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Abstract: Control And Data Acquisition (SCADA) systems currently monitor and collect a huge
among of data from all kind of processes. In practice, due to sensor failures or to communication
errors, in the long-time running, some data may be lost. When it happens, given the nature of these
failures, information is lost in bursts, that is, sets of consecutive samples, which besides can be very
long. Data completion is a critical step, which must be done with the utmost rigour in order to not
propagate errors in the rest of the processing chain stages. Some Big Data techniques do not work
if the data series are incomplete, due to the loss of some data. When this occurs it is necessary to
fill out the gaps of the historical data with a reliable data completion method. This paper presents
an ad hoc method to completion the data lost by a SCADA system in case of long bursts. The data
correspond to levels of drinking water tanks of a Water Network company that present patterns on a
daily and a weekly scale. A method based on tensors is used to take advantage of the data structure.
A specially designed tensorization is employed to deal with bursts of missed data, applying a twice
tensor decomposition and a signal continuity correction. Statistical tests are realized, which consist
of apply the data reconstruction algorithms, by deliberately removing bursts of data in verified
historical database servers, to be able to evaluate the real effectiveness of the tested methods. For this
application, the presented approach outperforms the other techniques found in the literature.

Keywords: Water Networks; SCADA Data; Tensor completion; Tensor decomposition

1. Introduction

Currently, the data collection has made a real breakthrough with the many variety of sensors and
devices which have the possibility of transmit information from anywhere. With the increase of the
data storage capacity in the world of computers, the point of save more data than it can be treated is
reached.

In practice, when processing this amount of information, the problem of incomplete or missing
data has to be addressed. The Data management in water networks [1] and in hydrological resources
[2-4] are not an exception. That problem is especially challenging when it manifests itself in long
bursts. Aigues de Vic S. A. (AVSA) decided three years ago to renew their Supervisory Control And
Data Acquisition (SCADA) system, because it was been becoming outdated. AVSA is the enterprise
responsible for the water supply of the city of Vic. The SCADA is a tool for the technicians of the Water
Purification Plant (WPP), where the Ter river water is purified, and for the operators of the Water
Distribution System (WDS). The old system is usefully to receive information of the sensors and take
decisions, but not to remotely configure and control the devices. For example in the case of a pumping
system, it is possible to see the pumps configuration, but if it is necessary to reduce the pumped water
flow, the operator have go where the pumps are located and do it manually.
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Something important on the SCADA system renovation is to take advantage of the data collected
by the old SCADA. To avoid the lost of information accumulated by the old SCADA system during
the last four years, the most important data have to be imported from the old data base to the new
one. During this duty the historical data series were verified with the aim to not import unusable data,
and some problems related to missing data were detected. An example of this was the case of the
data collected by the deposit level sensor located in the main water reservoir of the city of Vic. It is
important to preserve this data, because the historical data of this sensor could be used, for example,
to find patterns on the city of Vic consumption. To restore lost samples some simple linear estimators
with acceptable results were used [5-7], but in the case of large amounts of consecutive lost samples,
the linear estimators lost their effectiveness. These type of lost data is caused basically by a fail in the
communication between the Programmable Logic Controller (PLC), where the sensor is connected,
and the central SCADA server, where the data is stored.

The classical methods of data estimation hardly exploit simple patterns, which can appear daily,
weekly or in general with a concrete frequency. In contrast, the methods based on tensor decomposition
are able to take advantage, with a multidimensional way, of the appropriately arranged data [8-13].

In a previous study [14], an ad hoc method was implemented using tensors, which is specially
adapted to work with water deposit level signals and to deal with long bursts of lost samples. The
method was compared with other reconstruction method based on tensor procedure found in the
literature, giving better results for this specific conditions. Since the signals of interest present daily
and weekly patterns, the approach in [14] combines classical interpolation strategies with techniques
of tensors decomposition and a continuity correction method that guaranteed the continuity of the signal
of the data recovered.

The method presented in this paper is reminiscent of [14] in some aspects, but presents some
novelties that significantly impact in the performance. The method starts by filling the lost burst values
to avoid missing elements before to tensorizing the data. At this point, two significant differences
are introduced: (1) to fill empty values the most straightforward interpolation is chosen, which is
the called ramp method, discarding the predictive or the extremely simple methods proposed in [5-7]
or in [14], (2) the way to organize the tensor is imporved by introducing what we call the burst
centered tensorization. The most significant difference, however, is that the new method employs the
reconstruction methodology twice, using two different tensorization cores in the tensor decomposition
step. The first one, perform the tensor decomposition with a small-dimension tensorization core,
obtaining a first approximation. The second one uses a large-dimension tensorization core in the tensor
decomposition procedure, what allows to refine the first estimation. Note that, although several
tensor decompositions exist, the two most extended and well-known are the Tucker [15-17] and the
CANDECOMP /PARAFAC (CP) [18,19] which are the two decompositions considered in this work as
well as in [14]. References [11-13,20] can provide to the reader a quality tensor algebra introduction.
For the type of signals treated, when data losses are distributed uniformly or even in short bursts
of less than 30-40 samples, all methods work more or less likewise. Above that length, tensor-based
methods begin to take advantage. In practice, it is observed that the bursts length of data lost on a
SCADA system communication cutting off can be longer than this. The proposal obeys the need to
improve the performance of the data replenish methods currently used. The main contribution of this
research is to improve the data reconstruction methodology developed in [14], whose results are taken
as a reference, since they were better in comparison with the proven tensor methods that already exist
in the literature.

Henceforth, the work is organized as follows. In the Materials and methods section the details for
reproducing results are explained. Aspects related to the database and its pre-processing are treated
briefly because they are the same as those carried out in [14]. The same is applied for tensor concepts.

The focus is on the process burst centered tensorization and on the double decomposition of the tensor.
Although a smoothing data process is applied before the tensorization, which contributes to achieve
better results. In the Results section, the methodology is tested applying only each of the proposed



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2019

30f19

improvements and applying them all together, in order to quantify the impact of each of them and
to check if they are complementary. Finally, the most remarkable aspects will be summarized in the
Discussion and Conclusions section.

2. Materials and Methods

2.1. Used database

The historical data used to perform the simulations are provided by Aigues de Vic S.A. (AVSA).
Their Supervisory Control And Data Acquisition (SCADA) system collect approximately 1,300 different
signals. Specifically, the data used on the simulations is provided by a water level sensor located in
the deposit of Castell d’en Planes, which is the water reserve of the city of Vic. The data of this sensor
was collected from 1 October 2015, but some weeks of the historical data have to be discarded for
the simulations. The data used for the simulations is verified, discarding the weeks where there are
excessive lost data, because not allow to calculate the real MSE and verify the results.

2.2. Imputation method: the ramp method

The tensor decompositions cannot work with empty data. One of the simplest strategies used
with acceptable results in [14], called the ramp method is used in this study. The ramp method consists of
filling the lost data by drawing a line between the last known sample before the lost burst starting, x;,,
and the first known sample after the lost burst ending, x,,; 11, where B is the length of the data burst
lost in number of samples. So that, considering a lost burst of B samples and the index i going from 1
to B, to use a constant increment (or decrement), m, and fill the entire lost burst, x,,,; must be:

Xn — Xn+B+1

xn+i == Xn +m Z for m = T (1)

Fig.1 shows the performance of the ramp method.

SCADA data completion - Ramp method (burst: 200 samples)

‘—Original data — Simulated lost burst —Ramp method ‘
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Figure 1. First step of the data reconstruction method. The red line shows the burst of the simulated
lost data. The blue line corresponds to the data reconstruction of the linear method called the ramp
method. The soft blue line shows the linear method result and the strong blue line shows the final signal
reconstruction, which is adapted to the sensor resolution of 1%.

2.3. Burst centered tensorization

Tensorization is the process of packaging lower-dimensional data into a container, the tensor, with
more dimensions than the original one. This allows us to find the relations between dimensions, which
are difficult to perceive in more simple structures. The visual inspection of the data seems to reveal
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patterns on a daily and weekly scale. To take advantage of these regularities, a 3-dimensional tensor
was composed. The first index indicates the 5-minute day-intervals fixed by the sample frequency
of the SCADA system (so each day is represented by 288 samples). The second index indicates the
day of the week (which is an index of 7 positions, corresponding to the days of the week). Finally, the
third index depends on the number of weeks included in the tensor 7;,. In this way, the 3-dimensional
tensor will have the following 288 x 7 X n,, structure.

The proposed organization uses past and future data with respect to the burst location in order to
contribute with past and future information. Typically, the way to organize the data into a tensor does
not take into account the position of the lost data. In this work, a burst centered tensorization method
is proposed, where the data selected to fill the tensor container depends on the burst location. Fig.2
shows this process. In Fig.2(a), the dark blue window shows the selection of data as was proposed
in [14], in a typical way and with the data presented in a uni-dimensional view. The week where
the burst is located is used as the central week, and some weeks before and some weeks after are
taken, depending on the tensor size 1. Note that to always have a central week in the tensor 7, there
must be an odd value (3, 5, 7, ...). Through the dark blue window it can be seen how the burst is not
exactly located in the center of the selected data, which would mean being in the center of the dark
blue window, even if the week where the burst is located is selected as the central week. This happens
because the burst is hardly located in the middle of a week, which only happens if the burst is located
exactly in the center of Thursday. The burst centered tensorization forces the burst to be located in the
center of the data selected. The cyan window in Fig.2(a) shows this new data selection, where the
burst is placed exactly on the center of the window. Fig.2(b), (c) and (d) show the tensorized data by
the typical way. The Fig.2(e), (f) and (g) show the tensorized data from the burst centered tensorization
method, which placed the burst in the core of the tensor (in the center of the central day of the week,
which is located in the middle of the tensor). As explained in [14], lost data bursts never exceed the
day, meaning that their length, B, is always less than 288 samples and that the burst can be located in
the center of a day. Thus, given a B burst in a tensor )(I XJxK the burst samples are placed at | = 4,
K = 0.5(W + 1) with initial position ;=0.5(288-B) according to and indexation yi-i+B-1x4x05(W+1)
Note that the daily cycles of the burst centered tensorization rarely start at 00:00 and the weeks do not
start on Mondays, as occurred in [14], however there are always the same number of samples before
and after the lost burst, which hardly happens with the previous tensorization method.

2.4. Tucker and CP tensor decompositions overview

A tensor is a container that can arrange data in N-ways or dimensions. An N-way tensor of real
elements is denoted as y € R1*2% <IN and its elements as: Xi in,..in - AAccording this, an N x 1 vector
x is considered a tensor of order one, and an N x M matrix X (or XN*M), a tensor of order two.

The procedure of reshaping a lower-dimensional original data (for instance a vector or a matrix)
into a tensor is referred to as tensorization. The process of reshaping tensors to vectors is named
vectorization.

Low order tensor decompositions provide a simplified version of the data while making
the relation between dimensions explicit. In the case of the 3-dimensional tensor x'*/*K the
approximations are given in the form of a smaller tensor core GL*M*N (where I > L, ] > M,
and K > N) and the L, | and K eigenvectors of mode-1, -2, and -3 respectively which are organized as
column vectors in matrices AT*L, BI*M and CK*N_ The size (L,M,N) of the core determines the level
of the decomposition.

There are many known tensor decompositions but overall of them the most widely used are the
Tucker [15] and the CP [18] decompositions. In this work we only test those two. However, the method
presented can be adapted to work with any one of them. These two are briefly presented below.

In the 3-way Tucker decomposition model the core is defined by parameters L, M, N, relative to
the size of GE*M*N and it is expressed as Tucker(L,M,N) according to:
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Figure 2. Example of the data tensorization of a 3 week tensor with 200 samples of data burst lost. In
figure a) the green line shows the original data and the red line shows the lost burst. The strong blue
window shows the data introduced in the non burst-centered tensor and the soft blue one shows the data
introduced in burst-centered tensor, which forces the burst to be on the center of the window. Figures b),
¢), and d) show the three weeks of the non burst-centered tensor and the location of the burst, which
is located on the central week but not on the center of this week. The figures e), f), and g) show the 3
weeks of the burst-centered tensor and the new location of the burst in the core of the tensor, which is in

the middle of the central week.
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XI><]><K ~ GL><M><N ><1AI><L ><2B]><M X3 CKXN, (2)

where the symbol X; is the n-way product of a tensor by a matrix; such a tensor operation defined,
for example, in [21].

The 3-way CANDECOMP/PARAFAC (from CANonical DECOMPosition/PARAllel
FACtorization) model is commonly known as CP and can be seen as particular case of the
Tucker decomposition when GP*P*P is diagonal. Taking this observation into account the CP
decomposition can be written in the same terms as in the case of Tucker decomposition, as follows:

XI><]><K ~ GD><D><D X1 AI><D XZBIXD X3 CK><D (3)

although, being GDP*DxD diagonal, it is frequent to see it written in function of the elements A; of
the diagonal such as:

D
AP K~ ¥ Majob;og, 4)
i=1
where the symbol o stands for the outer product and the column vectors a;, b; and ¢; are related
with the matrices of equ. (3) according to: AT*P = [a;---ap], B/*P = [by---bp] and CK*P =
[e1---¢cpl.

The algebra of tensors is explained in detail and often with the support of graphical illustrations
in [10-12,20]. Fig. 3 shows a unified representation of both 3D tensor decompositions.

XK
a) TUKER ~ GLxMxN b)cP, GDxDxD
1
LT\ v oD, [ |B»D
] AIxL @ |:|B AIxD @M B™

DchN I:IchD

Figure 3. Diagram of the Tensorization methods. a) Tucker model. b) CANDECOMP /PARAFAC (CP)
model.

2.5. The continuity correction

This procedure was developed in order to maintain the continuity of the estimate provided by
a tensor decomposition in its vector form X and the known values of x at the edges of the burst.
As consistently observed previously, the samples in the burst positions after a low-rank tensor
reconstruction follow the original signal pretty well but with significant discontinuities in the extremes.
Considering xg to be the last original known sample before the burst and £ the sample from the tensor
reconstruction in that position, we define the initial burst offset as Oy = xy — £y. Similarly, for a lost
burst of length B, the final burst offset can be defined as: Opy1 = xp41 — £p41. The corrected offset
estimates ¥; are computed as follows:

(B—1)O0g + (i =1)Op+1
B-1
Fig. 4 shows graphically the continuity correction applied.
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SCADA data completion - Continuity correction (burst: 200 samples)
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Figure 4. Second and third steps of the data reconstruction method. The green line is the original data,
x;. The red line shows the 200 samples burst of simulated lost data. The Tucker decomposition (1,1,1) is
used. The orange line is the result of the tensor process with this configuration, £;. The blue arrows
indicate the initial and the final offsets, Oy and Op 1. The soft blue line show the effect of the continuity

correction, %; and the strong blue line shows the final signal reconstruction, which is adapted to the
sensor resolution of 1%.

2.6. Signal smoothing

The tensor decomposition produces a continuous response. The sensor, however, measures
the level as a percentage with resolution of 1%, providing a discrete signal of the deposit capacity.
When the signal levels oscillate around the point of quantification, oscillations occur between adjacent
discrete values. The goal of this section is to verify if a smoothing of the data applied before the tensor
decomposition can help to improve the results.

The smoothing algorithm adopted is ad hoc, developed considering the sensor way of working.
The samples are processed in groups with the same integer value, and taking into account whether the
signal is increasing, decreasing or is in a relative minimum or maximum. The blocks of samples of
identical integer value A are processed taking into account the values of the contiguous blocks. The
procedure is effortless. There are more elaborate filtering methods but those introduce delays in the
signal, and thus of that this straightforward solution has been chosen instead. If the block corresponds
to a signal increment, a line with a positive slope is built with extreme values A-0.5 and A+0.5. If
the block corresponds to a signal decrement, a line with a negative slope is built similarly. If it is
detected that it is a local maximum or minimum, the block is replaced by a triangular shape with the
corresponding orientation. Fig. 5 shows the smoothing performed through an example.

SCADA data completion - Data smoothing
\—Original data — Smooth data\
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Figure 5. Smooth process applied to the level sensor signal before the second step of the methodology,
the tensorization of the data, to help on the tensor process to achieve a better estimation.
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2.7. Double decomposition approach

In this section the proposed data completion method is presented through the sub-processes
previously commented. As was already mentioned, only the two more widely known tensor
decomposition models have been considered, these being the Tucker and the CP. Thus the configuration
of both decomposition algorithms have been analyzed with the aim of taking the biggest advantage
possible from each one.

In order to clarify the followed procedure, it is shown through a particular case in Figure 6, where
the steps of the process are represented by using a block diagram.

In that figure, vector x is the input that contains the burst of missing values. The first step required
is to choose the linear method of data completion that fills the data gap of the lost burst with a first
simple first estimation. The ramp method is the selected one, which draws a line to join the known
extreme values that delimit the burst as explained in subsection 2.2. It is a rough approximation, but
does not need any configuration, which brings simplicity to the algorithm.

Once the data in x has no empty values, and the positions of lost burst values have been saved,
the burst centered tensorization explained in section 2.3 is applied. The tensor obtained is y?38*7*"w,
To remember, its first dimension indexes the SCADA measurements taken in 24h every 5-minute,
its second dimension indexes the 7 days to complete a week, and its third dimension indexes the
number 1, of weeks considered (which is an odd number: 3 or 7 in the tests realized). In Figure. 6 the
particular case of 1y, = 7 is shown.

This is followed by the first tensor decomposition. The goal is to build a low-range approach of
x288%7x1w that is done by decomposing Tucker (4,6,1). The result is named X%f?ﬂxnw. At that time,
the continuity correction is applied on the set of estimated samples which are in the position of the lost
burst, with the aim to adapt the estimated signal fluctuation to the original data. That is, to use this

set of samples to fill the same positions (those of the lost burst) in a new tensor, called )('%f? Hmes7 Xt

which has the rest of positions filled with the original data. Note that both X%f? X7xMw and X'%f? X7 Xt

have the same tensor arrangement, the burst centered tensorization.
The next step consists in doing the second tensor decomposition, now with the second core

selected (Tucker(4,7,7) in the example) to obtain an approximation of X'%f)SX”"“’ named X%?? X7t

Again, the set of samples of X%g? X7 Jocated in the positions of the lost burst are taken to apply the
continuity correction with the original data, and finally obtaining the SCADA data completion.

The Tucker(4,6,1) and Tucker(4,7,7) decomposition shown in Figure 6(a) correspond to the values
that optimize in our database the recovery of a burst of 200 lost samples when employing the
tensorization of size 288 x 7 x 7 and the Tucker decomposition is used. The method is the same
for the CP decomposition. The decomposition CP(1) and CP(15) shown in 6(b) to optimize the recovery
of a burst of 200 lost samples using the tensorization of size 288 x 7 x 7 and the CP decomposition. The
results are a statistical measure obtained after running 1000 simulations.

The study to determine the optimal size of these decompositions can be found later in subsection

3.1.2.

2.8. Algorithm performance evaluation

To test all the methods on the same conditions, firstly 1.000 different starting positions are
randomly selected from the 77 weeks of historical data previously verified. These set of starting
positions determine the groups of consecutive samples which are deleted to simulate the burst of
missing data. The strategy, the data set, the block of 77 consecutive weeks, and the burst lengths B
were the same as used in [14] in order to compare the evolution of the algorithm performances. When
an algorithm replenishes the missing burst, the Mean Square Error (MSE) per sample with the original
data is computed. The same algorithm processes those 1.000 different randomly selected cases and the
MSE per sample is taken as the parameter to evaluate its performance. Before calculating the MSE, the
reconstructed signal is adapted to the sensor resolution of 1% by rounding the values with decimals to
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Figure 6. Graphic representation of the double decomposition method for both models checked, Tucker
(a) and CP (b). In both cases the order of the decomposition shown is the optimized one in order to
recover a burst of 200 lost samples when employing a tensor size of 288 x 7 x 7.

the nearest integer the values with decimals. Then, considering ¥; to be the samples provided by a
completion algorithm and x; to be the true values that had been eliminated in the verified data set to
simulate a lost burst of length B, the MSE per sample is computed as:

B
MSE= 1Y \/(x — )2 ©)
i=1

|

3. Results

In the first part of this section, the study conducted to find the orders of decomposition that
optimize the MSE per sample is shown.

3.1. Optimal tensor decompositions

This exploration is performed by completing bursts of known length that have been randomly
deleted from the reference database. A test of 1,000 simulations is done with 100 and 200 lost samples
and using a 3 and a 7 weeks tensors. The results are given in terms of the MSE per sample, according
to the exposed methodology.

The first test is done using only one decomposition and checking a set of different cores. This
way the process stats are used to select the optimal core for the first decomposition, in terms of the
MSE per sample. Then, to find the value of the second optimal decomposition core, the test is done
with the double decomposition algorithm. This time, the same sets of cores is checked on the second
decomposition, using the optimal configuration found on the first test for the first decomposition. This
exploration already allows us to see that the method is robust for small variants in the core used on the

decomposition.
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3.1.1. CP case

Here the results for the optimal CP decompositions configuration are presented when the length
of the bursts are 100 and 200, and for tensorizations of 3 and 7 weeks of data. Four cases result
from the combination of burst lengths and tensor sizes. Fig.”7 shows B = 100 with a tensorization
of (288 x 7 x 3); Fig.8, B = 100 with (288 x 7 x 7); Fig.9 , B = 200 with (288 x 7 x 3); and Fig.10
B = 200 with (288 x 7 x 7). All these figures follow the same format. Figure a) shows, for different CP
decomposition cores, the MSE per sample of the methodology with only one decomposition, applying
the data smoothing, the ramp method and the burst centered tensorization. Figure b) shows the MSE per
sample obtained with the double decomposition methodology, for different CP decomposition cores
applied in the second stage, and using, as first decomposition core, the one which has given the lowest
MSE value in the previous analysis. In both figures a) and b), the configuration that produces the
minimum value is highlighted in red and the configurations that generate values very close to the
minimum are highlighted in green .

Double decomposition configuration - CP (burst: 100 samples, tensor: 288x7x3)
[ © MSE higher than 5% of minimum © MSE lower than 5% of minimum @ Minimum

First decomposition configuration Second decomposition configuration
Ramp method: 1.2 Best: 0.59 CP(1) . 1st decom: 0.59 CP(1) Best: 0.55 CP(11)
0997 |
0.9} .... 0.9
306.0..... 30000000 '
go. go (olelole] [elele)
0.3 0.3 | |

a) %1 2345678 09101112131415 b) %1 23456789101112131415

Core Core
Figure 7. Test of the double decomposition procedure configuration with the CP model for a 100
samples burst and the 3 weeks tensor x288%7x3 " (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, GY*1x1 For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.

Double decomposition configuration - CP (burst: 100 samples, tensor: 288x7x7)
‘ @ MSE higher than 5% of minimum () MSE lower than 5% of minimum @ Minimum

First decomposition configuration Second decomposition configuration
Ramp method: 1.2 Best: 0.59 CP(1) 1st decom: 0.59 CP(1) Best: 0.54 CP(15)
0.8 o .. 0.8
o.ekOOO0.00..’. o.ek..........ooo
@ @
g 0.4 2 0.4 I|
0.2 0.2 I|

a) % 2845678 0101112131415 b) % 2845678 0101112131415
Core Core
Figure 8. Test of the double decomposition procedure configuration with the CP model for a 100
samples burst and the 7 weeks tensor x?8*7*7. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, G1*1*1. For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the

minimum is less than 5% are marked in green.
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Double decomposition configuration - CP (burst: 200 samples, tensor: 288x7x3)
‘ @ MSE higher than 5% of minimum () MSE lower than 5% of minimum @ Minimum

First decomposition configuration Second decomposition configuration
Ramp method: 2.93 Best: 1.14 CP(1) 1st decom: 1.14 CP(1) Best: 1.05 CP(9)
9 2.9
00907 (610)
2175 R 2175
o "
@ 145% (P... 2 145
0
a) 123 456 7 8 9101112131415 123456789101112131415
Core Core

Figure 9. Test of the double decomposition procedure configuration with the the CP model for a 200
samples burst and the 3 weeks tensor x?88*7>3. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, G*1*1. For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.

Double decomposition configuration - CP (burst: 200 samples, tensor: 288x7x7)
‘ @ MSE higher than 5% of minimum () MSE lower than 5% of minimum @ Minimum

First decomposition configuration Second decomposition configuration
Ramp method: 2.93 Best: 1.13 CP(1) 1st decom: 1.13 CP(1) Best: 1.02 CP(15)
4 .. 2.4
oP |
18 '. 18
412000000097 W, ° L
212000 21200000000000000
0.6 0.6 I|

a) % 2845678 0101112131415 b) % 2845678 09101112131415
Core Core
Figure 10. Test of the double decomposition procedure configuration with the CP model for a 200
samples burst and the 7 weeks tensor x?8*7*7. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, GI*1X1 For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the

minimum is less than 5% are marked in green.

As important aspects to emphasize, notice that in all the tested conditions of burst and tensor
sizes, the best decomposition core for the first stage is the lowest one, CP(1). Then, using the CP(1)
configuration on the first decomposition, in graph b), which shows the results for different core
configurations on the second decomposition, it can be seen how the best option is to select the highest
core configuration because, although in some cases it is not exactly the best, the MSE seems to have been
stabilized. Therefore, for the CP method, the choice of the first decomposition core is very robust, and
it has to be the lowest one. Then, for the second stage a higher decomposition core has to be selected
, taking into account that there is a wide margin of acceptable configurations (values highlighted in
green), because when the minimum is reached, the choice of an even higher decomposition core gives
a very similar MSE.

3.1.2. Tucker case

Determining the size of the two decompositions that minimize the MSE per sample, when using
Tucker decomposition, is computationally expensive and difficult to visualize. This is because there are
more parameters than in the CP model to configure the decomposition core. The number of parameters
depends on the tensor structure, and in the proposed 3-dimensions tensorization this implies having
three parameters.
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The experiments carried out include the cases of the burst length 100 and 200 and the tensorizations
x?88%7x3 and x?88*7*7_ Figures 7 and 8 deal with bursts of 100 missing samples and tensorizations of
x288%7>3 and x288%7*7 respectively. Figures 9 and 10 deal with bursts of 200 missing samples and
tensorizations of x?88%7x3 and y288x7x7,

In this case, to see the optimization of Tuker model configuration graphically, one of the three
parameters which have to be configured has been set, the one relative to the weeks number of data
used. Then, using a matrix view, the MSE values of the combination of the other two can be further
analyzed. For each figure, the first column of graphs represents the results corresponding to the
first decomposition. The graphs of the second column show the MSE corresponding to the second
decomposition after selecting the combination that gives the lowest value for the first one.

In all cases, the red dot represents the configuration with the lowest MSE value and the green
points are those configurations with values very close to the minimum.

It is noted that the red dots are within the clusters of green points which represent quasi-optimal
solutions. This means that there is a whole set of different solutions that behave in a very similar way
to the optimal set. In general the best option is to select the minimum possible value on the parameter
related to the number of weeks for the first decomposition and the maximum for the second one. The
other two parameters seems to have more variability, but in general the parameter relative to the week
day must be high, near the maximum, and the parameter relative to the day hour must be a little lower
than it.

Some improvements for the method have been proposed, with the aim of refining it and obtaining
better results. To see the effect of each of them the same 1,000 simulations are done without applying
the improvements, followed by applying only one of them, applying some of them and finally applying
them all together in Fig.15. The best results seem to be achieved with the rearrangement of the tensor
using the burst centered tensorization, which is the best improvement if it is only applied to one of them
on the methodology. Applying only the smooth process provides a little improvement on any case, not
very high but constant for all the tensor and burst sizes checked.

A curious result of the double decomposition is that it seems to have, proportionally, a more positive
effect when it is used in combination with the other options. This can be seen by comparing the MSE
reduction obtained by applying only the double decomposition compared to using a combination of
smoothing and burst centered tensorization or using all the improvements, specially with the Tucker
model results.

With any size of tensor and burst the effect of each option is complementary to the others, which
means that applying all of the improvements together provides a considerable positive impact in
comparison to not using any of them in all the cases. Note that using different tensor sizes or to
restoring bursts of different lengths results in a different optimal configuration of the decomposition
core, although with similar characteristics, Fig. 7 - Fig. 14. To show the robustness of the modified
method which incorporates the double decomposition, the MSE obtained using different configurations
for the first decomposition presented, specifically the ones found in the first column of Fig. 7 - Fig.
14, which are the optimal ones for each burst and tensor sizes, CP(1), TK(6,3,1), TK(8,5,1), TK(1,5,1)
and TK(4,6,1). Table 1 also shows the consistency of algorithm results with changes in the size of the
decompositions, even when combining the CP and Tucker models as well.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2019

13 of 19

Double decomposition configuration - Tuker (burst: 100 samples, tensor: 288x7x3)
‘ © MSE higher than 5% of minimum O MSE lower than 5% of minimum @ Minimum‘
First decomposition configuration Second decomposition configuration
Ramp method: 1.2 Best: 0.59 TK(6, 3, 1) 1st decom: 0.6 TK(6,3,1) Best: 0.55 TK(5, 7, 3)

Figure 11. Test of the double decomposition procedure configuration with the Tucker model for a 100
samples burst and the 3 weeks tensor x?8*7>3. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, GO*3%1_For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.

Table 1. MSE of the different tested methods. The results of 100 and 200 lost samples, B, are shown
working with a 3 and 7 weeks of tensor size, ny,. "The best configurations in [14]" show the minimum
MSE obtained for the algorithm presented in [14], with the CP and the Tucker models. "The best
configurations for the proposed algorithm" show the minimum MSE obtained for different pairs of
decompositions. In these cases, only the core of the first decomposition is fixed, and it is shown the
minimum MSE obtained with the best core for the second decomposition.

MSE per sample B=100 B=100 B=200 B =200
Ny =3 Ny =7 Ny =3 Ny =7

The best configurations in [14]

optimal CP 0.87 0.80 1.70 1.58
optimal TK 0.77 0.71 1.43 1.28
The best configurations for the proposed algorithm

1st decom: CP(1), 2nd decom: optimal CP 0.55 0.54 1.05 1.03
1st decom: TK(6,3,1), 2nd decom: optimal CP 0.57 0.52 1.14 1.02
1st decom: TK(8,5,1), 2nd decom: optimal CP 0.57 0.53 1.14 1.03
1st decom: TK(1,5,1), 2nd decom: optimal CP 0.55 0.53 1.06 1.02
1st decom: TK(4,6,1), 2nd decom: optimal CP 0.56 0.53 1.06 1.02
1st decom: CP(1), 2nd decom: optimal TK 0.54 0.52 1.04 1.00
1st decom: TK(6,3,1), 2nd decom: optimal TK 0.55 0.51 1.11 0.98
1st decom: TK(8,5,1), 2nd decom: optimal TK 0.54 0.50 1.11 0.97
1st decom: TK(1,5,1), 2nd decom: optimal TK 0.53 0.52 1.04 1.00

1st decom: TK(4,6,1), 2nd decom: optimal TK 0.55 0.50 1.11 0.97
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Double decomposition configuration - Tuker (burst: 200 samples, tensor: 288x7x3)
| @ MSE higher than 5% of minimum © MSE lower than 5% of minimum @ Minimum|

First decomposition configuration Second decomposition configuration
Ramp method: 2.93 Best: 1.14 TK(1, 5, 1) 1st decom: 1.14 TK(1,5,1) Best: 1.04 TK(4, 7, 3)

Figure 12. Test of the double decomposition procedure configuration with the Tucker model for a
200 samples burst and the 3 weeks tensor x28*7*3. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, G1*>*1. For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.
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Double decomposition configuration - Tuker (burst: 100 samples, tensor: 288x7x7)
| @ MSE higher than 5% of minimum © MSE lower than 5% of minimum @ Minimum|

First decomposition configuration Second decomposition configuration
Ramp method: 1.2 Best: 0.53 TK(8, 5, 1) 1st decom: 0.53 TK(8,5,1) Best: 0.5 TK(6, 7, 7)

Figure 13. Test of the double decomposition procedure configuration with the Tucker model for a 100
samples burst and the 7 weeks tensor x?8*7>%7. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, G8*5*1_ For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.
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Double decomposition configuration - Tuker (burst: 200 samples, tensor: 288x7x7)
| @ MSE higher than 5% of minimum © MSE lower than 5% of minimum @ Minimum|

First decomposition configuration Second decomposition configuration
Ramp method: 2.93 Best: 1.07 TK(4, 6, 1) 1st decom: 1.07 TK(4,6,1) Best: 0.97 TK4, 7, 7)

4 3

Figure 14. Test of the double decomposition procedure configuration with the Tucker model for a 200
samples burst and the 7 weeks tensor x?8*7>%7. (a) shows the MSE obtained applying only the
first decomposition procedure, for different core configurations. (b) shows the MSE of the double
decomposition method for different core configurations on the second decomposition, and using the best
core configuration obtained on (a) for the first decomposition, G**6x1_For each case the configuration
with minimum MSE is marked in red and the configurations whose MSE rise with respect to the
minimum is less than 5% are marked in green.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2019

17 of 19
MSE for each specific improvement
‘—Original method without any improvement —— Minimum error
Burst: 100 samples - Tensor: 3 weeks Burst: 100 samples - Tensor: 7 weeks
0.8 0.77 0.8
w 0.7 w 0.7 0.7
(2] (2]

0.50

1.28
0.97

Figure 15. MSE of the proposed improvements. All of them are tested with 100 and 200 samples of data
burst lost and with 3 and 7 weeks of tensorized data. The orange line indicates the best result obtained
in [14]. The Smooth is the result of applying only the smooth process to the signal before tensorizing
it. The burst centered tensorization is the result of the rearrangement of the tensor according the burst
location. The Double decom is the result of applying the decomposition two times, with G**®*1 and
G**7x7 for Tuker, and G1*1*1 and G15*15%15 for CP. The DS-Bc is the result of combining the data
smoothing and the burst centered tensorization without using the double decomposition. The All with CP
and the All with TK are the results of applying all the proposed algorithm with the CP and the Tucker
models respectively.

SCADA data completion - Double decomposition

— Original data — Simulated lost burst — Linear method estimation — First Tuker (1,1,1) — Second Tuker (5,7,3)

. [
al | roh
S | T L
1 T T 1

L I 1
. I | J

66 -
Dec 01, 12:00 Dec 02, 00:00 Dec 02, 12:00 Dec 03, 00:00 Dec 03, 12:00
Date 2017

Figure 16. Example of the reconstruction methodology with double decomposition. The green line
shows the original data and the red line the burst of lost samples. The orange line is the linear estimation
with the ramp method. The purple line is the result of the first tensorization procedure with Tuker using
G**6x1 The blue line shows the result of the second tensorization procedure with G**7*7.
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4. Conclusions

Completing data lost in bursts remains a difficult challenge and is where most data completion
methods fail. However, data being lost in bursts is quite common. It is often associated with the
failure of a component involved in capturing or transmitting the data. In the contribution of [14] it is
presented an ad hoc data completion method is presented to recover data lost in bursts that outperforms
the methods available in the literature for the proposed application. This work improves the method
in [14], which is taken as a reference for the new algorithm evaluation and for comparison purposes.
It is also often difficult to evaluate data completion methods. In this article, intensive experiments
on a verified database were carried out by erasing data statistically and comparing the results of the
algorithms with the original data are carried out. The method incorporates fundamental novelties
such as a new tensorization method, the burst centered tensorization, and the application of two tensor
decomposition, one after the other.

Note that the MSE corresponding to a 100 samples burst falls from 0.71, the best result obtained
in [14], to 0.50, the best result obtained with this new methodology. Thus, approximately a 39.5%
of reduction is achieved. In the case of a 200 samples burst the MSE falls from 1.28 to 0.97 which is
approximately a 24.2% of reduction.

A signal reconstruction example of this procedure is shown in Fig.16 using
the best core configurations for the double decomposition according to the tests for the Tucker model
in the case of a 200 samples of burst length.
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