
 

Article 1 

Super-multi-junction solar cell, device configuration 2 

with the potential of more than 50 % of the annual 3 

energy conversion efficiency (non-concentration) 4 

Kenji Araki 1,*, Yasuyuki Ota 2, Hiromu Saiki 3, Hiroki Tawa 3, Kensuke Nishioka 3, and 5 
Masafumi Yamaguchi 1 6 

1 Toyota Technological Institute, Nagoya, 468-8511 Japan 7 
2 Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, 889-2192, Japan 8 
3 Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan 9 
* Correspondence: cpvkenjiaraki@toyota-ti.ac.jp; Tel.: +81-52-809-1830  10 

 11 

Featured Application: This technology is expected to be applied to the vehicle-integrated 12 
photovoltaic that the installation area is limited, but high performance is demanded.  13 

Abstract: The highest efficiency solar cell won in the efficiency race does not always give the most 14 
excellent annual energy yield in the real world solar condition that the spectrum is ever-changing. 15 
The study of the radiative coupling of the concentrator solar cells implied that the efficiency could 16 
increase by the recycle of the radiative recombination generated by the surplus current in upper 17 
junction. Such configuration of the multi-junction cells is often called by a super-multi-junction cell. 18 
We expanded it to non-concentrating installation. It was shown that this super-multi-junction cell 19 
configuration was found robust and can keep almost the same to the maximum potential efficiency 20 
(50 % in realistic spectrum fluctuation) up to 10 junctions by a Monte Carlo method. The super-21 
multi-junction cell is also robust of the bandgap engineering of each junction. Therefore, the future 22 
multi-junction may not be needed to tune the bandgap for matching the standard solar spectrum, 23 
as well as relying upon artificial technologies like ELO, wafer-bonding, mechanical-stacking, and 24 
reverse-growth, but merely uses up-right and lattice-matching growth technologies. Although we 25 
have two challenging techniques; one is the optical cap layer that may be the directional photon 26 
coupling layer in the application of the photonics technologies, and another is the high-quality 27 
epitaxial growth with almost 100 % of the radiative efficiency. 28 

Keywords: Tandem; Solar cell; Multi-junction; Performance ratio; Spectrum; Modeling; Radiative 29 
Coupling; Luminescence Coupling 30 

 31 

1. Introduction 32 

Solar panels with more than 40 % of the power conversion efficiency in the real world will 33 
change our society, including that running a majority of electric vehicles on solar energy [1]. The 34 
potential of the conversion efficiency of solar cells was one of the most popular research topics in 35 
photovoltaic science and have been studied intensively by many people with a bright future of the 36 
potentials of photovoltaic energy conversion [2-4]. These are based on strong scientific background 37 
with ideal but trustworthy preconditions. However, the materials and process in the real world were 38 
not ideal, and the record efficiency values of photovoltaic are less than that [5-6]. Most recently, a 39 
series of research that was based on the practical limit of the material improvement to various 40 
materials like Si, III-V, II-VI thin films, organic, and Perovskite, as well as various configurations like 41 
quantum dots, hetero-junction, and multi-junction, has been published [7-11]. Obviously, these kinds 42 
of efficiency-limit study tend to present a decreased record number by the improvement of the model, 43 
namely by increasing constraints and taking inherent limitations (small but non-negligible). However, 44 
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taking an example of the energy conversion efficiency, namely the efficiency from the sunlight 45 
(ASTM G173 AM1.5G standard solar spectrum) to the electricity power, the highest-efficiency solar 46 
cells are a group of multi-junction cells [1, 5-7].  47 

The principles of multi-junction cells were suggested as by Jackson in 1955 [12], and Wolf et al. 48 
investigated from 1960 [13]. However, the efficiency of the multi-junction cells did not make 49 
significant progress by 1975 because of inadequate thin-film fabrication technologies. The liquid-50 
phase and vapor-phase epitaxy brought AlGaAs/GaAs multi-junction cells in the 1980s, including 51 
tunnel junctions by Hutchby et al. [14], and metal interconnections by Ludowise et al. [15], Flores [16] 52 
and Chung et al. [17]. Fan et al. predicted the efficiency of close to 30% at that time [18], but it was 53 
not achieved because of difficulties in high-performance, stable tunnel junctions [19] as well as 54 
oxygen-related defects in the AlGaAs at that time [20]. High-performan1e, stable tunnel junctions 55 
with a double-hetero (DH) structure were developed by the authors [21] in NTT. Olson et al. 56 
introduced InGaP for the top cell [22], Bertness et al. achieved 29.5% efficiency by a 0.25 cm2 57 
GaInP/GaAs multi-junction cell [23]. Recently, 37.9% efficiency and 38.8% efficiency have been 58 
achieved with InGaP/GaAs/InGaAs 3-junction cell by Sharp [24] and with 5-junction cell by 59 
Spectrolab [25]. 60 

Historically, the high-efficiency multi-junction cells have been used to concentrator photovoltaic 61 
(CPV). The energy conversion efficiency substantially increases by concentration operation [26]. 62 
Significant cost reduction was predicted in the 1960s [27]. The Wisconson Solar Energy Center 63 
investigated performance of solar cells under the concentrated sunlight [27]. R&D Programs under 64 
DOE (US Department of Energy), EC (European Commission) and NEDO (New Energy and 65 
Industrial Technology Development Organization, Japan) realized the high conversion efficiencies 66 
by CPV module and system. 44.4% efficiency was demonstrated with InGaP/GaAs/InGaAs 3-junction 67 
concentrator solar cell by Sharp [24]. The CPV system increased its installation in a dry area in the 68 
world after 2008. By 2017, the total installation in the world reached 400 MW [28]. 69 

The outdoor performance of the multi-junction solar cells for CPV application was intensively 70 
analyzed, and the most significant loss is known as the spectrum mismatching loss [28-37]. This was 71 
caused by the fact that the solar spectrum is not always the same as the designed one (typically, ASTM 72 
G173 AM1.5D spectrum for CPV application). The sub-cells in the multi-junction cells are electrically 73 
connected in series. The spectrum shift hampers the balance of the output current from sub-cells, and 74 
the sub-cell with the smallest output current constrains the total current by the Kirchhoff's law. In 75 
other words, even though the other sub-cells generates more output currents, these current will not 76 
flow to the load but consume in each sub-cell by internal recombination of the carriers. This type of 77 
loss is called “spectrum mismatching loss.” The spectrum mismatching loss is an inherent loss for all 78 
type of the multi-junction or multi-junction solar cells, nevertheless of CPV or normal flat-plate 79 
application, and except for more than 3 terminal configurations that the output of the sub-cells is 80 
individually connected to the load. Note that in every type of installation, a variation of the solar 81 
spectrum by the sun height and fluctuation of the scattering and absorption of the air by seasonal 82 
effect in inevitable, but its influence can be minimized by the improvement of the solar cell design 83 
[38- 43].  84 

The research on the robustness to the spectrum change as well as its operation modeling for 85 
better understanding of the spectrum mismatching loss has been made in these 20 years, including a 86 
computer model named Syracuse by Imperial Courage of London [44-46]. For CPV applications, it 87 
was understood that the chromatic aberration of the concentrator optics enhanced the spectrum 88 
mismatching loss [44-53]. However, such loss coupled with the concentrator optics could be solved 89 
by the innovation of optics, including homogenizers and the secondary optical element (SOE) [54-55]. 90 
The remaining problems of the spectrum mismatching loss have been overcome by the adjustment 91 
of the absorption spectrum of each sub-cell, including overlapping the absorption spectrum and 92 
broadening the absorption band to the zone of massive fluctuation.  93 

Recently, a new configuration by enhancing the radiative coupling among the sub-cells is found 94 
useful for solving this inherent loss of the multi-junction cells. The first study was presented by 95 
Browne in 2002 [56]. However, his model was too simplified and dropped the most important factor, 96 
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namely, a variation of the atmospheric parameters. Later on, Chen developed a power generation 97 
model considering the variation of atmospheric parameters and quantitatively anticipated that the 98 
radiation coupling would be adequate to suppress the spectrum mismatching loss [57-60]. This idea 99 
was further developed by a group of authors [61-64]. However, the work of authors was limited to 100 
the application of CPV because of simplicity of spectrum and performance modeling. 101 

The radiative recombination was also identified to the performance of the multi-junction cell, 102 
even in operation under the standard testing condition, thus a single pattern of the spectrum. Taking 103 
an example of the research on Fraunhofer ISE [65], and later, by use of the rear-side mirror for the use 104 
of the recycled photon by radiative recombination, realized high open-circuit voltage and 28.8 % of 105 
efficiency under 18.2 W/cm2 concentrated irradiance [66]. The measurement and identification of the 106 
radiative coupling and photon recycling were done in several types of solar cells, including GaAs 107 
cells [67], and the strain-balanced quantum well cells [68]. Moreover, even emerging solar cells like 108 
Perovskite solar cell, the radiative coupling and photon recycle was identified as it could not be 109 
ignored [69].  The radiative coupling also affects the measurement of the multi-junction solar cells, 110 
and it is often called luminescence coupling [70-72]. 111 

Recently, the multi-junction solar cells are considered to be used for non-concentrating 112 
applications, including car-roof PV [1, 73-88]. It was considered that the majority of the electric vehicle 113 
might be able to run by solar energy using a solar cell mounted on the car-roof [1]. Since the area of 114 
the car-roof is limited and solar cells may not be laminated to an undevelopable curved surface of the 115 
car body so that it is difficult to entirely cover the car-roof surface, extremely high performance is 116 
required to such application. 117 

Unlike CPV applications that the cell is always normal to the sun by the solar tracker and only 118 
receives direct sunlight, the non-concentration application needs to use diffused component of the 119 
sunlight from sky and ground reflection and skewed solar ray with combination of the direct and 120 
diffused component as a function of the sun orientation relative to the solar panel orientation.  121 

This article describes the model of the behavior by the spectrum variation, at first with a contrast 122 
of previous researches [89-94]. Then, the model is validated by the outdoor measurement. Finally, the 123 
potentials of performance impacted by a seasonal change of the spectrum are examined in the worst 124 
case of conditions to examine the super-multi-junction configuration should be robust or not. 125 

2. Model  126 

In this section, we present a model of the multi-junction solar cells and the super-multi-junction 127 
solar cells affected by the fluctuation of the spectrum. Since, the solar spectrum is not affected by the 128 
sun-height (airmass), but affected by many other climate and atmospheric conditions, we need to model 129 
the performance of the multi-junction solar cells by probability model, namely the Monte Carlo method. 130 
Next, we discuss how multi-junction solar cell behaves by the variation of atmospheric parameters with 131 
complexed interaction with other climate and the sun-related variations. 132 

2.1. What is the super-multi-junction solar cell?. 133 

Although the multi-junction cells have high efficiency, their performance ratio affected by the 134 
spectrum variation was typically less than the single-junction solar cells. It is due to spectrum 135 
mismatching loss influenced by the variation of sun-height [95, 42] and atmospheric parameters [96-97]. 136 
The power output of the conventional multi-junction solar cells constrained by the spectrum 137 
mismatching loss may be predicted, and we need a solution to minimize the damage.  138 

The super-multi-junction cell uses enhanced luminescence coupling [63]. Assuming the extreme 139 
and the best case that every junction in the solar cell can couple in radiation energy each other by the 140 
radiative recombination, the excess carriers in one junction can be recycled and transfer to the bottle-141 
necked junction [63]. Fig. 1 indicates the configuration of the super-multi-junction cell [63]. We may 142 
carry the energy that was to be lost by the surplus current by the spectrum mismatching by radiative 143 
recombination [63]. The annual energy yield of the multi-junction cells is not always boosted by the 144 
number of junctions. However, an excessive number of junctions sometimes is harmful, like no 145 
advantage in more than four junctions [61, 98]. The calculation in the past was done in a combination 146 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2019                   doi:10.20944/preprints201909.0248.v1

https://doi.org/10.20944/preprints201909.0248.v1


 4 of 19 

of the worst-cases such as a combination of worst-case atmospheric conditions, and perfect junctions 147 
(full absorption, no leakage) [61-98]. There may be a chance of reasonable compromise. Then, we need 148 
to develop a new model considering an individual variation of atmospheric conditions and spectrum. 149 

 150 

Figure 1. The energy flow of the multi-junction cells: (a) Normal multi-junction cell; (b)Super-multi-151 
junction cell. ERE means external radiative efficiency. 152 

2.2. Monte Carlo simulation for analyzing the annual performance of multi-junction cells 153 

The design, performance analysis, and optimization calculation we used is the combination of 154 
the numerical optimization calculation and the Monte Carlo method (Fig. 2) [63, 97-99 ]. The merit 155 
function for optimization calculation is the annual average efficiency of the power conversion, 156 
directly coupled to the performance ratio. The initial value for optimization calculation can be given 157 
by that of combination determined at the sun height of the culmination on the winter solstice [100]. 158 
The optimized bandgap given by this method was identified to be closed to the values given by the 159 
optimizing routine [100]. Considering that the target of this calculation is to identify the variation of 160 
the output performance influenced by the different climate and spectrum in other years (Fig. 2), the 161 
difference between the initial value and optimized value was not crucial, namely, both had broad 162 
distributions [100], and difference between the initial value and optimized results were often invisible. 163 
Therefore, for saving the computation time, the first step of the flow-chart in Fig. 2 was optimized 164 
not by the annual dataset (365 days multiplied by the number of division of the time in the daytime) 165 
but by the representative sun height in the one of the culmination on the winter solstice.   166 

With the increase in the number of junctions in the simulation in Fig. 2, there may be the case 167 
that the efficiency of i of the number of the junction is higher than that of (i+1) of the number of 168 
junctions. This case can be equivalently modeled by allowing that the bandgap energy of the (i+1)th 169 
junction is equal or greater than that of the (i)th junction, but not allowing the bandgap energy of the 170 
(i+1)th junction is less than that of the (i)th junction.   171 

  172 
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 173 

Figure 2. Flow-chart of its performance calculation using the Monte Carlo method. 174 

2.3. Modeling multi-junction solar cells affected by a variety of spectrum 175 

For dataset impacted by the fluctuation of the spectrum by random number is given by either 176 
histogram of the parameters [57-60] or superpositioning the random number provided by logarithmic 177 
normal distribution along the seasonal fluctuation trend lines of the atmospheric parameters [61, 63, 178 
97-99]. The series resistance was assumed 1 Ωcm2, and fill factor FF was calculated by the ratio of the 179 
spectrum mismatching, specifically, generating a correlation chart between calculated FF and the 180 
ratio of mismatching at first, then, general trend of these two parameters was fit to the parabolic curve 181 
so that the FF is represented as the function of the spectrum mismatching index. This step 182 
significantly accelerated the computation time. Otherwise, it is necessary to calculate every dataset 183 
of the output current and voltage (typically 100 points of the voltage and current of the I-V curve), 184 
then, the maximum power point should be calculated by optimization problem. For calculation of 185 

the performance ratio, this routine needed to be repeated 12 representative days in every month or 186 

365 days (depending on the available solar irradiance data and computing time) multiplied by the 187 
number of division of the time in the daytime, or every 1 hour, depending on the available solar 188 
irradiance database, for every attempt of the seeking of the combination of the bandgaps of each 189 
junction in optimization step. The external quantum efficiency was assumed to unity by the 190 
wavelength corresponding to the bandgap of the junction. The angular characteristics in the photon 191 
absorption were assumed to be Lambertian. The open-circuit voltage at 1 kW/m2 irradiance of each 192 
junction was assumed to the bandgap voltage minus 0.3 V, namely, the best crystal quality in the 193 
current epitaxial growth conditions [100].   194 

That analysis of the concentrator solar cells was done in our previous research [61, 63, 97-99]. The 195 
calculation and analysis for concentrator solar cell were relatively simple because we did not have to 196 
consider angular effects combined with the mixture ratio of the direct and diffused spectrum of the 197 
sunlight. Moreover, concentrator solar cells generate the power only under the direct sunlight, but the 198 
non-concentrating solar cell also generates power in the diffused sunlight so that we have to model 199 
solar spectrum in all kind of climates. For the extension to non-concentrating applications, we needed 200 
to solve the complicated coupling of spectrum and angles (Table 1). The key parameters are 201 
atmospheric parameters, dependent on each other. For example, different incident angle modifier, 202 
different orientation lead to a diverse mixture of direct and diffused sunlight. The atmospheric 203 
parameters were calculated by the spectrum by a data-fitting calculation using Spectrl2 model [102] by 204 
the measurement in the University of Miyazaki [24, 103]. The developed model for the analysis to the 205 
non-concentrating solar cell is given by Figure 3 [103,-105]. 206 

 207 
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Table 1. The difference in performance modeling between concentrator PV and standard 208 
installation. 209 

 CPV1  Normal installation 

Solar spectrum Only Direct A mixture of Direct, Diffused from the sky, and Reflection 

Angle Always normal Varies by time and seasons 

Spectrum by angle  Constant (only normal)  Needs consider coupling to angle 
1 Only generates power only by the direct solar irradiance using a 2-axis solar tracker. 210 

 211 

 212 

Figure 3. Modeling performance of the non-concentrating multi-junction solar cells considering the 213 
complicated spectrum and angle interaction described in Table 1. In this study, we only considered 214 
the flat-plate, so that the correction to the curved surface in the integrated tool was not applied [101]. 215 

3. Results 216 

For the analysis and optimization thus anticipating the upper limit of the annual performance 217 
to both a multi-junction solar cell and super-multi-junction solar cell under non-concentration 218 
operation, we needed to verify the non-concentration operation model of the multi-junction solar 219 
cells affected by spectrum (Fig. 3). Then, we integrated the operation model (Fig. 3) to bandgap 220 
optimization and distribution of the annual performance prediction by the Monte Carlo method (Fig. 221 
2). The integrated calculation was applied to the normal multi-junction solar cell and the super-multi-222 
junction solar cell (Fig. 1). In this step, we did the calculation for the combination of the worst-case at 223 
first, then consider the realistic case in the second.  224 

3.1. Validation of the outdoor operating model for non-concentrating multi-junction solar cell 225 

The calculated energy generation trend was compared to the PV module prototype using three-226 
junction tandem cell monitoring by the University of Miyazaki. The validation of the model (Table 1 227 
and Fig. 3) was carried out with the cooperation of the University of Miyazaki [97]. The general trend 228 
between the model and measurement is shown in Fig. 4. Although the model trend was generated 229 
by the values of average years from the meteorological and solar irradiance database (METPV-11), 230 
the seasonal pattern matched to the measured performance very well. Note that the measured trend 231 
of the non-concentrating operation of the high-efficiency three junctions solar cell (31.7% efficiency) 232 
behaves strange fluctuation of performance that could not explain by the conventional model as it is 233 
commented in the right chart in Fig. 4, but the calculated trend by the new model (Table 1 and Fig. 3) 234 
successfully explained the strange behavior affected by spectrum change coupled with angular 235 
characteristics. 236 

 237 
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 238 
 239 

Figure 4. Comparison between the measured and modeled seasonal trend of the performance of the 240 

PV module using multi-junction solar cells [100]. 241 

In the validation of this model, the critical parameter related to the calculation in the super-242 
multi-junction solar cell is the degree of the luminescence coupling between the middle junction and 243 
the bottom junction. Note the degree of radiative coupling from the middle cell to the bottom cell 244 
(typically 15 %) is the key to the validation of the model, and we must consider its coupling; otherwise, 245 
the model (Fig. 2) could not meet to the outdoor validation (Fig. 5).  246 

 247 

 248 

Figure 5. Recovery of the spectrum mismatching loss due to water absorption in summer by 249 
enhancing the ratio of luminescence coupling between the middle junction and the bottom junction, 250 
added and modified from the original chart in [101]. The multiple-colored-lines correspond to the 251 
level of the luminescence coupling between the middle junction and the bottom junction, from the 252 
bottom to the top, 0 %, 10 %, 20 %, …90 %. Note that the variation of the performance ratio impacted 253 
by the spectrum change was reduced by the increase of the level of luminescence coupling, but the 254 
right depth in summer corresponds to the ones of 10 % and 20 % of the luminescence coupling.  255 
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3.3 Normal multi-junction vs. Super-multi-junction; Practical conditions 256 

Design of the super-multi-junction cells by the worst-case atmospheric conditions can be done 257 
assuming that both aerosol density and water precipitation.  258 

The achievement in section 3.1 implies that we can apply the model in section 3.2 to the practical 259 
conditions by validated energy generation model of the multi-junction solar cell affected by the 260 
spectrum variation considering complexed conditions listed in Table 1 and utilizing the calculation 261 
flow in Figure 3. However, we need local data both climate (solar irradiance) and atmospheric 262 
parameters. The model depends on the local conditions and is not applied globally. In this regard, 263 
the model considering the extreme case (a combination of worst-case conditions) discussed in section 264 
3.2 is still useful. 265 

Another crucial difference from section 3.2 is that the distribution of the atmospheric parameters, 266 
especially the aerosol density was the worst for the general performance to multi-junction solar cells 267 
with more than three junctions, even though the airmass level (20° of latitude) is low. The worst-case 268 
distribution of the aerosol density was closed to North India (see Fig. 6) [57-60], and this region was 269 
known as one of the worst area for the energy generation to the multi-junction solar cells in the field 270 
experience [106-107]. This is another reason why we need to develop an annual performance model 271 
based on the realistic atmospheric conditions with a probability of the realistic variations.  272 

3.3.1. Modeling the practical spectrum variation 273 

For developing the operation model of the multi-junction solar cells affected by the probability 274 
distribution of the crucial parameters for the basic calculation flow in Fig. 2, we defined the 275 
parameters given by random numbers. Table 2 as the independent parent variables and Table 3 as 276 
the dependent variables calculated by the parent independent probability variables considering local 277 
conditions. 278 

  279 
Table 2. List of the probability parameters for modeling variation of annual performance 280 
(independent parent parameters). 281 

 Range and type Description 

Variation factor in 

aerosol density 

Normal distribution 

centered on 0 

Calculated by the residual errors in the measured point form 

the smooth trend line. 

Variation factor in 

water precipitation 

Normal distribution 

centered on 0 

Calculated by the residual errors in the measured point form 

the smooth trend line. 

Variation factor in 

solar irradiance1 

Ranged uniform 

distribution in [-1, 1] 

-1: Lowest irradiance year, 0: Normal year, 1: Highest 

irradiance year. The irradiance data is calculated by the 

linear coupling of three parameters depends on the value of 

the probability factor. The base irradiance data was given in 

24 hours x 365 days by METPV-11 and METPV-Asia 

database 
1 The same factor is applied both to direct and diffused sunlight. 282 

 283 

  284 
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Table 3. List of the probability parameters for modeling variation of annual performance 285 
(dependent parameters). 286 

 Parent parameters Description 

Aerosol density 
Variation factor in 

aerosol density 

Variation factor gives a relative displacement from the 

trend line of the aerosol density. 

Water precipitation 
Variation factor in 

water precipitation 

Variation factor gives a relative displacement from the 

trend line of the water precipitation. 

Direct irradiance 
Variation factor in 

solar irradiance 

Calculated by linear coupling of the data of the highest 

year, normal year, and the lowest year depends on the 

value of the probability factor. 

Diffused irradiance 

from the sky 

Variation factor in 

solar irradiance 

Calculated by linear coupling of the data of the highest 

year, normal year, and the lowest year depends on the 

value of the probability factor. 

The slope angle of 

the installation1 

Both direct and 

diffused solar 

irradiance 

Calculated by the optimization calculation given by the 

datasets of the solar irradiance affected by the variation 

factor in solar irradiance (parent parameter) 
1 Meaning that the slope angle is determined simultaneously by the combination of the optimized bandgaps in 287 

the junctions by the measured one-year irradiance (affected in the measurement in the first step in Fig. 2). 288 

The crucial probability parameters are the first two in Table 2. This distribution of these 289 
parameters was analyzed by the comparison between measured atmospheric parameters from the 290 
seasonal trend lines. The seasonal trend lines of the atmospheric parameters, namely aerosol density 291 
and water precipitation, are plotted in Fig. 6. These were calculated by the data fitting of the 292 
periodically observed solar spectrum line in a horizontal plane in University of Miyazaki, Japan 293 
(N31.83°, E131.42°) [61, 96-97, 103-105, 108]. Generally, the aerosol density is high in winter but low 294 
in summer, and the water precipitation, on the other hand high in summer. This trend can be seen in 295 
the entire region of Japan. However, there may be some regional characteristics. In Miyazaki, for 296 
example, a distinct peak in aerosol density appears in April that corresponding to the pollen of cedars 297 
and cypress trees 298 

. 299 

 300 

Figure 6. Seasonal fluctuation of the atmospheric parameters in the area of University of Miyazaki, 301 
taken by the curve-fitting method to the spectral profile modeled by Spectrl2 [108]. The trend line was 302 
defined by the local least-square-error method  303 
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The fluctuation of the parameters from the trend lines can be modeled by the approximation of 304 
the distribution function of the residual error. The residual errors of the measured atmospheric 305 
parameters from the trend line (relative to the values in the trend line) are plotted in Fig. 7. 306 

 
(a) 

 
(b) 

Figure 7. Histogram of the residual errors of the measured atmospheric parameters from the trend 307 
line (relative to the values in the trend line): (a) Aerosol density; (b) Water precipitation.   308 

For seeking the best representative distribution, we used a Q-Q plot, namely a quantile-quantile 309 
plot that examines the values of two distributions (Fig. 8). The best results were found in the normal 310 
distribution in both cases. In this plot, the x-axis corresponds to the values distributed to the normal 311 
distribution, and y-axis corresponds the measured values. If these two distributions are entirely 312 
matched, the plotline will be in the 45° (y = x) line. The parameter sets of the normal distribution of 313 
the aerosol density and water precipitation were (0, 0.30) and (0. 0.38). The first term inside the 314 
parentheses is mean value, and that of the second value is a standard deviation. We also examined 315 
the statistical adequateness by one-sample Kolmogorov-Smirnov test [109]. The alternative 316 
hypothesis was “True: cumulative distribution function is not the normal distribution with given 317 
parameters, for example (0, 0.30) for aerosol density, with estimated parameters”. The p-value in both 318 
cases was zero, implying that it is next to impossible to deny that both distributions of the relative 319 
residual errors of atmospheric parameters from the reference trend lines are different from the normal 320 
distribution. Therefore, we defined the probability parameters in the first two parameters in Table 2 321 
(Variation factor in aerosol density and Variation factor in water precipitation) as the random 322 
numbers distributed normal distribution centered in zero and 0.30 and 0.38 standard deviations. 323 

 324 

 
(a) 

 
(b) 

Figure 8. Quantile-quantile plot that examines the values of two distributions: (a) Aerosol density; (b) 325 
Water precipitation.    326 
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3.3.2. Computation results of the Monte Carlo simulation in the practical conditions 328 

The distribution of the annual average efficiency of both a multi-junction solar cell and super 329 
multi-junction solar cell optimized by the spectrum in one year in Miyazaki are shown in Fig. 9. The 330 
trend of the average of the annual average efficiency in each event in Fig. 2 besides the standard 331 
deviation of the distribution is shown in Fig. 10, for overviewing the general efficiency trend after 332 
optimization. Note that the spectrum for optimization was not the artificial standard spectrum 333 
(AM1.5G), but an accidental annual spectrum given by Monte Carlo simulation calculated by the 334 
flow-chart in Fig. 3, considering both seasonal and accidental fluctuation in the atmospheric 335 
parameters and fluctuation of the solar irradiance within the range of the highest and lowest 336 
irradiance in Miyazaki taken from the solar irradiance database of METPV-11. The underlying 337 
probability model for the calculation of the distribution of the average annual efficiency was given 338 
by the flow-chart in Fig. 2.   339 

 
(a) 

 
(b) 

Figure 9. Optimization design result of the normal multi-junction solar cells (distribution of the 340 
annual average efficiency) under the worst-case combination of climate, atmospheric conditions, 341 
latitude, and orientation angle. The y-axis is normalized so that the integration of the distribution 342 
becomes unity: (a) Normal multi-junction solar cell; (b) Super-multi-junction solar cell.   343 

 344 

 
(a) 

 
(b) 

Figure 10. Optimization design result of the normal multi-junction solar cells (trend of an average of 345 
the annual average efficiency by variation of the spectrum) under worst-case combination of climate, 346 
atmospheric conditions, latitude, and orientation angle. m indicates average of the annual average 347 
efficiency, and σ indicates its standard deviation: (a) Normal multi-junction solar cell; (b) Super-multi-348 
junction solar cell.   349 

The normal multi-junction solar cell showed the broader distribution of the average annual 350 
efficiency depending on the spectrum in that year, as the increase of junction number. It is because 351 
the width of the absorbing spectrum band of each junction becomes narrower. It implied that the 352 
impact on the annual average efficiency by the spectrum mismatching loss increases with the increase 353 
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of the number of junctions. As a result, the annual average efficiency peaked at four junctions and 354 
turned to decrease by the increase of the number of junctions. 355 

The super-multi-junction solar cell, on the contrary, showed narrower distribution, but it still 356 
shows slightly broader distribution by the increase of junction number. The annual average efficiency 357 
in the super-multi-junction solar cells is expected to reach 50% by 6-8 junctions. 358 

An example of the distribution of the optimized bandgap energy of 10-junction solar cells is 359 
shown in Fig. 11. The optimized bandgap was calculated according to the spectrum and other climate 360 
conditions given by random numbers, according to Fig. 2. The histogram of the calculated optimized 361 
bandgap energy in each junction is normalized so that the integral of the range becomes unity. The 362 
overlap of each peak does not mean that the higher bandgap junction has lower bandgap energy than 363 
that of the lower peak. It is constrained that the bandgap structure was equivalently modeled by 364 
allowing that the bandgap energy of the (i+1)th junction is equal or greater than that of the (i)th 365 
junction, but not allowing the bandgap energy of the (i+1)th junction is less than that of the (i)th 366 
junction. 367 

The most distinct difference of the super-multi-junction solar cell from the normal multi-junction 368 
solar cell is the level of the top junction. The distribution of the optimized bandgap energy of the top 369 
junction was substantially lower than that of the normal multi-junction solar cell. It is because that 370 
the short-wavelength region of the sunlight is changeable by the fluctuation of the aerosol scattering 371 
and the lower bandgap energy in the top junction is favorable in generating surplus current so that 372 
it compensates the spectrum mismatching loss by transferring the photon energy generated by the 373 
recombination by the surplus current of the top junction. 374 

 375 

 
 

Figure 11. Distribution of the bandgap energy of the optimized (to the spectrum and other climate 376 
conditions given by random numbers according to Fig. 2) multi-junction solar cells under the modeled 377 
fluctuation in the climate in Miyazaki, Japan (N31.83°, E131.42°). This is an example of 10 junctions. 378 
Note that the histogram of the calculated optimized bandgap energy in each junction is normalized 379 
so that the integral of the range becomes unity. Also, note that the overlap of each peak does not mean 380 
that the higher bandgap junction has lower bandgap energy than that of the lower peak. It is 381 
constrained that the bandgap structure was equivalently modeled by allowing that the bandgap 382 
energy of the (i+1)th junction is equal or greater than that of the (i)th junction, but not allowing the 383 
bandgap energy of the (i+1)th junction is less than that of the (i)th junction. The y-axis is normalized 384 
so that the integration of the distribution becomes unity: (a) Normal multi-junction solar cell; (b) 385 
Super-multi-junction solar cell.   386 
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4. Discussion 387 

In the previous work, we showed that the super-multi-junction solar cells could solve the low 388 
annual performance of concentrator photovoltaic systems affected by the mismatching loss due to 389 
the solar spectrum variation. The spectrum influence equally affects the non-concentrating solar cells. 390 
However, the impact of the spectrum variation for non-concentrating applications needed to consider 391 
complexed phenomena of direct, scattered, and reflected spectrum combined with angular effect. It 392 
was not appropriate to expand the model to the non-concentrating applications. 393 

We then tried to develop annual modeling performance of the multi-junction solar cells with 394 
considering of spectrum (climate pattern, atmospheric parameters, sun-angle, airmass). The 395 
spectrum-enhanced performance model of the multi-junction solar cells successfully explained the 396 
strange behavior of the annual performance.  397 

Then, we combined this model to the previous work of optimization of the bandgap energy by 398 
the Monte Carlo method. The previous works of the optimization and sensitivity of the spectrum 399 
change relied on the distribution of the atmospheric parameters, especially those of worst-case. This 400 
method was too simple to describe the real fluctuation of the spectrum, for example, the aerosol 401 
density and water precipitation had a distinct seasonal change, that correlates sun height and climate 402 
trends. The new probability model was developed by investigating the residual error distribution of 403 
atmospheric parameters that were identified to distribute on the normal distribution. 404 

The non-concentrating super-multi-junction solar cell was found robust and can keep almost the 405 
same to the maximum potential efficiency (50 %) under the realistic conditions represented by 406 
Miyazaki, Japan (N31.83°, E131.42°). 407 

The fact that the super-multi-junction solar cell is also robust of the bandgap engineering of each 408 
junction. Therefore, the future multi-junction may not be needed to tune the bandgap for matching 409 
the standard solar spectrum, as well as relying upon artificial technologies like ELO, wafer-bonding, 410 
mechanical-stacking, and reverse-growth, but merely uses up-right and lattice-matching growth 411 
technologies. Although we have two challenging techniques; one is the optical cap layer that may be 412 
the directional photon coupling layer in the application of the photonics technologies, and another is 413 
the high-quality epitaxial growth with almost 100 % of the radiative efficiency. 414 

The super-multi-junction solar cell is also robust of the bandgap engineering of each 415 

junction. Therefore, the future multi-junction may not be needed to tune the bandgap for 416 

matching the standard solar spectrum, as well as relying upon artificial technologies like 417 

epitaxial lift-off (ELO), wafer-bonding, mechanical-stacking, and reverse-growth, but merely 418 

uses up-right and lattice-matching growth technologies. Although we have two challenging 419 

techniques; one is the optical cap layer that may be the directional photon coupling layer in the 420 

application of the photonics technologies, and another is the high-quality epitaxial growth with 421 

almost 100 % of the radiative efficiency (Fig. 12). 422 

 423 

 424 

Figure 12. Possibility of the future high-efficiency solar cell technology based on the implication from 425 
the super-multi-junction solar cell.    426 
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5. Conclusions 427 

i. Multi-junction cells: Highest efficiency but lower energy yield. 428 
ii. Super-Multi-junction cell: Compensation of spectrum mismatching loss by sharing photons 429 

generated by radiation recombination due to surplus current of spectrum mismatching. 430 
iii. Annual performance: The model considering spectrum mismatching was validated and 431 

applied to super-multi-junction design. 432 
iv. Super-multi-junction solar cell performance: Robust to the spectrum change. Its annual 433 

average efficiency levels off at 50% in the realistic spectrum fluctuation. 434 
v. Future multi-junction solar cell: may not be needed to tune the bandgap for matching the 435 

standard solar spectrum, as well as relying upon artificial technologies like ELO, wafer-436 
bonding, mechanical-stacking, and reverse-growth, but merely uses up-right and lattice-437 
matching growth technologies. 438 
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