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Abstract: It has recently been shown that, contrary to the wide belief that a shift-enabled condition 
(necessary for any shift-invariant filter to be representable by a graph shift matrix) can be ignored 
because any non-shift-enabled matrix can be converted to a shift-enabled matrix, such a conversion 
in general may not hold for a directed graph with non-symmetric shift matrix. This paper extends 
this prior work, focusing on undirected graphs where the shift matrix is generally symmetric. We 
show that while, in this case, the shift matrix can be converted to satisfy the original shift-enabled 
condition, the converted matrix is not associated with the original graph, that is, it does not capture 
anymore the structure of the graph signal. We show via a counterexample, that a non-shift-enabled 
matrix cannot be converted to a shift-enabled one and still maintain the topological structure of the 
underlying graph, which is necessary to facilitate localized signal processing.
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1. Introduction12

Graph signal processing (GSP) extends classical digital signal processing (DSP) to signals on13

graphs, and provides a prospective solution to numerous real-world problems that involve signals14

defined on topologically complicated domains, such as social networks, point clouds, biological15

networks, environmental and condition monitoring sensor networks [1]. However, there are several16

challenges in extending classical DSP to signals on graphs, particularly related to the design and17

application of graph filters.18

In classical, one-dimensional DSP, any linear, time-invariant, or shift-invariant, filter that19

commutes with time shift operator z−1 can be represented as a polynomial of z−1 leading to20

Z-transform of the filter. Conversely, if a linear filter can be represented as a polynomial of z−1,21

the filter is linear and shift-invariant. Unfortunately, this concept does not simply generalize to22

GSP, partly because the definition of a “shift" for a graph is not obvious [2]. Commonly, in the GSP23

literature, a graph is uniquely described by a “shift” matrix or a “shift" operator1, S [3–5], which has24

been extensively used for time/vertex-domain filter design (see [1], [2] and references therein for25

frequency-domain and time/vertex-domain filtering). For example, adjacency matrix, for general26

graphs, and Laplacian matrix, for undirected graphs, are some popular choices for the shift matrix.27

In order to make graph filtering feasible, even for very large graphs, it is necessary to perform the28

filtering operation locally. For example, consider a sensor network represented by a graph, where the29

edges and edge weights of the graph depend on the distance between the sensors. In this case, efficient30

1 The term “shift” comes from the analogy with z−1 operator in Z−transform of classical DSP.
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filtering boils down to merely mixing the signals acquired by a sensor with those of the nearest sensors.31

Otherwise, if the filter output at any graph vertex is a linear combination of inputs at all vertices,32

filtering will be practically infeasible for “big data" graphs [5]. Therefore, in practice, we expect that a33

node can only impose direct influence to an adjacent node through the shift operator. For practical34

design purposes, it is advantageous to be able to decompose filters in a form of polynomial of such a35

shift matrix. The importance of this polynomial representation has been reiterated in a recent survey36

paper (see Section II.F of [1]).37

Although a nice, but loose, analogy between S and z−1 can be established [1], unlike classical38

DSP, if a graph filter is shift-invariant (the shift matrix commutes with the target filter), this does not39

automatically imply that a polynomial representation of the filter exists [6]. Ref. [3] argues that, for40

any shift matrix S, there exists a converted shift matrix S̃ such that graph filter H is a polynomial in41

S̃. However, it is not sufficient just to have H to be represented as a polynomial of any arbitrary S̃.42

One should also ensure that S̃ indeed describes the same graph as S (see details in Definition 2), that is, the43

converted graph shift should keep the same topological structure as the original one.44

1.1. Contribution45

It was shown in [3] that any filter commuting with shift matrix S can be represented as a46

polynomial in S provided that the characteristic and minimal polynomial of the shift matrix are47

equal (in the rest of this paper, as in [7], we will refer to this condition as shift-enabled condition, see also48

Definition 1). However, in [3], this condition was immediately disregarded, surmising that one may49

convert any shift matrix that does not satisfy the shift-enabled condition into one that does. Based on50

this conclusion, most researchers currently assume that the shift-enabled condition simply holds or51

ignore the condition completely. However, it was proved in [7], through a counterexample, that such a52

conversion may not hold for a directed graph with asymmetric shift matrix.53

In this paper, we focus on undirected graphs, which have wider applications [2], and illustrate54

with examples that when the symmetric shift matrix of an undirected graph is non-shift-enabled, the55

conversion suggested in [3] could lead to a very different graph that does not necessarily capture the56

structure of the original graph signal. Namely, though the conversion would provide a shift-enabled57

graph that facilitates polynomial representation of the shift-invariant filters, the newly designed graph58

might no longer capture the structure of the graph signal it was originally designed to model2, and59

does not facilitate performing filtering locally.60

Referring to our wireless sensor network example in the introduction, in the original graph the61

output of the filtering at each vertex only involves inputs of the vertex’s immediate neighborhoods.62

However, in the converted graph, sensors that are far apart might be strongly connected, that is, each63

output at a vertex could be a linear combination of inputs at almost all vertices, thus filtering in such64

converted graph will be computationally unaffordable for “big data” graphs in practice which further65

emphasizes the importance of the shift-enabled condition [7].66

The outline of the paper is as follows. Section 2 describes the basic concepts and key properties of67

a shift-enabled graph. Section 3 provides counterexamples to prove that the shift-enabled condition is68

essential for the symmetric graph. Section 4 concludes the paper.69

2. Basic Concepts and Properties of Shift-enabled Graphs70

In this section, we briefly review the concepts of shift-enabled graphs and their properties relevant71

to this paper. For more details, see [2–5].72

2 Note that [6] also reiterated the relationship among polynomial representation, shift-invariant, and alias-free filter. However,
[6] did not explicitly investigate the implication of the shift matrix conversion as proposed in [3].
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Let G = (V, A) be a graph, where V = {v0, v1, · · · , vn−1} is a set of vertices and A ∈ Cn×n is the73

adjacency matrix of the graph. Let x = (x0, x1, · · · , xn−1)
T be a graph signal, where each sample xi ∈ x74

corresponds to a vertex vi ∈ V.75

In particular, if G is a directed circular graph, then the corresponding adjacency matrix is given by:76

A =

 0 0 ··· 0 1
1 0 ··· 0 0
...

...
. . . . . .

...
0 0 ··· 1 0

. Then Ax = (xn−1, x0, · · · , xn−2)
T , that is, multiplication by A shifts each signal77

sample to the next vertex. Thus, A is often called shift operator or shift matrix, which is similar to78

time shift operator z−1 in DSP. In practice, adjacency matrix can be replaced by other matrices which79

reflect the structure of the graph, such as the Laplacian matrix and the normalized Laplacian matrix80

for undirected graphs, and the probability transition matrix. Here, we use S to denote the general shift81

matrix, whether it is A, (normalized) Laplacian matrix, or the probability transition matrix.82

In classical 1-D DSP, a shift-invariant filter F has a Z-transform (polynomial representation in
z−1), that is

F(z−1) =
+∞

∑
k=−∞

fkz−k,

where fk is polynomial coefficient. Moreover, from the shift-invariance property, it follows that the83

filtered output of a shifted input is equal to the shifted filtered output of the original input. In other84

words, the shift operation and the filter commute. That is, Fz−1 = z−1F, which directly follows from85

the above polynomial representation (see, e.g., [6]).86

Extending this concept to GSP, we also define a shift-invariant filter H as the one that commutes87

with the shift matrix, i.e., HS = SH. However, unlike in the classical DSP case, a shift-invariant filter88

does not necessarily have a polynomial representation in terms of the shift operator S. Yet, H can be89

represented as a polynomial in S if the shift matrix S satisfies the following condition.90

Definition 1 (Shift-enabled graph [7]). A graph G is shift-enabled if its corresponding shift matrix S satisfies91

pS(λ) = mS(λ), where pS(λ) and mS(λ) are the minimum polynomial and the characteristic polynomials of92

S, respectively. We also say that S is shift-enabled when the above condition is satisfied. Otherwise, S and the93

corresponding graph, are non-shift-enabled.94

For shift-enabled graphs, the following theorem is the basis of linear, shift-invariant filter design.95

Theorem 1. The shift matrix S is shift-enabled if and only if every matrix H commuting with S is a polynomial96

in S [3].97

Note that this theorem implies that as long as the shift matrix S does not satisfy the shift-enabled98

condition (i.e., mS(λ) 6= pS(λ)), there will always be some shift-invariant filters (and thus some filters)99

that cannot be represented as a polynomial of S. Ref [3] de-emphasized the shift-enabled condition by100

suggesting that we may work around it with the following theorem.101

Theorem 2 (Theorem 2 in [3]). For any shift matrix S, there exists a converted matrix S̃ and matrix polynomial102

r(·), such that S = r(S̃) and mS̃(λ) = pS̃(λ).103

While the above theorem is correct, it does not take into account that the target filter H may not104

be shift-invariant with respect to the converted shift matrix. In particular, for a directed graph, in105

general, S is not symmetric, and thus not jointly diagonalized with H. Consequently, one can show106

that generally there exists no converted shift-enabled S̃ that can maintain shift-invariance with the107

target filter when the graph is directed and S is asymmetric [7].108

However, the conversion method suggested in [3] does hold for undirected graphs when H109

can be jointly diagonalized with S. Yet, as we will show in the following, the converted S̃ may not110

describe the same graph as the original S. This makes the whole conversion process moot. Hence, the111
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shift-enabled condition is important regardless of whether the graph is directed or not (i.e., the shift112

matrix is asymmetric or not).113

3. The Necessity of Shift-enabled Condition for Undirected Graphs114

Before giving a concrete example, let us first review the conversion process described in [3]. As115

mentioned earlier, even though the conversion process does not hold for arbitrary shift matrices, it can116

be applied to symmetric shift matrices.117

According to Lemma A2 in Appendix A, two symmetric and commuting matrices S and H are118

simultaneously diagonalizable. Thus, there exists an invertible matrix T such that S = TΛST−1 and119

H = TΛHT−1, where ΛS and ΛH are composed of the eigenvalues of S and H, respectively. Then,120

a new matrix Λperturb with distinct diagonal elements can be generated by slightly perturbing the121

values of ΛS. The new shift matrix is calculated as S̃ = TΛperturbT−1. According to Lemma A1 and122

Lemma A2, the restructured shift matrix S̃ satisfies pS̃(λ) = mS̃(λ) and HS̃ = S̃H. Hence, from123

Theorem 1, H is a polynomial in S̃.124

However, it is not sufficient to have H represented as a polynomial of any arbitrary S̃. A natural125

and basic constraint is that the converted S̃ should facilitate “local processing”, that is, it should126

describe topologically the same graph, which is essential in virtually all GSP applications, such as filter127

design [8], sampling [9], denoising [10], and classification [11], otherwise, the conversion is meaningless.128

To ensure that the converted graph facilitates “local processing”, that is, an implementation of an129

L-th order polynomial filter requires L data exchanges between neighbouring nodes [6], we introduce130

Definition 2. In fact, the definition of a matrix describing a graph (see details in Definition 2) is not new131

in spectral graph theory. In particular, the matrix of “loose description” is widely used in the context of132

inverse eigenvalue problem and zero-forcing problem [12,13]. We introduce “strict description” since133

we would like to accommodate graphs with self-loops. In a nutshell, two shift matrices describe the134

same graph if the conversion from one to another preserves the graph topological structure, implying135

that filtering under the converted graph can be performed locally. The precise definition is specified as136

follows.137

Definition 2 ([12–14]). Shift matrices S and S̃ strictly describe the same graph if 1) Si,j 6= 0 if and only if138

S̃i,j 6= 0 for any i and j, and 2) S̃ is symmetric if and only if S is symmetric. And we will say S and S̃ loosely139

describe the same graph if the first condition is relaxed to 1’) Si,j 6= 0 if and only if S̃i,j 6= 0 only for i 6= j. That140

is, we allow some i where only Si,i or S̃i,i equal to 0.141

Given this additional constraint that S̃ and S should describe the same graph structure, we can142

show that it is impossible to guarantee the following three conditions to be satisfied simultaneously:143

• S̃ is shift-enabled (i.e., pS̃(λ) = mS̃(λ)).144

• H is shift-invariant on S̃ (i.e., HS̃ = S̃H).145

• S̃ and S strictly or loosely describe the same graph.146

3.1. A counter-example that S̃ can loosely but not strictly describe the original graph147

Let us start with a non-shift-enabled graph as shown in Figure. 1(a). The shift matrix3 of the148

undirected graph is S =

( 0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

)
. It is clear that pS (λ) = λ3 (λ− 2) (λ + 2) 6= λ (λ− 2) (λ + 2) =149

mS(λ) and hence S is non-shift-enabled. Since shift-enabled condition is not just sufficient but also150

necessary [7], there must exist a shift-invariant filter not representable as a polynomial of S. Indeed,151

3 Without loss of generality, we choose adjacency matrix as the shift matrix in the following examples.
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Figure 1. Graph topology used in the examples. (a) Original graph with shift matrix S. (b) Converted
shift matrix S̃ which loosely describes the same graph as S. (c) Cycle graph with shift matrix S′.

one example for such a filter is H =

 0 0 0 0 0
0 1 −1 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 0 0

. It can be readily verified that HS = 0 = SH and152

thus the filter is shift-invariant, and it is impossible to find polynomial representation of H in terms of153

S. Note that Sn
2,3 = Sn

2,4
4 for all n ∈ N. Thus for any polynomial h(S), we must have h(S)2,3 = h(S)2,4.154

But since H2,3 = −1 6= 0 = H2,4, H 6= h (S) for any polynomial function h(·).155

3.1.1. Extension of H to a Class of Filters156

Note that we can extend H to the following class of filters that all cannot be represented as
polynomials of S:

H = {αH + q(S)|α ∈ R, q(S) is a polynomial of S}. (1)

Since apparently q(S)S = Sq(S) for any polynomial q(S) and HS = SH as discussed above, any157

filter αH + q(S) ∈ H commutes with S as well. Thus any filter in H is shift-invariant. However, since158

H is not representable as a polynomial of S, as discussed above, so does αH + q(S).159

From the examples presented above, we note that when the shift-enabled condition is violated,160

we may find an infinite number of shift-invariant filters that are not representable as polynomials of S.161

3.1.2. Shift-enabled S̃ That Strictly Describes the Original Graph Does Not Exist162

First, let us restrict the converted shift matrix S̃ to strictly describe the same graph as S. Thus S̃
could be written as

S̃ =


0 S̃1,2 S̃1,3 S̃1,4 S̃1,5

S̃1,2 0 0 0 0
S̃1,3 0 0 0 0
S̃1,4 0 0 0 0
S̃1,5 0 0 0 0

 (2)

with non-zeros S̃1,2, S̃1,3, S̃1,4, and S̃1,5. We can readily verify that the characteristic polynomial is163

pS̃(λ) = λ3(λ2 − S̃2
12 − S̃2

13 − S̃2
14 − S̃2

15) and 0 is the triple eigenvalue of S̃. According to Lemma A1, a164

shift-enabled real symmetric shift matrix has to have unique eigenvalues and thus S̃ is not shift-enabled.165

Therefore, all graphs which have the same structure as Figure 1(a) are non-shift-enabled.166

3.1.3. Shift-enabled S̃ That Loosely Describes the Original Graph Exists167

Next, let us relax S̃ so that it may just loosely describe the original graph. In other words, we
allow the diagonal elements to be non-zero which maintains most of the topological structure of the
original graph. In applications where diffusion or state transition matrices are treated as shift matrices,

4 Note that Sk
i,j denotes the (i, j)-element of matrix Sk .
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the diagonal elements can be interpreted as the returning probabilities of the current state to itself.
Thus, the converted shift matrix S̃ can be written as

S̃ =


S̃1,1 S̃1,2 S̃1,3 S̃1,4 S̃1,5
S̃1,2 S̃2,2 0 0 0
S̃1,3 0 S̃3,3 0 0
S̃1,4 0 0 S̃4,4 0
S̃1,5 0 0 0 S̃5,5

 . (3)

Many solutions that satisfy shift-enabled and shift-invariant conditions can be found. For instance,168

S̃ =

( 0 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
1 0 0 0 0

)
is one such solution, where the original graph structure is only slightly modified as169

shown in Figure 1(b). One can verify that the eigenvalues (−1.8136, 0, 0.4707, 1, 2.3429) of S̃ are distinct170

and thus S̃ is shift-enabled. Moreover, one can also readily verify that HS̃ = S̃H. By Theorem 1, the171

above two conditions ensure that H is a polynomial in S̃.172

Remark 1. Note that the example from the previous section can be extended to a star graph with more than

five vertices. In this case, the shift matrix of a star graph with N vertices is SN =

 0 1 ··· 1
1 0 ··· 0
...

...
. . .

...
1 0 ··· 0

. Consider a

filter HN =


0 0 0 0 ··· 0
0 1 −1 0 ··· 0
0 −1 1 0 ··· 0
0 0 0 0 ··· 0
...

...
...

...
. . .

...
0 0 0 0 ··· 0

, and based on Equation 2 shift operator that strictly describing the original

graph satisfies S̃N(strict) =


0 S̃1,2 S̃1,3 ··· S̃1,N

S̃1,2 0 0 ··· 0
S̃1,3 0 0 ··· 0
...

...
...

. . .
...

S̃1,N 0 0 ··· 0

 . Repeating the similar argument as before, we can readily

verify that the following five conclusions still hold simultaneously: (i) SN is not shift-enabled for pSN (λ) =

λN−2(λ2 − (N − 1)). (ii) HN is shift-invariant, i.e., HNSN = 0 = SN HN . (iii) HN 6= h(SN) for any
polynomial function hN(·). (iv) HN can be extended to the following class of filters that none can be represented
as polynomials of SN :

HN = {αHN + q(SN)|α ∈ R, q(SN) is a polynomial of SN}.

(v) Shift-enabled S̃N(strict) that strictly describes the original graph does not exist.173

3.2. A Counter Example When the Converted Shift Matrix Can Neither Strictly Nor Loosely Describe the174

Original Graph175

Note that there are situations where no shift-enabled S̃ exists even after we relax the graph176

structure constraint as in the earlier example. Consider shift matrix S′ =
( 0 1 0 1

1 0 1 0
0 1 0 1
1 0 1 0

)
as shown in177

Figure 1(c).178

It can easily be seen that the eigenvalues of S′, (0, 0, 2,−2), are not unique. Thus S′ is179

non-shift-enabled according to Lemma A1. So we do expect that there exists shift-invariant filter180

not representable by S′. Indeed, we can easily show that filter H′ =

(
0 0 −1 1
0 −1 1 0
−1 1 0 0
1 0 0 −1

)
is such a filter.181

First, note that H′S′ = S′H′ and thus H′ is shift-invariant under S′. Furthermore, note that182

(S′)n
1,2 = (S′)n

1,4 for all n ∈ N, and so h(S′)1,2 = h(S′)1,4 for any polynomial h(S′). But since H′1,2 =183

0 6= 1 = H′1,4, H′ 6= h (S′) for any polynomial function h(·).184

Let us prove that it is impossible to find a converted shift matrix S̃′ which is shift-enabled and185

commutes with H′ by only changing the weights of nonzero and diagonal elements.186
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Consider a general symmetric matrix

S̃′ =

 S̃′1,1 S̃′1,2 0 S̃′1,4

S̃′1,2 S̃′2,2 S̃′2,3 0
0 S̃′2,3 S̃′3,3 S̃′3,4

S̃′1,4 0 S̃′3,4 S̃′4,4

 (4)

which has arbitrary weights on nonzero and diagonal elements. That is, S̃′ loosely describes the same187

graph as S′.188

H′ = h(S̃′) clearly implies that H′ commutes with S̃′, namely, H′S̃′ = S̃′H′ is a necessary condition
for H′ = h(S̃′). It follows from H′S̃′ = S̃′H′ that S̃′1,1 = S̃′2,2 = S̃′3,3 = S̃′4,4 and S̃′1,2 = S̃′1,4 = S̃′2,3 =

S̃′3,4 , i.e.,

S̃′ =

 S̃′1,1 S̃′1,2 0 S̃′1,2

S̃′1,2 S̃′1,1 S̃′1,2 0
0 S̃′1,2 S̃′1,1 S̃′1,2

S̃′1,2 0 S̃′1,2 S̃′1,1

 . (5)

Following Cayley-Hamilton Theorem [15], if H′ is a polynomial in S̃′, then H′ = h(S̃′) =189

h0 I + h1S̃′+ h2S̃′2 + h3S̃′3, where I as the identity matrix. In fact, it is easy to prove that (S̃′)k
1,2 = (S̃′)k

1,4,190

for k = 0, 1, 2, 3. Hence, h(S̃′)1,2 = h(S̃′)1,4 which contradicts with H′1,2 6= H′1,4. Thus, for this example,191

the filter H′ cannot be represented as a polynomial in the converted shift matrix S̃′ which even just192

loosely describes the original graph.193

Remark 2. Just as in Remark 1, the above example can be extended to cycle graphs with more vertices.194

In this case, the shift matrix of cycle graph with N vertices is S′N =


0 1 0 ··· 0 1
1 0 1 ··· 0 0
0 1 0 ··· 0 0
...

...
...

. . .
...

...
1 0 0 ··· 1 0

. Consider the filter195

H′N =


0 0 ··· 0 −1 1
0 0 ··· −1 1 0
0 0 ··· 1 0 0
...

...
. . .

...
...

...
−1 1 ··· 0 0 0
1 0 ··· 0 0 −1

, and similar to Equation 4, the shift operators loosely describing the original graph196

should satisfy S̃′N(loose) =


S̃′1,1 S̃′1,2 0 ··· S̃′1,N

S̃′1,2 S̃′2,2 S̃′2,3 ··· 0
0 S̃′2,3 S̃′3,3 ··· 0
...

...
...

. . .
...

S̃′1,N 0 0 ··· S̃′N,N

. With the similar argument as before, one can show197

that S̃′N(shi f t−invariant) =


S̃′1,1 S̃′1,2 0 ··· S̃′1,2

S̃′1,2 S̃′1,1 S̃′1,2 ··· 0
0 S̃′1,2 S̃′1,1 ··· 0
...

...
...

. . .
...

S̃′1,2 0 0 ··· S̃′1,1

. Consequently, one can readily verify the following four198

conclusions in Section 3.2 are still valid: (i) S′N is not shift-enabled, since it has repeated eigenvalues, that199

is, λk = 2cos(2πk/N) for k = 0, 1, 2, · · · , N − 1. (ii) H′N is shift-invariant, i.e., H′NS′N = S′N H′N . (iii)200

H′N 6= h(S′N) for any polynomial function hN(·). (iv) The shift matrix that loosely describes the original graph201

and commutes with H′N must have the form of S̃′N(shi f t−invariant), and such a shift-enabled matrix does not202

exist.203

4. Conclusions204

For a non-shift-enabled graph, even if we can easily “transform" the symmetric shift matrix S205

into one that satisfies the shift-enabled condition, the new S̃ may be irrelevant since it describes a206

very different graph from S. That is, the operator S̃ on a graph signal may involve mixing inputs far207

beyond its neighborhood and become impractical for huge graphs. Combined with the necessity of208

the shift-enabled condition for directed graph [7], we demonstrated in this paper that the shift-enabled209

condition is essential for any graph structure. A good future direction is to explore a shift that210
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“approximately" describes the original graph as the conversion is quite different. In particular, if it is211

already known that one such shift does not exist, one possible direction to explore shift “approximately"212

describe the original graph instead (some non-zero off diagonal element may not correspond to an213

actual edge). But we will leave this to future study.214

Note that even though we consider the adjacency matrix as the shift matrix in our examples, the215

conclusion applies to other shift matrices. In particular, one can readily verify that the conclusion still216

holds if we use the Laplacian matrix as the shift matrix in the example in Section 3.2.217
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Appendix A225

It is easily determined whether a graph is shift-enabled by the following lemmas.226

Lemma A1. If shift matrix S is a real symmetric matrix, then S is shift-enabled, if and only if all eigenvalues of227

S are distinct [1].228

Lemma A1 indicates that an undirected graph is shift-enabled if and only if its eigenvalues are all229

distinct.230

As both shift matrix S and filter matrix H are symmetric, we can obtain the following lemma.231

Lemma A2. If shift matrix S and filter matrix H are diagonalizable (this condition always holds for symmetric232

matrix) then S and H are simultaneously diagonalizable (by an invertible matrix) if and only if HS = SH (see233

Theorem 1.3.12 in [16]).234
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