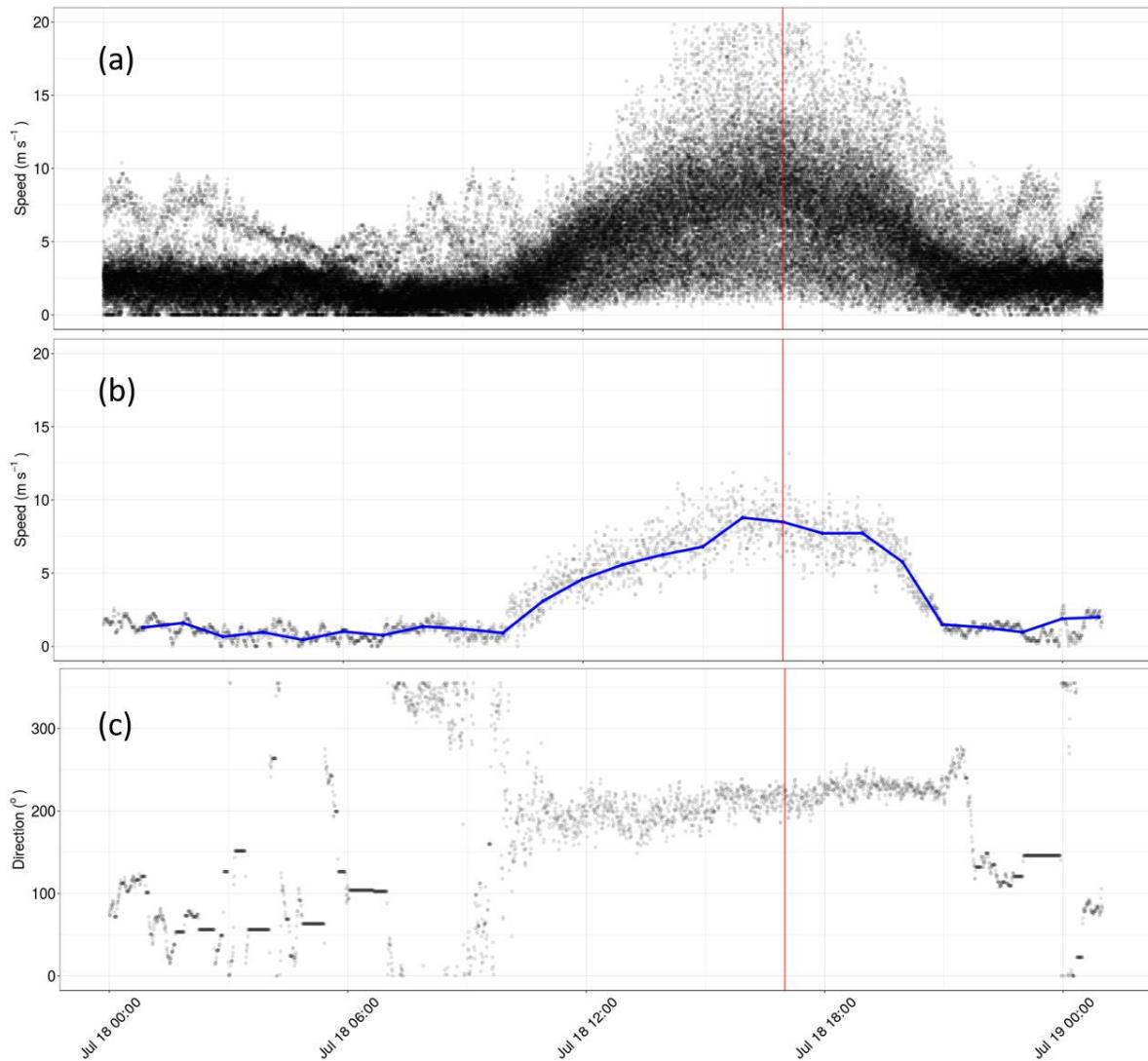
334 Big Southern Butte ($43^{\circ}24.083'N$, $113^{\circ}01.433'W$) is a tall, isolated mountain and substantially
 335 more geometrically complex than Askervein Hill or Bolund Hill (Figure 5). It has a vertical relief of
 336 800 m and a horizontal scale of about 4 km. The butte is characterized by a mix of slope angles and
 337 multiple bifurcations with ridges and valleys of various sizes forming the sides of the butte. As with
 338 Askervein and Bolund hills, the butte is covered predominantly by grass, although there are scattered
 339 trees in some locations at the higher elevations. The butte is surrounded by flat terrain covered by
 340 grass and small shrubs for more than 50 km in all directions.
 341

342

343

Figure 5. Big Southern Butte terrain and measurement locations. Panel (a) is zoomed in on the butte and (b) shows the full study area and the location of reference sensor R². Axes labels are in meters and north is toward the top of the figure.

344


345

346

347

The data used for evaluation were collected during the field campaign described in Butler et al. [22]. Wind speed and direction were measured at 3 m above ground level at 53 locations on and around the butte (Figure 5). Here we use the 10-min averaged winds at 1700 LT on 18 July 2010 as the evaluation case. This is the same case investigated as the externally forced flow event in Wagenbrenner et al. [5]. During this period the approach flow was relatively steady (Figure 6b-c) and wind speeds were moderately strong (Figure 6a-b), creating near-neutral atmospheric stability conditions at the surface. The average wind measured at the upstream reference station, R² (Figure 5b), was 8.3 m s^{-1} from 222° (Figure 6b-c). Elevation data from the Shuttle Radar Topography Mission (SRTM) dataset [25] covering an extent of $19 \times 20 \text{ km}$ at 30 m horizontal resolution are used for the simulations.

357

358
 359 **Figure 6.** Instantaneous wind speeds measured at Big Southern Butte on 18 July 2010 at (a) all
 360 sensors and (b) sensor R²; (c) instantaneous wind direction measured at sensor R² on 18 July 2010.
 361 The blue line indicates 10-min averaged wind speed at the top of each hour. The red line indicates
 362 1700 LT.
 363

364 The CFD mesh has a horizontal extent of 19 x 20 km with the butte centered in the domain. The
 365 mesh top height is 4318 m above sea level (Table 3). The average horizontal grid spacing and cell
 366 height of the near-ground cells is 68 m (Table 3). The COM mesh has the same horizontal extent as
 367 the CFD mesh, but has a top height of 2508 m, 138 m horizontal grid spacing, and a near-ground cell
 368 height of 1.6 m (Table 3).

369 *4.4. Evaluation Methods*

370 One goal of this study is to determine the most appropriate combination of numerical settings
 371 for the CFD solver. Results from the six combinations of numerical settings used in the CFD solver
 372 are explored by inspecting raster outputs of the predicted surface wind speeds under each
 373 combination of numerical settings at each site. Observed and predicted winds along transects at each
 374 site are also inspected. Model performance for the CFD and COM solvers is quantified in terms of
 375 the root mean square error (RMSE), mean bias error (MBE) and mean absolute percent error (MAPE):
 376

377
$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (\varphi'_i)^2 \right]^{1/2} \quad (16)$$

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

$$MBE = \frac{1}{N} \sum_{i=1}^N \varphi'_i \quad (17)$$

$$MAPE = \frac{1}{N} \sum_{i=1}^N \frac{|\varphi'_i|}{\varphi_i} \times 100 \quad (18)$$

where φ is the observed value, φ' is the difference between predicted and observed, and N is the number of observations. Results from LES conducted by others are included in transect plots for Askervein Hill and Bolund Hill for visual comparisons. The LES predictions are shown for reference but are not included in the statistical analyses.

Analyses at Askervein and Bolund hills focus on comparisons of observed and predicted wind speed rather than wind direction. This is primarily because, with the exception of Case 4 at Bolund Hill, the observed data do not include major recirculation regions or other terrain-induced directional changes in the wind to warrant that analysis. The observed flow field at Big Southern Butte is much more complex with multiple recirculation regions and flow channeling around the butte as well as within side drainages on the butte [5,22]. Therefore, analysis at Big Southern Butte includes comparisons of wind speeds and directions, along selected transects roughly parallel to the prevailing wind direction as well as with the full set of observations collected on and around the butte. Although wind direction data are presented for Big Southern Butte, mostly to provide additional context regarding the flow dynamics over the butte, the focus of this work is on wind speed predictions. Future work will specifically explore simulated lee side flow dynamics and representation of flow separation and recirculation.

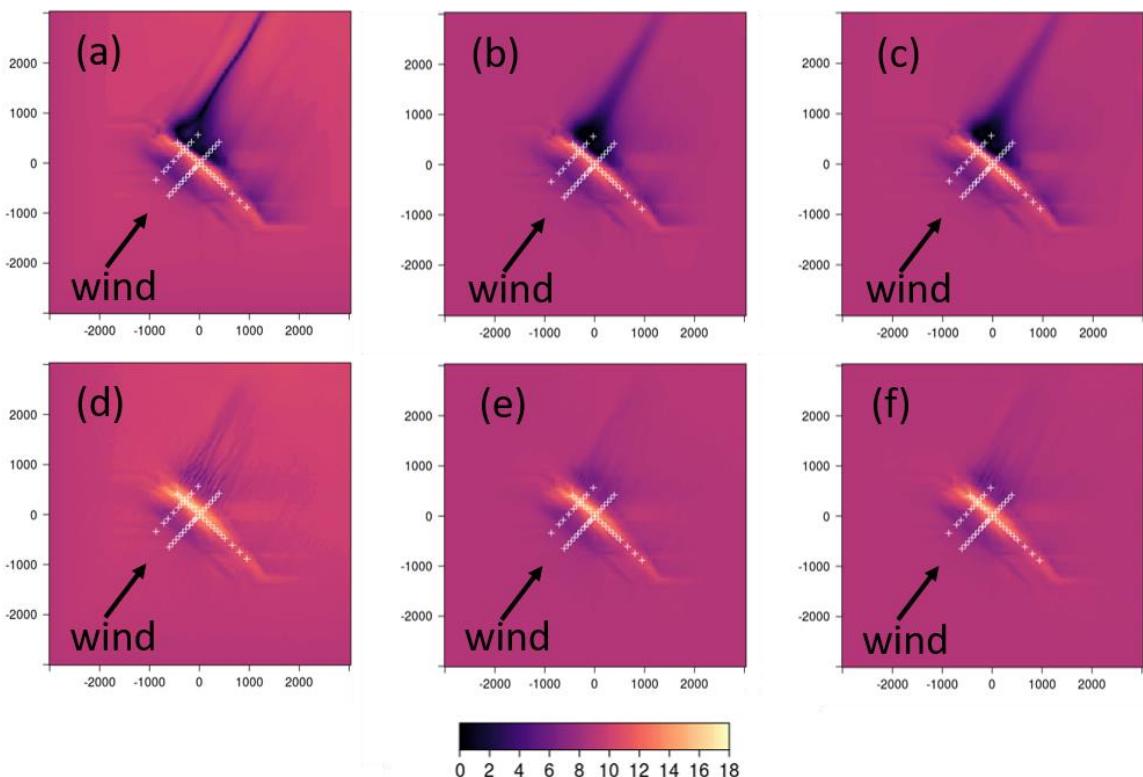
An Analysis of Variance (ANOVA) is used to determine the relative effect of the CFD settings on wind speed error. Specifically, the variability in the dependent variable (predicted – observed) is compared to the effects of three independent variables: the discretization scheme (two levels), turbulence model (three levels), location (three levels), and all two-way interactions at the three field sites. The three location levels correspond to either the windward, ridgeline, or leeward locations of the observations. Square-root and cube-root transformations are applied where necessary to meet the assumptions of normality and homoscedasticity of the residuals. The family-wise error rate for multiple comparisons between the means of the various factors levels is controlled using Tukey's Honest Significant Difference method [26]. The effect size of each individual independent variable is compared by using the Eta-squared (η^2) statistic as computed by the sjstats package in R [27], which is a measure of the proportion of the total variation in the dependent variable that can be attributed to a specific independent variable.

The data are also pooled across all three field sites to assess the relative effects of the discretization scheme, turbulence model, location, and solver type (i.e., COM vs. CFD) on predicted error. In this case a linear mixed-effects model is constructed using the lmer function in the lme4 package in R [28]. The fixed effects are the discretization scheme, turbulence model, location, and solver type while the random effect was the field site. The relative importance of the independent fixed-effect variables are assessed using the relaimpo package in R [29], which estimates the proportion of the variance explained by the model due to the independent variables.

418 5. Results and Discussion

419 5.1. Askervein Hill

420 5.1.1. CFD-predicted flow patterns in the horizontal plane


421 The CFD-predicted 10-m wind speeds using each of the six combinations of numerical settings are
 422 shown in Figure 7. Several notable flow features are evident. All combinations predict a reduction in
 423 speed as the flow approaches the hill, speed-up on the ridgeline, and reduced speeds on the lee side of

424 the hill. The size, magnitude, and shape of each of these regions in the predicted flow field vary with
 425 the choice of numerical settings. Noticeably, the choice of discretization scheme appears to have a bigger
 426 impact on the flow than the choice of turbulence model, both in terms of the magnitude of the predicted
 427 speeds and in the spatial patterns in the flow field, particularly on the lee side of the hill (Figure 7a-c
 428 versus d-f).

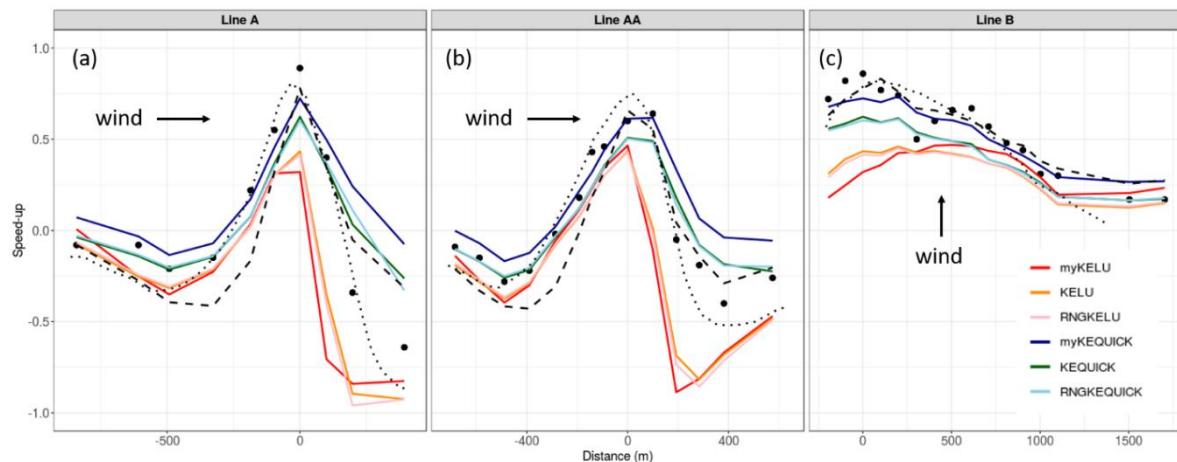
429 The linear upwind scheme produces less ridgeline speed-up and more speed reduction in the lee
 430 of the hill as compared with the QUICK scheme (Figure 7a-c versus d-f). The region of reduced speeds
 431 in the immediate lee of the hill is also a broader, more coherent pattern in the flow field in the linear
 432 upwind simulations as compared with the same region in the QUICK simulations.

433 Low-velocity streamwise streaks are visible in the flow field on the lee side of the hill for all
 434 combinations of numerical settings. The linear upwind scheme produces a broad region of low-velocity
 435 flow behind the hill, with a streak extending far downwind of this region (Figs. 7a-c). The QUICK
 436 scheme produces multiple narrower streaks in the immediate lee of the hill as compared with the linear
 437 upwind scheme (Figure 7d-f). The streaks are most well-defined (sharpest gradient normal to the streak)
 438 in the myKE simulations (Figure 7a and d). The KE and RNGKE turbulence models appear to smear
 439 out the streaks as compared with the myKE model (Figure 7b-c and e-f versus a and d).

440

441
 442 **Figure 7.** CFD-predicted wind speeds in m s^{-1} at 10 m AGL over Askervein Hill using (a)
 443 myKELU; (b) KELU; (c) RNGKELU; (d) myKEQUICK; (e) KEQUICK; (f) RNGKEQUICK. White
 444 crosses indicate measurement locations. Black arrows denote the prevailing wind direction. Axes
 445 labels are in meters.
 446

447 There is experimental and observational evidence from both turbulence and geomorphological
 448 research to suggest that the predicted streamwise low-velocity streaks are real terrain-induced features
 449 in the flow field [30-34]. Using RANS modeling, Hesp and Smyth [34] show that, for high Reynolds
 450 number flows, dune-shaped terrain features induce paired counter-rotating vortices within the wake
 451 region of the mean flow. The paired counter-rotating vortices are the mean flow manifestation of
 452 transient von Karman vortex shedding (i.e., alternating detachment of vortices on the lee side of a blunt
 453 isolated object). Hesp and Smyth [34] further show that the shape and aspect ratio of the terrain feature
 454 affects the structure of the horizontal and vertical flow within the wake region. The hills investigated in
 455 this work can be broadly categorized as dune-shaped, and indeed, our simulations also contain paired


456 counter-rotating vortices in the wake zone. The lee side streamwise streaks visible in our simulations
 457 are the convergence zones of these paired vortices.

458 We conclude that the streamwise streaks visible in our simulations are the result of simulated
 459 converging counter-rotating vortices within the wake regions; however, it is not clear how strong and
 460 well-defined the streaks should be. Development of the most well-defined streaks with the strongest
 461 cross-flow gradients (Figure 7a and d) could indicate insufficient turbulent diffusion in the model. If
 462 that is the case, then modeling choices which smear out the streaks to some degree would be desirable.
 463 Other CFD modeling studies have also reported streaks with varying patterns and strengths associated
 464 with topographical features in RANS and time-averaged LES simulations [e.g., 35], but there appears
 465 to be little guidance in terms of the realistic representation of these streamwise flow features.

466 5.1.2. Comparisons with observations

467 Inspection of the speed-up profiles along the transects further indicates that the choice of
 468 discretization scheme has a bigger effect on the predictions than the choice of turbulence model does,
 469 particularly on the lee side of the hill (Figure 8). This is indicated by the tight clustering of lines depicting
 470 simulations using the linear upwind scheme (red, orange, and pink lines) versus the QUICK scheme
 471 (blue, green, and light blue lines) (Figure 8). The LES results from Golaz et al. [36] generally compare
 472 better with observations than the CFD results do, particularly on the lee side. The LES results are similar
 473 to the COM results on the ridgeline locations, although LES over-predicts at the ridgeline in Line AA
 474 (Figure 8b).

475

476
 477 **Figure 8.** Model comparisons to observed data at Askervein Hill for (a) Line A; (b) Line AA; and
 478 (c) Line B. Black circles are observed data. Black dashed lines are COM solver results. Dotted black
 479 lines are LES results redrawn from Golaz et al. [36]. The x-axis is distance along the transect. The y-
 480 axis is speed-up relative to the observed speed at a reference station upwind.

481

482 Compared to the linear upwind scheme, the QUICK scheme on average predicts higher speeds at
 483 the ridgeline (13.2 versus 11.8 m s^{-1} , $p=0.0086$) and leeward (9.15 versus 2.49 m s^{-1} , $p<0.0001$) locations,
 484 which is consistently in better agreement with observations (MAPE of $7\text{--}42\%$ versus $15\text{--}64\%$,
 485 respectively) (Table 5). The QUICK scheme over-predicts on the lee side by 2.1 m s^{-1} , while the linear
 486 upwind scheme under-predicts by 4.5 m s^{-1} . The linear upwind scheme also under-predicts at the
 487 ridgeline and windward locations by 2.2 and 1.0 m s^{-1} , respectively. These results suggest that the
 488 QUICK scheme outperforms the linear upwind scheme at all locations; however, atmospheric stability
 489 was slightly stable during the observation period so a model simulating neutral conditions, like the
 490 CFD solver here, would be expected to under-predict, particularly at ridgeline locations.

491 The COM solver with the non-neutral stability parameterization enabled predicts the ridgeline
 492 speeds well (MAPE 4%), but over-predicts on the lee side of the hill, particularly for Line A (Figure 8a),
 493 resulting in a MAPE of 26%. The COM solver performs better, in terms of the MAPE at both the ridgeline

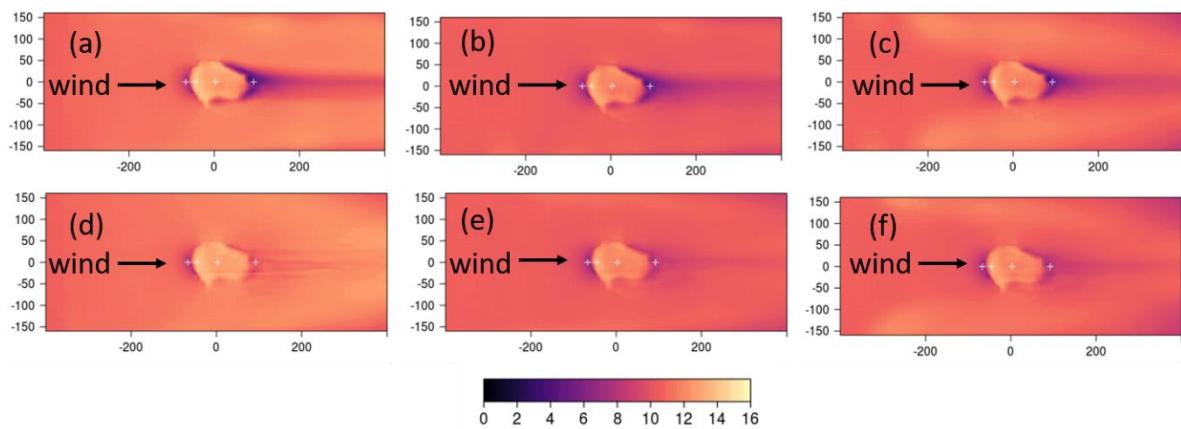
494 and leeward locations, than the linear upwind (15% and 64%, respectively) and QUICK (6.9% and 42%,
 495 respectively) simulations (Table 5).

496 The majority of the error in predicted wind speed in the CFD results is attributed to the
 497 discretization scheme and its interaction with location rather than the choice of turbulence model.
 498 Specifically, 25% of the variation in wind speed error is due to the discretization scheme ($\eta_2 = 0.25$) as
 499 opposed to the choice of turbulence model, which explained less than 1% of the variation ($\eta_2 < 0.01$). The
 500 location of the observation also had a significant effect on wind speed error with the largest errors across
 501 all settings occurring at the lee side locations, which accounted for about 12% ($\eta_2 = 0.12$) of the total
 502 variation in wind speed error (Figure 8).

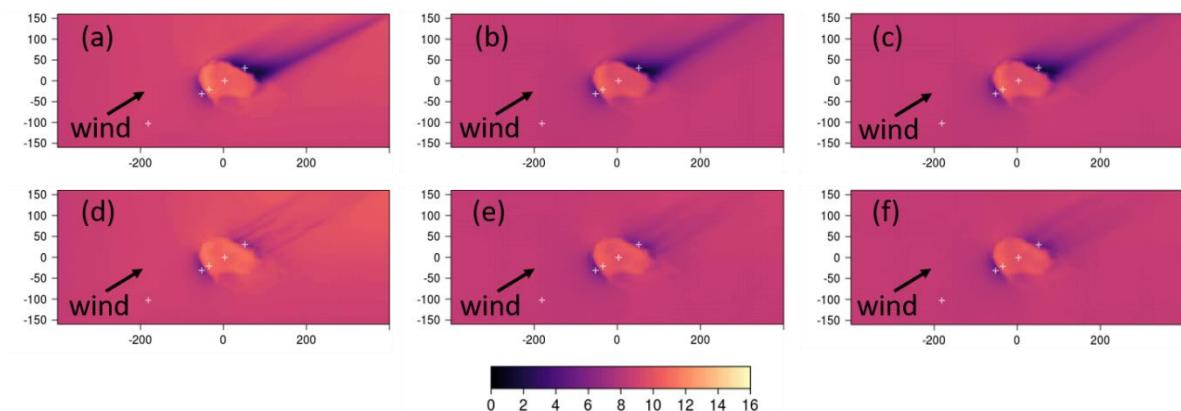
503

504 **Table 5.** Model root mean square error (RMSE), mean bias error (MBE), and mean absolute
 505 percent error (MAPE) for wind speeds at windward (w), ridgeline (r), and leeward (l) sensor locations
 506 at Askervein Hill. Positive MBE indicates model over-prediction.

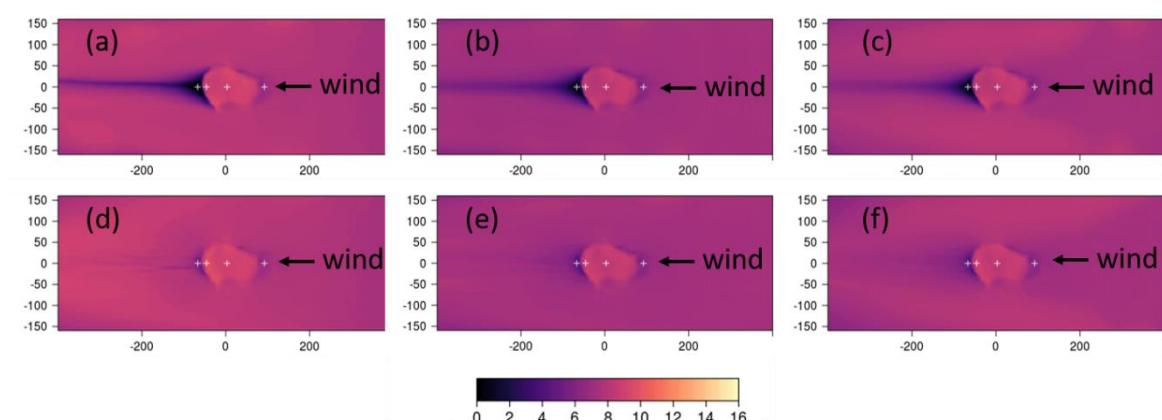
Location	Settings	RMSE	MBE	MAPE (%)
w	LU	1.23	-1.04	21
	QUICK	0.79	-0.19	6.1
	COM	1.9	-1.76	20
r	LU	2.80	-2.22	15
	QUICK	1.21	-0.85	6.9
	COM	0.69	0.06	4.4
l	LU	5.05	-4.53	64
	QUICK	2.64	2.13	42
	COM	1.58	1.10	26


507

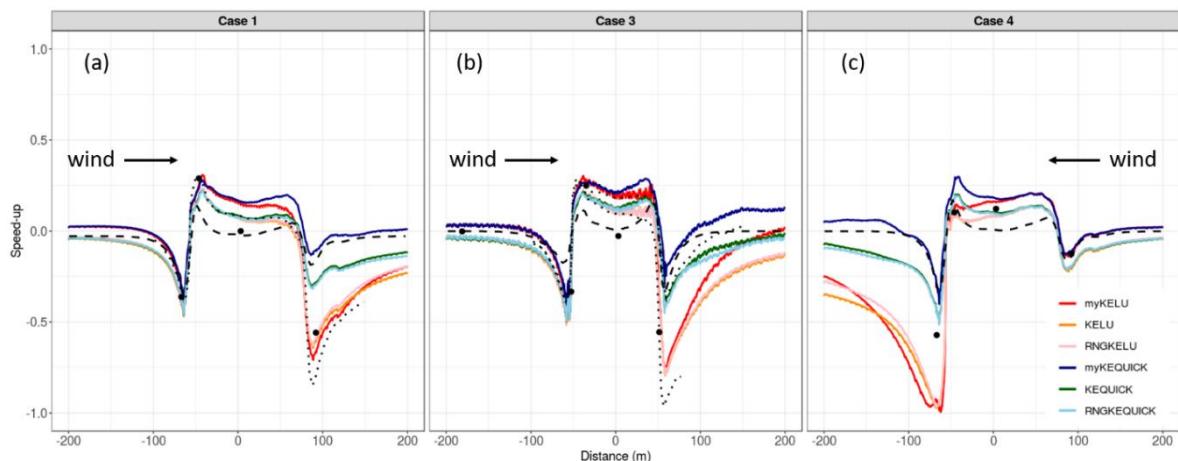
508 *5.2. Bolund Hill*


509 *5.2.1. CFD-predicted flow patterns in the horizontal plane*

510 Similar flow features are visible in the CFD-predicted 5-m wind speeds (Figure 9-11) as those
 511 reported for Askervein Hill in Section 5.1.1. In all cases and for all combinations of numerical settings
 512 there is a reduction in speed as the flow approaches the hill, ridgeline speed-up, and reduced speeds on
 513 the lee side of the hill. As in the Askervein Hill simulations, the size and magnitude of each of these
 514 flow regions varies with the choice of numerical settings and the choice of discretization scheme
 515 appears to have a larger impact on the flow than the choice of turbulence model. The linear upwind
 516 scheme produces a broader, more coherent region of reduced speeds on the lee side of the hill than the
 517 QUICK scheme, which produces narrower streamwise fingers of reduced speeds in the immediate lee
 518 of the hill. The same low-velocity streamwise streaks are visible in the flow field on the lee side of the
 519 hill for all combinations of numerical settings and, as with the Askervein Hill simulations, the myKE
 520 simulations have the strongest cross-streak gradient. This is most apparent in the simulations for Case
 521 4, where the wind is coming from the east and the steep cliff-like west face is the lee side of the hill
 522 (Figure 11).


523

524
525 **Figure 9.** CFD-predicted wind speeds in m s^{-1} at 5 m AGL over Bolund Hill for Case 1 using (a)
526 myKELU; (b) KELU; (c) RNGKELU; (d) myKEQUICK; (e) KEQUICK; (f) RNGKEQUICK. White
527 crosses indicate measurement locations. Black arrows denote the prevailing wind direction. Axes
528 labels are in meters.
529


530
531 **Figure 10.** Same as Figure 9, but for Case 3.
532

533
534 **Figure 11.** Same as Figure 9, but for Case 4.
535

536 5.2.2. Comparisons with observations

537 Like the Askervein Hill results, inspection of the speed-up profiles for the Bolund Hill transects
538 indicates that the choice of discretization scheme has a bigger effect on the predictions than the choice
539 of turbulence model does, as indicated by the tight clustering of lines depicting simulations using the
540 linear upwind scheme (red, orange, and pink lines) versus the QUICK scheme (blue, green, and light
541 blue lines), especially in the lee of the hill (Figure 12).
542

Figure 12. Model comparisons to observed data at Bolund Hill for (a) case 1; (b) case 3; and (c) case 4. Black circles are observed data. Black dashed lines are the COM solver results. Dotted black lines are LES results redrawn from Bechmann et al. [21] and Vuorinen et al. [37].

For case 1, all of the models do a reasonable job of predicting the reduced speed in the approach flow and speed up at the ridgetop (Figure 12a). The COM solver has the best prediction at the mid location on the hill, with the LES, KE and RNGKE simulations slightly over-predicting at this location. The myKE simulations have the worst predictions at this mid-hill location, compared to the other models. In the lee of the hill, the COM simulation is the worst performer and largely over-predicts the lee side speed. All of the linear upwind predictions are similar in the lee of the hill and slightly under-predict at this location. The LES simulation is similar to the linear upwind simulations at this lee side location, but had a slightly larger under-prediction.

The results are similar for case 3, with all models comparing well at the first two observation locations along the mean wind direction (Figure 12b), and all except the COM simulation, over-predicting at the mid hill location. The COM solver does not produce enough reduction in speed in the approach flow but predicts speed-up at the ridgetop and the reduction in speed at the mid hill location well compared to the observations. The COM simulations and the QUICK simulations all over-predict on the lee side. The lee side reduction in speed from the linear upwind simulations is closer to the observed reduction in speed. If anything, the linear upwind scheme simulations under-predict on the lee side. The LES simulations span the CFD simulations on the lee side of the hill, with one LES simulation over-predicting and the other under-predicting at this location.

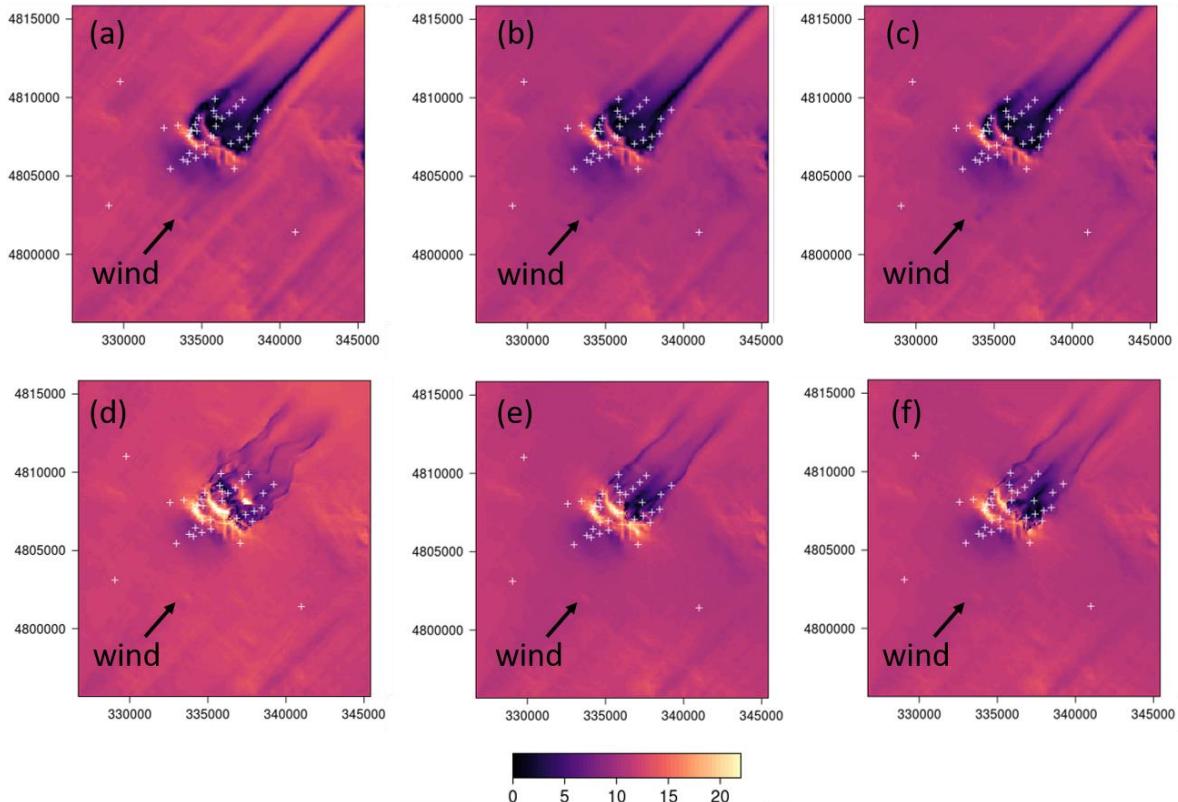
Results for case 4 are similar to those for case 1 and 3, except that the under-predictions are larger on the lee side of the hill. This difference on the lee side in case 4 compared to cases 1 and 3 is likely due to the steep west face on the lee side of the hill. No published LES simulations were found for this case for comparison.

As opposed to the results from Askervein Hill, the evaluation metrics do not suggest that one particular set of CFD settings produce better wind speed predictions across all cases and locations (Table 6). However, consistent with the Askervein Hill results, the discretization scheme explains more variation in wind speed error than the choice of turbulence model ($\eta^2 = 0.07$ vs. < 0.01). The QUICK scheme produces similar or lower MAPEs compared to the linear upwind scheme, except on the lee side of the hill where the linear upwind scheme produces the lowest MAPE of 20% (Table 6). When averaged across all locations the linear upwind scheme under-predicts wind speed by 0.75 m s^{-1} while the QUICK scheme over-predicts by 0.21 m s^{-1} .

Table 6. Model root mean square error (RMSE), mean bias error (MBE), and mean absolute percent error (MAPE) for wind speeds at windward (w), ridgetop (r), and leeward (l) sensor locations at Bolund Hill. Positive MBE indicates model over-prediction.

Location	Settings	RMSE	MBE	MAPE
w	LU	0.68	-0.41	6.0
	QUICK	0.58	-0.27	5.2

	COM	1.08	-0.39	6.9
r	LU	1.89	-1.01	24
	QUICK	1.63	-0.09	17
	COM	2.28	0.06	28
l	LU	1.09	-0.69	20
	QUICK	1.96	1.43	37
	COM	2.63	2.44	54


581

582 5.3. Big Southern Butte

583 5.3.1. CFD-predicted flow patterns in the horizontal plane

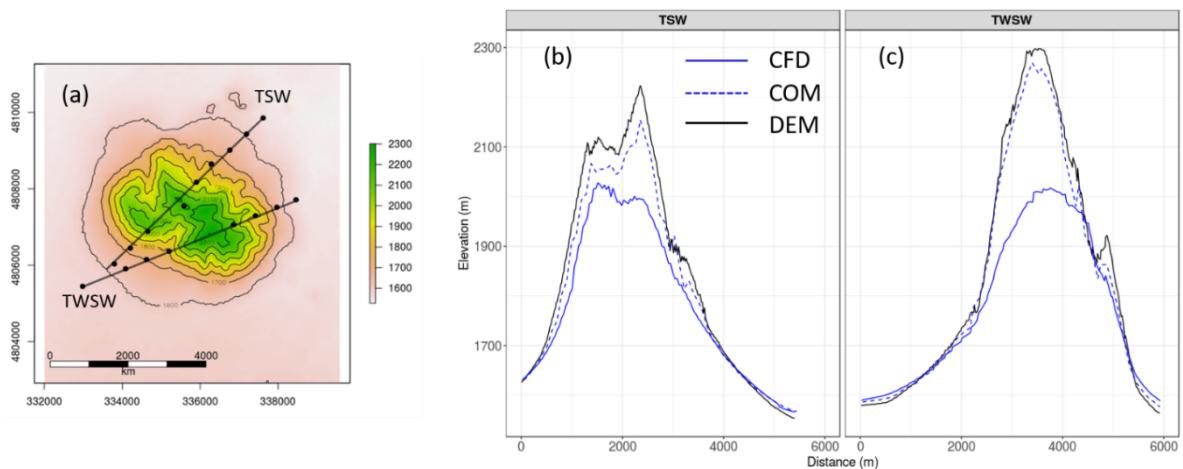
584 The differences between the linear upwind and QUICK discretization schemes are even more
 585 striking in the Big Southern Butte simulations than the Askervein Hill or Bolund Hill simulations
 586 (Figure 13). Consistent with the simulations at Askervein Hill and Bolund Hill, the linear upwind
 587 scheme produces a broader region of reduced speeds in the immediate lee of the butte with a narrow
 588 streak of low-velocity flow extending streamwise out of the domain. Narrow streamwise streaks of
 589 increased speed are also visible adjacent to the low-velocity streaks and extend out of the domain
 590 parallel to the low-velocity streaks.

591

592

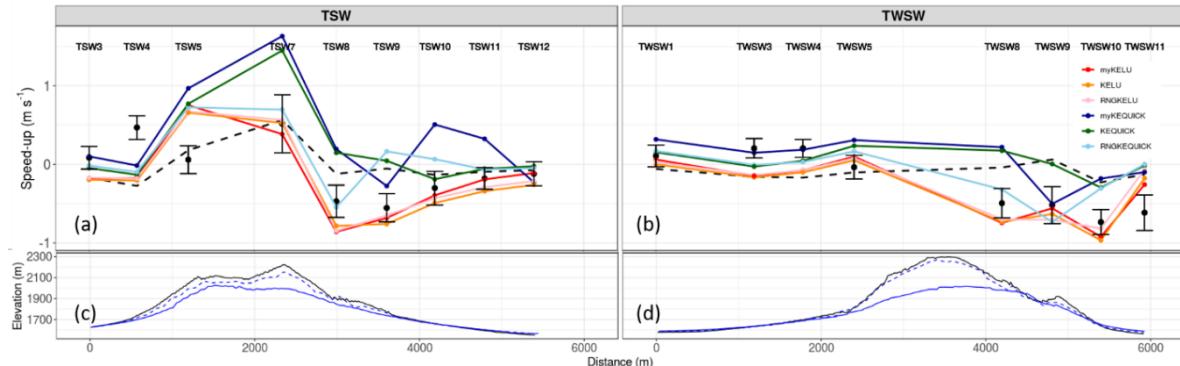
593 **Figure 13.** CFD-predicted wind speeds in m s^{-1} at 3 m AGL over Big Southern Butte using (a)
 594 myKELU; (b) KELU; (c) RNGKELU; (d) myKEQUICK; (e) KEQUICK; (f) RNGKEQUICK. White
 595 crosses indicate measurement locations. Black arrows denote the prevailing wind direction. Axes
 596 labels are in meters.

597


598 As in the Askervein Hill and Bolund Hill simulations, the QUICK scheme produces narrow, well-
 599 defined streaks of low-velocity flow in the immediate lee of the butte (Figure 13d-f). In this case the
 600 narrow streaks are noticeably wavier, especially for the myKEQUICK combination (Figure 13d), than
 601 those produced by the QUICK simulations at Askervein Hill and Bolund Hill. The QUICK scheme

602 produces more speed-up on the ridgetops and on the lateral sides of the butte compared to the linear
 603 upwind scheme (Figure 13d-f versus a-c).

604 All combinations of numerical settings produce more streaks throughout the flatter parts of
 605 the domain at Big Southern Butte than at Askervein Hill or Bolund Hill due to the presence of smaller
 606 topographic features surrounding the butte. High- and low-velocity streaks are visible upwind and to
 607 the sides of the butte and are most prominent in the myKELU simulation (Figure 13a).


608 5.3.2. Comparisons with observations

609 For Big Southern Butte we compare both wind speed and wind direction to observations along
 610 two transects, TSW and TWSW (Figure 14-16). The locations of the two transects are shown in Figure
 611 14a. The profiles are not as smooth as at Askervein Hill or Bolund Hill because here the transects
 612 traverse multiple ridges and valleys on the butte. Figure 14b-c show the terrain profiles along the two
 613 transects. Transect TSW has a steep approach to a ridge line, then traverses some small terrain features
 614 without substantial net elevation change, then has another steep approach to the highest point on the
 615 transect, followed by a steep descent down the northeast side of the butte (Figure 14b). Transect TWSW
 616 has a steeper and smoother approach to the highest point on the transect, followed by a steep descent
 617 which traverses one substantial valley about half way down the butte (Figure 14c). Terrain
 618 representation in the CFD mesh is addressed in Section 5.6.
 619

620
 621 **Figure 14.** (a) Location of the TSW and TWSW transects and terrain representation in the meshes
 622 used for the CFD and COM simulations along the (b) TSW and (c) TWSW transect.
 623

624 The linear upwind simulations compare better with the observed speed-up than the QUICK
 625 simulations on the TSW transect (Figure 15a) and on the lee side of the TWSW transect (Figure 15b).
 626 The linear upwind simulations under-predict speed-up on the windward side of TWSW (Figure 15b).
 627 The QUICK simulations over-predict at the ridgeline locations and for most locations on the lee side of
 628 the transects. The COM solver predicts a smaller range of speed-up along both transects compared to
 629 the CFD simulations. The COM solver under-predicts on the windward side and over-predicts on the
 630 lee side of both transects (Figure 15).
 631

632
 633 **Figure 15.** Model comparisons to observed speed-up at Big Southern Butte along transect (a)
 634 TSW and (b) TWSW. DEM and terrain representation in the meshes along transect (c) TSW and (d)
 635 TWSW as shown in Figs. 15b and c. Black circles are observed data. Error bars indicate plus and
 636 minus one standard deviation. The black dashed lines are the COM solver results.
 637

638 The simulations using the linear upwind scheme have the lowest RMSE, MBE, and MAPE in wind
 639 speed of the CFD simulations at Big Southern Butte (Table 7; Figure 16). The myKELU, KELU, and
 640 RNGKELU, all have similar and lower MAPEs (34, 35, and 34%, respectively) than the myKEQUICK,
 641 KEQUICK, and RNGKEQUICK (78, 56, and 54%, respectively) and COM (46%) simulations (Figure 16).
 642 Inspection of the observed versus predicted regression lines shows that the linear upwind simulations
 643 also more closely approximate the 1:1 line. The COM solver over-predicts at the lower speeds and
 644 under-predicts at the higher speeds, with a regression line that bisects the 1:1 line nearly in the middle
 645 with a fairly flat slope. The linear upwind scheme predicts the lower speeds well and slightly under-
 646 predicts at the higher speeds (Figure 16a-c). The QUICK scheme over-predicts at the lower speeds,
 647 which is consistent with results presented earlier which showed that QUICK over-predicts on the lee
 648 side of the butte and under-predicts at only the highest speeds (Figure 16d-f). The KELU scheme has
 649 the closest approximation to the 1:1 line, the best regression fit ($R^2 = 0.53$), and the lowest MAPE (35%,
 650 essentially the same as that for the myKELU and RNGKELU schemes) and can be considered the best
 651 model for this site.
 652

653 **Table 7.** Model root mean square error (RMSE), mean bias error (MBE), and mean absolute
 654 percent error (MAPE) for wind speeds at windward (w), ridgeline (r), and leeward (l) sensor locations
 655 at Big Southern Butte. Positive MBE indicates model over-prediction.

Location	Settings	RMSE	MBE	MAPE
w	LU	2.35	-0.30	19
	QUICK	2.65	0.98	22
	COM	2.70	-2.17	20
r	LU	4.31	-1.00	28
	QUICK	5.31	2.78	36
	COM	4.93	-3.11	21
l	LU	3.66	-1.55	44
	QUICK	5.50	3.48	92
	COM	3.16	1.82	65

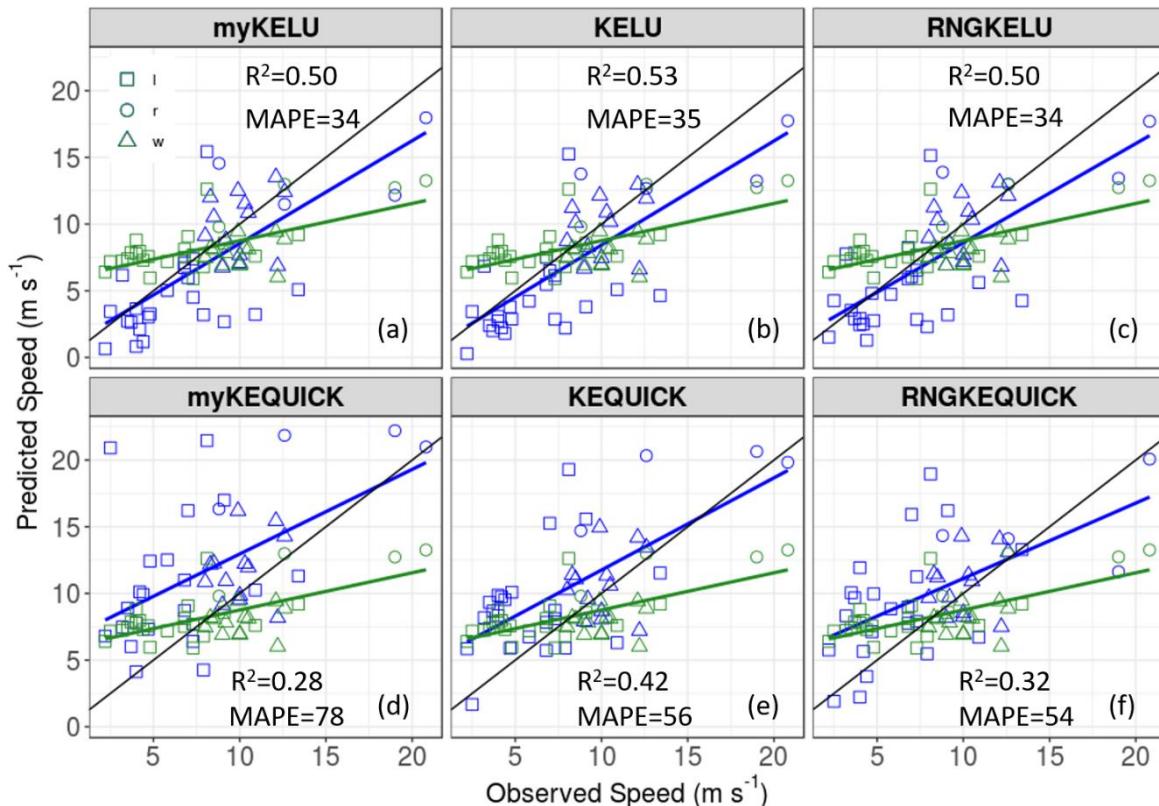


Figure 16. Observed versus predicted wind speeds at Big Southern Butte using (a) myKELU; (b) KELU; (c) RNGKELU; (d) myKEQUICK; (e) KEQUICK; (f) RNGKEQUICK. Blue symbols are for the CFD solver and green symbols are for the COM solver. The blue and green lines represent the ordinary least squares line of best fit for the CFD and COM solver, respectively. The black line is the 1:1 line. The mean absolute percent error (MAPE) and coefficient of determination (R^2) for the COM solver are 46 and 0.39, respectively.

The error bars for wind direction are notably larger on the lee side of the transects than on the windward side (Figure 17). The observed lee side flow is highly unsteady with 180° fluctuations in wind direction at some locations over the 10-min averaging period (Figure 17). These fluctuations in wind direction correspond to enhanced turbulence associated with a lee side wake zone [5,22]. The observed mean southwest wind direction and smaller error bars at the last two locations on transect TSW, TSW11 and TSW12, suggest these locations are located outside of the wake zone (Figure 17a). Observed wind speeds are also higher at TSW11 and TSW12 than at the other lee side locations closer to the butte (Figure 15a), further suggesting these locations are outside of the wake zone. In contrast, transect TWSW does not appear to extend beyond the wake zone (Figure 15b and 17b).

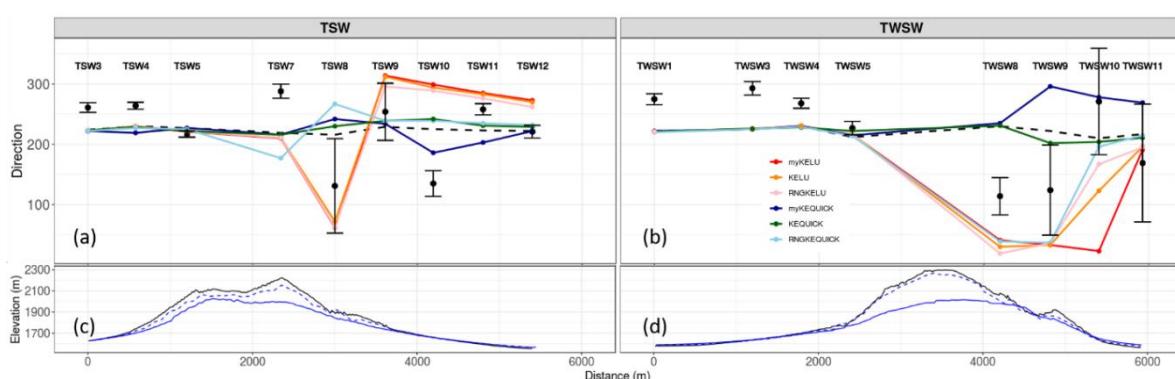
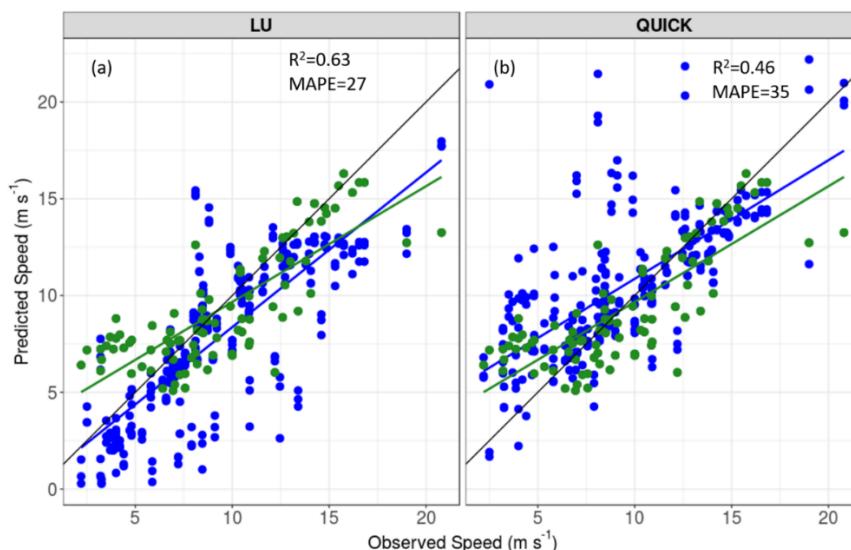


Figure 17. Model comparisons to observed wind directions at Big Southern Butte along transect (a) TSW and (b) TWSW. DEM and terrain representation in the meshes along transect (c) TSW and (d)


678 TWSW as shown in Figs. 15b and c. Black circles are observed data. Error bars indicate plus and
 679 minus one standard deviation. The black dashed lines are the COM solver results.
 680

681 The linear upwind scheme produces a larger range of wind directions along the two transects than
 682 the QUICK scheme does (Figure 17). This is consistent with the results previously discussed that show
 683 that the linear upwind scheme produces larger and more coherent lee side regions of reduced velocities.
 684 The QUICK scheme, in contrast, produces narrower, shorter (in the streamwise direction) regions of
 685 reduced velocities (Figure 13). The COM solver simulates little change in wind direction over the two
 686 transects (Figure 17).

687 *5.4. Summary Across Field Sites*

688 Combining the data from all three field sites confirms that the choice of discretization scheme has
 689 a larger effect on wind speed error than the choice of turbulence model (relative importance of 20%
 690 versus 12%). The biggest difference in wind speed error between the discretization schemes is at the lee
 691 side locations where, on average, the QUICK scheme over-predicts by 3.0 m s^{-1} and the linear upwind
 692 scheme under-predicts by 2.1 m s^{-1} ($p < 0.0001$). The effect of the turbulence model on wind speed error
 693 was only significant when using the QUICK scheme, where the myKE model had the highest over-
 694 prediction of 1.9 m s^{-1} compared to the KE model over-prediction of 0.78 m s^{-1} ($p = 0.0037$) and the
 695 RNGKE over-prediction of 0.59 m s^{-1} ($p = 0.001$), when averaged over all locations.

696 Although the results from the three field sites were mixed in terms of identifying the best
 697 combination of CFD settings, there is evidence to suggest that the linear upwind scheme may produce
 698 the best results when viewed over the entire range of data (Figure 18; Table 8). When data from all three
 699 sites are combined and the three turbulence models are pooled together, the linear upwind scheme has
 700 the lowest MAPE of 27% versus 35% for QUICK (Table 8) and the best ordinary least squares line fit
 701 ($R^2 = 0.63$ versus 0.46, Figure 18).

703
 704 **Figure 18.** Observed versus predicted wind speeds at all sites using the (a) linear upwind and (b)
 705 QUICK discretization schemes. Blue symbols are for the CFD solver and green symbols are for the
 706 COM solver. The blue and green lines represent the ordinary least squares line of best fit for the CFD
 707 and COM solver, respectively. The black line is the 1:1 line. The mean absolute percent error (MAPE)
 708 and coefficient of determination (R^2) for the COM solver are 29 and 0.60, respectively.
 709

710 **Table 8.** Model root mean square error (RMSE), mean bias error (MBE), and mean absolute
 711 percent error (MAPE) for wind speeds at all locations at all sites. Positive MBE indicates model over-
 712 prediction.

Settings	RMSE	MBE	MAPE
LU	3.0	-1.5	27

QUICK	3.3	1.1	35
COM	2.4	-0.11	29

713

714

715 The differences between the COM and the CFD solver are most apparent at the windward and
 716 leeward locations (Table 9). When averaged across all CFD settings both the COM and CFD solvers
 717 over-predict wind speed on the lee side of the hill and under-predict on the windward side with the
 718 CFD solver having significantly lower errors at both locations (lee: 1.72 versus 0.43 m s⁻¹, p<0.0001;
 719 windward: -1.75 versus -0.18 m s⁻¹, p<0.0001). In both cases the CFD solver produced a smaller MAPE
 720 as compared to the COM solver (Table 9). However, at the ridgeline locations the two solvers produced
 721 similar errors in wind speed, with the COM solver having the lowest MAPE at 12%. These results
 722 suggest that the additional computational expense required for the CFD solver is warranted if lee side
 723 or windward predictions are of interest. In contrast, if ridgeline speed predictions are solely of interest,
 724 the COM solver may be sufficient as it produces statistically comparable predictions at ridgeline
 725 locations.

726

727

728

729

Table 9. Model root mean square error (RMSE), mean bias error (MBE), and mean absolute
 percent error (MAPE) for wind speeds at windward (w), ridgeline (r), and leeward (l) sensor locations
 for all sites. Positive MBE indicates model over-prediction.

Location	Settings	RMSE	MBE	MAPE
w	LU	1.75	-0.65	14
	QUICK	1.81	0.29	13
	COM	2.21	-1.75	18
r	LU	2.90	-1.80	19
	QUICK	2.32	-0.19	13
	COM	2.18	-0.38	12
l	LU	3.86	-2.12	46
	QUICK	4.76	2.99	76
	COM	2.84	1.72	55

730

731 5.5. Computational expense considerations

732 We have shown that the CFD solver produces significantly lower error in wind speed predictions
 733 on the windward and lee side locations compared to the COM solver. We also compared against
 734 previously published LES results at two of the field sites and found that although LES compared better
 735 with measurements in some cases, the CFD predictions generally fell within the ballpark of the LES
 736 wind speed predictions. Whether these differences are large enough to be of practical importance to a
 737 user is a separate question and more difficult to answer. The answer likely depends on several factors
 738 including the intended use of the simulations, how precisely the input data are known, the
 739 computational resources available, and whether there are temporal constraints.

740

741

742

743

744

745

746

747

748

749

750

751

In wildland fire applications there is often considerable uncertainty in the input data, limited
 computational resources, and a need for predictions in very short-time frames (e.g., minutes to hours).
 Table 10 shows the computational requirements for the COM, CFD, and LES solutions. The COM solver
 is the fastest, with simulation times averaging about 10 s on a typical personal computer. The CFD
 solver is the next computationally efficient solver, with simulation times averaging about 5.5 min on a
 typical personal computer. Both of these would generally be acceptable timeframes on wildland fire
 incidents, depending on the modeling objectives (one exception might be if many simulations were
 needed for a statistical analysis). The reported LES simulation time for Bolund Hill was 40 days using
 512 processors which is nearly 8000 times slower than the average CFD simulation time using 128 times
 the computing power; these computational demands are well beyond what operational fire managers
 have access to for their work.

752

Table 10. Computational expense required for the COM, CFD, and LES simulations.

Solver ¹	Simulation time (min)	Number of cells in mesh	Number of processors
Askervein Hill			
COM	0.17	20K	4
CFD	4.2	100K	4
LES ²	-	-	-
Bolund Hill			
COM	0.17	20K	4
CFD	7.3	100K	4
LES ³	57600	2.9M	512
Big Southern Butte			
COM	0.16	20K	4
CFD	4.9	100K	4
LES ⁴	-	-	-

753 ¹ COM and CFD simulations run on a Thinkmate desktop with 3.47GHz Intel Xeon X5677 CPUs.754 ²Askervein Hill LES simulation times were not reported in Golaz et al. [36].755 ³Bolund Hill LES simulation times reported in Vuorinen et al. [37].756 ⁴Unable to find published LES results for Big Southern Butte.

757

758 Another crucial factor is user training. Fire managers do not typically have formal training in
 759 meteorology, engineering, or computer science. The models and tools that they use cannot require
 760 expertise in specialized fields and must be simple enough to be taught in the standardized training
 761 format used by wildland fire management. WindNinja is specifically designed to internally handle
 762 (without user interaction) the needed data assimilation, pre-processing, meshing, initialization, and
 763 post-processing for the user. A typical fire manager would not have the expertise, let alone the needed
 764 computational resources or time, to run LES.

765 Ultimately, users should consider the tradeoff between accuracy and computational demand
 766 for their application. For wildland fire managers, we recommend using the WindNinja CFD solver
 767 whenever possible. One exception might be if only ridge-top speed-up is of interest to the user; in this
 768 case the COM solver should give similar results and would be an acceptable choice.

769

770 5.6. The Computational Mesh and Terrain Representation

771 The current CFD meshing procedure is robust and has many desirable characteristics including
 772 near-ground cells aligned with the terrain and smaller cells near the ground where gradients are largest,
 773 but it also has several deficiencies. These deficiencies include that the height of the near-ground cell is
 774 dependent on the size of the domain, the transition between the coarse and fine cells (which is often
 775 near the ground) is bridged by irregular wedge-shaped cells that are not terrain-following, and the cell
 776 height is forced to equal the horizontal cell size near the ground, which results in high horizontal
 777 resolution, but relatively coarse vertical resolution.

778 The effects of the wedge-shaped cells can be seen in the oscillating speed-up lines where we
 779 sample through some of these cells in the Bolund Hill mesh (Figure 13b). This happens when sampling
 780 is done through the transition region between the coarse and fine cells; the cell-centers of the wedge-
 781 shaped cells are not necessarily in the same plane and field interpolation through that plane can lead to
 782 oscillations in the sampled field. Unfortunately, as configured, our meshing procedure does not allow
 783 us to specify the location of this transition region; the location is governed by the size of the domain and
 784 the number of cells allocated for the mesh.

785 Another limitation with the current meshing procedure is related to the use of
 786 moveDynamicMesh to stretch the lower part of the mesh down to the terrain. Mesh movement is done
 787 before mesh refinement, primarily for speed (mesh motion can be faster with larger cells). This can
 788 introduce potentially large errors in terrain representation, however, since relatively coarse cells are

789 used to approximate the underlying terrain. At Big Southern Butte, these errors in terrain representation
790 are large compared to terrain representation in the COM mesh (Figure 16a-b). This is also likely why
791 we did not observe appreciable improvement in results when the mesh count was increased beyond
792 100k cells. We suspect that, in some cases when the terrain is highly complex, the errors related to terrain
793 representation in the CFD mesh may be one of the largest sources of error in the model.

794 We have investigated many combinations of OpenFOAM meshing utilities, including
795 snappyHexMesh and various methods of applying refineMesh, but have not found an alternate
796 meshing method that is both robust and superior in terms of terrain representation and mesh quality
797 than what is currently implemented. Other options include writing custom mesh generation code or
798 using third-party mesh generation software. Future work will explore these alternative meshing
799 options.

800 6. Conclusions

801 A new CFD solver recently implemented in the WindNinja wind modeling framework has been
802 described. Results from the CFD solver are compared against observations from three field campaigns
803 as well as results from the COM solver in WindNinja and previous LES simulations. Six combinations
804 of numerical settings were investigated. The main findings from this work are:

- 805 • The choice of discretization scheme used for the advection term in the momentum equation has
806 a bigger effect on wind speed error than the choice of turbulence model. This is true at least for
807 the turbulence models investigated in this paper, which are all forms of the k-epsilon model.
- 808 • The linear upwind scheme (and the QUICK scheme to a lesser degree) produces low-velocity
809 streaks in the flow field that extend far downwind of terrain obstacles. The streaks are associated
810 with the convergence of paired counter-rotating vortices in the wake zone induced by the terrain.
811 Future work should further investigate the initiation, dynamics, and structure of these paired
812 vortices and associated streaks in the mean flow to assess their representation in time-averaged
813 numerical models.
- 814 • The QUICK scheme produces higher speed-up over terrain features, higher lee side velocities,
815 and less lee side variability in wind direction as compared to the linear upwind scheme.
- 816 • Results are mixed among the locations and cases examined at each site, but the linear upwind
817 discretization scheme performs better than the QUICK scheme overall in terms of the MAPE.
- 818 • Sensitivity to the turbulence model choice is small compared to the choice of discretization
819 scheme, so the choice of turbulence model is less important than choice of discretization scheme.
820 The three turbulence models had nearly identical MAPE at Big Southern Butte when the linear
821 upwind scheme was used. Without definitive quantitative results, other criteria must be used to
822 select a turbulence model. We suspect that the most well-defined low-velocity streaks produced
823 by the myKE simulations may be an artifact of insufficient turbulent diffusion in the model. The
824 standard KE model produced less well-defined streaks and is a slightly simpler formulation than
825 the RNGKE model. Based on this, we recommend the KELU combination be used in WindNinja
826 until further data is available to significantly identify differences among the turbulence models.
- 827 • Overall, the CFD solver performs better than the COM solver at all sites investigated,
828 particularly at the windward and lee side locations. For ridgeline locations, however, the COM
829 solver produces statistically comparable wind speed predictions and, thus, if ridgeline
830 predictions are solely of interest, the additional computational expense required for the CFD
831 solver may not be necessary.
- 832 • LES simulations visually compare better with the observations at Askervein Hill, particularly on
833 the lee side, but CFD solver results fell within the bounds of previously reported LES results at
834 Bolund Hill. Model users and developers should carefully consider whether potentially modest
835 gains in mean wind speed predictions warrant the substantial increase in computational cost
836 and complexity of LES. This is especially true for emergency response-type situations, such as
837 wildland fire, where time frames are short and uncertainty related to input conditions (initial
838 wind, vegetation structure, etc.) is high.

840 • The current meshing procedure results in undesirable wedge-type cells at the interface between
841 the coarse and the refined mesh at the surface and occasionally in the near-ground layer. The
842 meshing procedure can be improved to better represent the terrain. Ideally, the mesh would (1)
843 be terrain following near the surface with horizontal grid lines gradually becoming normal to
844 the z-axis at the top of the domain and hexahedral cells throughout; (2) have vertical grid lines
845 that are perpendicular to the terrain near the ground but gradually curve to become aligned with
846 the z-axis (normal to the x-y plane) at the top of the domain; (3) have near-ground cells with
847 much smaller cell heights than horizontal size to allow more vertical resolution at the surface
848 without substantially increasing the total cell count.

849
850 These findings are important both for WindNinja users as well as developers and users of other
851 flow models designed to simulate atmospheric boundary layer winds over complex terrain. Future
852 work will focus on improving the CFD meshing procedure, incorporation of non-neutral stability effects
853 in the CFD solver, and continued evaluations over various types of complex terrain.

854
855 **Author Contributions:** Conceptualization, N.S.W. and J.M.F.; methodology, N.S.W and J.M.F; software, N.S.W.
856 and J.M.F; validation, N.S.W.; formal analysis, N.S.W. and W.G.P.; investigation, N.S.W.; resources, B.W.B.; data
857 curation, N.S.W; writing—original draft preparation, N.S.W.; writing—review and editing, J.M.F., W.G.P. and
858 B.W.B; visualization, N.S.W.; supervision, N.S.W. and J.M.F.; project administration, N.S.W. and J.M.F.; funding
859 acquisition, B.W.B and N.S.W.”

860 **Funding:** This research was funded by the United States Department of Agriculture Forest Service office of the
861 Deputy Chief for Research and the Rocky Mountain Research Station.

862 **Conflicts of Interest:** The authors declare no conflict of interest.

863 References

1. Forthofer, J.M.; Butler, B.W.; Wagenbrenner, N.S.; A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. *Int. J. Wildland Fire*. **2014**. doi: 10.1071/WF12089.
2. Forthofer, J.M., Butler, B.W., McHugh, C.W., Finney, M.A., Bradshaw, L.S., Stratton, R.D., Shannon, K.S., and Wagenbrenner, N.S. A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. *Int. J. Wildland Fire*. **2014**. doi: 10.1071/WF12090.
3. Pence, M., Zimmerman, T. The Wildland Fire Decision Support System: Integrating science, technology, and fire management. *Fire Management Today*. **2011**.
4. Finney, M.A. An Overview of FlamMap fire modeling capabilities. USDA Forest Service Proceedings RMRS-P-41. **2006**.
5. Wagenbrenner, N.S., Forthofer, J.M., Lamb, B.K., Shannon, K.S., Butler, B.W. Downscaling surface wind prediction models in complex terrain with WindNinja. *Atmos. Chem. Phys.* **2016**, *16*, 5229–5241.
6. Lopes, AMG. WindStation – A software for the simulation of atmospheric flows over complex topography. *Environ. Modell. Softw.* **2003**, *18*, 81–96. doi: 10.1016/S1364-8152(02)00024-5.
7. Forthofer, J.M., Shannon, K.S., Butler, B.W. Simulating diurnally driven slope winds with WindNinja. In: *Eighth Symposium on Fire and Forest Meteorology*, 13–15 October **2009**. Kalispell, MT, 156275.
8. Chan, S.T., Sugiyama, G. User’s manual for MC_Wind: A new mass-consistent wind model for ARAC-3. **1997**. UCLR-MA-12067.
9. Homicz, G.F. Three-dimensional wind field modeling: A review. *Sandia Report*. **2002**. SAND2002-2597.
10. Weller, H.G., Tabor, G., Jasak, H., Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. *Computers and Physics*. **1998**, *12*, 620–631.
11. Boussinesq, J. Theorie de l’Ecoulement Tourbillant. Memoires presentes par divers savant a l’Academie des Sciences de l’Institut de France. **1877**, *23*, 46–50.
12. Launder, B.E., Spalding, D. The numerical computation of turbulent flows. *Comput. Method. Appl. M.* **1974**, *3*, 269–289.
13. Yakhot, V., Smith, L.M. The renormalization group, the ϵ -expansion and derivation of turbulence models. *J. Sci. Comput.* **1992**, *7*, 35–61.

892 14. Richards, P.J., Norris, S.E. Appropriate boundary conditions for computational wind engineering models
893 revised. *J. Wind Eng. Ind. Aerodyn.* **2011**. *99*, 257–266.

894 15. Blocken, B., Stathopoulos, T., Carmeliet, J. CFD simulation of the atmospheric boundary layer: wall
895 function problems. *Atmos. Environ.* **2007**. *41*, 238 – 252.

896 16. Hargreaves, D.M., Wright, N.G. On the use of the $k-\epsilon$ model in commercial CFD software to model the
897 neutral atmospheric boundary layer. *J. Wind Eng. Ind. Aerodyn.* **2007**. *95*, 355–369.

898 17. Ferziger, J.H., Peric, M. Computational Methods for Fluid Dynamics. Springer-Verlag Berlin Heidelberg
899 New York. **2002**.

900 18. Taylor, P.A., Teunissen, H.W. Askervein '82: report on the September/October 1982 experiment to study
901 boundary layer flow over Askervein, South Uist. Atmospheric Environment Service, MSRB-83-8.
902 (Downsview, ON). **1983**.

903 19. Taylor, P.A., Teunissen, H.W. The Askervein Hill Project: report on the September/October 1983 Main Field
904 Experiment. Atmospheric Environment Service. MSRB-84-6. (Downsview, ON). **1985**.

905 20. Berg, J., Mann, J., Bechmann, A., Courtney, M.S., Jorgensen, H.E. The Bolund Hill Experiment, Part I: Flow
906 over a steep, three-dimensional hill. *Boundary-Layer Meteorol.* **2011**. *141*, 219–243.

907 21. Bechmann, A., Sorensen, N.N., Berg, J., Mann, J., Rethore, P.-E. The Bolund Experiment, Part II: Blind
908 comparison of microscale flow models. *Boundary-Layer Meteorol.* **2011**. *141*, 245–271.

909 22. Butler, B.W., Wagenbrenner, N.S., Forthofer, J.M., Lamb, B.K., Shannon, K.S., Finn, D., Eckman, R.M.,
910 Clawson, K., Bradshaw, L., Sopko, P., Beard, S., Jimenez, D., Wold, C., Vosburgh, M. High-resolution
911 observations of the near-surface wind field over an isolated mountain and in a steep river canyon. *Atmos.*
912 *Chem. Phys.* **2015**. *15*, 3785–3801.

913 23. Taylor, P.A., Teunissen, H.W. The Askervein Hill Project: overview and background data. *Boundary-Layer*
914 *Meteorol.* **1985**. *39*, 15–39.

915 24. Walmsley, J.L., Taylor, P.A. Boundary-layer flow over topography: impacts of the Askervein study.
916 *Boundary-Layer Meteorol.* **1996**. *78*, 291–320.

917 25. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E.,
918 Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.
919 The Shuttle Radar Topography Mission. *Rev. Geophys.* **2007**. *45*, RG2004. doi: 10.1029/2005RG000183.

920 26. Tukey, J. Comparing individual means in the analysis of variance. *Biometrics* **1949**. *2*, 99–114.

921 27. Lüdecke, D. *sjstats*: Statistical functions for regression models (Version 0.17.5). **2019**. doi:
922 10.5281/zenodo.1284472.

923 28. Bates, D., Mächler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using *lme4*. doi:
924 10.18637/jss.v067.i01.

925 29. Groemping, U. Relative Importance for Linear Regression in R: The Package *relaimpo*. doi:
926 10.18637/jss.v017.i01

927 30. Wallace, J.M. Highlights from 50 years of turbulent boundary layer research. *J. Turbulence* **2013**. *13*, 1–70.

928 31. Greeley, R., Christensen, P., Carrasco, R. Shuttle radar images of wind streaks in the Altiplano, Bolivia.
929 *Geology* **1989**. *17*, 665–668.

930 32. Offer, Z.Y., Goossens, D. Wind tunnel experiments and field measurements of aeolian dust deposition on
931 conical hills. *Geomorphology* **1995**. *14*, 43–56.

932 33. Thomas, P., Veverka, J., Lee, S., Bloom, A. Classification of wind streaks on Mars. *Icarus* **1981**. *45*, 124–153.

933 34. Hesp, P.A., Smyth, T.A.G. Nebkha flow dynamics and shadow dune formation. *Geomorphology* **2017**. *282*,
934 27–38.

935 35. Ivanell, S., Arnqvist, J., Avila, M., Cavar, D., Chavez-Arroyo, R.A., Olivares-Espinosa, H., Peralta, C., Adib,
936 J., With a, B. Micro-scale model comparison (benchmark) at the moderately complex forested site
937 Rynningsnas. *Wind Energ. Sci.* **2018**. *3*, 929–946.

938 36. Golaz, J.C., Doyle, J.D., Wang, S. One-way nested Large-Eddy Simulation over the Askervein Hill. *J. Adv.*
939 *Modell. Earth Sys.* **2009**. *1*.

940 37. Vuorinen, V., Chaudhari, A., Keskinen, J.P. Large-eddy simulation in a complex hill terrain enabled by a
941 compact fractional step OpenFOAM solver. *Adv. Engineer. Softw.* **2015**. *79*, 70–80.

942