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 15 

Abstract: In this paper, we proposed a high accurate and stable Legendre transform algorithm 16 
which can reduce the potential instability for very high order at a very small increase in the 17 
computational time. The error analysis of interpolative decomposition for Legendre transform is 18 
presented. By employing block partitioning of Legendre-Vandermonde matrix and butterfly 19 
algorithm, a new Legendre transform algorithm with computational complexity 20 
O(N(logN)2/loglogN) in theory and less than O(Nlog4N) in practical application is obtained. 21 
Numerical results are provided to demonstrate the efficiency and numerical stability of the new 22 
algorithm. 23 

Keywords: Legendre transform; block partitioning; interpolative decomposition; butterfly 24 
algorithm 25 

 26 

1. Introduction 27 

Legendre transform (LT) plays an important part in many scientific applications, such as 28 
astrophysical, numerical weather prediction and climate models. Fast Legendre transform attracts 29 
considerable interest amongst the scientific computing and numerical simulation. Scientists have 30 
paid very serious attention to develop fast Legendre transform algorithms [1-8]. The validity and 31 
reliability of these algorithms depend on whether they can keep both fast, stable and high accuracy.  32 

Due to its numerical stability, low computational complexity and high accuracy, Tygert’s 33 
algorithm (2010) [8] has been successfully implemented in IFS of ECMWF [9], YHGSM [10-12] of 34 
NUDT [13] and astrophysical [14]. In the applications of numerical weather prediction and climate 35 
models, which need many times SHT in each time step, only once precomputation is needed in first 36 
time step, then the results are stored in memory and reused in each transform. Though Tygert’s 37 
algorithm (2010) is slow in terms of precomputation: O(N2) for LT and O(N3) for SHT, it doesn't have 38 
much impact on total performance. However, some unsolved issues still remain. The main issue is 39 
potential instability of interpolative decomposition (ID) [15] for very high order Legendre transform. 40 
Although, Tygert [8] points out that the reason why the butterfly procedure works so well for 41 
associated Legendre functions may be is that the associated transforms nearly weighted averages of 42 
Fourier integral operators. There are no literatures to prove that the pre-computations will compress 43 
the appropriate n×n matrix enough to enable application of the matrix to vectors using only O(NlogN) 44 
floating-point operations(flops). Full numerical stability has been demonstrated both empirically and 45 
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theoretically for FFT using butterfly algorithm. It is difficult to give complete and rigorous proofs of 46 
interpolative decomposition for Legendre transform as Fourier transform.  47 

Non-oscillatory phase functions method opens up new avenues for special function transforms. 48 
The solutions of some kinds of second order differential equations can be accurately represented by 49 
non-oscillatory phase functions [16,17]. It has been proved that Legendre's differential equation [18] 50 
and its generalization Jacobi's differential equation [19] admit a non-oscillatory phase function. So 51 
non-oscillatory phase functions can be used to the expansions [19], the calculation of the roots [20] 52 
and transform [21] of special functions. Jacobi transform by non-oscillatory phase functions shows 53 
an optimal computational complexity O(Nlog2(N)/loglogN) in reference [21]. However, Legendre 54 
transform algorithm in ButterflyLab (https://github.com/ButterflyLab/ButterflyLab), which adopts 55 
interpolative butterfly factorization (IBF) [22, 23] and non-oscillatory phase functions method to 56 
evaluate the Legendre polynomials [21], does not show high accuracy as Fourier transform using IBF. 57 
So, Fast Legendre transform (FLT) based on IBF and non-oscillatory phase functions and its extension 58 
to the associated Legendre functions needs further study.  59 

Recently, fast Legendre transform algorithm based on FFT deserved more attentions for its 60 
optimal computational complexity O(Nlog2(N)/loglogN). Hale and Townsend [24] firstly presented a 61 
fast Chebyshev-Legendre transform, and then developed a non-uniform discrete cosine transform 62 
which use a Taylor series expansion for Chebyshev polynomials about equally-spaced points in the 63 
frequency domain. Finally, Hale and Townsend [25] got an O(N(logN)2/loglogN) Legendre transform 64 
algorithm. Soon, fast polynomial transforms [26] based on Toeplitz and Hankel matrices was 65 
presented to accelerate the Chebyshev-Legendre transform. Although FFT-based LT has the 66 
attractive computational complexity, it needs too many times FFT which makes FFT-based LT only 67 
become more computationally efficient than LT using Dgemv when N is greater than or equal to 5000. 68 
Because the computation of associated-Legendre-Vandermonde matrices is completed in pre-69 
computation step, it will become worse on the occasion of multiple use of FLT such as NWP, in which 70 
only once computation of associated-Legendre-Vandermonde matrices is needed for many times 71 
spectral harmonic transform (SHT). 72 

Motivated and inspired by the ongoing research in these areas, we present a theoretical method 73 
to analyze the error of LT using butterfly algorithm, and then provide a numerically stability 74 
Legendre transform algorithm based on block partitioning and butterfly algorithm. The novel aspect 75 
is the mitigation of the potential instability of LT using butterfly algorithm at a very small increase of 76 
computational cost. 77 

2. Mathematical preliminaries 78 

In this section, we introduce the theorem that Legendre polynomials on equally-spaced grid can 79 
be expressed as a weighted linear combination of Chebyshev polynomials, and a partitioning of 80 

Legendre-Vandermonde matrix ( )N

cheb

NxP ( ( )cos
cheb cheb

N Nx x = = ). For more details, see reference 81 

[24,25]. 82 
According to Stieltjes’s theory [27], Legendre polynomials can be expressed as following 83 

asymptotic formula when n →  84 

( )
( )

( )
1

, ,1 2
0

1 1
cos

2 2 2
cos

2sin

M

n n m n M nm
m

m n m

P C h R




 


−

+
=

    
+ + − +    

    
= + ,           (1) 85 

where 1cos x −= , ( )0,   and 86 

( )

( )1

14 4

1 2 3 2

n

n

j

nj
C

j n =

 +
= =

+  +
 ,                         (2) 87 

( )

( )

2

,

1

1, 0,

1 2
, 0.

1 2

mm n

j

m

h j
m

j n j=

=


= −


+ +


                          (3) 88 

The error term in Eq. (1) can be bounded by 89 
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Hale and Townsend [22] rewrote Eq. (1) as a weighted linear combination of Chebyshev 91 
polynomials 92 
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with ( ) ( )cos cosnT n = , ( ) ( )sin sinnT n =  and 94 
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Let ( )cosleg leg

k kx =  and 
0 1, ,leg leg

N  −L  are the transformed Legendre nodes, Eq. (5) can be written 96 

as  97 
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3 Error analysis of Legendre transform using butterfly algorithm 99 

The transformed Legendre nodes 
0 1, ,leg leg

N  −L  can be seen as a perturbation of an equally-100 

spaced grid 
0 1, , N  

−L , i.e 101 
* , 0 1leg

k k k k N  = +   − ,                             (8) 102 

and then approximate each ( )cosleg leg

k kx n=  term by a truncated Taylor series expansion about *

k . If 103 

k
 
is small then only a few terms in the Taylor expansion are required. 104 

The Taylor series expansion of ( )( ) ( )( )cos cosnT n   + = +  about  0,   can be 105 

expressed as 106 
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Similarly ( )( ) ( )( )sin sinnT n   + = +  about  0,   can be expressed as 110 
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Substituting *

k for   in Eq. (5), one can get 114 
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The Taylor series expansion of ( )( )cos leg

n kP   about k
  can be expressed as 116 
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According to Eq. (13), ( ) ( )( )cos
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Substituting Eq. (15) into Eq. (14), one can obtain 120 
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Similarly, we have 126 
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Substituting Eq. (17) to Eq. (20) into Eq. (16), one can get 130 
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By truncating the second term in the right hand side of Eq. (19), it can be approximated as 134 
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Eq. (24) can be expressed in the following compact form 138 
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0 0

1 1

, ,

0 0

sin , cos

sin , sin

cos , cos

M M
leg leg

n n m n m k n k n n m n m k n k

m m

M M

ns n m n m k n k ns n m n m k n k

m m

M M

nc n m n m k n k nc n m n m k n k

m m

U C h u T V C h v T

U C h u T V C h v T

U C h u T V C h v T

   

   

   

− −
 

= =

− −
   

= =

− −
   

= =

= =

= =

= =

 

 

 

.         (26) 141 

So, the computation of Legendre-Vandermonde matrix can be written as 142 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( )

1

2 2
N N N c s

1

2 2
s c

total

1 1
!

1 1
!

l
lL l

kleg

N

l odd

l
lL l

k

l even

n
x

l

n

l





+  
  

    

+  
  

    

 
= + + − + − 

 

 
+ − + − 

 

+





P U V U V

U V

R

.                  (27) 143 
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The numerical stability of ID can be analyzed by Eq. (27). Since the butterfly algorithm works 144 
well for equispaced Fourier series, Legendre transform using butterfly algorithm is numerical 145 

stability with the error of totalR . When L tends to infinity, the error is ( ),

leg

M n kR  . 146 

LEMMA 1: For any 1L   and 0n  [25] 147 

 
( )( ) ( ) ( )

( ) ( )1

, ,
0,

0

: max cos cos
! !

Ll
L

l

L n

l

n
R n n

l L


 


  

−


=

= + −  .            (28) 148 

LEMMA 2: For any 1L   and 0n  , the error bound of Eq. (22) is  149 

( )

( ) ( )

,

1 1

2 2

2 1

!
2sin 2sin

L

kn M n

M M
cheb leg

k k

nC h
R

L



 
+ +

 
 

 + 
 
 

,                 (29) 150 

Proof. 151 

( )
( )

( ) ( ) ( ) ( )( )
( )

( )
( ) ( ) ( ) ( )( )

( )

( )

1 1

2
, , , ,

0 0

1

,

0

, 1 2

1
!

!

2

!2sin

k

l
lL M

k

M L n n m n m k l k m k l k

l m

L
M

k

n m n m k l k m k l k

m

L

k

n M n M

k

n
R C h u n v n

l

n
C h u n v n

L

n
C h

L




   


   





+  −
     
  

= =

−
   

=

+


= −  + 

  + 



 

        (30) 152 

Finally, one can get the total upper error bound  153 

( )
( )

( ) ( )

,

, , , , 1 1

2 2

2 1

!
2sin 2sin

k

L

kn M nleg

M L n M n k
M M

cheb leg

k k

nC h
R R R

L





 
+ +

 
 

= +  + 
 
 

.          (31) 154 

4 Block partitioning of the Legendre-Vandermonde matrix 155 

It can be found that the matrix ( )N

leg

NxP  can be considered as a perturbation of matrix ( )N

cheb

NxP  156 

from Eq. (24). The block partitioning of ( )N

leg

NxP  can be performed by using the same method as 157 

( )N

cheb

NxP  in the paper of Hale and Townsend [24]. So the matrix ( )N

leg

NxP  is partitioned as 158 

( ) ( ) ( ) ( )REC

N N N

1

K
kleg leg leg

N N N

k

x x x
=

= +P P P .                            (32) 159 

This partitioning separates the matrix ( )N

leg

NxP  into block ( )REC

N

leg

NxP  and K sub-matrices 160 

( ) ( )N

k leg

NxP . Block ( )REC

N

leg

NxP  contains the columns and rows of ( )N

leg

NxP  which can’t be computed 161 

by using Eq. (24).  162 

( )

( ) ( )

( )

N

REC

N N

, 1 min , 1 ,

, 1 ,

0,

leg

N Mij

leg leg

N N Mij ij

x i N i j

x x j n

otherwsie

  − + 



=  




P

P P ,                    (33) 163 

where 164 

( )

( )

1
3 2 1

2
11

2 4 1 2

M

M

M
n

M




−

+

 
  + 

=     +   

,                                  (34) 165 

and 166 
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11
sin M

M

nN
j

N

− +  
=   

  
,                                  (35) 167 

( ) ( )
( ) 1

N

N

, ,

0,

leg k k

N k kk leg ij
N ij

x i i N j N j N
x

otherwsie

  −   −  
= 


P
P ,                (36) 168 

where ( )1 logO N =  and 11
sin M

k k

nN
i

N 

− +  
=   

  
. 169 

( ) ( ) ( ) ( )REC

N N N

1

K
kleg leg leg leg leg leg

N N N N N N

k

x c x c x c
=

= +P P P ,                   (37) 170 

Nonzero entries of ( ) ( )N

k leg

NxP  can be accurately expressed by the asymptotic formula which means 171 

that the butterfly compression to ( ) ( )N

k leg

NxP  is stable and accurate. The matrix-vector product 172 

( ) ( )N

k leg leg

N Nx cP  can be evaluated by the butterfly algorithm, so ( ) ( )N

1

K
k leg leg

N N

k

x c
=

P  can be computed in 173 

( )logO KN N  operations. By restricting ( )REC

N

leg

NxP  has fewer than ( )logO KN N  nonzero entries, 174 

the matrix-vector product ( )REC

N

leg leg

N Nx cP can be computed in ( )logO KN N  operations. Finally, the 175 

optimal computational cost is achieved. Let ( )min , 1m Mn n N= − , the parameters  and K  are 176 

defined as 177 

( )( )

( )

min 1 log ,1 2 , for small

1 log , for large

m

m

N n N

N n N



= 


 178 

and ( )log log logK O N N= , respectively. In the practical application, only parameters N ,
mn ,  and 179 

K  are used to obtain information such as starting row/column index and offset for all blocks. 180 
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Figure 1. Partitioning of the Legendre-Vandermonde matrix for N=1024 (in which matrix B is the 182 
boundary parts can’t be accurately expressed by the asymptotic formula while matrix P is the internal 183 
parts can. There are 2(K+1) sub-matrices of B and 2K sub-matrices of P. According to the symmetric 184 
or anti-symmetric property of Legendre polynomials, we only need to consider K+1 sub-matrices of 185 
B and K sub-matrices of P on top). 186 

Figure 1 shows the partitioning of the Legendre-Vandermonde matrix for N=1024. The 187 
Legendre-Vandermonde matrix is divided into boundary (denoted by symbol B) and internal 188 
(denoted by symbol P) parts. The boundary parts include the elements which can’t be accurately 189 
expressed by the asymptotic formula. There are 2(K+1) sub-matrices of B and 2K sub-matrices of P. 190 
According to the symmetric or anti-symmetric property of Legendre polynomials, only K+1 sub-191 
matrices of B and K sub-matrices of P on the top are used. Table 1 presents a summary of Legendre 192 
transform algorithm using block butterfly algorithm. Direct computation part and butterfly 193 

multiplication part is cost ( )logO KN N  operations, respectively.  194 

Table 1. Pseudocode for Legendre transform using block butterfly algorithm. 195 

Block Butterfly Algorithm For Legendre Transform 

Input N  and leg

Nc  to compute ( )N

leg leg leg

N N Nv x c= P  

Pre-computation Part 

Block Partitioning: 1 2 k+1

top top top, , ,B B BL  and 1 2 k

top top top, , ,P P PL  

extract symmetric part 1 2 k+1

tops tops tops, , ,B B BL , 1 2 k

tops tops tops, , ,P P PL  and anti-symmetric part 
1 2 k+1

topa topa topa, , ,B B BL 1 2 k

topa topa topa, , ,P P PL  

for i=1,2,…,k 

call butterfly_compression(
tops

i
P )  ! Symmetric Part 

call butterfly_compression(
topa

i
P )  ! Anti-Symmetric Part 

end for 

Direct Computation Part: 

for i=1,2,…,k+1 

call dgemv( tops

i
B )  ! Symmetric Part 

call dgemv( topa

i
B )  ! Anti-Symmetric Part 

end for 

Butterfly Multiplication Part: 

for i=1,2,…,k 

call butterfly_multiply()  ! Symmetric Part 

call butterfly_multiply()  ! Anti-Symmetric Part 

end for 

Combine the results of symmetric and anti-symmetric part to get leg

Nv  

 196 
Parameters CMAX and EPS need for butterfly matrix compression are still needed in block 197 

butterfly algorithm. Cmax is the number of columns in each sub-matrix on level 0, EPS is desired 198 
precision in interpolative decomposition [13]. A dimensional thresh value DIMTHESH [13] is also 199 
needed in Legendre transform calls to activate FLT when wavenumber (m) less and equal to NSMAX-200 
2DIMTHESH+3 (NSMAX is truncation order). Block butterfly algorithm is equivalent to Tygert’s 201 
algorithm (2010) when no block partition is used, so two dimensional thresh values could be 202 
introduced to include Tygert’s algorithm (2010) and LT using DGEMM for further reducing the 203 
computational complexity. To facilitate comparison with Tygert’s algorithm, only one dimensional 204 
thresh value is used and set to 200 in the rest of the paper. 205 
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5. Results 206 

In this section, all tests are performed on the MilkyWay-2 super computer (see Liao et al. [28] for 207 
more details) which installed in NUDT. Each compute node possesses 64GB of memory. The CPU 208 
model name is Intel(R)Xeon(R) CPU E5-2692V2 @2.2GHz. A private 32KB L1 instruction cache, a 209 
32KB L1 data cache, a 256KB L2 cache, and a 30720KB L3 cache are used. ID software package 210 
developed by Martinsson et al. [29] for low rank approximation of matrices is employed to perform 211 
interpolative decompositions for all tests. ID package can be downloaded from Mark Tygert's 212 
homepage (http://tygert.com/software.html). 213 

Hereafter, LT using matrix-matrix multiplication, Tygert’s algorithm (2010) and block butterfly 214 
algorithm are named as LT0, LT1 and LT2, respectively. Furthermore, spherical harmonic transform 215 
(SHT) using LT0, LT1 and LT2 are noted as SHT0, SHT1 and SHT2, respectively. 216 

Figures 2, 3 and 4 show the errors of LT with CMAX=64 in log10 form for EPS=1.0E-05, EPS=1.0E-217 
07 and EPS=1.0E-10, respectively. It can be found that both maximum error and root-mean-square 218 
error of LT2 are improved by about one order magnitude than LT1. 219 

 220 

Figure 2. Errors of LT in log10 form with EPS=1.0E-05 and CMAX=64. 221 

 222 

Figure 3. Errors of LT in log10 form with EPS=1.0E-07 and CMAX=64. 223 
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 224 

Figure 4. Errors of LT in log10 form with EPS=1.0E-10 and CMAX=64. 225 

 226 

Figure 5. Computational time for different Legendre transform algorithms (LT0 is the algorithm using 227 
DGEMM, LT1 is the butterfly algorithm and LT2 is the proposed method, Unit: second). 228 
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 229 

Figure 6. Speedup of LT1 and LT2 with CMAX=64 compare to LT0. 230 

 231 

Figure 7. Loss speedup of LT2 with CMAX=64 compare to LT1. 232 

Figure 5 shows the computational time for different LT algorithms. The speedup and loss 233 
speedup of LT2 with CMAX=64 are demonstrated in Figure 6 and 7, respectively. From Figs 6 and 7, 234 
LT2 begins to show faster than LT0 when N=2048 and achieves more than 26%, 22%, 17% reduction 235 
in elapsed time for EPS=1.0E-5, EPS=1.0E-7 and EPS=1.0E-10. LT2 has achieved more than 17%, 63%, 236 
75% and 86% reduction in elapsed time for a run of N2048, N4096, N8192 and N16384, respectively. 237 
The loss of speedup is less than 21%, 11%, 7% and 4% for N=2048, 4096, 8192 and 16384, respectively. 238 
According to the results of Yin [13], the potential instability of interpolative decomposition only exists 239 
in the case of very high order. So the presented method can alleviate the potential instability of 240 
interpolative decomposition at a very small computational cost. 241 

Figures 8 and 9 show the computational time of LT scaled by Nlog3N and Nlog4N, respectively. 242 
The computational complexity of LT2 is less than O(Nlog4N) which appears to a little bigger. The 243 
boundary blocks which can’t be accurately expressed by the asymptotic formula and the internal 244 
blocks with dimension less that dimensional thresh value result in the increase of the computational 245 
complexity. 246 
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 247 

Figure 8. Computational time scaled by Nlog3N with CMAX=64. 248 

 249 

Figure 9. Computational time scaled by Nlog4N with CMAX=64. 250 

Legendre-Vandermond matrix is divided into boundary blocks and internal blocks. Boundary 251 
blocks which can’t be accurately expressed by the asymptotic formula cause instability of 252 
interpolative decompositions and are not suitable for interpolation decomposition. The matrix-vector 253 
multiplication based on butterfly algorithm is faster than BLAS function DGEMV only when the 254 
dimension of matrix is greater than or equal to 512. Internal blocks with lower matrix dimension 255 
adopt direct matrix-vector multiplication instead of butterfly algorithm. The number of nonzero 256 
elements of boundary blocks, internal blocks which do not participate in interpolation decomposition 257 
cause the increase of the computational cost compare to Tygert’s algorithm. Therefore, through 258 
reasonable partitioning, the theoretical computational complexity of the proposed method can reach 259 
the optimal computational complexity O(Nlog2(N)/loglogN). 260 

6. Conclusions 261 

In this paper, a high accurate and stable Legendre transform algorithm is proposed. A block 262 
partitioning based on asymptotic formula is employed to mitigate the potential instability of 263 
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Legendre transform using butterfly algorithm. The Legendre-Vandermonde matrix is divided into 264 

one block ( )REC

N

leg

NxP  and K sub-matrices ( ) ( )N

k leg

NxP . Instead of FFT method, butterfly algorithm is 265 

employed to compute ( ) ( )N

k leg leg

N Nx cP . Numerical results demonstrate that the proposed method 266 

improves stability by about one order magnitude than Tygert’s algorithm (2010) while only sacrifices 267 
less than 7% speedup for very high order (N≥4096) Legendre transform. 268 

Although the complexity of proposed method is a little greater than Tygert’s algorithm (2010), 269 
the proposed method is equivalent to Tygert’s algorithm (2010) when no block partition is used. In 270 
the application of NWP, an additional dimensional thresh value could be introduced to include 271 
Tygert’s algorithm (2010) for further reducing the computational complexity.  272 

In future, we will study more optimal block partition method to improve the computational 273 
performance while still keep stability and make a detail analysis about spectral harmonic transform 274 
using proposed method for very high resolution, especially its performance in the reduction of 275 
potential numerical instability for resolution T7999. 276 
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