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Abstract: The impacts of climate change on precipitation and drought characteristics over Bangladesh 

were examined by using the daily precipitation outputs from 29 bias-corrected general circulation 

models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A 

precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to 

quantify the characteristics of drought events in terms of the severity and duration. The changes in 

drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of 

this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to 

forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual 

precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively 

higher under the RCP8.5 scenario. The highest increase of rainfall is expected to happen over the 

drought-prone northern region. The general trends of drought frequency, duration, and intensity are 

likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the 

maximum drought intensity during the beginning of the century, which is projected to increase over 

the country. The extreme and medium-term drought events did not show any significant changes in 

the future under both scenarios except for the medium-term droughts, which decreased by 55% 

compared to the base period during the 2070s under RCP8.5. However, extreme drought days will 

likely increase in most of the cropping seasons for the different future periods under both scenarios. 

The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable 

areas are expected to shift from the northwestern region to the central and the southern region in the 

future under both scenarios due to the effects of climate change. 

Keywords: Effective Drought Index (EDI); meteorological drought; climate change; GCMs under RCP 

scenarios; future drought projections; Bangladesh 

 

1. Introduction 

Nowadays, climate change is regarded as a major global issue, and it poses significant challenges 

to human existence and socio-economic development, particularly in Bangladesh. The dominant 

features of climate change in Bangladesh detected in the late 19th century include the significant 
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increases in temperature and monsoon and post-monsoon precipitation due to global warming. 

However, a decrease in movement of precipitation was observed in the winter season [1]. The overall 

increasing rate of warming in Bangladesh is higher than the present increasing rate of global warming, 

and this trend is expected to continue over the 21st century [2–4]. Notably, Bangladesh has been 

suffering from frequent natural disasters. Among the most expensive natural disasters, drought is a 

chronic natural disaster that can have severe and long-lasting impacts on water resources, agriculture, 

ecosystems, and human societies [5]. The impact of drought events is often worst in developing 

countries because their economies are driven mainly by agricultural products that are adversely 

affected by meteorological droughts [6]. Drought may generally be defined as a scarcity of water in a 

region over a prolonged period of time triggered by a lack of rainfall. Presently, great effort needs to be 

expended on researching future changes in rainfall patterns, which are the major causes of drought in 

Bangladesh and can lead to adverse changes in economic and social development. The effects of 

gradual climate changes and extreme weather events may negatively impact overall socio-economic 

development in many regions, and therefore, the scientific community and policymakers need more 

information about the probability of future occurrences of such events [7,8]. 

The Coupled Model Intercomparison Project (CMIPs) has made available general circulation 

model (GCM) outputs for the Programme for Climate Model Diagnosis and Intercomparision (PCMDI), 

and these products are available for research. The climate model outputs from Phase 3 of the CMIP 

(CMIP3) were broadly used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment 

Report (AR4) [9]. Recently, climate models from Phase 5 of the CMIP (CMIP5) along with greenhouse 

gas concentration scenarios termed as a representative concentration pathways (RCPs) were adopted by 

the IPCC for its 5th Assessment Report (AR5) [10]. The models from CMIP5 joined with the RCP 

scenarios have delivered more precise representations of climate outputs than the CMIP3 model results 

because corrections were made in regard to some key assumptions of climate that were overlooked 

previously by the model developers [11]. Sperber et al. [12] demonstrated that the CMIP5 models are 

more competent for capturing numerous features of the Asian monsoon climate compare to the CMIP3 

models. Therefore, it is of supreme importance to assess future changes in climatological drought by 

using the precipitation data from the new sets of CIMP5 GCM projections. 

Presently, GCMs are the principal tools for predicting and projecting future climate changes. 

However, most such global climate models are typically run at coarse resolutions, e.g., more than 

hundreds of kilometers. Therefore, the GCM outputs are inherently unable to represent regional or 

local climate features and dynamics at the necessary spatial resolutions for detailed analyses [13]. To 

overcome this problem, downscale techniques have been developed to obtain local climate change 

information at the desired scale from coarser-resolution GCM outputs [14,15]. Dynamic downscaling 

data have been recognized to be more representative of fine-scale physical processes than statistical 

downscaling data; however, the former technique requires more expensive computing resources than 

the latter technique [16–18]. A large number of simulations with multiple GCM configurations and 

emissions scenarios can be computed efficiently by using a statistical approach, and such an approach 

is well accepted in the scientific community; these type of data are widely used in downscaling climate 

projections. Thus, projections from multiple GCMs from CMIP5 have been used in this study. 

In parallel, climate change impact assessments at the regional scale rarely use the raw GCM 

outputs because climate model data suffer from systematic biases due to the uncertainty in the 

parameterization of unsolved processes [19]. Therefore, bias-corrected GCM outputs are essential for 

regional climate impact studies and vulnerability assessments. A vast number of bias correction 

procedures are in use, such as the monthly mean correction [20], delta change [21], and quantile 

mapping [22] techniques. The quantile mapping methods are considered to be the most accurate 

methods in terms of precipitation [23] among all of the other methods. Therefore, a quantile based bias 

correction approach was used to adjust for the model biases in this study. 
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One way of assessing the changes in future drought characteristics is to use climate projections 

from a couple of GCM simulations under different greenhouse gas emission scenarios [24]. According 

to Coelho and Goddard [25], future changes in precipitation patterns may aggravate drought risk in 

highly vulnerable tropical areas. In several areas, climate change is expected to primarily affect 

precipitation, and thus, it is likely to affect the frequency and severity of metrological droughts. A 

remarkable number of studies have assessed the future drought risks on global and regional scales by 

using multiple climate model scenarios [26–29]. For instance, Chen et al. [30] investigated the future 

change in the drought pattern over the 21st century in China by using global climate models and 

regional climate models (RCMs) under the SRES (Special Report on Emissions Scenarios) A1B scenario, 

and the findings indicated that droughts will become less frequent in most areas of China. Conversely, 

Wang et al. [31] examined future drought in China by using CMIP5 model outputs under the RCP4.5 

and RCP8.5 scenarios and revealed that extreme drought events would increase in the future. This 

discrepancy may have been due to the limitations of drought indices and the lack of realistic climate 

information. Importantly, the future drought outlook may depend on the indicators used in drought 

calculations along with realistic climate data. The selection of appropriate drought indices is therefore 

vital for understanding the future drought characteristics and for planning a drought mitigation 

strategy for a region [32]. Hence, it is necessary to predict future drought characteristics on a local scale 

by using realistic climate information and locally applicable and appropriate drought indices. 

In the past few years, several studies have projected the average temperatures and annual rainfall 

for Bangladesh in the future [33–35]. For instance, Rahman et al. [34] estimated the annual rainfall by 

using version 3 of an RCM (RegCM3), and the findings indicated that a 50% decrease in rainfall will 

occur by 2060. Nowreen et al. [33] found that the amount of total rainfall is likely to increase in the 

future based on simulations with a 17-member ensemble driven by the Hadley Centre Coupled Model 

(HadCM3). A number of studies have suggested that the overall monsoon rainfall will increase and 

post-monsoon rainfall will decreases in the future throughout most parts of the country [34,35]. 

Notably, very few studies have been done concerning future drought projections [35,36]. Islam et al. [36] 

evaluated the drought hazards at current and future climate change conditions in the western region of 

Bangladesh by using simulated climate data from the outputs of three global climate models for the 

period between 2041 and 2070. Hasan et al. [35] estimated the future drought conditions by using 25 km 

high resolution downscaled and projected climate data generated from the RCM known as PRECIS for 

a continuous period of 1971–2100. The results revealed that droughts will generally decrease in future 

years but there will be a comparative higher frequency of droughts in the mid 21st century. However, 

all of these studies used the climate model output from CMIP3 and were driven by the previous IPCC 

AR4 scenarios. 

Recently, Hasan et al. [37] projected the future climate and associated extremes while considering 

the new RCP4.5 and RCP8.5 scenarios by using RCM results driven by the GCMs over Bangladesh 

within the new CMIP5. The study revealed that overall precipitation and temperature trends are likely 

to increase in the future over this region. However, drought characteristics were not evaluated by using 

these outputs. Mortuza et al. [38] projected only the future drought frequency from 2020 to 2100 by 

using bias-corrected four GCM (CMIP5) model outputs under the RCP4.5 and RCP8.5 scenarios and 

showed that the drought frequency will decrease in the future (2020–2100) compared to the past (1961–

2010). They also pointed out that more frequent and severe droughts will occur on the west side of the 

country. However, a complete assessment of future changes in drought characteristics in terms of the 

frequency, duration, and intensity of meteorological drought events and seasonal drought days mainly 

based on CMIP5 multimodel simulated data still has not been performed to understand the future 

conditions of droughts in Bangladesh, and this was the prime motivation for this study. Here, the 

downscaling techniques of spatial disaggregation were utilized to provide finer-resolution information, 

and the Effective Drought Index (EDI) was used to detect the changes in precipitation and drought 

patterns to gain knowledge about the future changes in drought over Bangladesh. 
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With the aim of investigating the future changes in precipitation and meteorological drought 

characteristics over Bangladesh, the drought characteristics were assessed by using the EDI and the 

bias-corrected CMIP5 GCM precipitation data under the RCP4.5 and RCP8.5 scenarios from 2010 to 

2100 were used in this study. Twenty-nine different GCMs and corresponding Multi-Model Ensemble 

(MME) means were evaluated to assess the performance of the models in reproducing the observed 

drought characteristics during the historical period and for deriving future changes in drought 

characteristics in terms of the frequency, duration, and severity. The changes were evaluated in three 

future time ranges, namely, the 2010s (2010–2039), 2040s (2040–2069), and 2070s (2070–2099), and data 

were compared to the baseline period (1976–2005). 

2. Materials and Methods 

2.1. Study Area and Observation Data 

The study area covers Bangladesh, which is situated in latitudes between 20°34′ and 26°38′ 

north and longitudes between 88°01′ and 92°41′ east in South Asia; this region is bordered by India 

on three sides (i.e., west, north, and northeast), and it is bordered by Myanmar to the southeast. The 

southern border is demarcated by the Bay of Bengal with a long coastline. Although elevations up to 

105 m above sea level occur in the northern part of the country, most of the elevations are less than 10 

m above sea level; heights decrease in the coastal south (Figure 1). A predominance of agricultural 

lands is evident, and such lands comprise three-fourths of the total geographical area followed by 

forests, including orchards, as shown in Figure 2. Bangladesh is one of the most vulnerable nations to 

the increasing effects of global climate change. Presently, this country is regularly affected by natural 

disasters such as floods, tornadoes, droughts, and tidal bores. It has experienced drought conditions 

recurrently over the past several years; on average, these events have occurred once in 2.5 years [39] 

and have mainly affected agricultural lands, with huge losses in food grains [40,41]. While drought is a 

periodic occurrence in many parts of Bangladesh, the northwestern part of the country is the most 

susceptible to drought due to the high variability of rainfall [42]. During 2006, the average crop 

production was decreased by 25–30% due to the effects of drought in the northwestern part of 

Bangladesh [43]. This area is comparatively dry in relation to other areas of the country, as it receives 

much lower rainfall [44]. Additionally, this area contains sandy soils that have a low moisture retention 

capacity and a high infiltration rate [45]. Therefore, drought happens in this region regularly. 

The climate of Bangladesh is characterized by moderately warm temperatures, high humidity, and 

subtropical monsoons with wide seasonal variations in rainfall. The following four metrological 

seasons are generally recognized: a hot, humid pre-monsoon period (March to May); a humid, warm, 

and rainy monsoon period (June to September); a post-monsoon period (October to November); and a 

dry winter (December to February). Moreover, the cropping season in Bangladesh is categorized into 

Pre-Kharif (March–June), Kharif (July–October), and Rabi (November–February). The mean annual 

temperature within the country is about 25°C. The temperature varies from month to month. In general, 

the mean temperature across the country usually ranges between 11°C and 29°C and between 21°C and 

34°C during the summer months. April is the warmest month in warm parts of the country [46]. The 

average annual rainfall in the region varies from 1536 mm to 4124 mm, and the yearly average rainfall 

was 2410 mm from 1976 to 2005 (Table 1). 
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Figure 1. Elevation map of Bangladesh (data source: https://SRTM.csi.cgiar.org). 

 

 

Figure 2. Location of meteorological stations and land use map of the study area. 
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The Bangladesh Meteorological Department (BMD) operates 35 weather stations throughout the 

country. However, only 25 stations have continuous rainfall records for more than 30 years from 1976 

to 2005 (Figure 2). In this study, the daily time series rainfall data were used to evaluate the GCM data 

for the same period. When working with observation data, missing data are common. Here, there were 

some missing data in the dataset, but the amount was <2%. The average values of the same date from 

neighboring stations were used in place of the missing data. 

Table 1. Mean monthly and annual rainfall at various stations in Bangladesh. 

Station 

name 
Data period 

Location Mean monthly rainfall of multiple stations during 1976–2005 (mm) Annual 

avg. 

precip. 

(mm) 
Lon. Lat. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rangpur 1954 to present 89.23 25.73 8 11 25 117 274 453 498 356 383 176 8 9 2318 

Dinajpur 1948 to present  88.68 25.65 10 11 14 76 222 358 471 373 370 160 9 10 2082 

Bogra 1948 to present 89.37 24.85 8 13 21 79 209 320 402 293 309 152 12 11 1828 

Rajshahi 1964 to present 88.70 24.37 10 16 25 65 140 261 327 255 285 127 14 11 1536 

Ishwardi 1961 to present 89.05 24.13 6 21 33 86 194 292 326 230 288 117 16 9 1616 

Jessore 1948 to present 89.17 23.18 14 26 46 77 176 318 316 274 269 138 29 13 1695 

Khulna 1948 to present 89.53 22.78 12 39 53 84 193 355 304 329 251 131 37 8 1795 

Shatkhira 1948 to present 89.08 22.72 13 39 42 90 159 295 335 296 280 127 33 9 1717 

Barishal 1949 to present 90.37 22.75 10 25 55 119 212 418 419 362 282 178 46 8 2132 

Patuakhali 1973 to present 90.33 22.33 8 22 43 115 238 535 540 450 342 185 53 6 2536 

Khepupara 1974 to present 90.23 21.98 9 24 49 97 259 513 606 490 369 243 55 8 2721 

Bhola 1966 to present 90.65 22.68 10 30 53 131 265 471 447 388 291 172 43 7 2308 

Maizdi Court 1951 to present 91.10 22.87 10 27 76 154 335 574 750 631 384 181 44 7 3172 

Swandip 1966 to present 91.43 22.48 9 22 68 146 349 699 860 621 436 256 50 9 3526 

Dhaka 1953 to present 90.38 23.77 7 22 69 146 318 346 359 298 326 183 29 12 2115 

Mymensingh 1948 to present 90.43 24.72 7 22 38 145 359 395 453 326 322 216 18 10 2309 

Hatiya 1966 to present 91.10 22.43 4 14 42 116 237 541 557 484 322 193 36 12 2559 

Chandpur 1964 to present 90.70 23.27 6 20 61 139 247 341 375 326 259 138 39 7 1956 

Comilla 1964 to present 91.18 23.43 7 24 70 149 322 359 411 318 250 154 34 10 2108 

Feni 1973 to present 91.42 23.03 6 28 69 180 369 535 652 496 330 181 45 9 2900 

Sylhet 1956 to present 91.88 24.9 7 34 149 367 571 769 833 602 529 222 28 13 4124 

Srimangal 1948 to present 91.73 24.3 5 30 89 221 445 442 371 336 296 163 32 15 2445 

Chittagong 1949 to present 91.81 22.35 4 23 50 128 292 560 645 486 227 179 60 13 2669 

Rangamati 1957 to present 92.20 22.53 5 23 62 139 333 504 575 442 294 154 57 13 2601 

Cox’es Bazar 1948 to present 91.97 21.45 5 18 32 117 301 812 869 668 357 198 95 14 3486 

Mean 8 23 53 131 281 459 508 405 322 173 37 10 2410 

±  ± ± ± ± ± ± ± ± ± ± ± ± ± 

STDV 3 8 27 61 96 148 176 126 66 36 20 3 649 

2.2. Drought Indices 

Drought indices are used to characterize droughts in terms of the frequency, duration, intensity, 

and seasonal drought days. A good number of drought indices (DIs) have been proposed and 

developed to identify the spatiotemporal patterns of droughts and quantify their intensity. The 

maximum number of drought indices is region specific, as indices are limited in terms of their 

applications to different climatic conditions due to the inherent complexity of drought phenomena. In 

Bangladesh, most of the studies have measured drought severity by using the Standardized 

Precipitation Index (SPI; [47]), while very few research studies have used other DIs. The SPI is 

calculated based on the averaged monthly precipitation for a certain period. Therefore, the time steps 

involved in the SPI tend to produce several different values for the same period. Additionally, the SPI 

does not take into account the water resources generated by rainfall that may have already been lost 

due to outflow as well as the effect of evaporation. Moreover, the SPI tends to assign an equal weight to 

temporally different precipitation events, thereby resulting in inaccuracies in predictions of the drought 

severity [48]. Byun and Wilhite [49] developed a new series of indices to overcome these limitatins. 

Specifically, they used a new concept of effective precipitation (EP), in which the EP represents the 

summed value of all daily precipitation with a time-dependent reduction function. The EDI was found 

to be more responsive to drought conditions compared with other drought indices, and it could capture 

the real essence of the meteorological drought situation in the study area [50–53]. In particular, 

Kamruzzaman et al. [54] empirically demonstrated the superiority of the EDI over the SPI when 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2019                   doi:10.20944/preprints201909.0291.v1

Peer-reviewed version available at Water 2019, 11, 2219; doi:10.3390/w11112219

https://doi.org/10.20944/preprints201909.0291.v1
https://doi.org/10.3390/w11112219


 

 

monitoring both long-term and short-term droughts in Bangladesh. Thus, the EDI was employed in this 

study. The EDI calculation process was carried out according to the following equations: 

𝐸𝑃𝑖 = ∑ [(∑ 𝑃𝑚/𝑛]𝑛
𝑚=1

𝑖
𝑛=1  (1) 

𝐷𝐸𝑃 = 𝐸𝑃 − 𝑀𝐸𝑃 (2) 

𝐸𝐷𝐼 = 𝐷𝐸𝑃/𝑆𝑇(𝐷𝐸𝑃) (3) 

In Eq. (1), EP is the daily cumulative effective precipitation, Pm is the precipitation of m-1 days ago, 

n is the duration of the preceding period, and i is the duration over which precipitation is summed. For 

example, if i is 4, then the daily EP is P1 +
𝑃1+𝑃2

2
+

𝑃1+𝑃2+𝑃3

3
+

𝑃1+𝑃2+𝑃3+𝑃4 

4
. In this study, i was set to 365 

days. 

Secondly, the mean EP (MEP) is computed for each calendar day, i.e., from 1 to 365. The MEP is 

computed with the results from Eq. (1). For instance, the MEP of the 1st day of January is the mean of 30 

values for the 1st day of January composed over 30 years.  

The third step is to calculate the deviation of the EP (DEP) from the MEP (Eq. 2). The DEP 

indicates the deficiency (negative DEP) or surplus (positive DEP) of water resource for a particular day. 

If the dry period is longer than 365 days, i in Eq. (1) increases by the number of dry days. For instance, 

if the negative DEP value continues for 2 days, i is set to be 367 and Eqs. (1), (2), and (3) are again 

calculated.  

Finally, the standardized the value of DEP is calculated, where ST (DEP) denotes the standard 

deviation of each day’s DEP. The EDI is calculated then by using Eq. (3). Originally, the EDI was 

proposed for monitoring the drought conditions at a daily time step. Then, it was extended for monthly 

drought monitoring [53,55,56]. In this study, the daily EDI was used for drought calculations. 

2.3. Definitions of Drought Characteristics 

The EDI value illuminates the characteristics of drought events researched to this study, as shown 

in Figure 3. A meteorological drought event was considered to have occurred when the EDI values 

were less than -1, as shown in Figure 3. The drought start date was considered to be the day in which 

the EDI first indicated that the value of EDI was -1.0 or below, and the end date was considered to be 

the day when the EDI regained the value of -1.0 and above. Drought durations are the periods between 

the start and the end date, as shown in Figure 3. The drought severity is the cumulative deficit below 

the -1.0 level for the duration of a drought event, as shown in Figure 3, and the intensity of a drought is 

the ratio of the severity of drought to its duration. 

 

Figure 3. Schematic concept of the drought characteristics (severity, duration) evaluated with the EDI 

time series. 
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In this study, the classification level of dryness follows the EDI classification proposed by Kim and 

Byun [57], as shown in Figure 3, and drought events were also categorized based on the drought 

duration as shown in Table 2.  

Table 2. Drought classification based on the drought duration. 

Duration (days) Category 
Less than or equal to 30 Very short-term 

31 to 90 Short-term 
91 to 180 Medium-term 

Greater than 180 Long-term 

The inverse distance weight (IDW) algorithm was used to expand the data to the entire study area 

spatially. Twenty-five (25) weather station location points of the BMD were considered for spatial 

mapping of the change in drought characteristics as well as precipitation. 

In this study, the following different parameters were used for drought characterization: (a) 

frequency - number of drought events according to the severity and duration over the period of interest, 

(b) duration - average duration of all drought events over the period of interest, (c) intensity - extreme 

intensity (minimum value of EDI) among all of the drought events over the period of interest, and (d) 

seasonal drought days - number of drought days in each category in different cropping seasons over 

the period of interest. 

2.4. CMIP5 GCM Projections 

The CMIP5 projection data, including precipitation for the two RCP scenarios (RCP4.5 and RCP8.5) 

were acquired from the outputs of 29 CMIP5 GCM models. The GCM models used in this study are 

described in Table 3. The GCM outputs vary considerably in terms of the spatial resolution and include 

systematic biases precluding their immediate application to the assessment of climate change impacts. 

Therefore, certain processes to make up for these limitations are generally required before use. Daily 

data were downscaled for the period of 1976–2100 and bias-corrected against the observation data from 

25 weather stations by using a simple quantile mapping (SQM) method [58]. The SQM technique 

performs independent refinements by observation points and meteorological variables through 

empirical quantile mapping. In this study, the following three-step process was used: 1) extract the 

GCM grid data corresponding to each target station, 2) estimate the biases of the retrospective 

simulations, and 3) bias-correct the future projections. A single grid covering the target station was 

extracted for each GCM, and the biases of retrospective simulation outputs for the selected grid were 

estimated in comparison to observations. The differences between the observed and simulated 

cumulative distribution functions (CDFs) for the retrospective period were quantified and then applied 

to the future simulations for a given percentile (Eq. 4). 

x𝑝
′ (𝑡) = x𝑝(𝑡) + Fobs

−1 (F𝑝.sim (xp(𝑡))) − Fr.sim
−1 (F𝑝.sim (x𝑝(𝑡)))      (4) 

where xp
' (t) and x𝑝(𝑡) denote the bias-corrected and raw future projections on day t, and 𝐹(𝜃) and 

𝐹−1(𝜃) are a CDF of the daily data 𝜃 and its inverse, respectively. The subscripts p.sim, r.sim, and obs 

indicate the future projection, retrospective simulation, and observed daily data, respectively. 

The non-parametric empirical equation temporally measures the amount of daily observation data 

and raw GCM data. According to Gudmundsson [59], the nonparametric methods have shown the best 

skill in reducing the systematic bias compared to the parametric style because these use the real 

distribution of the observed and simulated data, without estimating a probability distribution function. 
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Table 3. Summary of 29 climate models from CMIP5 used in this study. 

Model name 

 

Modeling center 

 

Resolution 

(Lon × Lat) bcc-csm1-1 
Beijing Climate Center, China Meteorological Administration, China 

2.81° × 2.79° 

bcc-csm1-1-m 1.13° × 1.12° 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.81° × 2.79° 

CCSM4 National Center for Atmospheric Research, USA 1.25° × 0.94° 

CESM1-BGC National Science Foundation, Department of Energy, National Center for Atmospheric 

Research, USA 
1.25° × 0.94° 

CESM1-CAM5 

CMCC-CM 
Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 

0.75° × 0.75° 

CMCC-CMS 1.88° × 1.86° 

CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation 

Avancees en Calcul Scientifique, France 
1.41° × 1.40° 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the 

Queensland Climate Change Centre of Excellence, Australia 
1.88° × 1.86° 

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University, 

China 
2.81° × 3.05° 

FGOALS-s2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.81° × 1.66° 

GFDL-CM3 

Geophysical Fluid Dynamics Laboratory, USA 2.50° × 2.00° GFDL-ESM2G 

GFDL-ESM2M 

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration, South 

Korea 
1.88° × 1.25° 

HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto 

Nacional de Pesquisas Espaciais), UK 
1.88° × 1.25° 

HadGEM2-ES 

inmcm4 Institute of Numerical Mathematics, Russia 2° × 1. 5° 

IPSL-CM5A-LR 

Institut Pierre-Simon Laplace, France 

3.75° × 1.89° 

IPSL-CM5A-MR 2.50° × 1.27° 

IPSL-CM5B-LR 3.75° × 1.89° 

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan 
1.41°×1.40° 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan 

2.81° × 2.79° 

 MIROC-ESM-CHEM 

MPI-ESM-LR 
Max Planck Institute for Meteorology (MPI-M), Germany 

1.88° × 1.86° 

 MPI-ESM-MR 

MRI-CGCM3 Meteorological Research Institute, Japan 1.13° × 1.12° 

NorESM1-M Norwegian Climate Centre, Norway 2.50° × 1.89° 
 

2.5. Climate Indices for Evaluations of GCMs 

The Joint Expert Team on Climate Change Detection and Indices (ETCCDI) has defined a set of 27 

core climate indices mainly focusing on extreme events, which are derived from the daily climate data. 

In this study, six extreme rainfall-related indices were selected, as shown in Table 4. These indices were 

used to quantitatively evaluate the future extremes and drought-related rainfall patterns of 29 CMIP5 

GCM data. Analyses were conducted for 30-year periods centered on the 2010s, 2040s, and 2070s 

relative to the 1976–2005 baseline period. 

Table 4. List of the ETCCDI extreme climate indices. 

ID Indicator name Definition Unit 

PRCPTOT Annual total wet-day precipitation Annual total PRCP in wet days (RR ≥ 1 mm) mm 

CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm days 

CWD Consecutive wet days Maximum number of consecutive days with RR ≥ 1 mm days 

R10mm Number of heavy precipitation days The annual count of days when PRCP ≥ 10 mm days 

Rnn Number of days above nn mm The annual count of days when PRCP ≥ nn mm, where nn is 

a user-defined threshold (≥ 1mm) 

days 

SDII Simple daily intensity index Annual total precipitation divided by the number of wet days 

(defined as PRCP ≥ 1.0 mm) in the year 

mm/day 
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3. Results and Discussion 

3.1. Evaluations for Retrospective Simulations of GCMs 

In this study, the reproducibility of output from 29 CMIP5 GCMs for the historical period from 

1976 to 2005 was evaluated through comparisons with observed data concerning ETCCDI precipitation 

extreme indices, as shown in Table 4. To validate the performance of the bias correction algorithms, 

ETCCDI precipitation extreme indices were used. The statistical characteristics of each GCM model 

have been compared with an observed median to determine the performance of each model before (raw) 

and after bias-correction, and these results are presented in Figure 4. It was found that the bias-

corrected GCM results reasonably captured the observed patterns of ETCCDI precipitation extremes 

indices, while raw GCM outputs included significant differences from the observed indices. The CDD, 

CWD, and Rnn of the raw GCM outputs were overestimated by 0.64%, 142.79%, and 11.02%, while 

R10mm, PRCPTOT, and SDII were underestimated by 43.34%, 59.51%, and 53.19%, respectively. 

Definitions of the indices are given in Table 4. After bias-correction, most of the errors were removed 

and only 11.15% and 55.57% of the errors in CDD and CWD remained, which were related to the 

temporal pattern of a precipitation event. 
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Figure 4. Comparison of raw (left) and bias-corrected (right) reproducibility with observed data for all 

meteorological stations in terms of the (a) CDD, (b) CWD, (c) PRCPTOT, (d) Rnn, (e) SDII, and (f) 

R10mm. 
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3.2. GCM Skills in Reproducing Drought Characteristics 

Drought event reproducibility from GCM simulations was evaluated through EDI values 

calculated from the raw and bias-corrected GCM projected rainfall, which were compared with 

observed EDI values calculated from the BMD data from 1976 to 2005, as shown in Table 5. In this 

study, the average events from 29 GCMs were considered as historical drought events over 30 years. 

Results were compared for different BMD stations. 

Table 5. Comparison of several drought events calculated from observed precipitation data and raw 

and bias-corrected GCM data for 1976–2005. Values in parentheses refer to the standard deviation of the 

results over the GCMs. 

Stations Moderate drought Severe drought Extreme drought 

Observed Historical 

(raw) 

Historical 

(bias-corr.) 

Observed Historical 

(raw) 

Historical 

(bias-corr.) 

Observed Historical 

(raw) 

Historical 

(bias-corr.) 

Rangpur 43 52 (±12.3) 58 (±13.5) 3 8 (±4.2) 8 (±2.8) 2 2 (±1.7) 1 (±1.2) 

Dinajpur 48 50 (±13.2) 58 (±13.3) 11 7 (±4.4) 7 (±2.7) 4 2 (±1.8) 1 (±1.2) 

Bogra 54 50 (±12.0) 51 (±13.3) 11 8 (±3.7) 9 (±2.9) 3 2 (±1.8) 1 (±0.8) 

Rajsahi 55 46 (±11.0) 56 (±11.9) 10 8 (±4.2) 7 (±3.5) 3 2 (±1.6) 1 (±1.4) 

Ishwardi 60 48 (±08.7) 55 (±11.2) 5 8 (±4.0) 8 (±3.1) 2 2 (±1.6) 1 (±1.2) 

Jessore 86 47 (±10.1) 56 (±10.2) 10 9 (±4.2) 8 (±3.4) 2 2 (±1.6) 2 (±1.1) 

Khulna 65 49 (±11.4) 52 (±10.8) 13 9 (±4.8) 8 (±3.5) 2 2 (±1.5) 1 (±1.0) 

Satkhira 65 46 (±10.6) 54 (±11.3) 13 9 (±4.2) 8 (±3.5) 5 3 (±1.8) 2 (±1.4) 

Barisal 71 49 (±11.4) 51 (±15.1) 20 9 (±5.0) 9 (±3.1) 4 2 (±1.6) 2 (±1.2) 

Patuakhali 21 48 (±11.8) 57 (±12.1) 2 9(±4.0) 9 (±3.4) 2 3 (±1.7) 2 (±1.4) 

Khepupara 60 48 (±12.4) 54 (±11.0) 11 9 (±3.7) 9 (±3.4) 7 3 (±1.7) 2 (±1.3) 

Bhola 43 48 (±12.2) 54 (±12.8) 8 10 (±5.1) 9 (±3.7) 2 2 (±1.7) 2 (±1.3) 

Maizdicour

t 

68 52 (±13.7) 54 (±13.4) 16 9 (±5.1) 9 (±4.1) 1 2 (±1.4) 2 (±1.0) 

Sawndip 61 54 (±16.6) 54 (±17.1) 4 8 (±4.1) 8 (±3.3) 3 3 (±1.8) 2 (±1.4) 

Dhaka 102 47 (±10.9) 57 (±10.5) 10 9 (±4.2) 8 (±3.2) 3 2 (±1.9) 2 (±1.3) 

Mymensing

h 

49 51 (±14.8) 57 (±13.4) 12 8 (±4.4) 8 (±3.2) 2 2 (±1.6) 2 (±1.0) 

Hatiya 61 51 (±15.7) 54 (±09.7) 2 9 (±4.6) 8 (±3.6) 1 2 (±1.7) 2 (±1.1) 

Chandpur 17 48 (±11.0) 54 (±11.5) 0 9 (±5.0) 7 (±3.9) 1 2 (±1.5) 1 (±0.9) 

Comilla 64 52 (±13.6) 54 (±13.1) 11 9 (±4.8) 8 (±3.3) 4 2 (±1.5) 1 (±1.0) 

Feni 45 55 (±14.3) 56 (±15.5) 6 9 (±4.9) 9 (±3.9) 5 2 (±1.8) 2 (±1.3) 

Sylhet 84 54 (±14.4) 51 (±11.8) 9 8 (±4.6) 9 (±3.6) 3 2 (±1.4) 2 (±1.3) 

Srimongal 53 54 (±13.7) 57 (±12.8) 5 8 (±4.1) 8 (±3.5) 2 2 (±1.7) 2 (±1.3) 

Rangamati 54 53 (±15.9) 58 (±17.3) 9 8 (±4.1) 7 (±2.7) 3 2 (±1.7) 2 (±1.3) 

Cox's bazar 19 46 (±12.9) 56 (±13.3) 3 10 (±3.7) 9 (±4.2) 1 2 (±1.5) 2 (±1.5) 

Chittagong 24 52 (±15.6) 58 (±15.5) 0 9 (±4.6) 8 (±4.0) 0 2 (±1.9) 2 (±1.2) 

Bangladesh 54.88 49.94 

 

55.04 8.16 8.60 

 

8.2 2.68 2.29 

 

1.68 

In percent 

(%) 

 Under- 

estimate 

9% 

Match  Over- 

estimate 

5% 

Match  Under- 

estimate 

15% 

Under- 

estimate 

37% 

Table 5 presents the number of moderate, severe, and extreme drought events that occurred in the 

past based on observed and modeled results. The results showed that the bias-corrected GCM data 

could capture the averaged frequencies of moderate and severe droughts over the country quite well, 

while raw model data underestimated the frequency of moderate droughts by 9% and overestimated 

that of severe droughts by 5% compared to the observed values. However, bias-correction did not 

improve the spatial variability of droughts as well as the skills in representing extreme drought events. 

The number of observed moderate drought events varied within a range of 17–102 over the stations, 

whereas raw and bias-corrected modeling results showed ranges of 46–55 and 51–58, respectively. 

Similar limitations in representing the spatial variability of drought events were also found in the case 

of severe droughts. This was likely due to the issue of the coarse resolution of the GCM itself (Table 3). 

Specifically, the grid spacing of the GCM configuration may not be detailed enough to present the 

spatial distributions of the variable (i.e., the frequency) on a station basis. 
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The frequency of observed extreme droughts varied within a range of 0–7 over the stations, while 

the raw and bias-corrected modeling results showed ranges of 2–3 and 1–2, respectively, during the 

historical period between 1976 to 2005. As only a few extreme drought events occurred in the past, the 

model was not able to provide enough indications of such an occurrence. This was likely due to the 

differences between the observed and GCM temporal patterns of precipitation events such as the CDD 

and CWD, of which errors remained even after bias-correction (Figure 3). However, bias-corrected 

GCM data reasonably provided information on severe and moderate droughts. These findings were 

similarly discussed in the previous study by Hasan et al. [35]. 

3.3. Changes in Precipitation 

This study evaluated how the characteristics of precipitation, which could potentially induce 

drought events, will change in the future so that we could better illuminate the driving processes 

underlying changes in droughts. The spatial distributions of averaged precipitation amounts from the 

MME mean in the 2010s, 2040s, and 2070s were compared to the baseline period (1976–2005) under the 

RCP4.5 and RCP8.5 scenarios, as shown in Figure 5. The projected percentage change in precipitation 

was uneven over the entire country, but overall, precipitation tended to increase in the future over 

Bangladesh. 

For the beginning of the century (the 2010s), Bangladesh is expected to face an increase of up to 

18.72% and 26.23% in precipitation under RCP4.5 and RCP8.5, respectively, compared to the baseline 

period. In particular, the maximum increases were located on the border between the Nature, Panbna, 

and Kustia districts. An increase of up to 14.63% in precipitation was also projected to occur by the 

middle of the century (the 2040s) under RCP4.5 compared to the baseline period, but the amount was 

less than that from the 2010s. Highest increases were found in the Shatkhira and Comilla districts, 

which are located in the southern and eastern region, respectively. However, the most significant 

increase of rainfall, up to 35.67%, was projected during the middle of the century (the 2040s) under 

RCP8.5, especially in the districts in the northern region, and the increasing trend grew more severe 

with time. Growth of up to 26.14% and 53.95% in precipitation was also projected to occur under 

RCP4.5 and RCP8.5, respectively, by the end of the century (the 2070s) over Bangladesh. The highest 

increase of rainfall is expected to happen over the northern region of Bangladesh, especially the 

Dinajpur and Rajshahi districts. 

Overall, the dominant feature detected was that the widespread precipitation will be increased in 

the 21st century over Bangladesh, especially under the RCP8.5 scenario. This result agreed with the 

previous study by Fahad et al. [60]. The increasing trend of precipitation may generally imply a 

decrease in drought occurrence. 
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Figure 5. Percentage (%) change of precipitation over Bangladesh for the 2010s (1st column), 2040s (2nd 

column), and 2070s (3rd column) under the RCP4.5 (upper row) and (2) RCP8.5 (lower row) scenarios 

relative to the baseline period (1976–2005). 

The future changes in climate indices (PRCPTOT, CWD, CDD, R10mm, Rnn, and SDII) calculated 

by using data from the 29 GCMs for RCP4.5 and RCP8.5 were further investigated, as shown in Figure 

6. When comparing the median values of the box and whisker diagrams, most of the climate indices 

showed changes indicative of an increasing severity of precipitation (i.e., more precipitation with a 

lower number of rainy days). According to Figure 6(a), the total annual precipitation (PRCPTOT) 

tended to increase gradually in the three future periods under both RCP scenarios; PRCPTOT increased 

at the end of the century (the 2070s) by around 31.98% under the RCP8.5 scenario compared to the 

baseline period followed by about 17.66% under the RCP4.5 scenario in the same period. Conversely, 

the number of rainy days (Rnn) decreased in the middle (the 2040s) and end of the century (the 2070s) 

by around 0.51% and 0.61%, respectively, under RCP8.5 and by 0.49% at the beginning of the century 

under RCP4.5 compared to the baseline period, as shown in Figure 6(e). This finding was related to the 

gradual increase of the simple daily rainfall intensity (SDII) and heavy rainfall events (PRCP ≥ 10 mm), 

as shown in Figure 6(d) and (f). 
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Figure 6. Future changes of climate indices under RCP4.5 (left) and RCP8.5 (right); (a) CDD, (b) CWD, (c) 

PRCPTOT, (d) Rnn, (e) SDII, and (f) R10mm. 
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Changes in the frequency of precipitation events were also manifest as changes in the duration of 

dry spells (consecutive dry days, CDD) and wet spells (consecutive wet days, CWD). The CDD will be 

increased in the three future periods under both scenarios, as shown in Figure 6(b). The highest CDD 

rise occurred at the end of the century (the 2070s) by around 12.08% under the RCP8.5 scenario 

compared to baseline period followed by approximately 9.57% in the middle of the century (2040s) 

under the same scenario. However, the lowest CDD increase occurred at the beginning of the century 

(the 2010s) by around 4.83% under the RCP8.5 scenario compared to the base period. The CWD is also 

expected to show a minimum increase in the 21st century with a range of 1.12 to 2.37% compared to the 

base period. The highest CWD increase occurred at the end of the century (2070) under the RCP8.5 

scenario, while the lowest rise occurred in the middle of the century (the 2040s) under the RCP4.5 

scenario. Previously, Hasan et al. [37] also projected that heavy rainfall is expected to increase in the 

future. 

Generally, the change in extreme precipitation index patterns confirms the increasing trend of 

precipitation in the future. Moreover, a decrease in the number of drought events and a reduction of 

long-term drought duration can be expected given the related increases in total precipitation in 

Bangladesh. However, the CDD will be increased, which may lead to an increase in extreme drought 

events as well as extreme drought days in the future. However, the model used in this study cannot 

provide the real essence of changes in extreme drought events (Table 5). 

3.4. Projections of Future Changes in Drought Characteristics 

Future climatological changes in drought frequency, mean duration, and maximum intensity were 

investigated by using the GCM simulations in the 2010s, 2040s, and 2070s compared to the baseline 

period (1976–2005) under the RCP4.5 and RCP8.5 scenarios. To compute the differences between 

baseline and future drought characteristics, the percent change for the three next periods under each 

scenario were calculated by counting the number of events for each level of drought severity and 

duration for the three future periods under both scenarios. 

3.4.1. Changes in the Drought Frequency 

Figure 7 compares the drought frequency for each level of drought severity (i.e., extreme, severe, 

and moderate drought events) and future periods under the RCP4.5 and RCP8.5 scenarios. Overall, the 

projected changes in drought frequency for the three future periods showed different characteristics. 

However, the respective change in climatological severity under RCP4.5 and RCP8.5 exhibited a 

constant magnitude response for any future period, thus indicating an insignificant effect of emission 

scenarios on the projected change in extreme and severe droughts. Besides, the extreme droughts are 

not expected to change much in the 21st century under both scenarios. 

According to Figure 7, it was found that the MME mean produced the maximum number of 

moderate drought events compared to the others. For the beginning of the century (the 2010s), 

moderate droughts decreased by around 8% and 14% under RCP4.5 and RCP8.5, respectively. However, 

only severe droughts increased by about 15% under both of the scenarios. Moreover, only moderate 

droughts decreased by about 18% in the middle of the century (the 2040s) compared to the base period 

under both of the scenarios, while severe droughts are expected to remain same under both scenarios. 

Furthermore, the moderate and severe droughts events are expected to decrease by around 29% and 

12%, respectively, at the end of the century (the 2070s) compared to the base period under the RCP4.5 

scenario, while 38% of moderate and 23% of severe drought events will decrease in the same period 

under the RCP8.5 scenario. 
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Figure 7. Change in the drought intensity based on a historical period (1976–2005) in regard to extreme, 

severe, and moderate drought events under the (a) RCP4.5 (left) and (b) RCP8.5 (right) scenarios. 

The spatial distributions of climatological changes in drought frequency for the future periods are 

shown in Figure 8. The projected percentage change in drought frequency was non-uniform over the 

country. However, the overall drought frequency will likely decrease with time under climate change. 

For the beginning of the century (the 2010s), the drought frequency appeared to decrease in most of the 

country. In particular, the maximum decrease was detected in the eastern mountainous regions, 

especially the Chittagong and Bandarban districts, with ranges up to 10–15% compared to the base 

period under the RCP4.5 scenario. However, it increased up to 3% in the districts of Jessore and 

Satkhira, but only under RCP4.5, by the 2010s compared to the base period. On the other hand, the 

drought frequency decreased all over the country under the RCP8.5 scenario. The highest decrease was 

detected in the districts of Noakhali, Hobigonj, and Moulovibazar during the 2010s. Furthermore, a 

decrease of up to 23% in drought frequency was also projected to occur by the middle of the century 

(the 2040s) under RCP4.5 compared to the baseline period, which was greater than that from the 2010s. 

The highest decrease was detected in the districts of Mymensingh and Chittagong. A decrease in 

frequency, up to 24%, was projected to occur over Bangladesh during the middle of the century (the 

2040s) under RCP8.5, especially in the eastern region. A greater decrease in frequency can be expected 

over Bangladesh for the 2070s than for the 2010s and 2040s. A decrease of up to 33.33% and 46.77% in 

drought frequency was also projected under RCP4.5 and RCP8.5, respectively, to occur by the end of 

the century (the 2070s) over Bangladesh relative to the baseline period of 1976–2005. The highest 

decrease in frequency was projected to occur over the drought-vulnerable northern and northeastern 

regions of Bangladesh, especially in the Rajshahi and Sylhet districts. 
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Figure 8. Percentage (%) change in the drought frequency over Bangladesh for the 2010s (1st column), 

2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 (lower row) 

scenarios relative to the baseline period (1976–2005). 

3.4.2. Changes in the Drought Duration 

Figure 9 presents the changes in drought duration for the 21st century based on the historical 

period (1976–2005) concerning long-term, medium-term, short-term, and very short-term drought 

events under the RCP4.5 and RCP8.5 scenarios. Overall, the projected changes in drought duration for 

the three future periods (the 2010s, 2040s, and 2070s) showed different characteristics. However, the 

respective change in the climatological length of droughts under RCP4.5 and RCP8.5 exhibited a stable 

magnitude for any future period, thus showing a negligible effect of emission scenarios. The medium-

term droughts are not expected to change in the 21st century under both scenarios except by the end of 

the century (the 2070s) under RCP8.5, where a decrease of 55% was detected compared to the base 

period. Only the long-term droughts will decrease by around 55% over the three future periods under 

both scenarios compared to the base period. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2019                   doi:10.20944/preprints201909.0291.v1

Peer-reviewed version available at Water 2019, 11, 2219; doi:10.3390/w11112219

https://doi.org/10.20944/preprints201909.0291.v1
https://doi.org/10.3390/w11112219


 

 

According to Figure 9, future climate projections showed that the occurrence of very short-term 

and short-term droughts will be more frequent in the 21st century under the RCP4.5 and RCP8.5 

scenarios. The short-term and very short-term droughts will be decreased in the 21st century under both 

scenarios except for at the beginning of the century (the 2010s) under RCP4.5. The highest decreasing 

rates of very short-term and short-term drought events can be expected at the end of the century and 

will amount to around 26% and 21%, respectively, compared to the base period under the RCP4.5 

scenario, while 36% of the very short-term and 31% of the short-term drought events decreased in the 

same period under the RCP8.5 scenario. 

 

Figure 9. Change in the drought duration based on a historical period (1976–2005) in regard to long-

term, medium-term, short-term, and very short-term drought events under the (a) RCP4.5 (left) and (b) 

RCP8.5 (right) scenarios. 

The mean duration of droughts was computed from the average duration of all drought events in 

the historical and three future periods with the MME mean of the GCMs. The climatological changes in 

mean drought duration for the future periods are shown in Figure 10. The difference is a percentage 

that designates the change in the mean duration of droughts, where a negative value indicates a 

decreasing trend and vice versa. The average length of droughts can be expected to decline in the 21st 

century all over the country. However, the decreasing rate varied with the projected period, location, 

and emission scenario. The results indicate that the decreasing rate will be increased with time and the 

highest decreasing rate can be expected during the end of the century (the 2070s) under RCP4.5. 

In particular, the mean duration of droughts is expected to decrease within a range of 0 to 15% 

over the entire country, whereas the highest decrease will occur in the districts of Chittagong, Cox’s 

Bazar, and Jessore at the beginning of the century (the 2010s). The values decreased within a range of 6–

24% and 14–36% in the middle of the century (the 2040s) and end of the century (2070s), respectively, 

under the RCP4.5 scenario. The highest decreases occurred in the hilly district of Rangamati in the 

2040s and in the Rangpur and Dinajpur districts in the 2070s. On the other hand, the RCP8.5 scenario 

results tended to show a higher decreasing rate in the northern region, especially in the Bogra district. 

In particular, the mean duration of droughts decreased within a range of 0 to -16% all over the country 

at the beginning of the century (the 2010s), and decreases occurred within a range of 6–24% and 10–28% 

in the middle of the century (the 2040s) and end of the century (2070s), respectively, under the RCP8.5 

scenario. 
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Figure 10. Percentage (%) change in the mean drought duration over Bangladesh for the 2010s (1st 

column), 2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 (lower 

row) scenarios relative to the baseline period (1976–2005). 

3.4.3. Changes in the Drought Intensity 

The intensity of the EDI was computed from the MME means derived from the GCMs, and 

resulting data were used to assess the extreme intensity trends (minimum values of the EDI) among all 

of the drought events in the three future periods compared to the historical period (1976–2005). The 

difference is a percentage designating the change in maximum intensity of droughts, where a positive 

value indicates an increasing trend and vice versa. The climatological changes in the maximum drought 

intensity for future periods are shown in Figure 11. Overall, the projected change in maximum drought 

intensity for the three future periods showed different characteristics. The maximum drought intensity 

increased over most of the country at the beginning of the century (the 2010s). However, a greater 

decrease can be expected for the end of the century (the 2070s) under RCP8.5. 

In particular, the maximum increase occurred in northern and southwestern coastal regions, 

especially the Borguna district, with ranges up to 8–10% under the RCP4.5 scenario, whereas a 

maximum increase up to 6–8% was also projected under the RCP8.5 scenario, in locations including the 
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southwestern and central regions, during the beginning of the century compared to the base period. 

However, values decreased up to 1–2% in the districts of Rajshahi and Sylhet only under RCP4.5 in the 

2010s, and negligible decreases were detected under the RCP8.5 scenario. 

 

Figure 11. Percentage (%) change in the maximum drought intensity over Bangladesh for the 2010s (1st 

column), 2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 (lower 

row) scenarios relative to the baseline period (1976–2005). 

Besides, the maximum drought intensity for the middle of the century showed a tendency to 

decrease under RCP4.5 but an increasing trend under RCP8.5. Precisely, a decrease of up to 6–8% in the 

drought intensity is projected to occur by the middle of the century (the 2040s) under RCP4.5 compared 

to the baseline period. The higher decrease was located in the hilly eastern region and southwestern 

coastal region, especially in the districts of Rangamati and Chittagong. Conversely, an increase in 

intensity of up to 6–8% was projected to occur over Bangladesh during the middle of the century (the 

2040s) under RCP8.5, especially in the central region. 

A decrease of up to 4–6% and 8–10% in the maximum drought intensity was also projected under 

RCP4.5 and RCP8.5, respectively, by the end of the century (the 2070s) over Bangladesh relative to the 

baseline period of 1976–2005. The highest decrease in intensity was detected over the drought-
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vulnerable northern region and northeastern region of Bangladesh, especially in the Rajshahi and 

Sylhet districts under the RCP8.5 scenario. 

3.5. Projections of Seasonal Changes in the Number of Drought Days 

In this study, the changes in moderate, severe, and extreme drought days were investigated 

during the Pre-Kharif, Kharif, and Rabi seasons for the 2010s, 2040s, and 2070s compared to the baseline 

period (1976–2005) under the RCP4.5 and RCP8.5 scenarios. The different categories of drought days 

were counted by using EDI values based on the MME means of 29 GCMs under both scenarios. The 

drought days estimated at different stations are presented by using box plots. The 25th and 75th quartiles 

of drought days are demarked by the lower and upper lines of the boxes, whereas the median value 

drought days are indicated by the middle lines of the boxes at different stations over Bangladesh. The 

changes in drought days for the Pre-Kharif, Kharif, and Rabi drought seasons are shown in Figure 12. 

Overall, an increasing trend was observed from the median values of extreme drought days, whereas 

the opposite trends in moderate and severe drought days were detected under both scenarios. 

Particularly, the maximum decrease in the moderate and severe drought days was found in the 

Rabi season with changes of around 50% and 44% under RCP4.5 and 44% and 53% under RCP8.5, 

respectively, during the end of the century (the 2070s) compared to the base period. However, the 

severe droughts days increased at the beginning of the century in the Pre-Kharif and Kharif seasons by 

around 28% and 3%, respectively, under RCP4.5, and 12% in the Pre-Kharif season under RCP8.5. The 

moderate drought days are expected to increase at the beginning of the century in the Pre-Kharif and 

Kharif seasons by 14% and 7% under RCP4.5, respectively, and 6% in the middle of the century under 

RCP8.5, respectively. However, values are not expected to increase in the future under the RCP4.5 

scenario. Only 30% of the extreme drought days will be decreased in the Kharif season at the middle of 

the century under RCP4.5, while 17% and 10% decreases are expected in the Kharif and Rabi seasons, 

respectively, at the end of the century under the RCP8.5 scenario. The highest increase in extreme 

drought days was found in the Pre-Kharif season, and the increase was around 205% at the end of the 

century under RCP4.5. 
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Figure 12. Future changes in seasonal drought days under RCP4.5 (left) and RCP8.5 (right); (a) moderate, 

(b) severe, and (c) extreme droughts. 

4. Conclusions 

Climate change is regarded as a future threat that is expected to change regional hydrological 

patterns as well as the characteristics of droughts, which could lead to severe drought-related disasters. 

Hence, it is important to assess the impacts of climate change on potential future droughts. Such work 

will allow us to respond preventively by providing policy analysis information and useful guidance to 

policymakers, who can devise a framework for water resource management as well as agricultural 

adaptation in the future. In this regard, the principal objectives of this study were to evaluate the 

changes in drought-related precipitation extremes and drought characteristics over Bangladesh by 

using 29 GCM projections under the RCP4.5 and RCP8.5 scenarios for the period of 2010–2099. The 

Effective Drought Index (EDI) was used for characterization of droughts in terms of the frequency, 

duration, intensity, and number of drought days. To evaluate the reproducibility of the GCMs, 

retrospective simulations of models for the historical period from 1976 to 2005 were compared to the 

quantities based on observed climatology. It was found that the bias-corrected GCM results showed an 
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appropriate consistency with observation data and were successfully able to reproduce the real essence 

of the drought situation compared to the raw GCM data except for with extreme drought events. 

Future changes of drought characteristics were then investigated for the entire area by using the 

historical period as the calibration period. The differences between climate change scenarios were not 

recognizable from the results because a statistical trend analysis was not included in the study. The 

changes in drought characteristics in the future were examined only through comparisons with the 

historical period. The increasing or decreasing trends of future precipitation and drought characteristics 

were visually inspected in this study. 

The future changes in precipitation tended to show increases under both scenarios; the increasing 

rate was higher under RCP8.5 than RCP4.5. The projected change in climatological frequencies of 

drought based on severity and duration under RCP4.5 and RCP8.5 exhibited a consistent magnitude for 

any future period, thus indicating a negligible effect of emission scenarios on the projected changes in 

the extreme and severe droughts and long-term and medium-term droughts. Overall, the drought 

frequency, mean duration, and maximum intensity will likely decrease with time under climate change 

in relation to the increase of total precipitation. In particular, the occurrence of severe and moderate 

droughts will be less frequent in the 21st century, according to this research. The frequency of extreme 

drought events did not show a significant change in the 21st century under both scenarios. However, 

the extreme drought days are likely to be increased in most of the cropping season and future periods 

under both scenarios, which may affect agricultural production in the future, as driven by the 

increasing pattern of CDD. The spatial pattern of change in drought characteristics indicates that the 

drought-vulnerable areas will be shifted from the northwestern to central and southern coastal regions 

in the future due to the effects of climate change. 

Lastly, to our best of knowledge, this study is the first attempt to characterize the future droughts 

in Bangladesh widely using the EDI. The present results can help resource managers to optimally 

allocate scarce water resources and develop long-term strategies for protecting communities against 

natural hazards related to water scarcity. Furthermore, the outcomes of the study are expected to 

represent important measures for mitigating the losses in agricultural production for drought-prone 

areas in Bangladesh. 
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