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Featured Application: This technology is expected to be applied to the vehicle-integrated 

photovoltaic that the installation area is limited, but high performance is demanded.  

Abstract: The highest efficiency solar cell won in the efficiency race does not always give the most 

excellent annual energy yield in the real world solar condition that the spectrum is ever-changing. 

The study of the radiative coupling of the concentrator solar cells implied that the efficiency could 

increase by the recycle of the radiative recombination generated by the surplus current in upper 

junction. Such configuration is called by a super-multi-junction cell. We expanded the model in the 

concentrator solar cell to non-concentrating installation. It was shown that this super-multi-junction 

cell configuration was found robust and can keep the maximum potential efficiency (50 % in realistic 

spectrum fluctuation) up to 10 junctions. The super-multi-junction cell is also robust in the bandgap 

engineering of each junction. Therefore, the future multi-junction may not be needed to tune the 

bandgap for matching the standard solar spectrum, as well as relying upon artificial technologies 

like ELO (Epitaxial lift-off), wafer-bonding, mechanical-stacking, and reverse-growth, but merely 

uses up-right and lattice-matching growth technologies. We have two challenging techniques; one 

is the optical cap layer that may be the directional photon coupling layer in the application of the 

photonics technologies, and another is the high-quality epitaxial growth with almost 100 % of the 

radiative efficiency. 

Keywords: Tandem; Solar cell; Multi-junction; Performance ratio; Spectrum; Modeling; Radiative 

Coupling; Luminescence Coupling 

 

1. Introduction 

Solar panels with more than 40 % of the power conversion efficiency in the real world will 

change our society, including that running a majority of electric vehicles on solar energy [1]. The 

potential of the conversion efficiency of solar cells was one of the most popular research topics in 

photovoltaic science and has been studied intensively by many people with a bright future of the 

potentials of photovoltaic energy conversion [2-4]. These are based on strong scientific background 

with ideal but trustworthy preconditions. However, the materials and processes in the real world 

were not ideal, and the record efficiency values of photovoltaic are less than that [5-6]. For example, 

Yamaguchi et al. predicted more than 45% efficiency in fields concentrator solar cells intensively 

studied for the application of CPV (Concentrator photovoltaic) [2], but the highest efficiency ever-

achieved is 44.2% in 2013 by Sharp Corporation [5-6]. Most recently, a series of researches that was 

based on the practical limit of the material improvement to various materials like Si, III-V, II-VI thin 

films, organic, and Perovskite, as well as various configurations like quantum dots, hetero-junction, 

and multi-junction, has been published [7-11]. Obviously, these kinds of efficiency-limit studies tend 
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to present a decreased record number by the improvement of the model, namely by increasing 

constraints and taking inherent limitations (small but non-negligible). However, taking an example 

of the energy conversion efficiency, namely the efficiency from the sunlight (ASTM G173 AM1.5G 

standard solar spectrum) to the electricity power, the highest-efficiency solar cells are a group of 

multi-junction cells [1, 5-7].  

The principles of multi-junction cells were suggested by Jackson in 1955 [12], and Wolf et al. 

investigated from 1960 [13]. However, the efficiency of the multi-junction cells did not make 

significant progress by 1975 because of inadequate thin-film fabrication technologies. The liquid-

phase and vapor-phase epitaxy brought AlGaAs/GaAs multi-junction cells in the 1980s, including 

tunnel junctions by Hutchby et al. [14], and metal interconnections by Ludowise et al. [15], Flores [16] 

and Chung et al. [17]. Fan et al. predicted the efficiency of close to 30% at that time [18], but it was 

not achieved because of difficulties in high-performance, stable tunnel junctions [19] as well as 

oxygen-related defects in the AlGaAs at that time [20]. Yamaguchi et al. developed high-

performan1e, stable tunnel junctions with a double-hetero (DH) structure [21]. Olson et al. introduced 

InGaP for the top cell [22], Bertness et al. achieved 29.5% efficiency by a 0.25 cm2 GaInP/GaAs multi-

junction cell [23]. Recently, 37.9% efficiency and 38.8% efficiency have been achieved with 

InGaP/GaAs/InGaAs 3-junction cell by Sharp [24] and with 5-junction cell by Spectrolab [25]. 

Historically, the high-efficiency multi-junction cells have been used to concentrator photovoltaic 

(CPV). The energy conversion efficiency substantially increases by concentration operation [26]. 

Significant cost reduction was predicted in the 1960s [27]. The Wisconson Solar Energy Center 

investigated performance of solar cells under the concentrated sunlight [27]. R&D Programs under 

DOE (US Department of Energy), EC (European Commission), and NEDO (New Energy and 

Industrial Technology Development Organization, Japan) realized the high conversion efficiencies 

by CPV module and system. 44.4% efficiency was demonstrated with InGaP/GaAs/InGaAs 3-junction 

concentrator solar cell by Sharp [24]. The CPV system increased its installation in a dry area in the 

world after 2008. By 2017, the total installation in the world reached 400 MW [28]. 

The outdoor performance of the multi-junction solar cells for CPV application was intensively 

analyzed, and the most significant loss is known as the spectrum mismatching loss [28-37]. This was 

caused by the fact that the solar spectrum is not always the same as the designed one (typically, ASTM 

G173 AM1.5D spectrum for CPV application). The sub-cells in the multi-junction cells are electrically 

connected in series. The spectrum shift hampers the balance of the output current from sub-cells, and 

the sub-cell with the smallest output current constrains the total output current by the Kirchhoff's 

law. This type of loss is called “spectrum mismatching loss.” The spectrum mismatching loss is an 

inherent loss for all types of the multi-junction or multi-junction solar cells, nevertheless of CPV or 

normal flat-plate application, and except for more than 3 terminal configurations that the output of 

the sub-cells is individually connected to the load. Note that in every type of installation, a variation 

of the solar spectrum by the sun height and fluctuation of the scattering and absorption of the air by 

seasonal effect in inevitable, but its influence can be minimized by the improvement of the solar cell 

design [38- 43].  

The research on the robustness to the spectrum change has been made in these 20 years, 

including a computer model named Syracuse by Imperial Courage of London [44-46]. For CPV 

applications, it was understood that the chromatic aberration of the concentrator optics enhanced the 

spectrum mismatching loss [44-53]. However, such loss coupled with the concentrator optics could 

be solved by the innovation of optics, including homogenizers and the secondary optical element 

(SOE) [54-55]. The remaining problems of the spectrum mismatching loss have been overcome by the 

adjustment of the absorption spectrum of each sub-cell, including overlapping the absorption 

spectrum and broadening the absorption band to the zone of massive fluctuation.  

Recently, a new configuration by enhancing the radiative coupling among the sub-cells is found 

useful for solving this inherent loss of the multi-junction cells. The first study was presented by 

Browne in 2002 [56]. However, his model was too simplified and dropped the most important factor, 

namely, a variation of the atmospheric parameters. Later on, Chen developed a power generation 

model considering the variation of atmospheric parameters and quantitatively anticipated that the 
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radiation coupling would be adequate to suppress the spectrum mismatching loss [57-60]. This idea 

was further developed by a group of authors [61-64]. However, the work of authors was limited to 

the application of CPV because of simplicity of spectrum and performance modeling. 

The radiative recombination was also identified to impact to the performance of the multi-

junction cell, even in operation under the standard testing condition (not dynamically changing 

spectrum like outdoor spectrum). Taking an example of the research on Fraunhofer ISE [65], and 

later, by use of the rear-side mirror for the use of the recycled photon by radiative recombination, 

realized high open-circuit voltage and 28.8 % of efficiency under 18.2 W/cm2 concentrated irradiance 

[66]. The measurement and identification of the radiative coupling and photon recycling were done 

in several types of solar cells, including GaAs cells [67], the strain-balanced quantum well cells [68], 

and even emerging solar cells like Perovskite solar cells [69]. The radiative coupling also affects the 

measurement of the multi-junction solar cells, and it is often called luminescence coupling [70-72]. 

Recently, the multi-junction solar cells are considered to be used for non-concentrating 

applications, including car-roof PV [1, 73-88]. It was considered that the majority of the electric vehicle 

might be able to run by solar energy using a solar cell mounted on the car-roof [1]. The area of the 

car-roof is limited. Moreover, solar cells may not be laminated to an undevelopable curved surface 

of the car body. It is difficult to entirely cover the car-roof surface. Therefore, extremely high 

performance is required to such application. 

Unlike CPV applications that the cell is always normal to the sun by the solar tracker and only 

receives direct sunlight, the non-concentration application needs to use diffused component of the 

sunlight from sky and ground reflection and skewed solar ray with combination of the direct and 

diffused component as a function of the sun orientation relative to the solar panel orientation.  

This article describes the model of the behavior by the spectrum variation, with a contrast of 

previous researches at first [89-94]. Then, the model is validated by the outdoor measurement. 

Finally, the potentials of performance impacted by a seasonal change of the spectrum are examined 

to examine the super-multi-junction configuration should be robust or not. 

Since the target of this work is to identify the limit of the performance of the solar cell under the 

realistic assumption of the spectrum, the material discussed in this work is the ideal one, namely not 

realistic in the current technology. However, it is far from realistic to attempt to change and control 

the solar spectrum to the ASTM G173 AM1.5G standard solar spectrum all the day time, but we will 

be able to improve the material quality to approach to the ideal one. Although the discussion in solar 

cell performance relying on the ideal material, on the contrary, realistic spectrum condition is 

different from majority of research papers, it should be worth reconsidering the limit of the solar cells 

under the real solar spectrum that most of scientists sometimes forget. 

2. Model  

In this section, we present a model of the multi-junction solar cells and the super-multi-junction 

solar cells affected by the fluctuation of the spectrum. Since, the solar spectrum is not affected by the 

sun-height (airmass), but affected by many other climate and atmospheric conditions, we need to model 

the performance of the multi-junction solar cells by probability model, namely the Monte Carlo method. 

Next, we discuss how multi-junction solar cell behaves by the variation of atmospheric parameters with 

complexed interaction with other climate and the sun-related variations. 

2.1. What is the super-multi-junction solar cell?. 

Although the multi-junction cells have high efficiency, their performance ratio affected by the 

spectrum variation was typically less than the single-junction solar cells. It is due to spectrum 

mismatching loss influenced by the variation of sun-height [95, 42] and atmospheric parameters [96-

97]. The power output of the conventional multi-junction solar cells constrained by the spectrum 

mismatching loss may be predicted, and we need a solution to minimize the damage.  

The super-multi-junction cell uses enhanced luminescence coupling [63]. Assuming the extreme 

and the best case that every junction in the solar cell can couple in radiation energy each other by the 

radiative recombination, the excess carriers in one junction can be recycled and transfer to the bottle-
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necked junction [63]. Figure 1 indicates the configuration of the super-multi-junction cell [63]. Note that 

the optical cap layer in the super-multi-junction solar cell is for confining recycled photons, namely to 

reduce the angle of the escape cone from the solar cell. We may carry the energy that was to be lost by 

the surplus current by the spectrum mismatching by radiative recombination [63]. However, an 

excessive number of junctions sometimes is harmful, like no advantage in more than four junctions [61, 

98]. Actually, the efficiency started to drop in more than 6 junctions in concentrator solar cells [61]. The 

calculation in the past was done in a combination of the worst-cases such as a combination of worst-

case atmospheric conditions, and perfect junctions (full absorption, no leakage) [61, 98]. There may be 

a chance of reasonable compromise. Then, we need to develop a new model considering an individual 

variation of atmospheric conditions and spectrum. 

 

Figure 1. The energy flow of the multi-junction cells: (a) Normal multi-junction cell; (b)Super-multi-

junction cell. ERE means external radiative efficiency [61]. 

2.2. Monte Carlo simulation for analyzing the annual performance of multi-junction cells 

The design, performance analysis, and optimization calculation we used is the combination of 

the numerical optimization calculation and the Monte Carlo method (Figure 2) [63, 97-99]. The merit 

function for optimization calculation is the annual average efficiency of the power conversion, 

directly coupled to the performance ratio. The initial value for optimization calculation can be given 

by that of combination determined at the sun height of the culmination on the winter solstice [1 00]. 

The optimized bandgap given by this method was identified to be closed to the values given by the 

optimizing routine [100]. Considering that the target of this calculation is to identify the variation of 

the output performance influenced by the different climate and spectrum in other years (Figure 2), 

the difference between the initial value and optimized value was not crucial, namely, both had broad 

distributions [100], and difference between the initial value and optimized results were often 

invisible. Therefore, for saving the computation time, the first step of the flow-chart in Figure 2 was 

optimized not by the annual dataset (365 days multiplied by the number of division of the time in the 

daytime) but by the representative sun height in the one of the culmination on the winter solstice.   

With the increase in the number of junctions in the simulation in Figure 2, there may be the case 

that the efficiency of i of the number of the junction is higher than that of (i+1) of the number of 

junctions. This case can be equivalently modeled by allowing that the bandgap energy of the (i+1)th 

junction is equal or greater than that of the (i)th junction, but not allowing the bandgap energy of the 

(i+1)th junction is less than that of the (i)th junction.   
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Figure 2. Flow-chart of its performance calculation using the Monte Carlo method [61]. 

2.3. Modeling multi-junction solar cells affected by a variety of spectrum 

For dataset impacted by the fluctuation of the spectrum by random number is given by either 

histogram of the parameters [57-60] or superpositioning the random number provided by logarithmic 

normal distribution along the seasonal fluctuation trend lines of the atmospheric parameters [61, 63, 

97-99]. The series resistance was assumed 1 Ωcm2, and fill factor FF was calculated by the ratio of the 

spectrum mismatching, specifically, generating a correlation chart between calculated FF and the 

ratio of mismatching at first, then, general trend of these two parameters was fit to the parabolic curve 

so that the FF is represented as the function of the spectrum mismatching index. This step 

significantly accelerated the computation time. Otherwise, it is necessary to calculate every dataset 

of the output current and voltage (typically 100 points of the voltage and current of the I-V curve), 

then, the maximum power point should be calculated by optimization problem. For calculation of 

the performance ratio, this routine needed to be repeated 12 representative days in every month or 

365 days (depending on the available solar irradiance data and computing time) multiplied by the 

number of division of the time in the daytime, or every 1 hour, depending on the available solar 

irradiance database, for every attempt of the seeking of the combination of the bandgaps of each 

junction in optimization step. The external quantum efficiency was assumed to unity by the 

wavelength corresponding to the bandgap of the junction. The angular characteristics in the photon 

absorption were assumed to be Lambertian. The open-circuit voltage at 1 kW/m2 irradiance of each 

junction was assumed to the bandgap voltage minus 0.3 V, namely, the best crystal quality in the 

current epitaxial growth conditions [100]. Figure 3 and Figure 4 summarizes the assumptions in the 

calculation of the efficiency potential of the solar cell. 
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Figure 3. Diagram of how output power of solar cells is calculated (composed of three factors). 

 

 

Figure 4. Assumptions in the calculation of the efficiency potential of the solar cell using three 

factors. 

 

That analysis of the concentrator solar cells was done in our previous research [61, 63, 97-99]. The 

calculation and analysis for concentrator solar cells were relatively simple because we did not have to 

consider angular effects combined with the mixture ratio of the direct and diffused spectrum of the 

sunlight. Moreover, concentrator solar cells generate power only under the direct sunlight, but the non-

concentrating solar cell also generates power in the diffused sunlight so that we have to model the solar 

spectrum in all kinds of climates. For the extension to non-concentrating applications, we needed to 

solve the complicated coupling of spectrum and angles (Table 1). The key parameters are atmospheric 

parameters, dependent on each other. For example, different incident angle modifier, different 

orientation lead to a diverse mixture of direct and diffused sunlight. The atmospheric parameters were 

calculated by the spectrum by a data-fitting calculation using Spectrl2 model [102] by the measurement 

in the University of Miyazaki [24, 103]. The developed model for the analysis of the non-concentrating 

solar cell is given by Figure 5 [103,-105]. 
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Table 1. The difference in performance modeling between concentrator PV and standard 

installation. 

 CPV1  Normal installation 

Solar spectrum Only Direct A mixture of Direct, Diffused from the sky, and Reflection 

Angle Always normal Varies by time and seasons 

Spectrum by angle  Constant (only normal) Needs consider coupling to angle 
1 It only generates power only by direct solar irradiance using a 2-axis solar tracker. 

 

 

Figure 5. Modeling performance of the non-concentrating multi-junction solar cells considering the 

complicated spectrum and angle interaction described in Table 1. In this study, we only considered 

the flat-plate, so that the correction to the curved surface in the integrated tool was not applied [101]. 

3. Results 

For the analysis and optimization, thus anticipating the upper limit of the annual performance 

to both a multi-junction solar cell and super-multi-junction solar cell under non-concentration 

operation, we needed to verify the non-concentration operation model of the multi-junction solar 

cells affected by spectrum (Figure 5). Then, we integrated the operation model (Figure 5) to bandgap 

optimization and distribution of the annual performance prediction by the Monte Carlo method 

(Figure 2). The integrated calculation was applied to the normal multi-junction solar cell and the 

super-multi-junction solar cell (Figure 1).  

3.1. Validation of the outdoor operating model for non-concentrating multi-junction solar cell 

The calculated energy generation trend was compared to the PV module prototype using three-

junction tandem cell monitoring by the University of Miyazaki. The validation of the model (Table 1 

and Figure 3) was carried out with the cooperation of the University of Miyazaki [97]. The detailed 

structure of the module and outdoor performance is found in the publication of Ota [106-107]. The 

solar cell used in the module was InGaP(1.88eV)/GaAs(1.43eV)/InGaAs(0.98eV) inverted triple-

junction solar cell. The InGaP top and the GaAs middle cell layers were grown on a GaAs substrate 

at first using MOCVD technology, and then, the InGaAs bottom cell (larger lattice-constant than 

GaAs) was grown. Deterioration of crystal quality of the InGaP/GaAs layers was avoided before the 

growth of buffer layer. After the growth of cell layers in an inverted order, cell layers were mounted 

on a handling substrate, and the GaAs substrate was removed. The module was assembled using 

these mounted cells, and its efficiency reached 31.17 % under the standard testing condition [106-

107]. 

The general trend between the model and measurement is shown in Figure 6. Although the 

model trend was generated by the values of average years from the meteorological and solar 

METPV-11 or other solar 
irradiance database
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irradiance database (METPV-11), the seasonal pattern matched to the measured performance very 

well. Note that the measured trend of the non-concentrating operation of the high-efficiency three 

junctions solar cell (31.17% efficiency) behaves strange fluctuation of performance that could not 

explain by the conventional model as it is commented in the right chart in Figure 6, but the calculated 

trend by the new model (Table 1 and Figure 5) successfully explained the strange behavior affected 

by spectrum change coupled with angular characteristics. 

 

 

Figure 6. Comparison between the measured and modeled seasonal trend of the performance of the 

PV module using multi-junction solar cells [100]. Pereformance ratio can be calculated by the formula 

defined as PR = Yf / Yr, where PR is performance ratio, and Yf is the integrated energy yield of one-

day, and Yr is nominal energy yield of one day calculated by the STC module efficiency and total 

insolation. 

In the validation of this model, the critical parameter related to the calculation in the super-

multi-junction solar cell is the degree of the luminescence coupling between the middle junction and 

the bottom junction. Note the degree of radiative coupling from the middle cell to the bottom cell 

(typically 15 %) is the key to the validation of the model, and we must consider its coupling; 

otherwise, the model (Figure 2) could not meet to the outdoor validation (Figure 7). The level of the 

coupling ratio of the middle junction (GaAs) was measured by Derkacs et al. as the function of the 

current level using a GaAs/GaInNAsSb two-junction cell, and the one corresponding to the non-

concentration operation (14 mA/cm2) was about 15% [108]. 
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Figure 7. Recovery of the spectrum mismatching loss due to water absorption in summer by 

enhancing the ratio of luminescence coupling between the middle junction and the bottom junction, 

added and modified from the original chart in [101]. The multiple-colored-lines correspond to the 

level of the luminescence coupling between the middle junction and the bottom junction, from the 

bottom to the top, 0 %, 10 %, 20 %, …90 %. Note that the variation of the performance ratio impacted 

by the spectrum change was reduced by the increase of the level of luminescence coupling, but the 

right depth in summer corresponds to the ones of 10 % and 20 % of the luminescence coupling.  

Pereformance ratio can be calculated by the formula defined as PR = Yf / Yr, where PR is performance 

ratio, and Yf is the integrated energy yield of one-day, and Yr is nominal energy yield of one day 

calculated by the STC module efficiency and total insolation. 

3.2 Normal multi-junction vs. Super-multi-junction; Practical conditions 

The design of the super-multi-junction cells by the worst-case atmospheric conditions can be 

done, assuming both aerosol density and water precipitation.  

The achievement in section 3.1 implies that we can apply the model to the practical conditions 

by validated energy generation model of the multi-junction solar cell affected by the spectrum 

variation considering complexed conditions listed in Table 1 and utilizing the calculation flow in 

Figure 3. However, we need local data both climate (solar irradiance) and atmospheric parameters. 

The model depends on the local conditions and is not applied globally.  

Another crucial point is that the distribution of the atmospheric parameters, especially aerosol 

density was the worst for the general performance to multi-junction solar cells with more than three 

junctions, even though the airmass level (20° of latitude) is low. The worst-case distribution of the 

aerosol density was closed to North India [57-60], and this region was known as one of the worst 

areas for the energy generation to the multi-junction solar cells in the field experience [109-110]. This 

is another reason why we need to develop an annual performance model based on the realistic 

atmospheric conditions with a probability of the realistic variations.  

3.2.1. Modeling the practical spectrum variation 

For developing the operation model of the multi-junction solar cells affected by the probability 

distribution of the crucial parameters for the basic calculation flow in Figure 2, we defined the 

parameters given by random numbers. Table 2 as the independent parent variables and Table 3 as 

Degree of radiation coupling of the GaAs middle 
cell determines the depth of the dip.

Current level of 
GaAs.
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the dependent variables calculated by the parent independent probability variables considering local 

conditions. 

  

Table 2. List of the probability parameters for modeling variation of annual performance 

(independent parent parameters). 

 Range and type Description 

Variation factor in 

aerosol density 

Normal distribution 

centered on 0 

Calculated by the residual errors in the measured point form 

the smooth trend line. 

Variation factor in 

water precipitation 

Normal distribution 

centered on 0 

Calculated by the residual errors in the measured point form 

the smooth trend line. 

Variation factor in 

solar irradiance1 

Ranged uniform 

distribution in [-1, 1] 

-1: Lowest irradiance year, 0: Normal year, 1: Highest 

irradiance year. The irradiance data is calculated by the 

linear coupling of three parameters depends on the value of 

the probability factor. The base irradiance data was given in 

24 hours x 365 days by METPV-11 and METPV-Asia 

database 
1 The same factor is applied both to direct and diffused sunlight. 

 

Table 3. List of the probability parameters for modeling variation of annual performance 

(dependent parameters). 

 Parent parameters Description 

Aerosol density 
Variation factor in 

aerosol density 

The variation factor gives a relative displacement from the 

trend line of the aerosol density. 

Water precipitation 
Variation factor in 

water precipitation 

The variation factor gives a relative displacement from the 

trend line of water precipitation. 

Direct irradiance 
Variation factor in 

solar irradiance 

Calculated by linear coupling of the data of the highest 

year, normal year, and the lowest year depends on the 

value of the probability factor. 

Diffused irradiance 

from the sky 

Variation factor in 

solar irradiance 

Calculated by linear coupling of the data of the highest 

year, normal year, and the lowest year depends on the 

value of the probability factor. 

The slope angle of 

the installation1 

Both direct and 

diffused solar 

irradiance 

Calculated by the optimization calculation given by the 

datasets of the solar irradiance affected by the variation 

factor in solar irradiance (parent parameter) 
1 Meaning that the slope angle is determined simultaneously by the combination of the optimized bandgaps in 

the junctions by the measured one-year irradiance (affected in the measurement in the first step in Figure 2). 

The crucial probability parameters are the first two in Table 2. This distribution of these 

parameters was analyzed by the comparison between measured atmospheric parameters from the 

seasonal trend lines. The seasonal trend lines of the atmospheric parameters, namely aerosol density 

and water precipitation, are plotted in Figure 8. These were calculated by the data fitting of the 

periodically observed solar spectrum line in a horizontal plane at University of Miyazaki, Japan 

(N31.83°, E131.42°) [61, 96-97, 103-105, 111]. Generally, the aerosol density is high in winter but low 

in summer, and the water precipitation, on the other hand high in summer. This trend can be seen in 

the entire region of Japan. However, there may be some regional characteristics. In Miyazaki, for 

example, a distinct peak in aerosol density appears in April that corresponding to the pollen of cedars 

and cypress trees 

. 
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Figure 8. Seasonal fluctuation of the atmospheric parameters in the area of the University of Miyazaki, 

taken by the curve-fitting method to the spectral profile modeled by Spectrl2 [111]. The trend line was 

defined by the local least-square-error method  

The fluctuation of the parameters from the trend lines can be modeled by the approximation of 

the distribution function of the residual error. The residual errors of the measured atmospheric 

parameters from the trend line (relative to the values in the trend line) are plotted in Figure 9. 

 
(a) 

 
(b) 

Figure 9. Histogram of the residual errors of the measured atmospheric parameters from the trend 

line (relative to the values in the trend line): (a) Aerosol density; (b) Water precipitation.   

For seeking the best representative distribution, we used a Q-Q plot, namely a quantile-quantile 

plot that examines the values of two distributions (Figure 10). The best results were found in the 

normal distribution in both cases. In this plot, the x-axis corresponds to the values distributed to the 

normal distribution, and the y-axis corresponds the measured values. If these two distributions are 

entirely matched, the plotline will be in the 45° (y = x) line. The parameter sets of the normal 

distribution of the aerosol density and water precipitation were (0, 0.30) and (0. 0.38). The first term 

inside the parentheses is mean value, and that of the second value is a standard deviation. We also 

examined the statistical adequateness by one-sample Kolmogorov-Smirnov test [112]. The alternative 

hypothesis was “True: cumulative distribution function is not the normal distribution with given 

parameters, for example (0, 0.30) for aerosol density, with estimated parameters”. The p-value in both 

cases was zero, implying that it is next to impossible to deny that both distributions of the relative 

residual errors of atmospheric parameters from the reference trend lines are different from the normal 

distribution. Therefore, we defined the probability parameters in the first two parameters in Table 1 
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(Variation factor in aerosol density and Variation factor in water precipitation) as the random 

numbers distributed normal distribution centered in zero and 0.30 and 0.38 standard deviations. 

 

 
(a) 

 
(b) 

Figure 10. Quantile-quantile plot that examines the values of two distributions: (a) Aerosol density; 

(b) Water precipitation.    

 

3.2.2. Computation results of the Monte Carlo simulation in the practical conditions 

The distribution of the annual average efficiency of both a multi-junction solar cell and a super- 

multi-junction solar cell optimized by the spectrum in one year in Miyazaki is shown in Figure 11. 

The trend of the average of the annual average efficiency in each event in Figure 2 besides the 

standard deviation of the distribution is shown in Figure 12, for overviewing the general efficiency 

trend after optimization. Note that the spectrum for optimization was not the artificial standard 

spectrum (AM1.5G), but an accidental annual spectrum given by Monte Carlo simulation calculated 

by the flow-chart in Figure 5, considering both seasonal and accidental fluctuation in the atmospheric 

parameters and fluctuation of the solar irradiance within the range of the highest and lowest 

irradiance in Miyazaki taken from the solar irradiance database of METPV-11. The underlying 

probability model for the calculation of the distribution of the average annual efficiency was given 

by the flow-chart in Figure 2.   

 
(a) 

 
(b) 

Figure 11. Optimization design result of the normal multi-junction solar cells (distribution of the 

annual average efficiency) under the worst-case combination of climate, atmospheric conditions, 

latitude, and orientation angle. The y-axis is normalized so that the integration of the distribution 

becomes unity: (a) Normal multi-junction solar cell; (b) Super-multi-junction solar cell.   
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(a) 

 
(b) 

Figure 12. Optimization design result of the normal multi-junction solar cells (trend of an average of 

the annual average efficiency by variation of the spectrum) under worst-case combination of climate, 

atmospheric conditions, latitude, and orientation angle. m indicates average of the annual average 

efficiency, and σ indicates its standard deviation: (a) Normal multi-junction solar cell; (b) Super-multi-

junction solar cell.   

The normal multi-junction solar cell showed the broader distribution of the average annual 

efficiency depending on the spectrum in that year, as the increase of junction number. It is because 

the width of the absorbing spectrum band of each junction becomes narrower. It implied that the 

impact on the annual average efficiency by the spectrum mismatching loss increases with the increase 

of the number of junctions. As a result, the annual average efficiency peaked at four junctions and 

turned to decrease by the increase of the number of junctions. 

The super-multi-junction solar cell, on the contrary, showed narrower distribution, but it still 

shows a slightly broader distribution by the increase of junction number. The annual average 

efficiency in the super-multi-junction solar cells is expected to reach 50% by 6-8 junctions. 

An example of the distribution of the optimized bandgap energy of 10-junction solar cells is 

shown in Figure 13. The optimized bandgap was calculated according to the spectrum and other 

climate conditions given by random numbers, according to Figure 2. The histogram of the calculated 

optimized bandgap energy in each junction is normalized so that the integral of the range becomes 

unity. The overlap of each peak does not mean that the higher bandgap junction has lower bandgap 

energy than that of the lower peak. It is constrained that the bandgap structure was equivalently 

modeled by allowing that the bandgap energy of the (i+1)th junction is equal or greater than that of 

the (i)th junction, but not allowing the bandgap energy of the (i+1)th junction is less than that of the 

(i)th junction. 

The most distinct difference of the super-multi-junction solar cell from the normal multi-junction 

solar cell is the level of the top junction. The distribution of the optimized bandgap energy of the top 

junction was substantially lower than that of the normal multi-junction solar cell. It is because that 

the short-wavelength region of the sunlight is changeable by the fluctuation of the aerosol scattering 

and the lower bandgap energy in the top junction is favorable in generating surplus current so that 

it compensates the spectrum mismatching loss by transferring the photon energy generated by the 

recombination by the surplus current of the top junction. 

The set of the bandgap energy of the super-multi-junction solar cell is listed in Table 4. Unlike 

the current technology, the designed bandgap of each junction has a range, reflecting that the super-

multi-junction solar cell is robust to the bandgaps.  
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Figure 13. Distribution of the bandgap energy of the optimized (to the spectrum and other climate 

conditions given by random numbers according to Figure 2) multi-junction solar cells under the 

modeled fluctuation in the climate in Miyazaki, Japan (N31.83°, E131.42°). This is an example of 10 

junctions. Note that the histogram of the calculated optimized bandgap energy in each junction is 

normalized so that the integral of the range becomes unity. Also, note that the overlap of each peak 

does not mean that the higher bandgap junction has lower bandgap energy than that of the lower 

peak. It is constrained that the bandgap structure was equivalently modeled by allowing that the 

bandgap energy of the (i+1)th junction is equal or greater than that of the (i)th junction, but not 

allowing the bandgap energy of the (i+1)th junction is less than that of the (i)th junction. The y-axis is 

normalized so that the integration of the distribution becomes unity: (a) Normal multi-junction solar 

cell; (b) Super-multi-junction solar cell.   

Table 4. List of the set of the bandgap of the super-multi-junction solar cell. 

 Bandgap energy (eV) from top to bottom junction 

2J 
1.72 

±0.03 

1.12 

±0.02 
        

3J 
1.89 

±0.05 

1.33 

±0.07 

0.89 

±0.08 
       

4J 
1.99 

±0.07 

1.47 

±0.07 

1.07 

±0.09 

0.73 

±0.11 
      

5J 
2.11 

±0.09 

1.63 

±0.07 

1.27 

±0.09 

0.97 

±0.08 

0.72 

±0.10 
     

6J 
2.08 

±0.15 

1.68 

±0.11 

1.34 

±0.11 

1.07 

±0.11 

0.84 

±0.11 

0.66 

±0.11 
    

7J 
2.17 

±0.16 

1.80 

±0.11 

1.48 
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1.21 
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±0.11 
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9J 
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1.37 
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1.13 
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0.95 

±0.10 
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±0.10 

0.62 
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0.52 

±0.08 
 

10J 
2.21 

±0.21 
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1.63 
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1.40 
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1.19 

±0.14 

1.00 
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±0.09 
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4. Discussion 

In the previous work, we showed that the super-multi-junction solar cells could solve the low 

annual performance of concentrator photovoltaic systems affected by the mismatching loss due to 

the solar spectrum variation. The spectrum influence equally affects the non-concentrating solar cells. 

However, the impact of the spectrum variation for non-concentrating applications needed to consider 

complexed phenomena of direct, scattered, and reflected spectrum combined with angular effect. It 

was not appropriate to expand the model to the non-concentrating applications. 

We then tried to develop annual modeling performance of the multi-junction solar cells with 

considering of spectrum (climate pattern, atmospheric parameters, sun-angle, airmass). The 

spectrum-enhanced performance model of the multi-junction solar cells successfully explained the 

strange behavior of the annual performance.  

Then, we combined this model to the previous work of optimization of the bandgap energy by 

the Monte Carlo method. The previous works of the optimization and sensitivity of the spectrum 

change relied on the distribution of the atmospheric parameters, especially those of worst -case. This 

method was too simple to describe the real fluctuation of the spectrum. For example, the aerosol 

density and water precipitation had a distinct seasonal change that correlates sun height and climate 

trends. The new probability model was developed by investigating the residual error distribution of 

atmospheric parameters that were identified to distribute on the normal distribution. 

The non-concentrating super-multi-junction solar cell was found robust and can keep almost the 

same to the maximum potential efficiency (50 %) under the realistic conditions represented by 

Miyazaki, Japan (N31.83°, E131.42°). 

The fact that the super-multi-junction solar cell is also robust of the bandgap engineering of each 

junction. Therefore, the future multi-junction may not be needed to tune the bandgap for matching 

the standard solar spectrum, as well as relying upon artificial technologies like ELO, wafer-bonding, 

mechanical-stacking, and reverse-growth, but merely uses up-right and lattice-matching growth 

technologies. Although we have two challenging techniques; one is the optical cap layer that may be 

the directional photon coupling layer in the application of the photonics technologies, and another is 

the high-quality epitaxial growth with almost 100 % of the radiative efficiency. 

The super-multi-junction solar cell is also robust in the bandgap engineering of each 

junction. Therefore, the future multi-junction may not be needed to tune the bandgap for 

matching the standard solar spectrum, as well as relying upon artificial technologies like 

epitaxial lift-off (ELO), wafer-bonding, mechanical-stacking, and reverse-growth, but merely 

uses up-right and lattice-matching growth technologies. Although we have two challenging 

techniques; one is the optical cap layer that may be the directional photon coupling layer in the 

application of the photonics technologies, and another is the high-quality epitaxial growth with 

almost 100 % of the radiative efficiency (Figure 14). 

In comparison to the current level of the ERE of various solar cells that were collected by 

several authors [8, 113-115], the requirement of the super-multi-junction solar cells is extremely 

high. For the improvement of ERE, a typical and straightforward approach is to reduce 

threading dislocation density [116]. The target of the threading dislocation density is at least 103 

cm-2, but as small as possible [116].  

The function of the optical cap as the second technological challenge is confinement of the 

photon. Any technological improvement in photon confinement typically used to thin-film solar 

cells will be useful. A perfect solution is the use of the directional coupling of photons, typically 

used to the communication technologies [117-120]. Although these optical devices are used in a 

narrow band of the wavelength, we expect we may find useful hints from such different 

technological fields. 
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Figure 14. Possibility of the future high-efficiency solar cell technology based on the implication from 

the super-multi-junction solar cell.    

5. Conclusions 

i. Multi-junction cells: Highest efficiency but lower energy yield. 

ii. Super-Multi-junction cell: Compensation of spectrum mismatching loss by sharing photons 

generated by radiation recombination due to surplus current of spectrum mismatching. 

iii. Annual performance: The model considering spectrum mismatching was validated and 

applied to super-multi-junction design. 

iv. Super-multi-junction solar cell performance: Robust to the spectrum change. Its annual 

average efficiency levels off at 50% in the realistic spectrum fluctuation. 

v. Future multi-junction solar cells: may not be needed to tune the bandgap for matching the 

standard solar spectrum, as well as relying upon artificial technologies like ELO, wafer-

bonding, mechanical-stacking, and reverse-growth, but merely uses up-right and lattice-

matching growth technologies. 
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