

1 Article

2

Cold Bias of ERA5 Summertime Daily Maximum

3

Land Surface Temperature Over Iberian Peninsula

4 **Frederico Johannsen ¹, Sofia Ermida ^{1,2}, João Martins ^{1,2}, Isabel F. Trigo ^{1,2}, Miguel Nogueira ¹ and**
5 **Emanuel Dutra ^{1,*}**6 ¹ Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; fc46567@alunos.fc.ul.pt
7 (F.J.); endutra@fc.ul.pt (E.D.); mdnogueira@fc.ul.pt (M.N)8 ² Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal; sofia.ermida@ipma.pt (S.E.); João
9 joao.p.martins@ipma.pt (J.M); isabel.trigo@ipma.pt (I.T)

10 * Correspondence: endutra@fc.ul.pt

11
12 **Abstract:** Land surface temperature (LST) is a key variable in surface-atmosphere energy and water
13 exchanges. The main goals of this study are to (i) evaluate the LST of the European Centre for
14 Medium-Range Weather Forecasts (ECMWF) ERA-Interim and ERA5 reanalyses over Iberian
15 Peninsula using the Satellite Application Facility on Land Surface Analysis (LSA-SAF) product and
16 to (ii) understand the main drivers of the LST errors in the reanalysis. Simulations with the ECMWF
17 land-surface model in offline mode (uncoupled) were carried out over the Iberian Peninsula and
18 compared with the reanalysis data. Several sensitivity simulations were performed in a confined
19 domain centered in Southern Portugal to investigate potential sources of the LST errors. The
20 Copernicus Global Land Service (CGLS) fraction of green vegetation cover (FCover) and the
21 European Space Agency's Climate Change Initiative (ESA-CCI) Land Cover dataset were explored.
22 We found a general underestimation of daytime LST and slightly overestimation at night-time. The
23 results indicate that there is still room for improvement in the simulation of LST in ECMWF
24 products. Still, ERA5 presents an overall higher quality product in relation to ERA-Interim. Our
25 analysis suggested a relation between the large daytime cold bias and vegetation cover differences
26 between (ERA5 and CGLS FCover) with a correlation of -0.45. The replacement of the low and high
27 vegetation cover by those of ESA-CCI provided an overall reduction of the large Tmax biases during
28 summer. The increased vertical resolution of the soil at the surface, has a positive impact, but much
29 smaller when compared with the vegetation changes. The sensitivity of the vegetation density
30 parameter, that currently depends on the vegetation type, provided further proof for a needed
31 revision of the vegetation in the model, as there is a reasonable correlation between this parameter
32 and the Tmax mean errors when using the ESA-CCI vegetation cover (while the same correlation
33 cannot be reproduced with the original model vegetation). Our results support the hypothesis that
34 vegetation cover is one of the main drivers of the LST summertime cold bias in ERA5 over Iberian
35 Peninsula.

36 **Keywords:** land surface temperature; remote sensing; reanalysis; ECMWF

37

38

1. Introduction

39 Land Surface Temperature (LST) is a key variable for the surface-atmosphere energy and water
40 exchanges and it was recently integrated as an Essential Climate Variable (ECV) into the Global
41 Climate Observing System (GCOS) [1]. LST may be retrieved from remote sensing observations
42 performed with channels sensitive to the radiance emitted by the land surface, i.e., usually within
43 the thermal infrared (TIR) or in the microwave (MW) regions of the electromagnetic spectrum.
44 Remotely sensed LST is defined as the radiometric temperature (due to its derivation from the
45 radiance emitted by the planet's surface), which is the temperature of the surface layer whose depth

46 is equal to the penetration depth of the radiation used in its determination [2,3]. In the case of TIR
47 radiation, the penetration depth is less than 1mm [4], which is why this variable is also referred to as
48 “skin temperature”.

49 The use of satellite LST has been steadily increasing during the last decades, from the
50 evaluation and improvement of land surface models [5–8] to filling gaps in 2-meters air temperature
51 (T2m), particularly in areas where station coverage is poor [9]. The latter has great potential to
52 improve the quality of T2m observation datasets [10]. This is relevant due to LST’s globally available
53 datasets, while T2m is only measured in in-situ stations.

54 There are several methods to derive LST from remote sensing observations. Using TIR
55 observations, the most common algorithm is the Generalized Split-Window [11,12], applied for
56 example by the Satellite Application Facility on Land Surface Analysis (LSA-SAF) [13], in the
57 estimation of the Moderate Resolution Imaging Spectroradiometer (MODIS) LST products [14] and
58 in the Copernicus Global Land Service (CGLS) LST product [15]. One of the limitations of TIR-based
59 LST data is its dependence on clear-sky measurements. Absence of LST data will occur for pixels
60 classified as totally or partially cloudy during the observation period, and therefore such satellite
61 LST products will be biased towards clear-sky conditions [16]. This implies that any evaluation of
62 model LST using TIR-based products must be preceded by a careful cloud screening in the model
63 dataset to ensure the compatibility of model and satellite variables.

64 Land surface is one of the main components of the Earth’s climate system. Its interaction with
65 the atmosphere involves energy fluxes and water and carbon exchanges that are crucial for weather
66 forecasting and climate studies [17–19]. Despite their importance, the land-atmosphere exchanges in
67 land surface models present considerable biases, especially during extreme weather events [20,21].
68 In the case of simulating latent and sensible heat fluxes, physics-based land surface models were
69 outperformed by simplistic empirical models [22,23].

70 Climate reanalysis combine model and observations using state-of-the art models and data
71 assimilation techniques. The European Centre for Medium-Range Weather Forecasts (ECMWF) has
72 developed several atmospheric and ocean reanalyses, with the two most recent atmospheric
73 reanalyses being ERA-Interim [24] and ERA5 [25]. The ECMWF reanalyses are generated by the
74 Integrated Forecasting System (IFS), a global data assimilation and forecasting system developed by
75 ECMWF for weather forecasts. The Hydrology Tiled ECMWF Scheme of Surface Exchanges over
76 Land (HTESSEL) [26,27] is the land-surface component of the IFS.

77 Preliminary results conducted by ECMWF showed ERA5’s overall improvement in comparison
78 to ERA-Interim in simulating several different variables. Albergel et al. [28] compared ERA5 and
79 ERA-Interim atmospheric forcing in land surface model simulations, ultimately showing that ERA5
80 provides an improved product over ERA-Interim. Besides being recent, ERA5 will serve as the
81 official replacement of ERA-Interim, hence it is imperative to evaluate its ability in simulating an
82 ECV such as the LST.

83 The evaluation of simulated LST using remote sensing LST products has been the subject of
84 analysis in several studies [7,8,29]. Trigo et al. [7] found an underestimation of daytime LST over
85 most of Africa and Europe (especially over semi-arid regions) and a slight LST overestimation
86 during nighttime in the ECMWF model when compared to LSA-SAF’s LST. With the same datasets,
87 focusing on Europe but extending the temporal range, Orth et al. [8] also found an underestimation
88 of the LST daily range (especially in the Iberian Peninsula, $<10^{\circ}\text{C}$). Zhou et al. [29] examined several
89 reanalysis products (including ERA-Interim) over China with the reference-LST measured by in-situ
90 stations. Despite the different regions and analysis performed, these studies suggest that most of the
91 reanalysis underestimate LST, especially during Summer and in arid regions. LST can also be used
92 to guide model development. Trigo et al. [7] presented a revision for different surface parameters
93 (Leaf Area Index (LAI), roughness length for momentum and for heat) and assessed its impact in the
94 simulation of LST. The revised roughness lengths had a positive impact on the daytime LST while
95 the revised LAI had a minor yet positive effect. Orth et al. [8] showed that the LST performance is
96 highly sensitive to three surface parameters: the minimum stomatal resistance, the skin conductivity,
97 and the soil moisture stress function. Moreover, LST is pertinent in data assimilation. For example,

98 Ghent et al. [30] showed that the assimilation of satellite-LST positively impacts the simulation of
 99 LST, soil moisture and the latent and sensible heat fluxes.

100 The main goals of this study are to (i) evaluate the land surface temperature in the ECMWF
 101 ERA-Interim and ERA5 reanalyses over Iberian Peninsula using the LSA-SAF satellite product and
 102 to (ii) understand the main drivers of the LST errors in the reanalysis. The study is focused on the
 103 summer period (June-August). Simulations with the HTESSEL model in offline mode (uncoupled)
 104 were carried out over the Iberian Peninsula and compared with the reanalysis data. Several
 105 sensitivity simulations were performed in a confined domain centered in Southern Portugal to
 106 investigate potential sources of the LST errors. Our hypothesis is that certain model parameters (e.g.
 107 the prescribed vegetation cover) are crucial for the simulation of LST. The following section presents
 108 the data and methods, followed by the results and discussion. The overall conclusions of the study
 109 are presented in the last section.

110 **2. Material and Methods**

111 *2.1 Models and datasets*

112 *2.1.1 ECMWF Land surface model*

113 HTESSEL is the land surface model of ECMWF IFS. It represents the surface skin layer, a
 114 shallow layer with zero heat capacity that separates the subsoil from the atmosphere and intercepts
 115 and emits radiation. Each grid point of this layer can be divided into different tiles that represent
 116 different types of land cover (bare ground, low and high vegetation, intercepted water (on the
 117 canopy), and shaded and exposed snow). Only the dominant type of low/high vegetation at each
 118 grid point is considered by the model. This information is then used to generate spatial fields of
 119 various parameters used in different parameterizations which are assumed to be dependent only on
 120 vegetation type (Table 1). A detailed description of the model assumptions and parameterization can
 121 be found on the model documentation [31]. In the following, a more detailed description of the
 122 processes directly linked with the simulation of LST in HTESSEL is presented. In this study, the
 123 version used was CY45R1, which is very close to the model version of ERA5.

124 **Table 1.** HTESSEL vegetation types and associated parameters' values. H/L differentiates low (L)
 125 from high (H) vegetation; cveg is the vegetation density (0-1) used in the tile fraction definition; and
 126 z0m and z0h are the roughness lengths for momentum and heat, respectively used in the calculations
 127 of the turbulent exchange coefficients for momentum, heat and water.

Index	Vegetation type	H/L	cveg	z0m	z0h
1	Crops, mixed farming	L	0.90	0.25	$0.25 \cdot 10^{-2}$
2	Short grass	L	0.85	0.20	$0.20 \cdot 10^{-2}$
3	Evergreen needleleaf trees	H	0.90	2.00	2.00
4	Deciduous needleleaf trees	H	0.90	2.00	2.00
5	Deciduous broadleaf trees	H	0.90	2.00	2.00
6	Evergreen broadleaf trees	H	0.99	2.00	2.00
7	Tall grass	L	0.70	0.47	$0.47 \cdot 10^{-2}$
8	Desert	-	0	0.013	$0.013 \cdot 10^{-2}$
9	Tundra	L	0.50	0.034	$0.034 \cdot 10^{-2}$
10	Irrigated crops	L	0.90	0.50	$0.50 \cdot 10^{-2}$
11	Semidesert	L	0.1	0.17	$0.17 \cdot 10^{-2}$
12	Ice caps and glaciers	-	-	$1.3 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$
13	Bogs and marshes	L	0.6	0.83	$0.83 \cdot 10^{-2}$
14	Inland water	-	-	-	-
15	Ocean	-	-	-	-
16	Evergreen shrubs	L	0.50	0.10	$0.10 \cdot 10^{-2}$
17	Deciduous shrubs	L	0.50	0.25	$0.25 \cdot 10^{-2}$

18	Mixed forest	H	0.90	2.00	2.00
19	Interrupted forest	H	0.90	1.1	1.1
20	Water and land mixtures	L	0.60	-	-

128 The vegetation cover and types are provided to HTESSEL as input static 2-dimensional fields of
 129 low vegetation grid fraction (CVL), high vegetation grid fraction (CVH), dominant type of low
 130 vegetation (TVL) and dominant type of high vegetation (TVH). Neglecting interception and snow,
 131 the low vegetation tile fraction (C_{low}), high vegetation tile fraction (C_{high}), bare ground tile fraction
 132 (C_{bare}) and the total vegetation cover of a grid cell (TVC) are given by:

$$\begin{aligned}
 C_{low} &= CVL \times cveg(TVL) \\
 C_{high} &= CVH \times cveg(TVH) \\
 C_{bare} &= 1 - C_{low} - C_{high} \\
 TVC &= C_{low} + C_{high}
 \end{aligned} \tag{1}$$

133 where $cveg$ is the vegetation density (0-1) which is dependent on vegetation type (see Table 1).

134 These vegetation fields are the same as used in the reanalysis and operational weather forecasts
 135 and were derived from the Global Land Cover Characteristics (GLCC) data [32].

136 The temperature of the skin layer, (LST, also referred as skin temperature), is computed from
 137 the surface energy balance equation calculated independently for each tile. The grid-box LST is
 138 defined as the weighted average of the LST on each tile fraction. The skin layer is thermally coupled
 139 to the four-layer soil below through a conductivity parameter. The skin layer is coupled to the lowest
 140 level of the atmosphere using the Monin-Obukhov similarity theory and this coupling is represented
 141 by turbulent exchange coefficients (function of atmospheric stability) and the roughness lengths for
 142 momentum and heat (z_{0m} and z_{0h} , respectively, see Table 1).

143 2.1.2 ECMWF's Reranlyses

144 ERA-Interim is an atmospheric reanalysis based on a 2006 version of the IFS (cycle 31r2). Its
 145 configuration used a 30-minute time step and a spectral TL255 horizontal resolution (approximately
 146 79 km on a reduced Gaussian grid). The vertical resolution has 60 model layers that reach the top of
 147 the atmosphere, located at 0.1 hPa. The surface fields have a three-hourly resolution (eight daily
 148 values). ERA5 is the latest ECMWF's atmospheric reanalysis, produced by Copernicus Climate
 149 Change Service. It is based on a 2016 version of the IFS (cycle 41r2). The horizontal resolution is
 150 about 31 km (TL639). It has 137 vertical layers culminating at 0.01 hPa. The analysis and forecast
 151 fields have 24 daily values (hourly output). ERA5 is the official replacement of ERA-Interim, offering
 152 a global improvement with several different technical changes [33] and innovations, benefiting from
 153 10 years of model and data assimilation developments by ECMWF. The reanalysis data were
 154 extracted from ECMWF data servers in a regular latitude/longitude $0.25^\circ \times 0.25^\circ$ grid. In addition to
 155 the LST, the Total Cloud Cover (TCC), that quantifies the percentage of cloud cover in each grid
 156 point was also processed.

157 2.1.3 Simulations setup

158 HTESSEL is available as an independent library from the atmospheric model (also referred to as
 159 "externalized"). HTESSEL's externalization allows it to perform land-surface only (or offline)
 160 simulations at a much lower computation cost when compared to full global atmospheric
 161 simulations. The offline simulations are driven by near-surface state of air temperature, humidity,
 162 wind speed, pressure, solar and thermal downwelling energy, and precipitation [27,28].

163 The simulations were carried out for a domain centered over the Iberian Peninsula ($35^\circ N$ to 45°
 164 N, $10^\circ W$ to $5^\circ E$) with a regular $0.25^\circ \times 0.25^\circ$ resolution. The simulations are initialized in 2002 (from
 165 ERA5) to allow the model to spin up (2 years), running for a 14-year interval until the end of 2015
 166 with a 15-minute time step. Initial simulations with a 1-hour time step, which is commonly used,
 167 indicated some temporal lag in the LST simulations associated with the numerical solver.

168 2.1.4 LSA-SAF's Land Surface Temperature

169 The LST disseminated by the LSA-SAF is derived from measurements performed by the
170 Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation
171 (MSG) series of satellites by employing a generalized "split-window" technique [11,12]. This method
172 estimates LST as a linear function of the brightness temperatures at the top of the atmosphere
173 measured by SEVIRI's IR channels centred at 10.8 μm and 12.0 μm . The regression coefficients
174 depend explicitly on the surface emissivity for both channels and implicitly on the total column
175 water vapor and the satellite zenith view angle (SZA).

176 The LST is available every 15 minutes for all the land pixels of the MSG disk (which comprises
177 SZAs between 0° and 80°), with a resolution of 3 km at the sub-satellite (nadir) point. LST
178 uncertainty is usually between 1–2 K, except for regions near the edge of the MSG disk (due to large
179 optical paths associated with high SZAs) or arid areas (where the surface emissivity's uncertainty is
180 generally high, e.g. the Sahara desert) in which the error is larger [13].

181 The LSA-SAF LST remote sensing product is used to evaluate the quality of both ECMWF
182 reanalysis for the 2004–2015 period. For the comparison between simulated and observed LST to be
183 consistent, we performed an upscaling of the LST data, by computing the median of the whole
184 group of LST pixels within each $0.25^\circ \times 0.25^\circ$ grid cell. The number of original LST data (~ 5 km of
185 resolution) in each grid cell varied between 30 and 56 pixels. The fraction of valid pixels (each cell
186 and time) was retained to be used as a proxy for cloud cover.

187 2.1.5 Land Cover and vegetation datasets

188 Two different datasets were used in this study: the Copernicus Global Land Service (CGLS)
189 fraction of green vegetation cover (FCover) and the European Space Agency's Climate Change
190 Initiative (ESA-CCI) Land Cover dataset.

191 The CGLS-FCover represents the fraction of ground covered by green vegetation, which
192 quantifies the spatial extent of the vegetation. The FCover estimates are obtained through a near
193 real-time algorithm that uses top-of-canopy reflectance observations from the SPOT/VEGETATION,
194 and since 2014 from PROBA-V [34]. The product is available globally at 1 km spatial resolution on
195 day 10, 20 and the last day of each month since 1999. Since 2014, a 300 m resolution PROBA-V-only
196 version of the product is also available, but the 1 km (V2) version was considered more practical for
197 the purpose of this study.

198 The ESA-CCI Land Cover dataset provides globally consistent maps at 300 m spatial resolution
199 on an annual basis from 1992 to 2015. The land cover typology was based on the Land Cover
200 Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture
201 Organization. A total of 22 land cover level 1 classes and 14 level 2 sub-classes (defined using a set of
202 classifiers) constitute the dataset[35]. In this study we used the global map for the year 2010. Both
203 CGLS-FCover and ESA-CCI were aggregated to $0.25^\circ \times 0.25^\circ$ resolution over the Iberian Peninsula
204 domain by mapping each pixel to the nearest grid-cell.

205 2.2 Methods

206 2.2.1 Simulations evaluation

207 When comparing the model with the satellite product of LST only clear-sky conditions were
208 considered. Only the data meeting the following clear-sky thresholds was retained in the subsequent
209 analysis:

210 • The reanalysis's TCC < 0.3;
211 • The fraction of valid satellite LST original data in each $0.25^\circ \times 0.25^\circ$ grid cell > 0.7.

212 The two previous thresholds were chosen based on the average percentage of valid data
213 available for the comparison while keeping, at the same time, most of the grid cell cloud-free.

214 The clear-sky threshold of each reanalysis was also applied to the corresponding HTESSEL
215 offline simulation (driven by that reanalysis) so that all datasets could be compared. The offline

216 simulation forced by ERA-Interim (that has an hourly output) was analyzed using a three-hourly
217 time step in order to match with ERA-Interim's three-hourly output.

218 The analysis was performed for the period between 2004 and 2015, for which a Climate Data
219 Record (CDR) of reprocessed LST with consistent algorithm and inputs is available from LSA-SAF.
220 The analysis was performed over the Iberian Peninsula (35°N – 45°N , 10°W – 5°E), ensuring a
221 reasonable variability of land cover types. We only examined the summer months
222 (June-July-August, JJA) due to the overall low percentage of valid data that is available during the
223 rest of the year (e.g. in 2010, before May and after September, the valid data was below 50%).
224 Furthermore, previous studies show that the mean error between reanalyses and observations is
225 higher in the summer [7,29].

226 An analysis was carried out to separate the domain into different clusters. This clustering is
227 performed to allow summarizing the results by grouping the statistics into regions with similar
228 behavior of the LST. The exercise was applied to different sets of variables (e.g. LST, FCover) in
229 order to identify the most appropriate strategy of clustering the domain, but using in all cases the
230 K-Means Clustering Algorithm [36]. The K-Means is a partitional method in which each datapoint
231 belongs to one cluster only, each cluster being comprised of data points with similar characteristics,
232 defined by the input data (i.e., maximizing variability among clusters and minimizing variability
233 within). To ensure that the correct number of clusters was selected, the Elbow Method was applied:
234 the optimal number of clusters (that should be designated into the K-Means algorithm) is that which
235 the addition of an extra cluster would result in a negligible change in inertia (a decrease of less than
236 10% of its value).

237 The LST daily maximum (Tmax) and the daily minimum temperature (Tmin) were calculated
238 for the whole domain and for the whole period in the following range of hours (UTC):

239 • Tmax: 11h – 15h;
240 • Tmin: 3h – 7h.

241 These ranges were chosen to avoid the identification of Tmax or Tmin in a time period which is
242 not expected (e.g. on cloudy daytime and clear-sky night-time would identify Tmax during the
243 latter). The time range were selected based on the assumption that the maximum temperature will
244 occur shortly after the peak of incoming solar radiation, while the minimum temperature will
245 precede the sunrise. This procedure was applied to both satellite and simulations. The time of
246 occurrence of the Tmax or Tmin is allowed to vary (in the prescribed window) between satellite and
247 simulations, which neglects temporal shift differences.

248 A set of metrics was chosen to assess the quality of the four different products analysed in this
249 work: (i) Mean Error (or Bias): computed as the difference between the reanalysis (or model) and the
250 satellite data (model-observations); (ii) the Standard Deviation of the Error (SDE); (iii) the Temporal
251 Correlation and the (iv) Root Mean Squared Error (RMSE). The four metrics were applied for the
252 whole domain and the results were then grouped into the clusters identified by the K-Means
253 algorithm.

254 To conclude the first part of this study, we assessed the relationship between the error in the
255 simulation of LST and the difference between HTESSEL TVC and CGLS-FCover. HTESSEL TVC is
256 computed from Equation 1, and the CGLS FCover was averaged for the 1999-2018 period in each
257 grid-cell.

258 2.2.2 Sensitivity simulations

259 In the second part of the study, we assess potential sources of LST errors associated with the
260 model's representation of vegetation. The domain comprised four grid points in Southern Portugal,
261 near Évora city (38.25°N – 38.75°N , 8.25°W – 7.75°W) with the same $0.25^{\circ} \times 0.25^{\circ}$ resolution as the
262 original domain (see Figure S1 in the supplementary material). The chosen area is representative of
263 the main features and errors explored. These simulations were initialized in January 2009 extending
264 until September 2010, and only the 2010 summer is analyzed. The simulations and analysis focus

265 only on the 2010 summer (that had average conditions in the 2004–2015 period) to reduce the
 266 computational cost and data handling.

267 Several experiments were carried out to investigate the role of vegetation in LST (see Table 2).
 268 Three idealized experiments were designed: 1) bare soil (bare), where CVL and CVH were assigned
 269 to zero (in other words, the domain is assumed to be a desert); 2) low vegetation (lveg), where CVL
 270 original value was kept and CVH was changed to zero; and 3) high vegetation (hveg), where CVL
 271 was altered to zero while CVH kept its original value. These simplified experiments were followed
 272 by two other simulations, this time using the CGLS-FCover: 1) nlveg, where CVH was changed to
 273 zero and CVL was given the value of the CGLS-FCover, and 2) nhveg, where the CGLS-FCover was
 274 attributed to CVH while CVL was altered to zero. In these simulations cveg was assumed to be 1 to
 275 guarantee that TVC in the simulations were identical to the CGLS-FCover. The CGLS-FCover
 276 considered was the mean for the year 2010.

277 **Table 2.** Simulations setup configuration for each experiment denoting the used low vegetation grid
 278 fraction (CVL), the high vegetation grid fraction (CVH), the vegetation density (cveg) and the total
 279 vegetation cover (TVC).

Experiment	CVL	CVH	cveg	TVC
CTR,9L (SEI ¹ ,SE5 ¹)	IFS ²	IFS ²	Table 1	Equation 1
bare	0	0		
lveg	IFS ²	0		
hveg	0	IFS ²		
nlveg	CGLS-FCover	0	1	CGLS-FCover
nhveg	0	CGLS-FCover	1	
revised	ESA-CCI ³	ESA-CCI ³	Table 1	Equation 1

280 ¹ Simulation for Iberia driven by ERA5 (SE5) and ERA-Interim (SEI)

281 ² Using IFS vegetation data as in ERA5

282 ³ Using vegetation cover derived from ESA-CCI land cover

283 Following these idealized experiments, we perform a more realistic experiment by replacing the
 284 vegetation cover (CVH, CVL) with new fields derived from ESA-CCI (revised). The ESA-CCI Land
 285 Cover dataset was converted to Plant Functional Types (PFTs) using the ‘cross-walking’ table
 286 suggested by Poulter et al. [35]. However, the HTESSEL vegetation types (see Table 1) do not have a
 287 one to one relation with the cross-walking table used. Instead of performing an ad hoc matching
 288 between the cross-walking table PFTs and HTESSEL vegetation types, we kept the model vegetation
 289 types (TVL and TVH), and only changed the model CVL and CVH to the values obtained with the
 290 ESA-CCI dataset. A more detailed study is required to change the cross-walking table to match the
 291 HTESSEL vegetation type. To derive CVL and CVH from the cross-walking table PFTs we
 292 aggregated the individual PFTs fraction on each cell considering for CVL: “Shrubs Broadleaf
 293 Evergreen”, “Shrubs Broadleaf Deciduous”, “Shrub Needleleaf Evergreen”, Shrubs Needleleaf
 294 Deciduous”, “Natural Grass”, “Managed Grass” and for CVH: “Tree Broadleaf Evergreen”, “Tree
 295 Broadleaf Deciduous”, “Tree Needleleaf Evergreen”, “Tree Needleleaf Deciduous”.

296 Additionally, we tested a different vertical discretization of the soil layers from the original four
 297 (7, 21, 72 and 189 cm) to nine (1, 2, 4, 8, 10, 25, 50, 100 and 100 cm layers) (9L), and assessed its impact
 298 in the control and in the revised simulations. The original top layer of 7 cm is arranged in 3 layers in
 299 the test with 1, 2 and 4 cm which should ensure numerical accuracy of the soil heat diffusion near the
 300 surface. This increased vertical resolution at the soil-atmosphere interface was shown to be
 301 beneficial when comparing model soil moisture with satellite estimates [37].

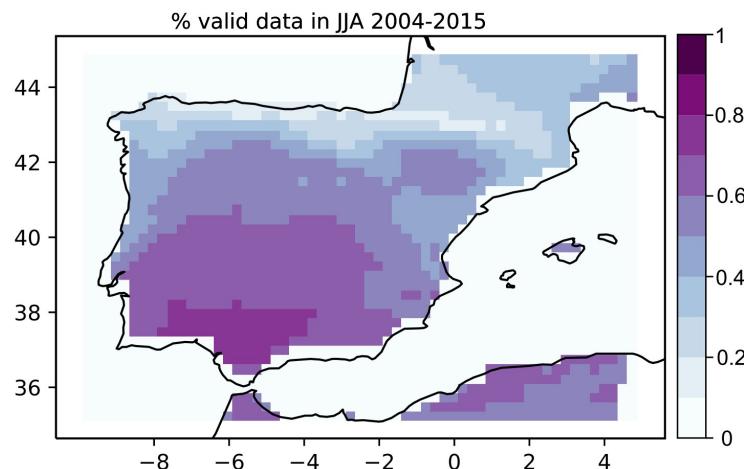
302 Finally, we performed a more detailed sensitivity study on the vegetation density cveg
 303 parameter to explore its influence on the LST errors. This analysis was performed with the original
 304 and the revised vegetation cover. We perturbed cveg associated with the TVL and TVH within the
 305 range 0.1–1, forming 100 perturbations composed of cveg pairs. The pairs were determined with a

306 quasi-random sampling method, the Sobol sequences [38,39], which are designed to efficiently
 307 generate samples of the multiple parameters that cover the entire parameter space while avoiding
 308 the introduction of correlations between the perturbations of the different parameters. Unlike in
 309 random sampling, the sample values in the Sobol approach are selected based on the previously
 310 generated values to prevent the occurrence of clusters or empty spaces in the domain.

311 **3. Results**

312 *3.1 Evaluation*

313 The percentage of valid data in summer for the period 2004-2015 (after applying the clear-sky
 314 thresholds to both model and satellite LST) is represented in Figure 1. Most of the Iberian Peninsula
 315 has over 50% of available data in the 12-year period. Despite this high coverage, there is a clear
 316 North-South gradient with southern areas with more than 80% of valid data while the North Iberian
 317 Coast and Pyrenees with coverages of only 20%. In other seasons the coverage of valid data is lower
 318 (not shown), particularly during winter, which further motivated our decision to focus the
 319 evaluation to summertime. If more restrictive thresholds had been chosen, that would have resulted
 320 in a reduction of the valid data, but the associated cloud cover values would have remained similar.



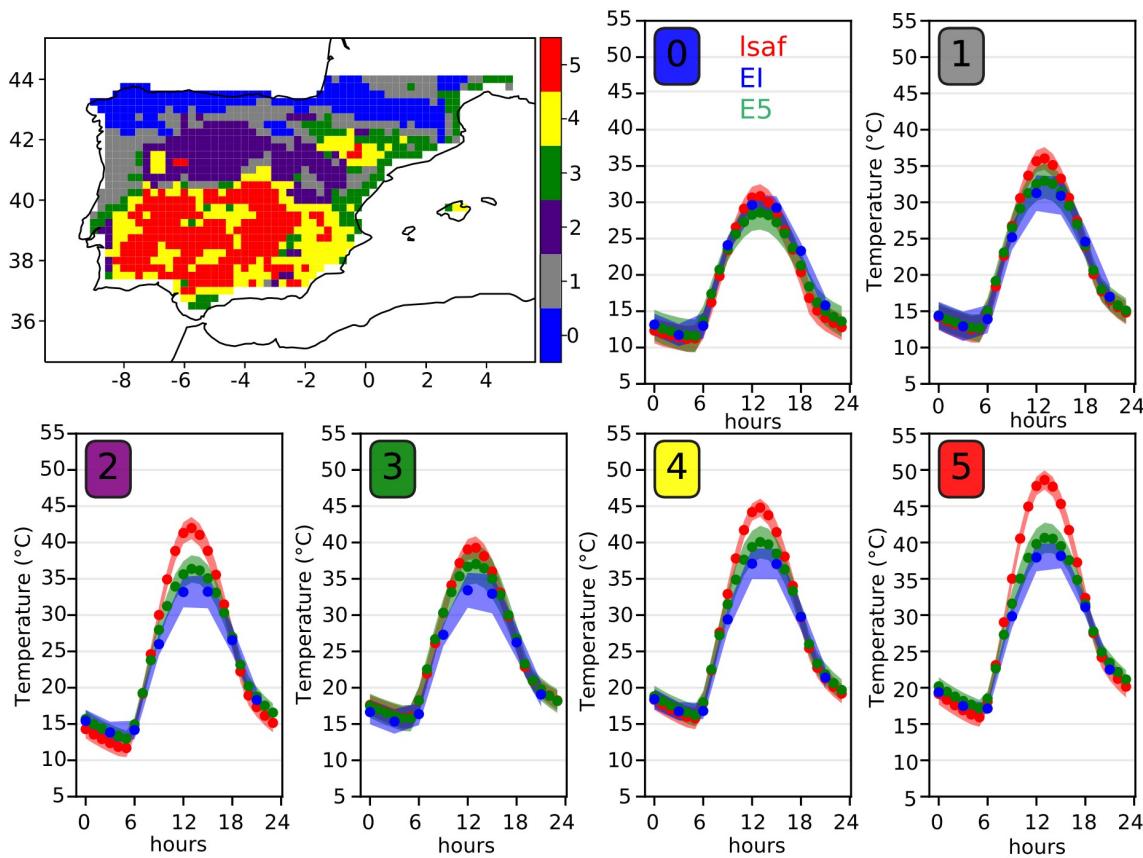
321

322 **Figure 1.** Percentage of valid data during summer (June-August) between 2004 and 2015.

323 The study area was grouped into six different clusters using the K-Means clustering algorithm
 324 (Figure 2). The input data of the K-means were the maximum and minimum LST of the mean
 325 diurnal cycle in each pixel in the summer months for the period 2004-2015. The six clusters represent
 326 regions with different LST diurnal cycles (Figure 2), although some of the regions show similar
 327 diurnal cycles in both reanalyses. Clusters 0 (Northern Iberia) 2 (Central Iberian Plateau) and 4, 5
 328 (Southern semi-arid Iberia) clearly identify different LST diurnal patterns associated with
 329 underlying land cover or topography. Clusters 1 and 3 do not clearly identify any land cover or
 330 topographical features with a mixture of coastal and inland areas.

331 We tested the K-Means Algorithm with different input data, namely the CGLS-FCover first and,
 332 afterwards, both LST and CGLS-FCover data (see supplementary material Figure S2). For the
 333 LST+FCover clusters, the LST data was normalized by simply dividing the data by the maximum
 334 temperature in the dataset (since there were no sub-zero temperatures in the dataset). In general, the
 335 results were similar but the FCover 'inland' clusters (clusters 3 and 4 in Figure S2a) differed from the
 336 LST 'inland' clusters (clusters 2, 3 and 4 in Figure 2): there was no separation between the areas to
 337 the north and to the south of the Central System in the FCover clusters. While the vegetation cover is
 338 similar in both areas (Figure S3), the area to the north of the Central System, the Iberian Plateau, is
 339 located at a higher altitude than the area to the south. This cluster analysis is only used to group the

340 evaluation metrics. Therefore, it is not expected that a different clusters selection (as for example in
 341 Figure S2) would change the main interpretation of the results.

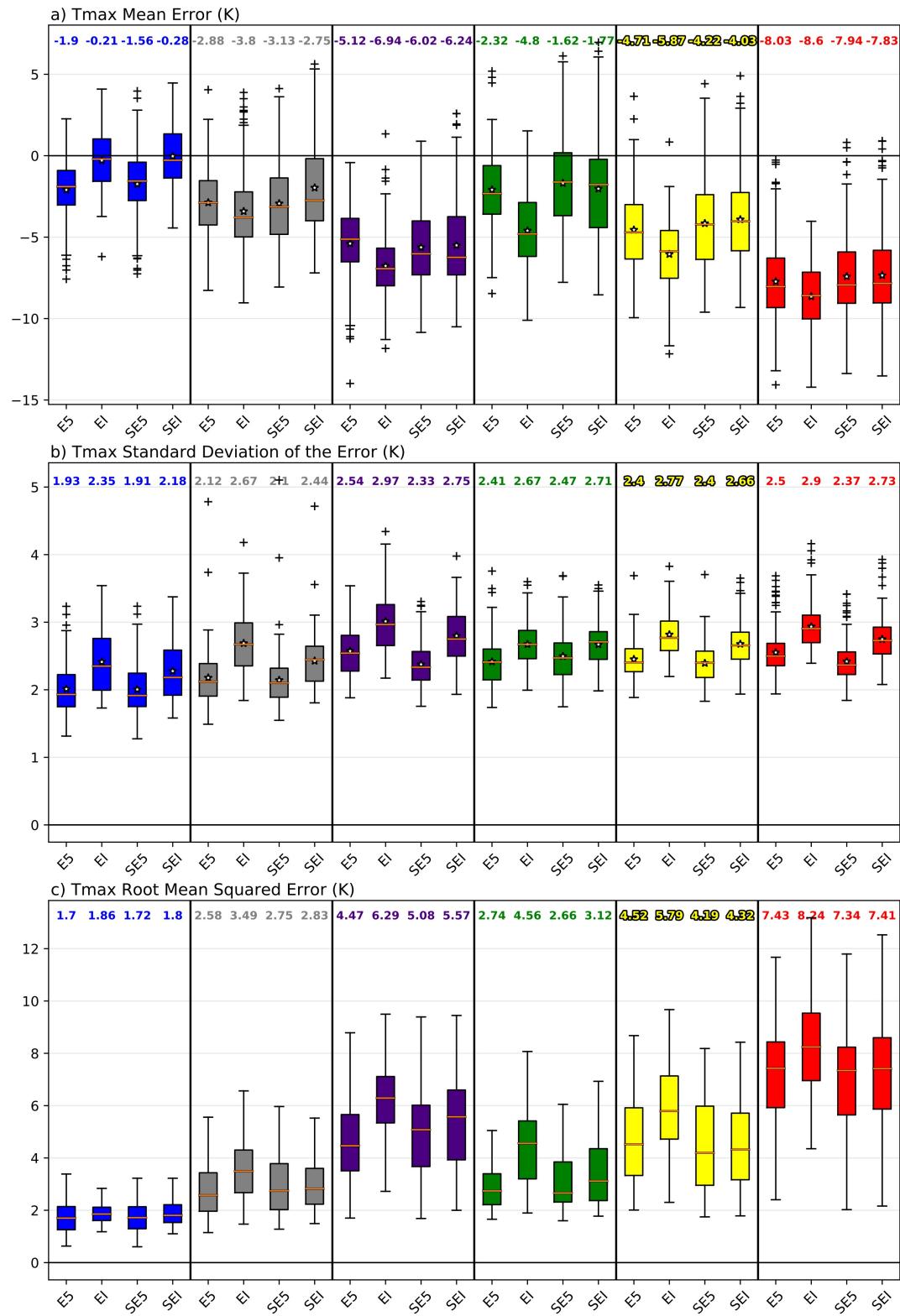


342

343 **Figure 2.** Clusters determined by the K-Means Algorithm with Land Surface Temperature (LST) as
 344 input (top left) and the 2004-2015 mean diurnal cycle (average in dots and Standard Deviation
 345 shaded) in each cluster for the satellite-LST (red), ERA5 (green) and ERA-Interim (blue). The number
 346 on the top left of each panel identifies the cluster number shown on the top left panel.

347 Figures 3 shows the within-cluster distributions of the Tmax mean error, standard deviation of
 348 the error and root mean square error of the reanalysis and surface simulation. The results for Tmin
 349 are available in Figure S4 in the supplementary material. The Tmax Bias is consistently negative, and
 350 particularly high in the 'inland' clusters (clusters 2, 4 and 5, see Figure 2), with ERA-Interim showing
 351 slightly larger bias than ERA5 (Figure 3a). Both surface experiments have similar biases to ERA5,
 352 suggesting that the updates in the HTESSEL model (from ERA-Interim to ERA5) had a positive
 353 impact on LST, even if its atmospheric forcing is of lower quality (like in the case of the simulation
 354 forced by ERA-Interim, SEI). The Tmin Biases are generally lower than in Tmax (Figure S4a). Also
 355 for Tmin, the simulation forced by ERA5 (SE5) is systematically colder than ERA5 (about 1 K), while
 356 ERA-Interim and SEI are closer and with slightly smaller errors than ERA5.

357 The Tmax standard deviation of the error (SDE) is around 2–3 K, with higher values in
 358 ERA-Interim and SEI (Figure 3b). This can be explained by the better quality of the meteorology
 359 dynamics in ERA5 also present in SE5. The Tmin SDE (Figure S4b) is generally smaller than Tmax
 360 (with values between 1–2 K). The 'inland' clusters show a higher RMSE in Tmax (median above 4 K)
 361 (Figure 3c). ERA5 and both surface simulations have lower errors than ERA-Interim. The RMSE in
 362 Tmin (Figure 3c) is much lower than Tmax (median value within 1 K and 2 K).

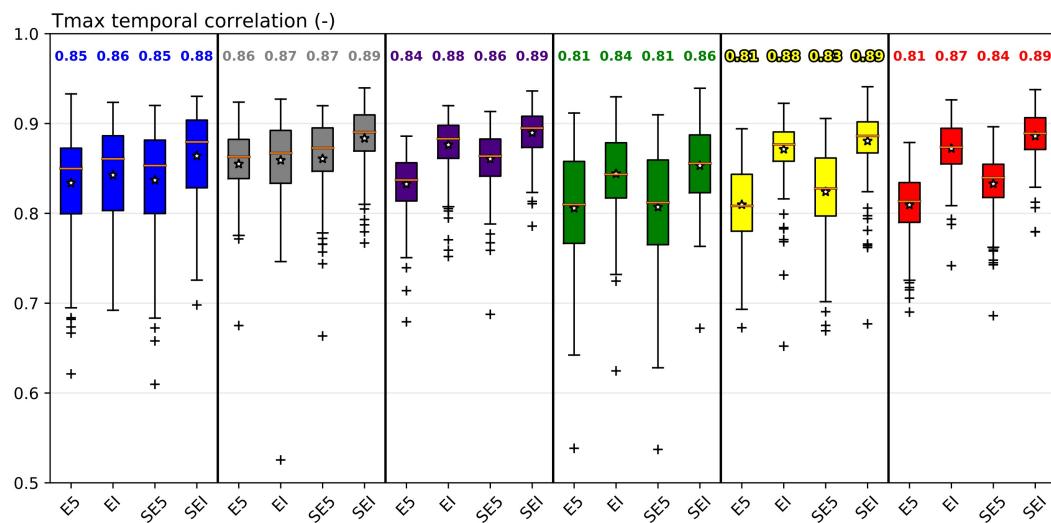


363

364

365 **Figure 3.** Within-cluster distributions LST Tmax mean error (a), standard deviation of the error (b)
 366 and root mean square error (c) in: ERA5 (E5), ERA-Interim (EI) and the simulations forced with E5
 367 (SE5) and EI (SEI). The red line indicates the median, the filled box represents the interquartile range
 368 (25th to 75th percentiles), the whiskers indicate the 10th and 90th percentiles, and the cross markers
 369 represent the outliers. The colors represent the clusters in Figure 2. The number above each boxplot is
 the median of that boxplot.

370 The temporal correlation shows very similar values among the four products, for both Tmax
 371 and Tmin (Figure 4 to Tmax and Figure S5 for Tmin). Still, it is interesting to notice that, for this
 372 metric, ERA-Interim and SEI have consistently better correlations than ERA5 and SE5 in Tmax, while
 373 for Tmin ERA5 outperforms ERA-Interim. The coarser (and therefore smoother) temporal and
 374 spatial resolution of ERA-Interim might explain these results, but it remains unclear why this is
 375 visible only for Tmax and not Tmin.
 376

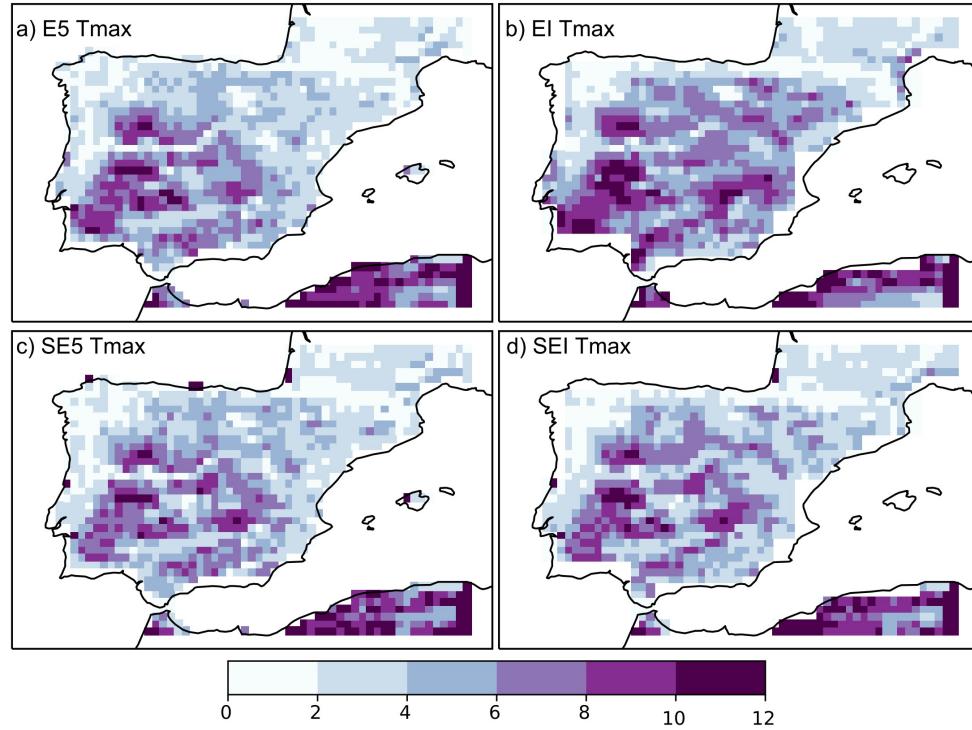


377
 378 **Figure 4.** As figure 3 but for Tmax temporal correlation.

379 Although ERA5 exhibits better results than ERA-Interim overall (and SE5 in relation to SEI), the
 380 surface experiments show a lower performance in terms of Tmin (Figure 3b). The inconsistency in
 381 performance between the offline simulations and the original reanalysis for the Tmin mean error
 382 and SDE is likely related to the representation of stable conditions in the offline model which do not
 383 reproduce exactly the coupled system. In the coupled model the vertical diffusion in the atmosphere
 384 has an internal half-timestep for numerical stability which is not performed in the offline model.
 385 This might introduce numerical differences which are more evident in stable conditions associated
 386 with the computation of the turbulent exchange coefficients. Despite these differences, our results
 387 show that the offline simulations reproduce very closely the reanalysis and can therefore be used to
 388 investigate potential sources of the errors in ERA5 with a much lower computational cost.

389 In Figure 5 the Tmax RMSE are represented for the whole domain (and in Figure S6 the Tmin
 390 RMSE). The zones with higher Tmax RMSE are similar among the four products, comprising the
 391 South-West Iberian region and the Northern Iberian Plateau, where the RMSE reaches values above
 392 8 or even 10 K in a vast number of grid points. The Tmin RMSE is overall higher in mountainous
 393 regions although the zones with higher RMSE differ in each product.

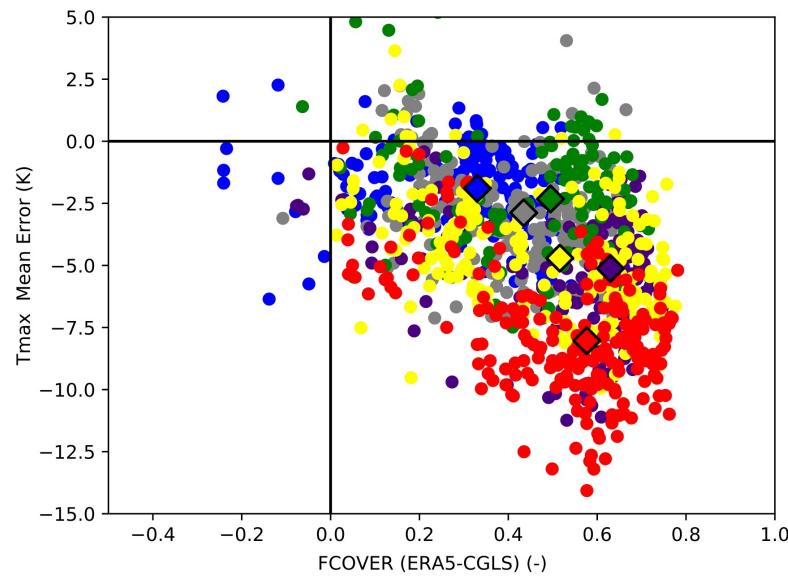
394 Our results are consistent with previous studies [7,8,29], showing a strong daytime
 395 underestimation and a weak night-time overestimation of LST in the summer, especially in
 396 semi-arid regions. However, our detailed analysis highlights that the daytime errors are not spatially
 397 consistent, with some areas in central south Iberia showing much larger errors. Figure 6 displays
 398 individual gridpoint mean temperature errors against the respective differences between ERA5 and
 399 CGLS-FCover, revealing a negative correlation (-0.45) between the two (Figure S3 shows the
 400 CGLS-FCover and ERA5 TVC). These results suggest that the large systematic underestimation of
 401 daytime LST can be partially attributed to an overestimation of total vegetation cover in ERA5. This
 402 overestimation of vegetation will be reflected in a higher coupling between the skin layer and the
 403 atmosphere via turbulent exchanges (higher roughness). This stronger coupling limits the model
 404 ability to represent very high daytime LST. In the following section, several sensitivity simulations
 405 are examined to further investigate the role of vegetation cover in these large Tmax errors.



406

407
408

Figure 5. Tmax Root Mean Square Error (K) in: ERA5 (a), ERA-Interim (b) and the simulations forced with ERA5 (c) and ERA-Interim (d).



409

410
411
412

Figure 6. Tmax Mean Error (K) in ERA5 as function of the difference between CGLS-FCover and ERA5 Total Vegetation Cover (TVC). The colours represent the clusters in Figure 2. The diamond marker represents the median value of each cluster.

413 3.2 *Sensitivity experiments*

414 3.2.1 Vegetation cover

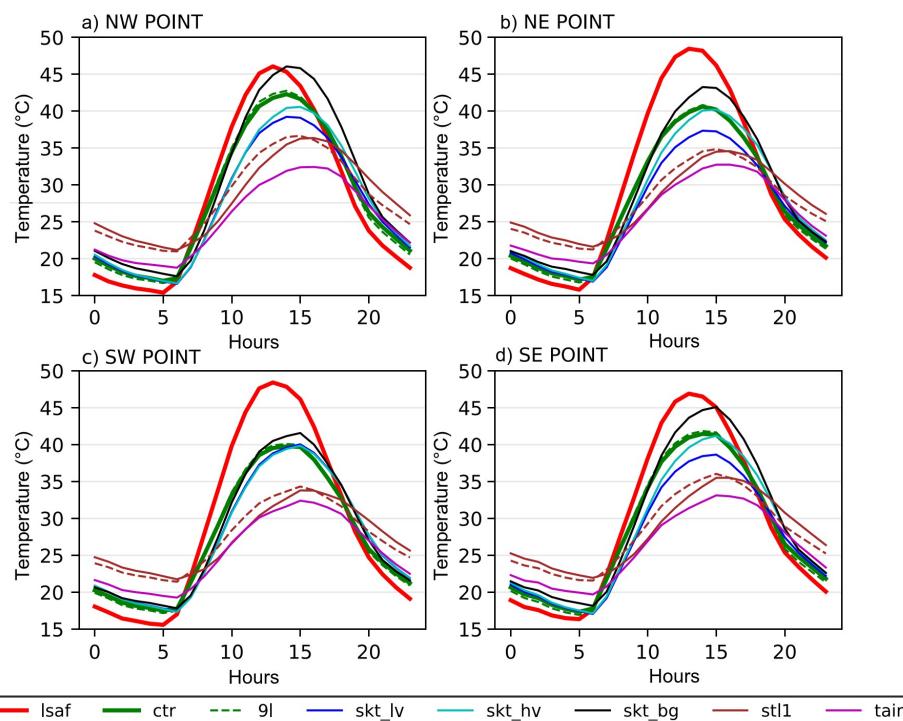
415 The original and revised (derived from ESA-CCI) CVL and CVH in the Southern Portugal
 416 domain (see Figure S1) is presented in Table 3, and we determined the associated TVC using
 417 Equation 1. In all points, the dominant high vegetation type is 'Interrupted Forest' while the

418 dominant low vegetation type is 'Evergreen Shrubs', with most of the grid point covered by high
 419 vegetation (CVH>0.80 except for the NW point). The percentage of valid data (cloud free) in the
 420 domain in the summer of 2010 varied between 0.70 and 0.73, which is similar to the 2004-2015 JJA
 421 mean in Figure 1.

422 **Table 3.** Revised and original (between brackets) vegetation parameters in in the four points domain
 423 in Southern Portugal. CVL and CVH identify the low and high vegetation grid fraction, IFS TVC is
 424 the derived Total Vegetation cover (using the cveg in Table 1 and Equation 1) and the CGLS FCover
 425 the fraction of green vegetation from the Copernicus Global land Service.

Point	CVL	CVH	IFS TVC	CGLS FCover
NW	0.87 (0.40)	0.13 (0.51)	0.55 (0.66)	0.42
NE	0.89 (0.07)	0.08 (0.93)	0.52 (0.87)	0.41
SW	0.89 (0.01)	0.10 (0.99)	0.54 (0.89)	0.47
SE	0.85 (0.17)	0.12 (0.81)	0.53 (0.81)	0.40

426
 427 The model LST is a weighted average of the different tiles. To further investigate each tile
 428 behavior, in Figure 7 we compare the mean diurnal cycle of LST given by each of the models active
 429 tiles (low vegetation, high vegetation and bare ground) as well as the underlying soil temperature
 430 and overlying forcing air temperature. The LST diurnal cycle in the summer of 2010 of the control
 431 simulation presents strong cold biases during the day and weak warm biases at night (Figure 7). The
 432 NE and SW points have the warmest satellite-LST diurnal cycles while the NW and SE points have
 433 the warmest 'control' LST diurnal cycles. As a result, the NW point (where the HTESSEL-TVC is
 434 much lower (0.66) with respect to the remaining points) shows the best approximation of the model
 435 simulation to the satellite observations (with a negative bias of 4.5 K at 12 UTC). It is also the only
 436 point where the bare ground LST (the warmest LST) comes very close to the satellite-LST. The high
 437 vegetation tile LST is very similar to the control LST in all the points while the low vegetation LST
 438 has the lowest values, which is attributed to CVH and CVL having values close to one and zero,
 439 respectively. The control LST diurnal cycle presents a slight phase difference in relation to the
 440 satellite-LST during the day, taking longer to warm in the morning and to cool down in the
 441 afternoon.



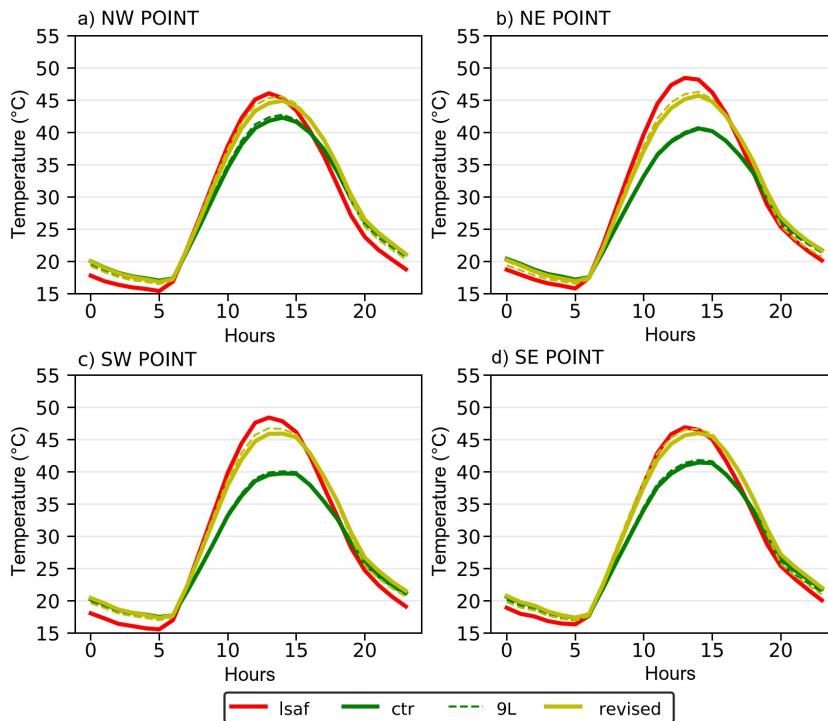
443 **Figure 7.** Mean diurnal cycle of temperature (2010 Summer) in the 4 points of the Southern Portugal
444 domain comparing the satellite LST (red), and the LST in the control simulation (green), and control
445 with 9 soil layers (dashed green). The control tile temperatures of low vegetation (blue), high
446 vegetation (cyan) and bare ground (black) are also represented along with the air temperature at 10
447 m height used to drive the model (magenta) and simulated first soil layer temperature (stl1, brown).

448 Air temperature is very similar in all the points, with lower values than the LST during the day
449 and slightly higher values at night (Figure 7). The first soil layer temperature is highest in the NW
450 point (where the control LST is also highest) and follows a similar diurnal cycle to the air
451 temperature, but with higher temperatures overall. The 9 soil layers experiment (9L) did not
452 change significantly the control LST (dashed green line), leading to a bias decrease of ~ 0.5 K, but it
453 shows a reasonable variation in the first soil layer temperature (dashed brown line). In the 9L
454 simulation, the first soil layer only has 1 cm while the control has 7 cm, resulting in a reduction of the
455 thermal inertia in 9L with a faster warming (dashed versus solid brown lines in Figure 7).

456 The results of the sensitivity simulations (see table 2) are presented in the supplementary
457 information in Figure S7. The two experiments with CGLS-FCover used as TVC in the model (nlveg
458 and nhveg) present a diurnal cycle closer to the satellite observations, in particular the nlveg
459 simulation, suggesting that TVC should be reduced. The sensitivity simulations with the original
460 model parameters (bare, lveg and hveg) provide a similar conclusion as well: the bare and lveg (the
461 hveg and control) simulations are very similar to each other due to CVL (CVH) being close to zero
462 (one) in all the points except for the NW one, with all experiments remaining distant to the
463 satellite-LST.

464 The revised vegetation using ESA-CCI shows a stark contrast to the original model vegetation
465 (see table 3). Overall, the TVC is much lower (~ 0.53) and the grid points are covered mostly by low
466 vegetation (CVL>0.85) when using the ESA-CCI dataset. When comparing HTESSEL's revised TVC
467 to CGLS-FCover, even though CGLS is lower in all the grid points they are closer to each other than
468 to the default HTESSEL TVC. These results follow the preliminary findings with the sensitivity
469 experiments. It is worth noting that the sensitivity experiments (nlveg/nhveg) only used
470 information from CGLS-Fcover.

471 The revised vegetation from ESA-CCI (Figure 8) has a positive impact on LST. During daytime,
472 the LST becomes very close to the satellite-LST, with a negative bias below 2 K at 12 UTC in all the
473 points, except the NE one. This latter grid box contains the largest urban area (the city of Evora, see
474 Figure A1) amongst the four considered here, which very likely explains the high satellite Tmax
475 value and the largest deviations between the revised simulation and satellite temperatures. The bias
476 becomes positive in the afternoon (but with an absolute value lower than in the control simulation),
477 as the simulation continues to show a phase difference in relation to the satellite-LST. At night, the
478 impact is negligible. Parallel to the control simulation, the soil discretization scheme produced a
479 slightly positive effect in the revised simulation, reducing the bias at night by 0.5–1 K and at midday
480 by ~ 1 K (Figure 8). These results show that vegetation cover dominates over the soil vertical
481 discretization in terms of addressing the large LST biases.

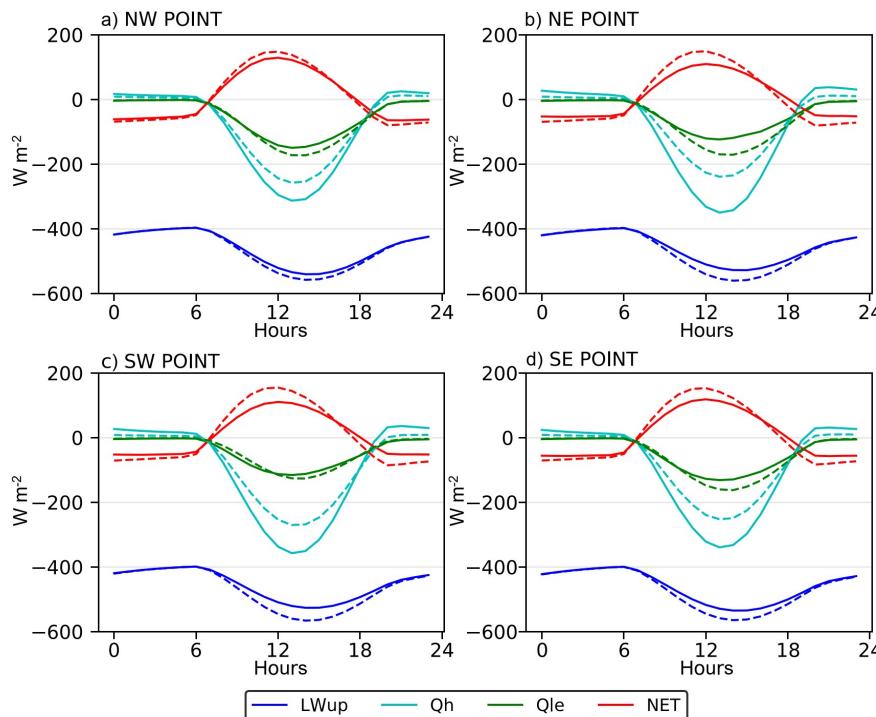


482

483 **Figure 8.** Mean diurnal cycle of temperature (2010 Summer) in the 4 points of the Southern Portugal
 484 domain comparing the satellite LST (red), and the LST in the control simulation (green), and control
 485 with 9 soil layers (dashed green) with the simulation using ESA-CCI vegetation cover (revised in
 486 yellow), and with the 9 soil layers dashed yellow).

487 To further understand the changes in LST arising from the vegetation cover changes, we focus
 488 on the diurnal cycle of the surface energy balance. The components of the surface energy balance of
 489 the control simulation are represented in Figure S8. Not surprisingly, the surface receives mainly
 490 shortwave radiation ($SW_{net} > 0$) and emits mainly longwave radiation ($LW_{net} < 0$). The sensible
 491 (Q_h) and latent (Q_le) heat fluxes are mostly negative (the heat and moisture transports happen from
 492 the ground to the atmosphere), with Q_h being slightly positive at night (the heat transport is towards
 493 the ground, see also air temperature and soil temperature mean diurnal cycles in Figure 7). The net
 494 flux (NET) is positive during the day (the surface warms – energy sink of the atmosphere) and
 495 negative at night (the surface cools down – energy source to the atmosphere).

496 A comparison between the energy components of the control and the revised simulations is
 497 available in Figure 9. Longwave upward radiation (LW_{up}) becomes more negative (the surface
 498 emits more radiation) in the revised simulation, because LW_{up} follows the Stefan-Boltzmann's Law
 499 and LST is higher in the revised simulation. The opposite happens to Q_h , as it becomes less negative
 500 (less transport of heat from the surface). Since the absolute value of Q_h decreases, despite the
 501 increased gradient between air and the skin, it means that the changes in the turbulent transfer
 502 coefficients C_h (in this case, a decrease) impacts Q_h more than the increase in LST. C_h depends on z_{0m}
 503 and z_{0h} and these two parameters have lower values in "Evergreen shrubs" than in "Interrupted
 504 forest" (Table 1). The TVL is dominant over TVH in the revised vegetation which explains the
 505 decrease in value of C_h when compared to the original vegetation. The Q_le from the surface rises in
 506 the revised simulation. The LST increase results in an exponential increase of the vapor pressure at
 507 saturation (computed using the model LST) due to the Clausius-Clapeyron relation, which in turn
 508 leads to an increase of Q_le . The net flux diurnal cycle amplitude increases with increased storage
 509 during the day and latter release at nighttime.



510

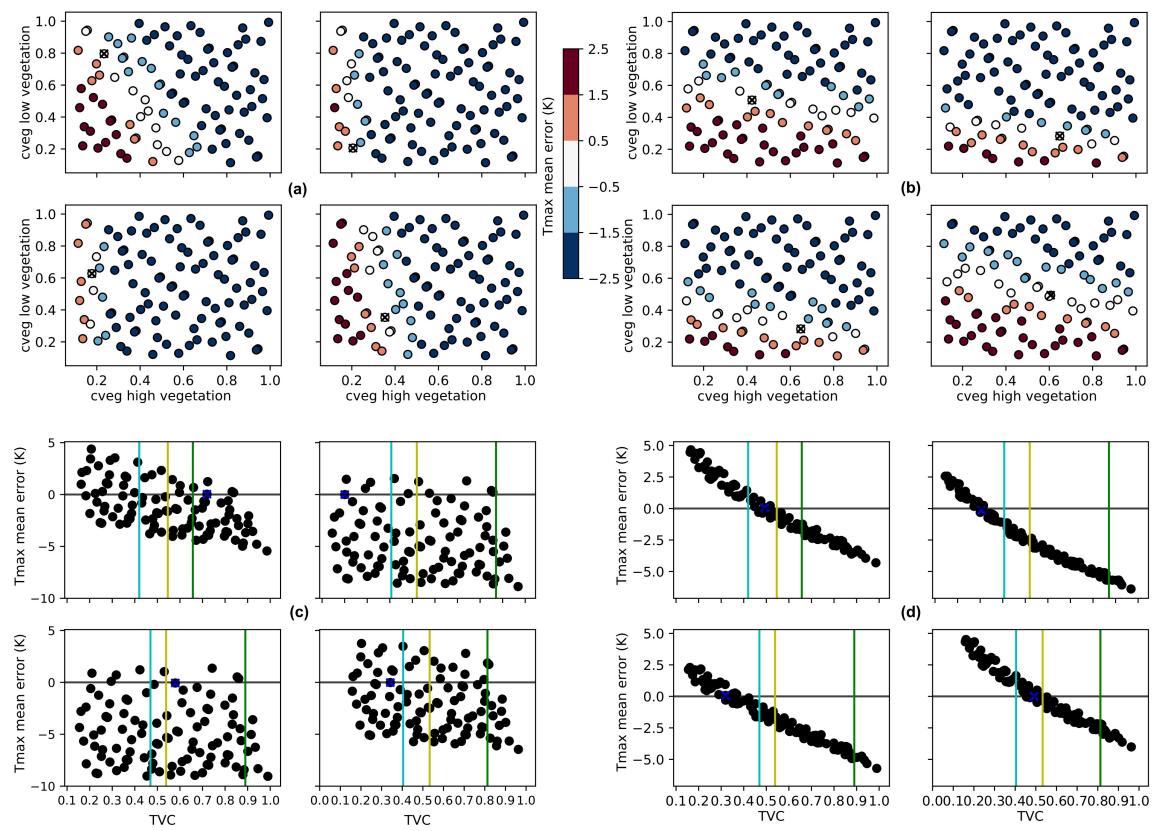
511 **Figure 9.** Components of the surface energy balance at the surface in the control (solid lines) and
 512 revised (dashed lines) simulations. Longwave upward radiation (LWup, blue), sensible heat flux
 513 (Qh, cyan), latent heat flux (Qle, green) and the surface net flux (NET=SWnet+LWnet+Qh+Qle, solid
 514 red). The fluxes sign conventions indicate fluxes to the surface as positive and fluxes leaving the
 515 surface as negative. The downward and net solar radiation (SWdown, SWnet) and longwave
 516 downward radiation (LWdown) are identical in both simulations and are represented in Figure S8

517 3.2.2 Vegetation type

518 In the previous analysis, only vegetation cover was considered, keeping the vegetation types as
 519 in the original IFS. In the selected 4 grid-points the low vegetation type in HTESSEL is “Evergreen
 520 Shrubs” while in ESA-CCI’s PFTs is “Managed Grass” (see Figure S9 for a comparison of the
 521 vegetation types between IFS and ESA-CCI). Since IFS does not have a one to one relation with
 522 ESA-CCI’s cross-walking table PFTs it was decided to keep the original vegetation types. With the
 523 vegetation from ESA-CCI the dominant cover is low vegetation. To further investigate the role of
 524 vegetation type, several simulations were performed changing the default low vegetation type
 525 (“Evergreen Shrubs”) to all other low vegetation types available in IFS. These changes did not
 526 improve the diurnal cycle of LST, with the original type performing better (see Figure S10). These
 527 results can be partially explained by the cveg used in HTESSEL for “Evergreen Shrubs” (0.5, see
 528 Table 1) which is lower than the cveg of the remaining TVLs. This results in an increase of TVC when
 529 changing the TVL to another type. The TVH in HTESSEL is “Interrupted Forest” and in ESA-CCI is
 530 “Tree Broadleaf Deciduous” (Figure A6). In this case the cveg parameter would be the same, but
 531 with changes in the roughness lengths. In addition to the differences in cveg, the momentum and
 532 heath roughness lengths also change when changing the type of low vegetation.

533 The tests to the type of low vegetation indicates that the good performance of the revised
 534 simulation on these 4 points is also due to the underlying type of vegetation in IFS, which does not
 535 match ESA-CCI. These results suggest the potential role of the cveg parameter, associated with each
 536 vegetation type, acting directly on the TVC with impacts on the simulated LST. This motivated a
 537 more detailed sensitivity analysis to cveg, as explained in section 2.2. In Figure 10a, the perturbations
 538 with lower errors have very low values in the high vegetation cveg and the perturbations with
 539 higher cveg show a consistent underestimation of Tmax, which indicates once more that the original
 540 CVH in the model was too high. The low vegetation cveg can take nearly any value since its

541 influence in the LST is reduced due to the low CVL in the original model vegetation. The sensitivity
 542 of the cveg parameter for the original CVL and CVH shows no correlation between the TVC and
 543 Tmax mean error (Figure 10c), as the same TVC leads to different values of Tmax errors.



544

545 **Figure 10.** Vegetation density (cveg) 100 perturbation pairs (high vegetation x-axis, low vegetation
 546 y-axis) and associated Tmax mean error (K) of the (a) original and (b) revised vegetation cover using
 547 ESA-CCI. The cross marks the best pair (with Tmax bias closer to zero). Scatterplots of the Tmax
 548 mean error (y-axis; K) as function of the total vegetation cover (TVC) (x-axis) of the 100
 549 perturbations: with the (c) original and (d) revised vegetation cover using CCI. The blue cross marks
 550 the best perturbation (with Tmax Mean Error closer to zero). The vertical lines indicate the TVC in
 551 control (green), reviser (yellow) and CGLS-Fcover (cyan). The 4 sub-panels in each panel denote the 4
 552 grid-points in the domain.

553 The sensitivity study applied to the cveg parameter for the revised CVL and CVH presents a
 554 considerable correlation between the TVC and Tmax mean error (Figure 10d). In all 4 points the TVC
 555 with lower errors is very close to the CGLS-FCover. In Figure 10b, the perturbations with lower
 556 errors have, in general, values of low vegetation cveg between 0.4 and 0.6 (except for the NE point,
 557 which was the point that contained Évora City), which are similar to the original TVL's cveg of 0.5.
 558 The high vegetation cveg can practically take any value because, like CVL in the original vegetation,
 559 the CVH in the revised vegetation is small.

560 These results further highlight the importance of the representation of vegetation in the IFS,
 561 showing a reasonable correlation between cveg and the Tmax bias with the revised model
 562 vegetation, while no correlation is discernible when considering the original model vegetation.
 563 These results might explain why past studies that identified the LST Tmax bias in ECMWF products
 564 [7,8] did not clearly identify vegetation cover as a plausible cause of the errors.

565 4. Conclusions

566 The main goal of this study was to evaluate the LST of two ECMWF reanalysis (ERA-Interim
 567 and ERA5) using satellite-LST over the Iberian Peninsula. We found a general underestimation of

568 daytime LST and slightly overestimation at night-time. In line with previous studies, the results
569 indicate that there is still room for improvement in the simulation of LST in ECMWF products. Still,
570 ERA5 presents an overall higher quality product in relation to ERA-Interim. Our analysis suggested
571 some relation between the large daytime cold bias and vegetation cover. These results motivated a
572 more detailed evaluation of offline simulation with the ECMWF land-surface model HTESSEL.
573 These simulations were driven by ERA5, and despite some differences, reproduced very closely the
574 main errors in ERA5.

575 Focusing on a small domain in Southern Portugal, several sensitivity simulation were
576 performed to investigate the role of vegetation cover and the vegetation density parameter on the
577 LST errors. The replacement of the low and high vegetation cover by those of ESA-CCI provided an
578 overall reduction of the large Tmax biases. The increased vertical resolution of the soil at the surface,
579 has a positive impact, but much smaller when compared with the vegetation changes. The
580 sensitivity of the vegetation density parameter, that currently depends on the vegetation type,
581 provided further proof for a needed revision of the vegetation in the model, as there is a reasonable
582 correlation between this parameter and the Tmax mean errors with the revised model vegetation
583 (while the same correlation cannot be reproduced with the original model vegetation).

584 Despite the overall consistency of our results, this study has several limitations. Although the
585 new vegetation cover leads to improved LST results, the vegetation types of the ESA-CCI dataset is
586 not a direct match to the model and experimenting with different vegetation types translates to
587 poorer results, which are due to the vegetation density parameter. The phase difference and the
588 nighttime bias observed in the LST mean diurnal cycle remain after applying the changes in
589 vegetation and soil discretization. We only performed uncoupled simulations to assess the impact of
590 surface parameters in the simulation of LST. It is important to study the effect of these vegetation
591 changes in coupled simulations as well. Additionally, due to the satellite LST relying on IR
592 measurements, the LST is only assessed in clear sky weather conditions and, therefore, conclusions
593 may be somehow limited. Nevertheless, using clear-sky observations allows focusing the analysis on
594 the deficiencies of the representation of surface parameters, as there are less variables to be
595 accounted for in the surface energy balance (such as clouds and precipitation). Furthermore, changes
596 in vegetation cover impact the water budget (which was not assessed) and induce changes in other
597 seasons. The reduced satellite LST availability in the rest of the year and the lack of other
598 observations (e.g. fluxes, soil temperature, soil moisture) limit further diagnostics.

599 Our results suggest that vegetation cover is the main contributor to the large daytime biases in
600 LST over Iberia, motivating the need to review the treatment of vegetation cover over the Iberian
601 Peninsula (and most likely over other regions, which have similar climate and phenology), namely
602 the fraction of low and high vegetation cover in each grid point. Likewise, the definition of the
603 different types of low and high vegetation in the HTESSEL and the associated vegetation density
604 parameter and roughness lengths for momentum and heat might also need to be revised. However,
605 we also found a clear problem of equifinality between low and high vegetation cover and the
606 vegetation density parameter, which is challenging for parameters optimization. Furthermore, the
607 current assumption of a constant vegetation density might be also a limitation for not accounting for
608 vegetation cover seasonality [40].

609 The uncoupled simulations allowed us to assess the influence of surface parameters in the LST
610 simulation and the surface energy balance components by varying the value of those parameters
611 (since other factors like the atmospheric variables remain the same in every experiment). Still, it is
612 important to mention that applying these changes in surface parameters in coupled atmosphere
613 simulations might result in a less positive impact in the simulation of LST, due to feedback processes
614 associated with the atmospheric coupling. In particular, the vegetation cover changes will impact the
615 momentum, heat and moisture exchanges via the changes in roughness lengths.

616 Finally, it is worth mentioning that model assessments, together with potential revision of
617 model parameters, such as those performed here, are only possible due to the availability of high
618 quality (in terms of their accuracy, temporal span and resolution, and of their spatial sampling)
619 satellite retrieved datasets of Essential Climate Variables. Although variables such as Land Cover

620 and Vegetation Cover have long demonstrated their added value for model development activities,
621 this study clearly shows that Land Surface Temperature can also be used to physically constrain
622 land surface models, which are a key component of Earth System Models.

623 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Figure S1 to Figure
624 S10.

625 **Author Contributions:** Conceptualization, Sofia Ermida and Emanuel Dutra; Formal analysis, João
626 Johannsen; Funding acquisition, Emanuel Dutra; Writing – original draft, João Johannsen; Writing – review &
627 editing, Sofia Ermida, João Martins, Isabel F Trigo, Miguel Nogueira and Emanuel Dutra.

628 **Funding:** This research was funded by Fundação para a Ciência e a Tecnologia (FCT) grant number
629 PTDC/CTA-MET/28946/2017 (CONTROL).

630 **Acknowledgments:** E. Dutra acknowledges the financial support of FCT research grant IF/00817/2015.

631 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
632 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
633 publish the results.

634 References

1. Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. *Bull Am Meteorol Soc* **2014**, *95*, 1431–1443.
2. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. *Remote Sens Env.* **2013**, *131*, 14–37.
3. Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. *Agric Meteorol* **1995**, *77*, 153–166.
4. Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. *J Geophys Res* **2009**, *114*, 2005.
5. Zheng, W.; Wei, H.; Wang, Z.; Zeng, X.; Meng, J.; Ek, M.; Mitchell, K.; Derber, J. Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation: LST IMPROVEMENT AND DATA ASSIMILATION. *J Geophys Res* **2012**, *117*.
6. Zhou, L.; Dickinson, R.E.; Tian, Y.; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula: EMISSIVITY AND CLIMATE MODELS. *J Geophys Res* **2003**, *108*.
7. Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. *J Geophys Res Atmos* **2015**, *120*, 2015JD023812.
8. Orth, R.; Dutra, E.; Trigo, I.F.; Balsamo, G. Advancing land surface model development with satellite-based Earth observations. *Hydrol Earth Syst Sci* **2017**, *21*, 2483–2495.
9. Hooker, J.; Duveiller, G.; Cescatti, A. A global dataset of air temperature derived from satellite remote sensing and weather stations. *Sci Data* **2018**, *5*, 180246.
10. Good, E.J. An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures: Land Skin-Air Temperature Relationship. *J Geophys Res Atmos* **2016**, *121*, 8801–8819.
11. Zhengming Wan; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. *IEEE Trans Geosci Remote Sens* **1996**, *34*, 892–905.

664 12. Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. *Int J Remote Sens.* **1990**, *11*, 369–393.

665 13. Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. *Int J Remote Sens.* **2011**, *32*, 2725–2744.

666 14. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. *Remote Sens. Env.* **2014**, *140*, 36–45.

667 15. Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R. Land surface temperature from multiple geostationary satellites. *Int J Remote Sens.* **2013**, *34*, 3051–3068.

668 16. Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Jiménez, C.; Prigent, C. Quantifying the Clear-Sky Bias of Satellite Land Surface Temperature Using Microwave-Based Estimates. *J Geophys. Res. Atmos.* **2019**, *124*, 844–857.

669 17. Schar, C.; Vidale, P.L.; Luthi, D.; Frei, C.; Haberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. *Nature* **2004**, *427*, 332–336.

670 18. Seneviratne, S.I.; Luthi, D.; Litschi, M.; Schar, C. Land-atmosphere coupling and climate change in Europe. *Nature* **2006**, *443*, 205–209.

671 19. Dirmeyer, P.A.; Chen, L.; Wu, J.; Shin, C.-S.; Huang, B.; Cash, B.A.; Bosilovich, M.G.; Mahanama, S.; Koster, R.D.; Santanello, J.A.; et al. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations. *J Hydrometeorol.* **2018**, *19*, 375–392.

672 20. Ukkola, A.M.; Kauwe, M.G.D.; Pitman, A.J.; Best, M.J.; Abramowitz, G.; Haverd, V.; Decker, M.; Haughton, N. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. *Env. Res. Lett.* **2016**, *11*, 104012.

673 21. Kala, J.; De Kauwe, M.G.; Pitman, A.J.; Medlyn, B.E.; Wang, Y.-P.; Lorenz, R.; Perkins-Kirkpatrick, S.E. Impact of the representation of stomatal conductance on model projections of heatwave intensity. *Sci Rep.* **2016**, *6*, 23418.

674 22. Best, M.J.; Abramowitz, G.; Johnson, H.R.; Pitman, A.J.; Balsamo, G.; Boone, A.; Cuntz, M.; Decharme, B.; Dirmeyer, P.A.; Dong, J.; et al. The Plumbing of Land Surface Models: Benchmarking Model Performance. *J Hydrometeorol.* **2015**, *16*, 1425–1442.

675 23. Haughton, N.; Abramowitz, G.; Pitman, A.J.; Or, D.; Best, M.J.; Johnson, H.R.; Balsamo, G.; Boone, A.; Cuntz, M.; Decharme, B.; et al. The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality? *J Hydrometeorol.* **2016**, *17*, 1705–1723.

676 24. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. *QJR Meteorol. Soc.* **2011**, *137*, 553–597.

677 25. Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational global reanalysis: progress, future directions and synergies with NWP. *ECMWF ERA Rep. Ser.* **2018**, *65*.

678 26. Balsamo, G.; Boussetta, S.; Dutra, E.; Beljaars, A.; Viterbo, P.; Van den Hurk, B. Evolution of land surface processes in the IFS. *ECMWF Newslett.* **2011**, *127*, 17–22.

679 27. Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: a global land surface reanalysis data set. *Hydrol. Earth Syst. Sci.* **2015**, *19*, 389–407.

707 28. Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Munoz-Sabater, J.; Rosnay, P. de; Balsamo, G.
708 ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs
709 better? *Hydrol Earth Syst Sci* **2018**, *22*, 3515–3532.

710 29. Zhou, C.; Wang, K.; Ma, Q. Evaluation of Eight Current Reanalyses in Simulating Land Surface
711 Temperature from 1979 to 2003 in China. *J Clim* **2017**, *30*, 7379–7398.

712 30. Ghent, D.; Kaduk, J.; Remedios, J.; Ardö, J.; Balzter, H. Assimilation of land surface temperature
713 into the land surface model JULES with an ensemble Kalman filter. *J Geophys Res* **2010**, *115*,
714 GB1008.

715 31. ECMWF Part IV: Physical processes. In *IFS documentation CY45R1*; ECMWF, Ed.; ECMWF, 2018.

716 32. Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W.
717 Development of a global land cover characteristics database and IGBP DISCover from 1 km
718 AVHRR data. *Int J Remote Sens* **2000**, *21*, 1303–1330.

719 33. Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; J., M.-S.; Nicolas, J.; Radu, R.; Schepers, D.;
720 Simmons, A.; Soci, C.; et al. Global reanalysis: goodbye ERA-Interim, hello ERA5. **2019**.

721 34. Verger, A.; Baret, F.; Weiss, M. Near Real-Time Vegetation Monitoring at Global Scale. *IEEE J.*
722 *Sel. Top. Appl. Earth Obs. Remote Sens.* **2014**, *7*, 3473–3481.

723 35. Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher,
724 M.; Brockmann, C.; Defourny, P.; et al. Plant functional type classification for earth system
725 models: results from the European Space Agency's Land Cover Climate Change Initiative.
726 *Geosci. Model Dev.* **2015**, *8*, 2315–2328.

727 36. Hartigan, J.A. *Clustering Algorithms*; 99th ed.; John Wiley & Sons, Inc.: New York, NY, USA,
728 1975; ISBN 978-0-471-35645-5.

729 37. Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.;
730 Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding:
731 State-of-the art and future directions. *Remote Sens Env.* **2017**, *203*, 185–215.

732 38. Sobol', I.M. On the distribution of points in a cube and the approximate evaluation of integrals.
733 *USSR Comput. Math. Math. Phys.* **1967**, *7*, 86–112.

734 39. Orth, R.; Dutra, E.; Pappenberger, F. Improving Weather Predictability by Including Land
735 Surface Model Parameter Uncertainty. *Mon Weather Rev* **2016**, *144*, 1551–1569.

736 40. Alessandri, A.; Catalano, F.; De Felice, M.; Van Den Hurk, B.; Doblas Reyes, F.; Boussetta, S.;
737 Balsamo, G.; Miller, P.A. Multi-scale enhancement of climate prediction over land by increasing
738 the model sensitivity to vegetation variability in EC-Earth. *Clim Dyn* **2017**, *49*, 1215–1237.