

1 Article

2

"Shutdown" of the proton exchange channel 3 waveguide in the phase modulator under the 4 influence of the pyroelectric effect

5 **Ponomarev R.S.^{1,2,*}, Shevtsov D.I.¹ and Karnaushkin P.V.^{1,2}**6 ¹ Perm State National Research University, rsponomarev@gmail.com7 ² Perm Federal Research Center, Ural Branch of Russian Academy of Sciences, pavelkarn2@gmail.com

8 * Correspondence rsponomarev@gmail.com; Tel.: +7-922-315-1003

9

10 **Featured Application:** The results can have application in fiber optic gyroscopes to avoid the
11 breakdown during the fast heating of device.

12

13 **Abstract.** It is shown that the termination of the channeling of the fundamental radiation mode in
14 the waveguide can be observed upon heating of an optical integrated circuit based on proton
15 exchange channel waveguides formed in a lithium niobate single crystal. This process is reversible,
16 but restoration of waveguide performance takes tens of minutes. The effect of the waveguide
17 disappearance is observed upon rapid heating (5 °C/min) from a low temperature (minus 40 °C).
18 This effect can lead to a temporary failure of navigation systems using fiber optic gyroscopes with
19 modulators based on a lithium niobate crystal.20 **Keywords:** channel waveguide, proton exchange, fundamental mode, pyroelectric effect, mobile
21 charge, fiber optic gyroscope, phase modulator

22

23

1. Introduction

24 Optical integrated circuits based on a lithium niobate crystal are used in fiber optic gyroscopes
25 for phase modulation of a signal and in fiber trunk circuits for signal encoding at a frequency of up
26 to 100 GHz [1-2]. The main advantages of using a lithium niobate crystal are its wide transmission
27 window, high electro-optical coefficient r_{33} and the relative simplicity of creating waveguides [3]. The
28 disadvantages of the crystal include its complex structure and the variety of defects, as well as the
29 difference in the composition, structure and properties of the near-surface layers on crystals of
30 different manufacturers [4]. The waveguides of optical integrated circuits are formed by the ion
31 exchange method. As a rule, they either replace Li^+ ions with H^+ ions (proton exchange method), or
32 Nb^{5+} ions with Ti^{5+} ions (titanium diffusion method). The proton exchange method is somewhat
33 simpler, because it does not require heating the crystal above 350 °C [5].34 In this paper we studied the temperature behavior of phase signal modulators used in a fiber
35 optic gyroscope and constructed according to the scheme of Y-splitter. Temperature effects limit the
36 accuracy of fiber optic gyroscopes and affect their noise characteristics [6-8]. Phenomena of a similar
37 nature are observed in radiation intensity modulators of optic fiber transmission system [9-10].38 A model, in which charged defects in the matrix of lithium niobate can move near the waveguide,
39 was proposed to explain the observed drifts. In this model, the refractive index of the waveguide
40 changes due to the local electro-optical effect.41 The output power was used as the measurement signal, and the variable external temperature
42 in the temperature chamber was used as the effect.43

2. Experimental samples

44 The radiation phase modulators constructed according to the scheme of a Y-splitter with a
 45 division factor of 1/1 (Figure 1) were used as samples for research.

46
 47 **Figure 1.** Topology of the waveguides of the phase modulator

48 Optical channel waveguides were formed by the proton exchange method in benzoic acid,
 49 followed by annealing. The process was selected in such a way that the shape of the propagating
 50 beam and the numerical aperture of the waveguide maximally corresponded to the shape and
 51 aperture of the core of Panda-type optical fiber used to input and output radiation in this type of
 52 modulators. A lithium niobate of congruent composition (X-section) was used as the virgin crystal.
 53 In this case, the waveguides were located along the Y axis, and the external electric field corresponded
 54 to Z-direction. The length of the sample was 38 mm, 22 mm of which were in the straight-line portions
 55 of the waveguides.

56 Conductive graphite paste was applied on the side faces and on the lower surface of the samples
 57 in order to suppress the pyroelectric effect. The use of paste provided the closure of the polar faces
 58 of the crystal and the rapid relaxation of the pyroelectric surface charges that occur when the
 59 temperature of the crystal changes. Samples without conductive paste were used to study drift
 60 processes associated with the pyroelectric effect.

61 3. Experimental technique

62 The programmed precision temperature chamber Espec MC-711 was used to study the action of
 63 temperature on the output optical power. The temperature of the sample during the exposure was
 64 considered equal to the temperature of the air in the chamber, which was controlled using the
 65 embedded sensor. A sample in an open process container was placed in a heat chamber in the upper
 66 part of the working volume. The modulator chip was placed on an aluminum substrate in order to
 67 reduce the temperature gradient in the sample. The chip and the substrate were connected using a
 68 thin layer of silicone-based adhesive with high thermal conductivity.

69 The experimental assembly is shown in Figure 2.

70
 71 **Figure 2.** Scheme of the experimental assembly for optical measurements

72 The sample was connected to the radiation source and receiver by welding fiber optic light
 73 guides. The supply and return fiber optic light guides were brought out of the temperature chamber.

74 The construction of the chamber door excluded the bending and squeezing of fiber optic light guides
 75 during the experiment due to soft gaskets. The radiation source and receiver were located outside
 76 the chamber and were not exposed to variable temperature. A fiber laser with an output power of
 77 5 mW and a central wavelength of 1550 nm was used as a source of radiation.

78 The measurements were carried out both in constant temperature regime and with a change of
 79 temperature. During measurements, the time dependence of beam output power I_{out} was recorded.
 80 Santec PEM 330 optical power meters (Japan) were used to measure the output power I_{out} .

81 **4. Experimental results**

82 The results of measurement $I_{out}(t)$ for Y-splitter during temperature cycling of the sample and
 83 the action of the pyroelectric effect are presented in Figure 3, where the red and black curves
 84 correspond to the two arms of the Y-splitter, and the gray broken line corresponds to the temperature
 85 in the temperature chamber during the experiment. The range of temperature changes was 140 °C.

86
 87 **Figure 3.** The change in the output signal of the Y-splitter under the action of the pyroelectric effect.
 88 The rate of temperature increase is 0.16 °C/min

89 As can be seen from the presented figure, a sharp drop in the output optical power is observed
 90 in the heating areas on one arm of the Y-splitter. During subsequent heating, the I_{out} value is restored,
 91 and this behavior is typical for all heating cycles. The cooling of the sample does not give a similar
 92 effect, and the analysis of the graph does not allow us to identify a stable temperature at which I_{out}
 93 value decreases.

94 The power decrease for such a heating rate is characteristic of only one arm of the Y-splitter. At
 95 the same time, a small power output variation is observed in the second arm. The considered power
 96 drop can be conditionally classified into three sections: A-B is a sharp increase in optical loss
 97 ("disappearance" of the waveguide), B-C is the absence of the waveguide and C-D is the waveguide
 98 restoration. The length of the section A-B in the presented figure is 24 minutes, the length of B-C is
 99 5.5 hours and the length of C-D is about 2.5 hours. The signal power in the section B-C (- 49 dBm)
 100 corresponds to the value that would be observed in the absence of a waveguide channel, but in the
 101 presence of input radiation.

102 For higher heating rates, similar phenomena are observed, accompanied by changes in the signal
 103 of the second arm of the Y-splitter (Figure 4). The heating rate is 5.3 and 2.5 °C/min.

104
105 **Figure 4.** I_{out} degradation upon heating at a rate of 5.3 and 2.5 °C/min

106 The condition for the waveguide “disappearance” was also investigated from the point of view
107 of the starting temperature used for sample heating. For this purpose, a thermal cycle was proposed
108 in which the sample was heated at different speeds under the influence of temperatures of minus
109 40 °C, minus 20 °C and 0 °C. The heating rates varied during the thermal cycle, but the temperature
110 drop remained constant and was equal to 60 °C. The results show that the depth of I_{out} degradation
111 heavily depends on the temperature at which the sample was heated. Short-term, but complete
112 “disappearance” of both waveguides is observed at an initial temperature of minus 40 °C. With an
113 increase in the initial heating temperature, this phenomenon weakens and completely disappears
114 when the sample is heated at the temperature of 0 °C. For this reason, the phenomena we discovered
115 may not have been observed previously by other researchers, since the used parameters of the
116 thermal cycle (low initial temperature, high heating rate and large temperature differential) are not
117 typical for testing of optical integrated circuits.

118 **5. Discussion of measurement results: Model of charged defects motion near a waveguide**

119 The following facts were established during temperature tests on a large number of samples of
120 Y-splitters with an active pyroelectric effect:

121 1. The disappearance of the waveguide is observed only when the sample is heated.
122 2. The output power varies differently on the two arms of the modulator.
123 3. These phenomena disappear when the edges of the sample are closed with a conductive
124 paste.
125 4. The observed power output does not correspond to a complete laser shutdown, but to
126 the input of radiation into the crystal without a waveguide.
127 5. In some samples, accompanying phenomena were observed without the disappearance
128 of the channel. These samples differed from other samples by the width of their
129 waveguides and the mode of their creation.
130 6. When the temperature is stabilized, the power in the arms of the Y-splitter is restored to
131 the initial values.

132 The given pieces of evidence are interpreted from the point of view of the model of a channel
133 waveguide surrounded by mobile charged defects. Let's consider experimental facts on details.

134 5.1. In the study of Y-splitters, it was found that only one arm of the splitter can be affected by this
 135 phenomenon (or one arm can be affected much more than the other)

136 As a system with mobile charges, the arms of a Y-splitter are a coupled system because they
 137 have a junction point. In this case, the mobile charges, which are uniformly distributed near the two
 138 arms of the Y-splitter in the absence of the pyroeffect, can be redistributed under the influence of the
 139 pyroeffect so that their number near one arm becomes larger than near the other arm. Then the effect
 140 of their impact will be different for the two arms. An approximate diagram of such a process is shown
 141 in Figure 5.

142 **Figure 5.** Charge flow under the influence of a pyroelectric field in the region of waveguides
 143 connection

145 This phenomenon leads to the fact that one arm disappears completely, and the second arm does
 146 not disappear at all or partially disappears for a short time.

147

148 5.2. These phenomena disappear when the edges of the sample are closed with a conductive paste

149 When the edges of the crystal are closed, the relaxation of pyroelectric charges occurs in a short
 150 time. The strength of the pyroelectric field does not reach values sufficient for the disappearance of
 151 the waveguide.

152

153 5.3. The observed power output does not correspond to a complete laser shutdown, but to the input of
 154 radiation into the crystal without a waveguide

155 When the waveguide disappears, the radiation entering the crystal from an optical fiber
 156 connected to the laser does not disappear, but propagates freely throughout the crystal. A small part
 157 of this radiation falls on the end of the output optical fiber and is recorded by the optical power meter.
 158

159 5.4. In some samples, accompanying phenomena were observed without the disappearance of the channel.
 160 These samples differed from other samples by the width of their waveguides and the mode of their creation

161 For some samples, the channels did not disappear, which may be linked to a different actual
 162 width and depth of the waveguide, as well as its contrast ratio. These parameters directly depend on
 163 the protonation regimes and the parameters of the photolithographic mask. Samples with vanishing
 164 waveguides can be distinguished from samples with waveguides, in which only accompanying
 165 phenomena were observed, precisely by these parameters. It should be noted that phenomena
 166 indicating an uneven refractivity variation in two waveguides were observed on all samples.

167

168 5.5. When the temperature is stabilized, waveguide properties are restored over time

169 When the temperature is stabilized, mobile charges existing within the crystal and on its surface
 170 (as well as charged particles attracted by the electric field from the air surrounding the crystal) shield
 171 the pyroelectric charges, leading to a decrease in the pyroelectric field in the crystal. Thus, after some
 172 time and at a constant temperature, the pyroelectric field drops to a value at which the waveguide
 173 contrast sufficient for operation in the single mode is restored.

174 **6. Theoretical interpretation**

175 **The disappearance of the waveguide is observed only when the sample is heated.**

176 An increase in the refractive index throughout the entire crystal volume occurs with an increase
 177 in the crystal temperature and leads to the waveguide contrast $\Delta n = n_2 - n_1$ compression, as well as to
 178 the termination of the channeling of the fundamental radiation mode (when the limiting contrast
 179 value is reached). The critical value Δn_{crit} can be estimated as follows:

180 For simplicity, let us consider the propagation of a TE-wave with a wavelength λ along a planar
 181 waveguide with a step-graded index (Figure 6).

182 **Figure 6.** A waveguide model with a step-graded index: (a) a refractive index profile in a planar
 183 waveguide; (b) the scheme of light propagation within a waveguide in the ray approximation. $n_1 =$
 184 2.20 , $n_2 = 2.21$, $n_3 = 1$ are the refractive indices of the substrate, waveguide and coating (respectively),
 185 N is the effective refractive index, d is the thickness of the waveguide and θ is the angle of incidence
 186 of the beam on the interface.

187 Waveguide modes propagate along the waveguide under the following condition:

$$n_1, n_3 < N < n_2, \quad (1)$$

188 where $n_1 = 2.20$, $n_2 = 2.21$, $n_3 = 1$ are the refractive indices of the substrate, waveguide and coating
 189 (respectively) and $N = n_2 \cdot \sin \theta$ is the effective refractive index.

190 Maxwell's equations for an isotropic, linear and nonmagnetic loss-free medium are written as:

$$\begin{aligned} \text{rot} \mathbf{E} &= -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \\ \text{rot} \mathbf{H} &= n^2 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{aligned} \quad (2)$$

191 where \mathbf{E} is the electric field strength, \mathbf{H} is the magnetic field strength, μ_0 is the absolute magnetic
 192 permeability, ϵ_0 is the absolute permittivity and n is the refractive index of the medium.

193 The following wave equations follow from equation (2):

$$\begin{aligned} \Delta \mathbf{E} &= \frac{n^2}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \\ \Delta \mathbf{H} &= \frac{n^2}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} \end{aligned} \quad (3)$$

194 The electric field strength and magnetic field strength for a plane wave are described by the
 195 following equations:

$$\mathbf{E}(x, y, z, t) = \overset{\text{I}}{E}(x, y) e^{j(\omega t - \beta z)},$$

$$\mathbf{H}(x, y, z, t) = \overset{\text{I}}{H}(x, y) e^{j(\omega t - \beta z)}, \quad (4)$$

196 By substituting (4) to (3), we obtain the following equations:

$$\frac{\partial^2 \overset{\text{I}}{E}(x, y)}{\partial x^2} + \frac{\partial^2 \overset{\text{I}}{E}(x, y)}{\partial y^2} + \left(\frac{n^2 \omega^2}{c^2} - \beta^2\right) \overset{\text{I}}{E}(x, y) = 0,$$

$$\frac{\partial^2 \overset{\text{I}}{H}(x, y)}{\partial x^2} + \frac{\partial^2 \overset{\text{I}}{H}(x, y)}{\partial y^2} + \left(\frac{n^2 \omega^2}{c^2} - \beta^2\right) \overset{\text{I}}{H}(x, y) = 0, \quad (5)$$

197 Given that the waveguide is planar:

$$\overset{\text{I}}{E}(x, y) = \overset{\text{I}}{E}(x),$$

$$\overset{\text{I}}{H}(x, y) = \overset{\text{I}}{H}(x), \quad (6)$$

198 By substituting (6) to (5), we obtain the following equations:

$$\frac{\partial^2 \overset{\text{I}}{E}(x)}{\partial x^2} + \left(\frac{n^2 \omega^2}{c^2} - \beta^2\right) \overset{\text{I}}{E}(x) = 0,$$

$$\frac{\partial^2 \overset{\text{I}}{H}(x)}{\partial x^2} + \left(\frac{n^2 \omega^2}{c^2} - \beta^2\right) \overset{\text{I}}{H}(x) = 0, \quad (7)$$

199 According to the definition of a TE-wave, the electric field vector has only the transverse
 200 component E_y , and the magnetic field vector has the transverse and longitudinal components H_x, H_z :

$$\overset{\text{I}}{E}(x) = \begin{pmatrix} 0 \\ E_y(x) \\ 0 \end{pmatrix}$$

$$\overset{\text{I}}{H}(x) = \begin{pmatrix} -\beta E_y(x) \\ \frac{\omega \mu_0}{j \omega \mu_0} \\ 0 \\ \frac{-1}{j \omega \mu_0} \frac{\partial E_y(x)}{\partial x} \end{pmatrix}, \quad (8)$$

201 Thus, the system (7) reduces to a single equation for a TE-wave:

$$\frac{\partial^2 E_y(x)}{\partial x^2} + \left(\frac{n^2 \omega^2}{c^2} - \beta^2\right) E_y(x) = 0, \quad (9)$$

202 For the region $x > 0$ in Fig. 7 (a), the solution to equation (9) is:

$$E_y(x) = E_3 e^{-\gamma_3 x}, \quad (10)$$

203 where $\gamma_3 = \frac{\omega}{c} \sqrt{N^2 - n_3^2}$.

204 For the region $-d < x < 0$ in Fig. 7 (a), the solution to equation (9) is:

$$E_y(x) = E_2 \cos(k_x x + \varphi_2), \quad (11)$$

205 where $k_x = \frac{\omega}{c} \sqrt{n_2^2 - N^2}$.

206 For the region $x < -d$ in Fig. 7 (a), the solution to equation (9) is:

$$E_y(x) = E_1 e^{-\gamma_1 (x+d)}, \quad (12)$$

207 where $\gamma_1 = \frac{\omega}{c} \sqrt{N^2 - n_1^2}$.

208 Based on the boundary conditions on the media interfaces n_3 and n_2 , n_1 and n_2 :

$$\begin{aligned} E_3 &= E_2 \cos(\varphi_3) & E_1 &= E_2 \cos(-k_x d + \varphi_3) \\ \gamma_3 E_3 &= k_x E_2 \sin(\varphi_3), & \gamma_1 E_1 &= -k_x E_2 \sin(-k_x d + \varphi_3), \end{aligned} \quad (13)$$

209 By dividing the lower equation from (13) by the upper equation, we obtain the following system:

$$\begin{aligned} \tan \varphi_3 &= \frac{\gamma_3}{k_x} \\ \tan(k_x d - \varphi_3) &= \frac{\gamma_1}{k_x}, \end{aligned} \quad (14)$$

210 If we express the arguments of tangents in (14) and substitute the upper equation into the lower
211 one, we obtain the dispersion equation:

$$k_x d = \tan^{-1}\left(\frac{\gamma_1}{k_x}\right) + \tan^{-1}\left(\frac{\gamma_3}{k_x}\right) + m\pi, \quad (15)$$

212 By substituting k_x , γ_1 and γ_3 in (15), we obtain the following equations:

$$\frac{2\pi}{\lambda} d \sqrt{n_2^2 - N^2} = \tan^{-1}\left(\sqrt{\frac{N^2 - n_1^2}{n_2^2 - N^2}}\right) + \tan^{-1}\left(\sqrt{\frac{N^2 - n_3^2}{n_2^2 - N^2}}\right) + m\pi, \quad (16)$$

213 By making substitutions $V \equiv \frac{2\pi}{\lambda} d \sqrt{n_2^2 - n_1^2}$, $b_E \equiv \frac{N^2 - n_1^2}{n_2^2 - n_1^2}$, $a_E \equiv \frac{n_1^2 - n_3^2}{n_2^2 - n_1^2}$, we obtain the
214 normalized dispersion equation:

$$V \sqrt{1 - b_E} = \tan^{-1}\left(\sqrt{\frac{b_E}{1 - b_E}}\right) + \tan^{-1}\left(\sqrt{\frac{a_E + b_E}{1 - b_E}}\right) + m\pi, \quad (17)$$

215 In the case of a symmetric waveguide ($n_1 = n_3$, $a_E = 0$), equation (17) always has a solution, at least
216 for the value $m = 0$. In the case of an asymmetric waveguide ($n_1 \neq n_3$, $a_E \neq 0$), not only the solutions for
217 positive m , but also the solutions for $m = 0$ successively disappear with decreasing $\Delta n = n_2 - n_3$ at a fixed
218 layer thickness d . Physically, this phenomenon can be explained by the fact that the fundamental
219 mode begins to radiate into the substrate. The cutoff condition for the fundamental mode in an
220 asymmetric waveguide is as follows:

$$V_0 = \tan^{-1}(\sqrt{a_E}), \quad (18)$$

221 The following equation was graphically solved in order to find Δn :

$$\frac{2\pi}{\lambda} d \sqrt{n_2^2 - n_1^2} = \tan^{-1}\left(\sqrt{\frac{n_1^2 - n_3^2}{n_2^2 - n_1^2}}\right), \quad (19)$$

222 where $\lambda = 1.55 \mu\text{m}$; $d = 7 \mu\text{m}$; n_1 from 2.17 to 2.22; $n_2 = 2.21$, $n_3 = 1$.

223 The required value of Δn_{crit} was 0.00085.

224 7. Calculation of the pyroelectric effect for a waveguide in lithium niobate

225 We will calculate the electric voltage arising on the faces of the Y-splitter under the influence of
226 the pyroelectric effect when the temperature of the crystal changes to 1 °C. In a first approximation,
227 we will consider a Y-splitter as a flat capacitor, the capacitance of which is determined by the relation
228 $C = \epsilon_{33} \epsilon_0 S / d$, where ϵ_{33} is the relative permittivity in the Z-direction and d is the width of the
229 sample in the Z-direction. For lithium niobate, $\epsilon_{33} = 30$ units of CGS (centimeter–gram–second) system
230 [11] for low frequency voltage applied. It should be noted that in the calculations of microwave
231 devices and optical devices, ϵ_{33} decreases to a value of about 5 units of CGS system based on the value
232 of the refractive index for lithium niobate. The product of ϵ_{33} and the dielectric constant ϵ_0 gives the
233 absolute dielectric constant of lithium niobate in the system of SI units, measured in F/m .

234 The charge that appears on the faces of the Y-splitter under the influence of the pyroelectric effect
235 is calculated by the formula $Q = \gamma \cdot \Delta T \cdot S$, where ΔT is the change in temperature of the sample and
236 S is the area of the side face. Then the ratio $U = \gamma \cdot \Delta T \cdot d / \varepsilon_{33} \varepsilon_0$ is true for the voltage that arises on
237 the faces of the Y-splitter. For $\Delta T = 1$ °C, we will obtain the voltage value at the faces of the integrated
238 optical circuit phase modulator $U = 5,5 \cdot 10^2$ V / K.

239 Thus, when the temperature of the Y-splitter changes to 1 °K, a voltage of 550 V appears on its
240 faces. In this case, the electric field strength E in the crystal can reach 1760 V/cm. When the crystal
241 temperature changes to 100 °C, which occurs at standard thermal cycles, the electric field strength
242 can reach $E = 1.76 \cdot 10^5$ V/cm and lead to change of waveguide refraction index.

243 The Δn_{pyro} caused by this electric field is calculated by formula $\Delta n_{pyro} = -\frac{1}{2} r_{33} n_e^3 E \approx 0.003$ for
244 $\Delta T = 100$ °C. It is 3 times lower than we need to have for waveguide "shutdown". Now we have no
245 exact explanation for this effect, but it can be connected with electrodes deposited near to the
246 waveguide and redistributing the charges near this electrodes.

247 8. Conclusion

248 The effect of termination of the channeling of the fundamental radiation mode in proton
249 exchange channel waveguides formed in a lithium niobate single crystal was experimentally
250 demonstrated for the first time. "Dangerous" temperature conditions were determined and the
251 critical value Δn_{crit} , at which the channeling of radiation ceases, was calculated. It is shown that the
252 magnitude of the pyroelectric effect is not sufficient for achieving the specified critical value Δn_{crit} ,
253 which requires follow-up studies of physical mechanisms leading to the "shutdown" of the
254 waveguide.

255 This research was funded by RFBR and Perm Region according to the research project № 19-48-
256 590018.

257 References

1. He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., Cai, X.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s⁻¹ and beyond. *Nature Photonics*. **2019**. *Volume 13*, pp.359–364
2. Mercante, A. J., Yao, P., Shi, S., Schneider, G., Murakowski, J., Prather, D. W. 110 GHz CMOS compatible thin film LiNbO₃ modulator on silicon. *Optics Express*. **2016**. *Volume 24* (14), pp.15590–15595
3. Weis, R. S., Gaylord, T. K. Lithium niobate: Summary of physical properties and crystal structure. *Applied Physics. A Solids and Surfaces*. **1985**. *Volume 37* (4), pp.191–203
4. Sosunov, A., Ponomarev, R., Semenova, O., Petukhov, I., Volyntsev, A. Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. *Optical Materials*. **2019**. *Volume*, pp.176–180
5. Bazzan, M., & Sada, C. (2015). Optical waveguides in lithium niobate: Recent developments and applications. *Applied Physics Reviews*. **2015**. *Volume 2* (4), pp. 040501
6. Yao, J., Li, K., Li, B., Wang, C., Kan, C., She, X., Shu, X. Study of Wavelength Temperature Stability of Multifunctional Integrated Optical Chips Applied on Fiber Optic Gyroscopes. *Journal of Lightwave Technology*. **2018**. *Volume 36* (23), pp. 5528–5535
7. Lefèvre, H. C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology. *Optical Fiber Technology*. **2013**. *Volume 19* (6B), pp. 828–832
8. Wang, Y. L., Ren, L. Y., Xu, J. T., Liang, J., Kang, M. H., Ren, K. L., Shi, N. B. The Compensation of Y Waveguide Temperature Drifts in FOG with the Thermal Resistor. *Advanced Materials Research*. **2014**, *Volume 924*, pp. 336–342
9. Salvestrini, J. P., Guilbert, L., Fontana, M., Abarkan, M., & Gille, S. Analysis and control of the dc drift in LiNbO₃-based Mach-Zehnder modulators. *Journal of Lightwave Technology*. **2011**. *Volume 29* (10), pp. 1522–1534
10. Betts, G. E., Johnson, L. M. Experimental Evaluation Of Drift And Nonlinearities In Lithium Niobate Interferometric Modulators. *Integrated Optical Circuit Engineering V*. **1988**. *Volume 0835*, pp. 040501

283 11. Yevdokimov, S. V., Shostak, R. I., Yatsenko, A. V. Anomalies in the Pyroelectric Properties of LiNbO₃
284 Crystals of the Congruent Composition. *Physics of the Solid State*. **2007**. *Volume 49(10)*, pp. 1957–1962