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 11 
Abstract: Land surface temperature (LST) is a key variable in surface-atmosphere energy and water 12 
exchanges. The main goals of this study are to (i) evaluate the LST of the European Centre for 13 
Medium-Range Weather Forecasts (ECMWF) ERA-Interim and ERA5 reanalyses over Iberian 14 
Peninsula using the Satellite Application Facility on Land Surface Analysis (LSA-SAF) product and 15 
to (ii) understand the main drivers of the LST errors in the reanalysis. Simulations with the ECMWF 16 
land-surface model in offline mode (uncoupled) were carried out over the Iberian Peninsula and 17 
compared with the reanalysis data. Several sensitivity simulations were performed in a confined 18 
domain centered in Southern Portugal to investigate potential sources of the LST errors. The 19 
Copernicus Global Land Service (CGLS) fraction of green vegetation cover (FCover) and the 20 
European Space Agency’s Climate Change Initiative (ESA-CCI) Land Cover dataset were explored. 21 
We found a general underestimation of daytime LST and slightly overestimation at night-time. The 22 
results indicate that there is still room for improvement in the simulation of LST in ECMWF 23 
products. Still, ERA5 presents an overall higher quality product in relation to ERA-Interim. Our 24 
analysis suggested a relation between the large daytime cold bias and vegetation cover differences 25 
between (ERA5 and CGLS FCocver) with a correlation of -0.45. The replacement of the low and high 26 
vegetation cover by those of ESA-CCI provided an overall reduction of the large Tmax biases during 27 
summer. The increased vertical resolution of the soil at the surface, has a positive impact, but much 28 
smaller when compared with the vegetation changes. The sensitivity of the vegetation density 29 
parameter, that currently depends on the vegetation type, provided further proof for a needed 30 
revision of the vegetation in the model, as there is a reasonable correlation between this parameter 31 
and the Tmax mean errors when using the ESA-CCI vegetation cover (while the same correlation 32 
cannot be reproduced with the original model vegetation). Our results support the hypothesis that 33 
vegetation cover is one of the main drivers of the LST summertime cold bias in ERA5 over Iberian 34 
Peninsula.  35 

Keywords: land surface temperature; remote rensing; reanalysis; ECMWF 36 
 37 

1. Introduction 38 

Land Surface Temperature (LST) is a key variable for the surface-atmosphere energy and water 39 
exchanges and it was recently integrated as an Essential Climate Variable (ECV) into the Global 40 
Climate Observing System (GCOS) [1]. LST may be retrieved from remote sensing observations 41 
performed with channels sensitive to the radiance emitted by the land surface, i.e., usually within 42 
the thermal infrared (TIR) or in the microwave (MW) regions of the electromagnetic spectrum. 43 
Remotely sensed LST is defined as the radiometric temperature (due to its derivation from the 44 
radiance emitted by the planet’s surface), which is the temperature of the surface layer whose depth 45 
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is equal to the penetration depth of the radiation used in its determination [2,3]. In the case of TIR 46 
radiation, the penetration depth is less than 1mm [4], which is why this variable is also referred to as 47 
“skin temperature”. 48 

The use of satellite LST has been steadily increasing during the last decades, from the 49 
evaluation and improvement of land surface models [5–8] to filling gaps in 2-meters air temperature 50 
(T2m), particularly in areas where station coverage is poor [9]. The latter has great potential to 51 
improve the quality of T2m observation datasets [10]. This is relevant due to LST’s globally available 52 
datasets, while T2m is only measured in in-situ stations. 53 

There are several methods to derive LST from remote sensing observations. Using  TIR 54 
observations,  the most common algorithm is the Generalized Split-Window [11,12], applied for 55 
example by the Satellite Application Facility on Land Surface Analysis (LSA-SAF) [13], in the 56 
estimation of the Moderate Resolution Imaging Spectroradiometer (MODIS) LST products [14] and 57 
in the Copernicus Global Land Service (CGLS) LST product [15]. One of the limitations of TIR-based 58 
LST data is its dependence on clear-sky measurements. Absence of LST data will occur for pixels 59 
classified as totally or partially cloudy during the observation period, and therefore such satellite 60 
LST products will be biased towards clear-sky conditions [16]. This implies that any evaluation of 61 
model LST using TIR-based products must be preceded by a careful cloud screening in the model 62 
dataset to ensure the compatibility of model and satellite variables. 63 

Land surface is one of the main components of the Earth’s climate system. Its interaction with 64 
the atmosphere involves energy fluxes and water and carbon exchanges that are crucial for weather 65 
forecasting and climate studies [17–19]. Despite their importance, the land-atmosphere exchanges in 66 
land surface models present considerable biases, especially during extreme weather events [20,21]. 67 
In the case of simulating latent and sensible heat fluxes, physics-based land surface models were 68 
outperformed by simplistic empirical models [22,23]. 69 

Climate reanalysis combine model and observations using state-of-the art models and data 70 
assimilation techniques. The European Centre for Medium-Range Weather Forecasts (ECMWF) has 71 
developed several atmospheric and ocean reanalyses, with the two most recent atmospheric 72 
reanalyses being ERA-Interim [24] and ERA5 [25]. The ECMWF reanalyses are generated by the 73 
Integrated Forecasting System (IFS), a global data assimilation and forecasting system developed by 74 
ECMWF for weather forecasts. The Hydrology Tiled ECMWF Scheme of Surface Exchanges over 75 
Land (HTESSEL) [26,27] is the land-surface component of the IFS. 76 

Preliminary results conducted by ECMWF showed ERA5’s overall improvement in comparison 77 
to ERA-Interim in simulating several different variables. Albergel et al. [28] compared ERA5 and 78 
ERA-Interim atmospheric forcing in land surface model simulations, ultimately showing that ERA5 79 
provides an improved product over ERA-Interim. Besides being recent, ERA5 will serve as the 80 
official replacement of ERA-Interim, hence it is imperative to evaluate its ability in simulating an 81 
ECV such as the LST. 82 

The evaluation of simulated LST using remote sensing LST products has been the subject of 83 
analysis in several studies [7,8,29]. Trigo et al. [7] found an underestimation of daytime LST over 84 
most of Africa and Europe (especially over semi-arid regions) and a slight LST overestimation 85 
during nighttime in the ECMWF model when compared to LSA-SAF’s LST. With the same datasets, 86 
focusing on Europe but extending the temporal range, Orth et al. [8] also found an underestimation 87 
of the LST daily range (especially in the Iberian Peninsula, <-10 °C). Zhou et al. [29] examined several 88 
reanalysis products (including ERA-Interim) over China with the reference-LST measured by in-situ 89 
stations. Despite the different regions and analysis performed, these studies suggest that most of the 90 
reanalysis underestimate LST, especially during Summer and in arid regions. LST can also be used 91 
to guide model development. Trigo et al. [7] presented a revision for different surface parameters 92 
(Leaf Area Index (LAI), roughness length for momentum and for heat) and assessed its impact in the 93 
simulation of LST. The revised roughness lengths had a positive impact on the daytime LST while 94 
the revised LAI had a minor yet positive effect. Orth et al. [8] showed that the LST performance is 95 
highly sensitive to three surface parameters: the minimum stomatal resistance, the skin conductivity, 96 
and the soil moisture stress function. Moreover, LST is pertinent in data assimilation. For example, 97 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2019                   doi:10.20944/preprints201909.0268.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 2570; doi:10.3390/rs11212570

https://doi.org/10.20944/preprints201909.0268.v1
https://doi.org/10.3390/rs11212570


 3 of 21 

 

Ghent et al. [30] showed that the assimilation of satellite-LST positively impacts the simulation of 98 
LST, soil moisture and the latent and sensible heat fluxes. 99 

The main goals of this study are to (i) evaluate the land surface temperature in the ECMWF 100 
ERA-Interim and ERA5 reanalyses over Iberian Peninsula using the LSA-SAF satellite product and 101 
to (ii) understand the main drivers of the LST errors in the reanalysis. The study is focused on the 102 
summer period (June-August). Simulations with the HTESSEL model in offline mode (uncoupled) 103 
were carried out over the Iberian Peninsula and compared with the reanalysis data. Several 104 
sensitivity simulations were performed in a confined domain centered in Southern Portugal to 105 
investigate potential sources of the LST errors. Our hypothesis is that certain model parameters (e.g. 106 
the prescribed vegetation cover) are crucial for the simulation of LST. The following section presents 107 
the data and methods, followed by the results and discussion. The overall conclusions of the study 108 
are presented in the last section. 109 

2. Material and Methods 110 

2.1 Models and datasets 111 

2.1.1 ECMWF Land surface model 112 

HTESSEL is the land surface model of ECMWF IFS. It represents the surface skin layer, a 113 
shallow layer with zero heat capacity that separates the subsoil from the atmosphere and intercepts 114 
and emits radiation. Each grid point of this layer can be divided into different tiles that represent 115 
different types of land cover (bare ground, low and high vegetation, intercepted water (on the 116 
canopy), and shaded and exposed snow). Only the dominant type of low/high vegetation at each 117 
grid point is considered by the model. This information is then used to generate spatial fields of 118 
various parameters used in different parameterizations which are assumed to be dependent only on 119 
vegetation type (Table 1). A detailed description of the model assumptions and parameterization can 120 
be found on the model documentation [31].  In the following, a more detailed description of the 121 
processes directly linked with the simulation of LST in HTESSEL is presented. In this study, the 122 
version used was CY45R1, which is very close to the model version of ERA5. 123 

Table 1. HTESSEL vegetation types and associated parameters’ values. H/L differentiates low (L) 124 
from high (H) vegetation; cveg is the vegetation density (0-1) used in the tile fraction definition; and 125 
z0m and z0h are the roughness lengths for momentum and heat, respectively used in the calculations 126 

of the turbulent exchange coefficients for momentum, heat and water. 127 

Index Vegetation type H/L cveg z0m z0h 
1 Crops, mixed farming L 0.90 0.25 0.25 10-2 
2 Short grass L 0.85 0.20 0.20 10-2 
3 Evergreen needleleaf trees H 0.90 2.00 2.00 
4 Deciduous needleleaf trees H 0.90 2.00 2.00 
5 Deciduous broadleaf trees H 0.90 2.00 2.00 
6 Evergreen broadleaf trees H 0.99 2.00 2.00 
7 Tall grass L 0.70 0.47 0.47 10-2 
8 Desert - 0 0.013 0.013 10-2 
9 Tundra L 0.50 0.034 0.034 10-2 

10 Irrigated crops L 0.90 0.50 0.50 10-2 
11 Semidesert L 0.1 0.17 0.17 10-2 
12 Ice caps and glaciers - - 1.3 10-3 1.3 10-4 
13 Bogs and marshes L 0.6 0.83 0.83 10-2 
14 Inland water - - - - 
15 Ocean - - - - 
16 Evergreen shrubs L 0.50 0.10 0.10 10-2 
17 Deciduous shrubs L 0.50 0.25 0.25 10-2 
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18 Mixed forest H 0.90 2.00 2.00 
19  Interrupted forest H 0.90 1.1 1.1 
20  Water and land mixtures L 0.60 - - 

The vegetation cover and types are provided to HTESSEL as input static 2-dimensional fields of 128 
low vegetation grid fraction (CVL), high vegetation grid fraction (CVH), dominant type of low 129 
vegetation (TVL) and dominant type of high vegetation (TVH). Neglecting interception and snow, 130 
the low vegetation tile fraction (Clow), high vegetation tile fraction (Chigh), bare ground tile fraction 131 
(Cbare) and the total vegetation cover of a grid cell (TVC) are given by: 132 

Clow = CVL × cveg(TVL) 

Chigh = CVHL × cveg(TVH) 

Cbare = 1 – Clow – Chigh 

TVC = Clow + Chigh 

(1)

where cveg is the vegetation density (0-1) which is dependent on vegetation type (see Table 1). 133 
These vegetation fields are the same as used in the reanalysis and operational weather forecasts 134 

and were derived from the Global Land Cover Characteristics (GLCC) data [32]. 135 
The temperature of the skin layer, (LST, also referred as skin temperature), is computed from 136 

the surface energy balance equation calculated independently for each tile. The grid-box LST is 137 
defined as the weighted average of the LST on each tile fraction. The skin layer is thermally coupled 138 
to the four-layer soil below through a conductivity parameter. The skin layer is coupled to the lowest 139 
level of the atmosphere using the Monin-Obukhov similarity theory and this coupling is represented 140 
by turbulent exchange coefficients (function of atmospheric stability) and the roughness lengths for 141 
momentum and heat (z0m and z0h, respectively, see Table 1). 142 

2.1.2 ECMWF’s Reanalyses 143 

ERA-Interim is an atmospheric reanalysis based on a 2006 version of the IFS (cycle 31r2). Its 144 
configuration used a 30-minute time step and a spectral TL255 horizontal resolution (approximately 145 
79 km on a reduced Gaussian grid). The vertical resolution has 60 model layers that reach the top of 146 
the atmosphere, located at 0.1 hPa. The surface fields have a three-hourly resolution (eight daily 147 
values). ERA5 is the latest ECMWF’s atmospheric reanalysis, produced by Copernicus Climate 148 
Change Service. It is based on a 2016 version of the IFS (cycle 41r2). The horizontal resolution is 149 
about 31 km (TL639). It has 137 vertical layers culminating at 0.01 hPa. The analysis and forecast 150 
fields have 24 daily values (hourly output). ERA5 is the official replacement of ERA-Interim, offering 151 
a global improvement with several different technical changes [33] and innovations, benefiting from 152 
10 years of model and data assimilation developments by ECMWF. The reanalysis data were 153 
extracted from ECMWF data servers in a regular latitude/longitude 0.25° × 0.25° grid. In addition to 154 
the LST, the Total Cloud Cover (TCC), that quantifies the percentage of cloud cover in each grid 155 
point was also processed. 156 

2.1.3 Simulations setup 157 

HTESSEL is available as an independent library from the atmospheric model (also referred to as 158 
“externalized”). HTESSEL’s externalization allows it to perform land-surface only (or offline) 159 
simulations at a much lower computation cost when compared to full global atmospheric 160 
simulations. The offline simulations are driven by near-surface state of air temperature, humidity, 161 
wind speed, pressure, solar and thermal downwelling energy, and precipitation [27,28].   162 

The simulations were carried out for a domain centered over the Iberian Peninsula (35°N to 45° 163 
N, 10°W to 5°E) with a regular 0.25°x0.25° resolution. The simulations are initialized in 2002 (from 164 
ERA5) to allow the model to spin up (2 years), running for a 14-year interval until the end of 2015 165 
with a 15-minute time step. Initial simulations with a 1-hour time step, which is commonly used, 166 
indicated some temporal lag in the LST simulations associated with the numerical solver.  167 
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2.1.4 LSA-SAF’s Land Surface Temperature 168 

The LST disseminated by the LSA-SAF is derived from measurements performed by the 169 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation 170 
(MSG) series of satellites by employing a generalized “split-window” technique [11,12]. This method 171 
estimates LST as a linear function of the brightness temperatures at the top of the atmosphere 172 
measured by SEVIRI’s IR channels centred at 10.8 µm and 12.0 µm. The regression coefficients 173 
depend explicitly on the surface emissivity for both channels and implicitly on the total column 174 
water vapor and the satellite zenith view angle (SZA). 175 

The LST is available every 15 minutes for all the land pixels of the MSG disk (which comprises 176 
SZAs between 0° and 80°), with a resolution of 3 km at the sub-satellite (nadir) point. LST 177 
uncertainty is usually between 1–2 K, except for regions near the edge of the MSG disk (due to large 178 
optical paths associated with high SZAs) or arid areas (where the surface emissivity’s uncertainty is 179 
generally high, e.g. the Sahara desert) in which the error is larger [13]. 180 

The LSA-SAF LST remote sensing product is used to evaluate the quality of both ECMWF 181 
reanalysis for the 2004-2015 period. For the comparison between simulated and observed LST to be 182 
consistent, we performed an upscaling of the LST data, by computing the median of the whole 183 
group of LST pixels within each 0.25° × 0.25° grid cell. The number of original LST data (~ 5 km of 184 
resolution) in each grid cell varied between 30 and 56 pixels. The fraction of valid pixels (each cell 185 
and time) was retained to be used as a proxy for cloud cover. 186 

2.1.5 Land Cover and vegetation datasets 187 

Two different datasets were used in this study: the Copernicus Global Land Service (CGLS) 188 
fraction of green vegetation cover (FCover) and the European Space Agency’s Climate Change 189 
Initiative (ESA-CCI) Land Cover dataset. 190 

The CGLS-FCover represents the fraction of ground covered by green vegetation, which 191 
quantifies the spatial extent of the vegetation. The FCover estimates are obtained through a near 192 
real-time algorithm that uses top-of-canopy reflectance observations from the SPOT/VEGETATION, 193 
and since 2014 from PROBA-V [34]. The product is available globally at 1 km spatial resolution on 194 
day 10, 20 and the last day of each month since 1999. Since 2014, a 300 m resolution PROBA-V-only 195 
version of the product is also available, but the 1 km (V2) version was considered more practical for 196 
the purpose of this study. 197 

The ESA-CCI Land Cover dataset provides globally consistent maps at 300 m spatial resolution 198 
on an annual basis from 1992 to 2015. The land cover typology was based on the Land Cover 199 
Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture 200 
Organization. A total of 22 land cover level 1 classes and 14 level 2 sub-classes (defined using a set of 201 
classifiers) constitute the dataset[35]. In this study we used the global map for the year 2010. Both 202 
CGLS-FCover and ESA-CCI were aggregated to 0.25°x0.25° resolution over the Iberian Península 203 
domain by mapping each pixel to the nearest grid-cell.   204 

2.2 Methods 205 

2.2.1 Simulations evaluation 206 

When comparing the model with the satellite product of LST only clear-sky conditions were 207 
considered. Only the data meeting the following clear-sky thresholds was retained in the subsequent 208 
analysis: 209 

 The reanalysis’s TCC < 0.3; 210 
 The fraction of valid satellite LST original data in each 0.25° × 0.25° grid cell > 0.7. 211 

The two previous thresholds were chosen based on the average percentage of valid data 212 
available for the comparison while keeping, at the same time, most of the grid cell cloud-free. 213 

The clear-sky threshold of each reanalysis was also applied to the corresponding HTESSEL 214 
offline simulation (driven by that reanalysis) so that all datasets could be compared. The offline 215 
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simulation forced by ERA-Interim (that has an hourly output) was analyzed using a three-hourly 216 
time step in order to match with ERA-Interim’s three-hourly output. 217 

The analysis was performed for the period between 2004 and 2015, for which a Climate Data 218 
Record (CDR) of reprocessed LST with consistent algorithm and inputs is available from LSA-SAF. 219 
The analysis was performed over the Iberian Peninsula (35°N–45°N, 10°W–5°E), ensuring a 220 
reasonable variability of land cover types. We only examined the summer months 221 
(June-July-August, JJA) due to the overall low percentage of valid data that is available during the 222 
rest of the year (e.g. in 2010, before May and after September, the valid data was below 50%). 223 
Furthermore, previous studies show that the mean error between reanalyses and observations is 224 
higher in the summer [7,29]. 225 

An analysis was carried out to separate the domain into different clusters. This clustering is 226 
performed to allow summarizing the results by grouping the statistics into regions with similar 227 
behavior of the LST. The exercise was applied to different sets of variables (e.g. LST, FCover) in 228 
order to identify the most appropriate strategy of clustering the domain, but using in all cases the 229 
K-Means Clustering Algorithm [36]. The K-Means is a partitional method in which each datapoint 230 
belongs to one cluster only, each cluster being comprised of data points with similar characteristics, 231 
defined by the input data (i.e., maximizing variability among clusters and minimizing variability 232 
within. To ensure that the correct number of clusters was selected, the Elbow Method was applied: 233 
the optimal number of clusters (that should be designated into the K-Means algorithm) is that which 234 
the addition of an extra cluster would result in a negligible change in inertia (a decrease of less than 235 
10% of its value).  236 

The LST daily maximum (Tmax) and the daily minimum temperature (Tmin) were calculated 237 
for the whole domain and for the whole period in the following range of hours (UTC): 238 

 Tmax: 11h – 15h; 239 
 Tmin: 3h – 7h. 240 

These ranges were chosen to avoid the identification of Tmax or Tmin in a time period which is 241 
not expected (e.g. on cloudy daytime and clear-sky night-time would identify Tmax during the 242 
latter). The time range were selected based on the assumption that the maximum temperature will 243 
occur shortly after the peak of incoming solar radiation, while the minimum temperature will 244 
precede the sunrise. This procedure was applied to both satellite and simulations. The time of 245 
occurrence of the Tmax or Tmin is allowed to vary (in the prescribed window) between satellite and 246 
simulations, which neglects temporal shift differences.  247 

A set of metrics was chosen to assess the quality of the four different products analysed in this 248 
work: (i) Mean Error (or Bias): computed as the difference between the reanalysis (or model ) and the 249 
satellite data (model-observations); (ii) the Standard Deviation of the Error (SDE); (iii) the Temporal 250 
Correlation and the (iv) Root Mean Squared Error (RMSE). The four metrics were applied for the 251 
whole domain and the results were then grouped into the clusters identified by the K-Means 252 
algorithm.  253 

To conclude the first part of this study, we assessed the relationship between the error in the 254 
simulation of LST and the difference between HTESSEL TVC and CGLS-FCover. HTESSEL TVC is 255 
computed from Equation 1, and the CGLS FCover was averaged for the 1999-2018 period in each 256 
grid-cell.  257 

2.2.2 Sensitivity simulations 258 

In the second part of the study, we assess potential sources of LST errors associated with the 259 
model’s representation of vegetation. The domain comprised four grid points in Southern Portugal, 260 
near Évora city (38.25°N–38.75°N, 8.25°W–7.75°W) with the same 0.25° × 0.25° resolution as the 261 
original domain (see Figure S1 in the supplementary material). The chosen area is representative of 262 
the main features and errors explored. These simulations were initialized in January 2009 extending 263 
until September 2010, and only the 2010 summer is analyzed. The simulations and analysis focus 264 
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only on the 2010 summer (that had average conditions in the 2004-2015 period) to reduce the 265 
computational cost and data handling. 266 

Several experiments were carried out to investigate the role of vegetation in LST (see Table 2). 267 
Three idealized experiments were designed: 1) bare soil (bare), where CVL and CVH were assigned 268 
to zero (in other words, the domain is assumed to be a desert); 2) low vegetation (lveg), where CVL 269 
original value was kept and CVH was changed to zero; and 3) high vegetation (hveg), where CVL 270 
was altered to zero while CVH kept its original value. These simplified experiments were followed 271 
by two other simulations, this time using the CGLS-FCover: 1) nlveg, where CVH was changed to 272 
zero and CVL was given the value of the CGLS-FCover, and 2) nhveg, where the CGLS-FCover was 273 
attributed to CVH while CVL was altered to zero. In these simulations cveg was assumed to be 1 to 274 
guarantee that TVC in the simulations were identical to the CGLS-FCover. The CGLS-FCover 275 
considered was the mean for the year 2010.  276 

Table 2. Simulations setup configuration for each experiment denoting the used low vegetation grid 277 
fraction (CVL), the high vegetation grid fraction (CVH), the vegetation density (cveg) and the total 278 

vegetation cover (TVC).  279 

Experiment CVL CVH cveg TVC 
CTR,9L 

(SEI1,SE51) 
IFS2 IFS2 

Table 1 Equation 1 bare 0 0 
lveg IFS2 0 
hveg 0 IFS2 
nlveg CGLS-FCover 0 1 

CGLS-FCover 
nhveg 0 CGLS-FCover 1 
revised ESA-CCI3 ESA-CCI3 Table 1 Equation 1 

1 Simulation for Iberia driven by ERA5 (SE5) and ERA-Interim (SEI) 280 
2 Using IFS vegetation data as in ERA5 281 
3 Using vegetation cover derived from ESA-CCI land cover 282 

Following these idealized experiments, we perform a more realistic experiment by replacing the 283 
vegetation cover (CVH, CVL) with new fields derived from ESA-CCI (revised). The ESA-CCI Land 284 
Cover dataset was converted to Plant Functional Types (PFTs) using the ‘cross-walking’ table 285 
suggested by Poulter et al. [35]. However, the HTESSEL vegetation types (see Table 1) do not have a 286 
one to one relation with the cross-walking table used. Instead of performing an ad hoc matching 287 
between the cross-walking table PFTs and HTESSEL vegetation types, we kept the model vegetation 288 
types (TVL and TVH), and only changed the model CVL and CVH to the values obtained with the 289 
ESA-CCI dataset. A more detailed study is required to change the cross-walking table to match the 290 
HTESSEL vegetation type. To derive CVL and CVH from the cross-walking table PFTs we 291 
aggregated the individual PFTs fraction on each cell considering for CVL: “Shrubs Broadleaf 292 
Evergreen”, “Shrubs Broadleaf Deciduous”, “Shrub Needleleaf Evergreen”, Shrubs Needleleaf 293 
Deciduous”, “Natural Grass”, “Managed Grass” and for CVH: “Tree Broadleaf Evergreen”, “Tree 294 
Broadleaf Deciduous”, “Tree Needleleaf Evergreen”, “Tree Needleleaf Deciduous”. 295 

Additionally, we tested a different vertical discretization of the soil layers from the original four 296 
(7, 21, 72 and 189 cm) to nine (1, 2, 4, 8, 10, 25, 50, 100 and 100 cm layers) (9L), and assessed its impact 297 
in the control and in the revised simulations. The original top layer of 7 cm is arranged in 3 layers in 298 
the test with 1, 2 and 4 cm which should ensure numerical accuracy of the soil heat diffusion near the 299 
surface.  This increased vertical resolution at the soil-atmosphere interface was shown to be 300 
beneficial when comparing model soil moisture with satellite estimates [37].  301 

Finally, we performed a more detailed sensitivity study on the vegetation density cveg 302 
parameter to explore its influence on the LST errors. This analysis was performed with the original 303 
and the revised vegetation cover. We perturbed cveg associated with the TVL and TVH within the 304 
range 0.1–1, forming 100 perturbations composed of cveg pairs. The pairs were determined with a 305 
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quasi-random sampling method, the Sobol sequences [38,39], which are designed to efficiently 306 
generate samples of the multiple parameters that cover the entire parameter space while avoiding 307 
the introduction of correlations between the perturbations of the different parameters. Unlike in 308 
random sampling, the sample values in the Sobol approach are selected based on the previously 309 
generated values to prevent the occurrence of clusters or empty spaces in the domain. 310 

3. Results 311 

3.1 Evaluation 312 

The percentage of valid data in summer for the period 2004-2015 (after applying the clear-sky 313 
thresholds to both model and satellite LST) is represented in Figure 1. Most of the Iberian Peninsula 314 
has over 50% of available data in the 12-year period. Despite this high coverage, there is a clear 315 
North-South gradient with southern areas with more than 80% of valid data while the North Iberian 316 
Coast and Pyrenees with coverages of only 20%. In other seasons the coverage of valid data is lower 317 
(not shown), particularly during winter, which further motivated our decision to focus the 318 
evaluation to summertime. If more restrictive thresholds had been chosen, that would have resulted 319 
in a reduction of the valid data, but the associated cloud cover values would have remained similar. 320 

 321 

Figure 1. Percentage of valid data during summer (June-August) between 2004 and 2015. 322 

The study area was grouped into six different clusters using the K-Means clustering algorithm 323 
(Figure 2). The input data of the K-means were the maximum and minimum LST of the mean 324 
diurnal cycle in each pixel in the summer months for the period 2004-2015. The six clusters represent 325 
regions with different LST diurnal cycles (Figure 2), although some of the regions show similar 326 
diurnal cycles in both reanalyses. Clusters 0 (Northern Iberia) 2 (Central Iberian Plateau) and 4, 5 327 
(Southern semi-arid Iberia) clearly identify different LST diurnal patterns associated with 328 
underlying land cover or topography. Clusters 1 and 3 do not clearly identify any land cover or 329 
topographical features with a mixture of coastal and inland areas.  330 

We tested the K-Means Algorithm with different input data, namely the CGLS-FCover first and, 331 
afterwards, both LST and CGLS-FCover data (see supplementary material Figure S2). For the 332 
LST+FCover clusters, the LST data was normalized by simply dividing the data by the maximum 333 
temperature in the dataset (since there were no sub-zero temperatures in the dataset). In general, the 334 
results were similar but the FCover ‘inland’ clusters (clusters 3 and 4 in Figure S2a) differed from the 335 
LST ‘inland’ clusters (clusters 2, 3 and 4 in Figure 2): there was no separation between the areas to 336 
the north and to the south of the Central System in the FCover clusters. While the vegetation cover is 337 
similar in both areas (Figure S3), the area to the north of the Central System, the Iberian Plateau, is 338 
located at a higher altitude than the area to the south. This cluster analysis is only used to group the 339 
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evaluation metrics. Therefore, it is not expected that a different clusters selection (as for example in 340 
Figure S2) would change the main interpretation of the results. 341 

 342 

Figure 2. Clusters determined by the K-Means Algorithm with Land Surface Temperature (LST) as 343 
input (top left) and the 2004-2015 mean diurnal cycle ( average in dots and Standard Deviation 344 
shaded) in each cluster for the satellite-LST (red), ERA5 (green) and ERA-Interim (blue). The number 345 
on the top left of each panel identifies the cluster number shown on the top left panel.  346 

Figures 3 shows the within-cluster distributions of the Tmax mean error, standard deviation of 347 
the error and root mean square error of the reanalysis and surface simulation. The results for Tmin 348 
are available in Figure S4 in the supplementary material. The Tmax Bias is consistently negative, and 349 
particularly high in the ‘inland’ clusters (clusters 2, 4 and 5, see Figure 2), with ERA-Interim showing 350 
slightly larger bias than ERA5 (Figure 3a). Both surface experiments have similar biases to ERA5, 351 
suggesting that the updates in the HTESSEL model (from ERA-Interim to ERA5) had a positive 352 
impact on LST, even if its atmospheric forcing is of lower quality (like in the case of the simulation 353 
forced by ERA-Interim, SEI). The Tmin Biases are generally lower than in Tmax (Figure S4a). Also 354 
for Tmin, the simulation forced by ERA5 (SE5) is systematically colder than ERA5 (about 1 K), while 355 
ERA-Interim and SEI are closer and with slightly smaller errors than ERA5.  356 

The Tmax standard deviation of the error (SDE) is around 2–3 K, with higher values in 357 
ERA-Interim and SEI (Figure 3b). This can explained by the better quality of the meteorology 358 
dynamics in ERA5 also present in SE5. The Tmin SDE (Figure S4b) is generally smaller than Tmax 359 
(with values between 1–2 K). The ‘inland’ clusters show a higher RMSE in Tmax (median above 4 K) 360 
(Figure 3c). ERA5 and both surface simulations have lower errors than ERA-Interim. The RMSE in 361 
Tmin (Figure 3c) is much lower than Tmax (median value within 1 K and 2 K). 362 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2019                   doi:10.20944/preprints201909.0268.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 2570; doi:10.3390/rs11212570

https://doi.org/10.20944/preprints201909.0268.v1
https://doi.org/10.3390/rs11212570


 10 of 21 

 

 363 

Figure 3. Within-cluster distributions LST Tmax mean error (a), standard deviation of the error (b) 364 
and root mean square error (c) in: ERA5 (E5), ERA-Interim (EI) and the simulations forced with E5 365 
(SE5) and EI (SEI). The red line indicates the median, the filled box represents the interquartile range 366 
(25th to 75th percentiles), the whiskers indicate the 10th and 90th percentiles, and the cross markers 367 
represent the outliers. The colors represent the clusters in Figure 2. The number above each boxplot is 368 
the median of that boxplot. 369 
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The temporal correlation shows very similar values among the four products, for both Tmax 370 
and Tmin (Figure 4 to Tmax and Figure S5 for Tmin). Still, it is interesting to notice that, for this 371 
metric, ERA-Interim and SEI have consistently better correlations than ERA5 and SE5 in Tmax, while 372 
for Tmin ERA5 outperforms ERA-Interim. The coarser (and therefore smoother) temporal and 373 
spatial resolution of ERA-Interim might explain these results, but it remains unclear why this is 374 
visible only for Tmax and not Tmin.   375 
 376 

 377 

Figure 4. As figure 3 but for Tmax temporal correlation.  378 

Although ERA5 exhibits better results than ERA-Interim overall (and SE5 in relation to SEI), the 379 
surface experiments show a lower performance in terms of Tmin (Figure 3b). The inconsistency in 380 
performance between the offline simulations and the original reanalysis for the Tmin mean error 381 
and SDE is likely related to the representation of stable conditions in the offline model which do not 382 
reproduce exactly the coupled system. In the coupled model the vertical diffusion in the atmosphere 383 
has an internal half-timestep for numerical stability which is not performed in the offline model. 384 
This might introduce numerical differences which are more evident in stable conditions associated 385 
with the computation of the turbulent exchange coefficients. Despite these differences, our results 386 
show that the offline simulations reproduce very closely the reanalysis and can therefore be used to 387 
investigate potential sources of the errors in ERA5 with a much lower computational cost. 388 

In Figure 5 the Tmax RMSE are represented for the whole domain (and in Figure S6 the Tmin 389 
RMSE). The zones with higher Tmax RMSE are similar among the four products, comprising the 390 
South-West Iberian region and the Northern Iberian Plateau, where the RMSE reaches values above 391 
8 or even 10 K in a vast number of grid points. The Tmin RMSE is overall higher in mountainous 392 
regions although the zones with higher RMSE differ in each product.  393 

Our results are consistent with previous studies [7,8,29], showing a strong daytime 394 
underestimation and a weak night-time overestimation of LST in the summer, especially in 395 
semi-arid regions. However, our detailed analysis highlights that the daytime errors are not spatially 396 
consistent, with some areas in central south Iberia showing much larger errors. Figure 6 displays 397 
individual gridpoint mean temperature errors against the respective differences between ERA5 and 398 
CGLS-FCover, revealing a negative correlation (-0.45) between the two (Figure S3 shows the 399 
CGLS-FCover and ERA5 TVC). These results suggest that the large systematic underestimation of 400 
daytime LST can be partially attributed to an overestimation of total vegetation cover in ERA5. This 401 
overestimation of vegetation will be reflected in a higher coupling between the skin layer and the 402 
atmosphere via turbulent exchanges (higher roughness). This stronger coupling limits the model 403 
ability to represent very high daytime LST. In the following section, several sensitivity simulations 404 
are examined to further investigate the role of vegetation cover in these large Tmax errors.  405 
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 406 

Figure 5. Tmax Root Mean Square Error (K) in: ERA5 (a), ERA-Interim (b) and the simulations forced 407 
with ERA5 (c) and ERA-Interim (d).  408 

 409 

Figure 6. Tmax Mean Error (K) in ERA5 as function of the difference between CGLS-FCover and 410 
ERA5 Total Vegetation Cover (TVC). The colours represent the clusters in Figure 2. The diamond 411 
marker represents the median value of each cluster. 412 

3.2 Sensitivity experiments 413 

3.2.1 Vegetation cover 414 

The original and revised (derived from ESA-CCI) CVL and CVH in the Southern Portugal 415 
domain (see Figure S1) is presented in Table 3, and we determined the associated TVC using 416 
Equation 1. In all points, the dominant high vegetation type is ‘Interrupted Forest’ while the 417 
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dominant low vegetation type is ‘Evergreen Shrubs’, with most of the grid point covered by high 418 
vegetation (CVH>0.80 except for the NW point). The percentage of valid data (cloud free) in the 419 
domain in the summer of 2010 varied between 0.70 and 0.73, which is similar to the 2004-2015 JJA 420 
mean in Figure 1.  421 

Table 3. Revised and original (between brackets) vegetation parameters in in the four points domain 422 
in Southern Portugal. CVL and CVH identify the low and high vegetation grid fraction, IFS TVC is 423 

the derived Total Vegetation cover (using the cveg in Table 1 and Equation 1) and the CGLS FCover 424 
the fraction of green vegetation from the Copernicus Global land Service.  425 

Point CVL CVH IFS TVC CGLS FCover 
NW 0.87 (0.40) 0.13 (0.51) 0.55 (0.66) 0.42 
NE 0.89 (0.07) 0.08 (0.93) 0.52 (0.87) 0.41 
SW 0.89 (0.01) 0.10 (0.99) 0.54 (0.89) 0.47 
SE 0.85 (0.17) 0.12 (0.81) 0.53 (0.81) 0.40 

 426 
The model LST is a weighted average of the different tiles. To further investigate each tile 427 

behavior, in Figure 7 we compare the mean diurnal cycle of LST given by each of the models active 428 
tiles (low vegetation, high vegetation and bare ground) as well as the underlying soil temperature 429 
and overlying forcing air temperature. The LST diurnal cycle in the summer of 2010 of the control 430 
simulation presents strong cold biases during the day and weak warm biases at night (Figure 7). The 431 
NE and SW points have the warmest satellite-LST diurnal cycles while the NW and SE points have 432 
the warmest ‘control’ LST diurnal cycles. As a result, the NW point (where the HTESSEL-TVC is 433 
much lower (0.66) with respect to the remaining points) shows the best approximation of the model 434 
simulation to the satellite observations (with a negative bias of 4.5 K at 12 UTC). It is also the only 435 
point where the bare ground LST (the warmest LST) comes very close to the satellite-LST. The high 436 
vegetation tile LST is very similar to the control LST in all the points while the low vegetation LST 437 
has the lowest values, which is attributed to CVH and CVL having values close to one and zero, 438 
respectively. The control LST diurnal cycle presents a slight phase difference in relation to the 439 
satellite-LST during the day, taking longer to warm in the morning and to cool down in the 440 
afternoon. 441 

 442 
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Figure 7. Mean diurnal cycle of temperature (2010 Summer) in the 4 points of the Southern Portugal 443 
domain comparing the satellite LST (red), and the LST in the control simulation (green), and control 444 
with 9 soil layers (dashed green). The control tile temperatures of low vegetation (blue), high 445 
vegetation (cyan) and bare ground (black) are also represented along with the air temperature at 10 446 
m height used to drive the model (magenta) and simulated first soil layer temperature (stl1, brown).  447 

Air temperature is very similar in all the points, with lower values than the LST during the day 448 
and slightly higher values at night (Figure 7). The first soil layer temperature is highest in the NW 449 
point (where the control LST is also highest) and follows a similar diurnal cycle to the air 450 
temperature, but with higher temperatures overall. The 9 soil layers experiment (9L) did not 451 
changed significantly the control LST (dashed green line), leading to a bias decrease of ~ 0.5 K, but it 452 
shows a reasonable variation in the first soil layer temperature (dashed brown line). In the 9L 453 
simulation, the first soil layer only has 1 cm while the control has 7 cm, resulting in a reduction of the 454 
thermal inertia in 9L with a faster warming (dashed versus solid brown lines in Figure 7).  455 

The results of the sensitivity simulations (see table 2) are presented in the supplementary 456 
information in Figure S7. The two experiments with CGLS-FCover used as TVC in the model (nlveg 457 
and nhveg) present a diurnal cycle closer to the satellite observations, in particular the nlveg 458 
simulation, suggesting that TVC should be reduced. The sensitivity simulations with the original 459 
model parameters (bare, lveg and hveg) provide a similar conclusion as well: the bare and lveg (the 460 
hveg and control) simulations are very similar to each other due to CVL (CVH) being close to zero 461 
(one) in all the points except for the NW one, with all experiments remaining distant to the 462 
satellite-LST.  463 

The revised vegetation using ESA-CCI shows a stark contrast to the original model vegetation 464 
(see table 3). Overall, the TVC is much lower (~ 0.53) and the grid points are covered mostly by low 465 
vegetation (CVL>0.85) when using the ESA-CCI dataset. When comparing HTESSEL’s revised TVC 466 
to CGLS-FCover, even though CGLS is lower in all the grid points they are closer to each other than 467 
to the default HTESSEL TVC. These results follow the preliminary findings with the sensitivity 468 
experiments. It is worth nothing that the sensitivity experiments (nlveg/nhveg) only used 469 
information from CGLS-Fcover.  470 

The revised vegetation from ESA-CCI (Figure 8) has a positive impact on LST. During daytime, 471 
the LST becomes very close to the satellite-LST, with a negative bias below 2 K at 12 UTC in all the 472 
points, except the NE one. This latter grid box contains the largest urban area (the city of Evora, see 473 
Figure A1) amongst the four considered here, which very likely explains the high satellite Tmax 474 
value and the largest deviations between the revised simulation and satellite temperatures. The bias 475 
becomes positive in the afternoon (but with an absolute value lower than in the control simulation), 476 
as the simulation continues to show a phase difference in relation to the satellite-LST. At night, the 477 
impact is negligible. Parallel to the control simulation, the soil discretization scheme produced a 478 
slightly positive effect in the revised simulation, reducing the bias at night by 0.5–1 K and at midday 479 
by ~ 1 K (Figure 8). These results show that vegetation cover dominates over the soil vertical 480 
discretization in terms of addressing the large LST biases. 481 
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 482 

Figure 8. Mean diurnal cycle of temperature (2010 Summer) in the 4 points of the Southern Portugal 483 
domain comparing the satellite LST (red), and the LST in the control simulation (green), and control 484 
with 9 soil layers (dashed green) with the simulation using ESA-CCI vegetation cover (revised in 485 
yellow, and with the 9 soil layers dashed yellow). 486 

To further understand the changes in LST arising from the vegetation cover changes, we focus 487 
on the diurnal cycle of the surface energy balance. The components of the surface energy balance of 488 
the control simulation are represented in Figure S8. Not surprisingly, the surface receives mainly 489 
shortwave radiation (SWnet > 0) and emits mainly longwave radiation (LWnet < 0). The sensible 490 
(Qh) and latent (Qle) heat fluxes are mostly negative (the heat and moisture transports happen from 491 
the ground to the atmosphere), with Qh being slightly positive at night (the heat transport is towards 492 
the ground, see also air temperature and soil temperature mean diurnal cycles in Figure 7). The net 493 
flux (NET) is positive during the day (the surface warms – energy sink of the atmosphere) and 494 
negative at night (the surface cools down – energy source to the atmosphere). 495 

A comparison between the energy components of the control and the revised simulations is 496 
available in Figure 9. Longwave upward radiation (LWup) becomes more negative (the surface 497 
emits more radiation) in the revised simulation, because LWup follows the Stefan-Boltzmann’s Law 498 
and LST is higher in the revised simulation. The opposite happens to Qh, as it becomes less negative 499 
(less transport of heat from the surface). Since the absolute value of Qh decreases, despite the 500 
increased gradient between air the skin, it means that the changes in the turbulent transfer 501 
coefficients CH (in this case, a decrease) impacts Qh more than the increase in LST. CH depends on z0m 502 
and z0h and these two parameters have lower values in “Evergreen shrubs” than in “Interrupted 503 
forest” (Table 1). The TVL is dominant over TVH in the revised vegetation which explains the 504 
decrease in value of CH when compared to the original vegetation. The Qle from the surface rises in 505 
the revised simulation. The LST increase results in an exponential increase of the vapor pressure at 506 
saturation (computed using the model LST) due to the Clausius-Clapeyron relation, which in turn 507 
leads to an increase of Qle. The net flux diurnal cycle amplitude increases with increased storage 508 
during the day and latter release at nighttime.  509 
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 510 
Figure 9. Components of the surface energy balance at the surface in the control (solid lines) and 511 
revised (dashed lines) simulations. Longwave upward radiation (LWup, blue), sensible heat flux 512 
(Qh, cyan), latent heat flux (Qle, green) and the surface net flux (NET=SWnet+LWnet+Qh+Qle, solid 513 
red). The fluxes sign conventions indicate fluxes to the surface as positive and fluxes leaving the 514 
surface as negative. The downward and net solar radiation (SWdown, SWnet) and longwave 515 
downward radiation (LWdown) are identical in both simulations and are represented in Figure S8 516 

3.2.2 Vegetation type 517 

In the previous analysis, only vegetation cover was considered, keeping the vegetation types as 518 
in the original IFS. In the selected 4 grid-points the low vegetation type in HTESSEL is “Evergreen 519 
Shrubs” while in ESA-CCI’s PFTs is “Managed Grass” (see Figure S9 for a comparison of the 520 
vegetation types between IFS and ESA-CCI). Since IFS does not have a one to one relation with 521 
ESA-CCI’s cross-walking table PFTs it was decided to keep the original vegetation types. With the 522 
vegetation from ESA-CCI the dominant cover is low vegetation. To further investigate the role of 523 
vegetation type, several simulations were performed changing the default low vegetation type 524 
(“Evergreen Shrubs”) to all other low vegetation types available in IFS. These changes did not 525 
improve the diurnal cycle of LST, with the original type performing better (see Figure S10). These 526 
results can be partially explained by the cveg used in HTESSEL for “Evergreen Shrubs” (0.5, see 527 
Table 1) which is lower than the cveg of the remaining TVLs. This results in an increase of TVC when 528 
changing the TVL to another type. The TVH in HTESSEL is “Interrupted Forest” and in ESA-CCI is 529 
“Tree Broadleaf Deciduous” (Figure A6). In this case the cveg parameter would be the same, but 530 
with changes in the roughness lengths. In addition to the differences in cveg, the momentum and 531 
heath roughness lengths also change when changing the type of low vegetation.  532 

The tests to the type of low vegetation indicates that the good performance of the revised 533 
simulation on these 4 points is also due to the underlying type of vegetation in IFS, which does not 534 
match ESA-CCI. These results suggest the potential role of the cveg parameter, associated with each 535 
vegetation type, acting directly on the TVC with impacts on the simulated LST. This motivated a 536 
more detailed sensitivity analysis to cveg, as explained in section 2.2. In Figure 10a, the perturbations 537 
with lower errors have very low values in the high vegetation cveg and the perturbations with 538 
higher cveg show a consistent underestimation of Tmax, which indicates once more that the original 539 
CVH in the model was too high. The low vegetation cveg can take nearly any value since its 540 
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influence in the LST is reduced due to the low CVL in the original model vegetation. The sensitivity 541 
of the cveg parameter for the original CVL and CVH shows no correlation between the TVC and 542 
Tmax mean error (Figure 10c), as the same TVC leads to different values of Tmax errors. 543 

 544 

Figure 10.  Vegetation density (cveg) 100 perturbation pairs (high vegetation x-axis, low vegetation 545 
y-axis) and associated Tmax mean error (K) of the (a) original and (b) revised vegetation cover using 546 
ESA-CCI. The cross marks the best pair (with Tmax bias closer to zero). Scatterplots of the Tmax 547 
mean error (y-axis; K) as function of the total vegetation cover (TVC) (x-axis) of the 100 548 
perturbations: with the (c) original and (d) revised vegetation cover using CCI. The blue cross marks 549 
the best perturbation (with Tmax Mean Error closer to zero). The vertical lines indicate the TVC in 550 
control (green), reviser (yellow) and CGLS-Fcover (cyan). The 4 sub-panels in each panel denote the 4 551 
grid-points in the domain.  552 

The sensitivity study applied to the cveg parameter for the revised CVL and CVH presents a 553 
considerable correlation between the TVC and Tmax mean error (Figure 10d). In all 4 points the TVC 554 
with lower errors is very close to the CGLS-FCover. In Figure 10b, the perturbations with lower 555 
errors have, in general, values of low vegetation cveg between 0.4 and 0.6 (except for the NE point, 556 
which was the point that contained Évora City), which are similar to the original TVL’s cveg of 0.5. 557 
The high vegetation cveg can practically take any value because, like CVL in the original vegetation, 558 
the CVH in the revised vegetation is small.  559 

These results further highlight the importance of the representation of vegetation in the IFS, 560 
showing a reasonable correlation between cveg and the Tmax bias with the revised model 561 
vegetation, while no correlation is discernible when considering the original model vegetation. 562 
These results might explain why past studies that identified the LST Tmax bias in ECMWF products 563 
[7,8] did not clearly identified vegetation cover as a plausible cause of the errors.  564 

4. Conclusions 565 

The main goal of this study was to evaluate the LST of two ECMWF reanalysis (ERA-Interim 566 
and ERA5) using satellite-LST over the Iberian Peninsula. We found a general underestimation of 567 
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daytime LST and slightly overestimation at night-time. In line with previous studies, the results 568 
indicate that there is still room for improvement in the simulation of LST in ECMWF products. Still, 569 
ERA5 presents an overall higher quality product in relation to ERA-Interim. Our analysis suggested 570 
some relation between the large daytime cold bias and vegetation cover. These results motivated a 571 
more detailed evaluation of offline simulation with the ECMWF land-surface model HTESSEL. 572 
These simulations were driven by ERA5, and despite some differences, reproduced very closely the 573 
main errors in ERA5.  574 

Focusing on a small domain in Southern Portugal, several sensitivity simulation were 575 
performed to investigate the role of vegetation cover and the vegetation density parameter on the 576 
LST errors. The replacement of the low and high vegetation cover by those of ESA-CCI provided an 577 
overall reduction of the large Tmax biases. The increased vertical resolution of the soil at the surface, 578 
has a positive impact, but much smaller when compared with the vegetation changes. The 579 
sensitivity of the vegetation density parameter, that currently depends on the vegetation type, 580 
provided further proof for a needed revision of the vegetation in the model, as there is a reasonable 581 
correlation between this parameter and the Tmax mean errors with the revised model vegetation 582 
(while the same correlation cannot be reproduced with the original model vegetation). 583 

Despite the overall consistency of our results, this study has several limitations. Although the 584 
new vegetation cover leads to improved LST results, the vegetation types of the ESA-CCI dataset is 585 
not a direct match to the model and experimenting with different vegetation types translates to 586 
poorer results, which are due to the vegetation density parameter. The phase difference and the 587 
nighttime bias observed in the LST mean diurnal cycle remain after applying the changes in 588 
vegetation and soil discretization. We only performed uncoupled simulations to assess the impact of 589 
surface parameters in the simulation of LST. It is important to study the effect of these vegetation 590 
changes in coupled simulations as well. Additionally, due to the satellite LST relying on IR 591 
measurements, the LST is only assessed in clear sky weather conditions and, therefore, conclusions 592 
may be somehow limited. Nevertheless, using clear-sky observations allows focusing the analysis on 593 
the deficiencies of the representation of surface parameters, as there are less variables to be 594 
accounted for in the surface energy balance (such as clouds and precipitation). Furthermore, changes 595 
in vegetation cover impact the water budget (which was not assessed) and induce changes in other 596 
seasons. The reduced satellite LST availability in the rest of the year and the lack of other 597 
observations (e.g. fluxes, soil temperature, soil moisture) limit further diagnostics.  598 

Our results suggest that vegetation cover is the main contributor to the large daytime biases in 599 
LST over Iberia, motivating the need to review the treatment of vegetation cover over the Iberian 600 
Peninsula (and most likely over other regions, which have similar climate and phenology), namely 601 
the fraction of low and high vegetation cover in each grid point. Likewise, the definition of the 602 
different types of low and high vegetation in the HTESSEL and the associated vegetation density 603 
parameter and roughness lengths for momentum and heat might also need to be revised. However, 604 
we also found a clear problem of equifinality between low and high vegetation cover and the 605 
vegetation density parameter, which is challenging for parameters optimization Furthermore, the 606 
current assumption of a constant vegetation density might be also a limitation for not accounting for 607 
vegetation cover seasonality [40].  608 

The uncoupled simulations allowed us to assess the influence of surface parameters in the LST 609 
simulation and the surface energy balance components by varying the value of those parameters 610 
(since other factors like the atmospheric variables remain the same in every experiment). Still, it is 611 
important to mention that applying these changes in surface parameters in coupled atmosphere 612 
simulations might result in a less positive impact in the simulation of LST, due to feedback processes 613 
associated with the atmospheric coupling. In particular, the vegetation cover changes will impact the 614 
momentum, heat and moisture exchanges via the changes in roughness lengths.  615 

Finally, it is worth mentioning that model assessments, together with potential revision of 616 
model parameters, such as those performed here, are only possible due to the availability of high 617 
quality (in terms of their accuracy, temporal span and resolution, and of their spatial sampling) 618 
satellite retrieved datasets of Essential Climate Variables. Although variables such as Land Cover 619 
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and Vegetation Cover have long demonstrated their added value for model development activities, 620 
this study clearly shows that Land Surface Temperature can also be used to physically constrain 621 
land surface models, which are a key component of Earth System Models. 622 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1 to Figure 623 
S10.  624 
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