

1 **The evolution of grooming and hand use in primates: an interdisciplinary**
2 **perspective**

3

4 Alexander R. Dunkel¹

5

6 ¹ Unaffiliated, Thousand Oaks, CA, USA

7 Email: makilahy@protonmail.com

8

9 The evolution of manual grooming and its implications have received little attention in
10 the quest to understand the origins of simian primates and their social and technical
11 intelligence. All simians groom manually, whereas prosimians groom orally despite
12 comparable manual dexterity between some members of the two groups. Simians also
13 exhibit a variable propensity for the manipulation of inanimate, non-food objects, which
14 has culminated in tool making and tool use in some species. However, lemuriform
15 primates also seem capable of tool use with training. Furthermore, lemuriforms appear to
16 understand the concept of a tool and use their own body parts as “tools”, despite not
17 using inanimate objects. This suggests that prosimian primates are pre-adapted for
18 proprioceptive object manipulation and tool use, but do not express these cognitive
19 abilities by default. This essay explores the paleontological, anatomical, cognitive,
20 ethological, and neurological roots of these abilities and attempts to explain this
21 behavioural divide between simians and prosimians. Common misconceptions about
22 early primate evolution and captive behaviours are addressed, and chronological

23 inconsistencies with Machiavellian Intelligence are examined. A “licking to picking”
24 hypothesis is also proposed to explain a potential link between manual grooming and
25 object manipulation, and to reconcile the inconsistencies of Machiavellian Intelligence.
26 Bayesian decision theory, the evolution of the parietal cortex and enhanced
27 proprioception, and analogies with behavioural changes resulting from artificial selection
28 may help provide new insights into the minds of both our primate kin and ourselves.

29

30 **Keywords:** primate hand use, primate grooming, manual grooming, object manipulation,
31 primate evolution, oral grooming, object play, tool use, Machiavellian Intelligence, Bayesian
32 decision theory

33

34 Primates are often defined by their hands and minds, and Napier (1993) once wrote, “a
35 lively hand is the product of a lively mind.” Understandably, much research has gone into
36 understanding the function, anatomy, and evolution of these beautifully complex structures. But
37 there are still important questions we should ask. For example, do we fully grasp the behavioural
38 differences in hand use and object manipulation between simian and prosimian primates? (See
39 Table I for taxonomic clarification.) The switch to manual grooming appears to have occurred
40 early in the evolution of simians, but was its impact entirely superficial? Could this change have
41 been a pre-adaptation for other behavioural changes, including more diverse and complex forms
42 of object manipulation and possibly social manipulation?

43 Initially suggested by Alison Jolly (Bishop 1962; Jolly 1964)—albeit with a stronger
44 emphasis on “object play”—the idea that object manipulation and manual grooming played an

45 important role in the evolution of simian intelligence took the back seat in later years as her work
46 indirectly supported research suggesting social group size was the driving force behind increased
47 brain size. Here, I revisit Jolly's early work, and contrast it with what is known from related
48 fields and my own observations.

49 An interdisciplinary review is necessary to paint a broad picture of the poorly understood
50 events that happened when the simian ancestors parted ways with the prosimian stock. Between
51 highly publicised misrepresentations of early primate evolution in 2009 (Switek 2010) and the
52 possibility of outdated introductory textbooks (Love 2006), myths about the early evolutionary
53 history of primates have ample ground to take root outside of palaeoanthropology. The same can
54 be said for our understanding of anatomical, neurological, behavioural, and social differences
55 between wild and captive primates. Misconceptions are not uncommon.

56 The early evolution of primates is crucial to understanding the origins of human cognitive
57 abilities and social behaviours. Yet despite an abundance of research across many fields,
58 relatively little has been done to explain the evolution of grooming and object manipulation
59 among early simians. Grooming is not just a physiological need, but is also crucial for psycho-
60 social reasons (Dunbar 1991; Napier 1993; Spruijt et al. 1992); and the physical and behavioural
61 limitations that govern hand use for object manipulation lie at the heart of tool use. Equally
62 important, our understanding of the lemur mind and that of many other mammals may rest on
63 our ability to fully grasp the cognitive and behavioural divide that separates the simian clade
64 from our prosimian cousins.

65

66 **EARLY PRIMATE EVOLUTION**

67

68 Much of early primate evolution remains shrouded in mystery due to gaps in the early
69 primate fossil record, particularly in Africa and Asia—the major hotbeds of evolution for the
70 living primates. What can be said is that the split between haplorhines and strepsirrhines likely
71 occurred at the very base of the primate family tree, and the three major groups of living
72 primates—lemuriforms, tarsiers, and simians—were likely distinct by sometime in the early
73 Paleogene (see Figure I).

74 Among the first primates to appear in the fossil record were the strepsirrhine adapiforms
75 and haplorhine omomyiforms, which both enjoyed initial success during the Eocene but
76 eventually died out. The ancestors of all living strepsirrhines likely split from an Asian branch of
77 cercamoniine adapiform by the early Paleogene, and evolved independently in Africa (Godinot
78 2006; Tabuce et al. 2009). On the other hand, the relationships between omomyiforms, tarsiers,
79 and simians are unclear (Williams et al. 2010a; Williams et al. 2010b).

80 During the early to middle Eocene, lemuriforms diversified in Africa, although molecular
81 clock estimates suggest an earlier divergence (Horvath et al. 2008; Poux et al. 2005; Yoder & Yang
82 2004). (But see Steiper and Seiffert (2012) for new calibration methods that may reconcile the
83 discrepancy.) Stem lemuriforms from this time lacked a toothcomb, a comb-like structure of the
84 anterior mandibular dentition (Godinot 2006). So far, this characteristic lemuriform trait first
85 appears in the fossil record at 40 Ma in a stem lorisoid (Seiffert et al. 2005).

86 It can be tempting to assume that lemurs and their relatives are "primitive" primates.
87 Indeed, they do possess several ancestral traits believed to be found in the earliest primates.

88 However, the same can be said of simians, and this—along with convergent evolution—is what
89 makes the classification of fossil primates so difficult, especially when only extant primates, the
90 current endpoints in our evolutionary lineage, are compared. Often, adapiforms are referred to as
91 “lemur-like”. Yet given the morphological and behavioural diversity of both lemurs and ancient
92 adapiforms, this analogy can be misleading (Covert 2002), which can lead even well-respected
93 professionals to claim that lemurs were once found outside of Madagascar and Africa (see
94 Wilson and Hanlon (2010) for an example). Assuming a single lemuroid colonisation of
95 Madagascar, any fossil relatives found in Africa would be either stem lemuriforms, stem
96 lemuroids, or stem/crown lorisoids.

97 Simian origins are very obscure and thus hotly debated. Key African fossils once aligned
98 with this clade have recently been shown to be strepsirrhines (Marivaux et al. 2011; Tabuce et al.
99 2009), while eosimiiforms—potential stem simians rooted in Asia—appear to have dispersed
100 multiple times to Africa around the middle Eocene (Chaimanee et al. 2012). How the Asian
101 eosimiiforms and their kin relate to the undisputed stem simians from the late middle Eocene of
102 Africa is also debated.

103 What do we know about the first simians? Thanks to early Asian and African stem simian
104 fossils, we know they were very small and that they had small brains. (Larger brains evolved
105 independently in platyrhines and catarrhines.) They were diurnal and showed changes in the
106 middle ear and cranial arteries, but it is unclear when these shifts happened within early
107 haplorhines (Kay et al. 1997). The reduction of olfaction and pheromone detection happened
108 primarily in the catarrhine clade, not in stem simians. Enhanced visual acuity and the beginnings
109 of a postorbital septum, or bony partition behind the eye, may have been present during the
110 simian/tarsier split (Williams et al. 2010a), which may correspond with the shift to diurnality,

111 which is thought to have occurred at the base of the haplorhine clade (Ross 1996, 2000; Williams
112 et al. 2010a). Stem simians may have been slow climbers (Ryan et al. 2012) or capable of
113 leaping, similar to lemuriforms, while specialization for above-branch arboreal quadrupedalism
114 is thought to have first shown up in crown simians from Africa (Ross 2000). In other words—
115 and with little surprise—it would have been very difficult to distinguish stem simians
116 anatomically from the other early primates of their time.

117 Phylogenetic social trends among extant primates suggest that the first simians had
118 transitioned from solitary foraging to forming unstable social groups, with stable social groups
119 evolving separately and more recently in several simian lineages (Shultz et al. 2011).
120 Furthermore, if we could travel back in time and see them in the flesh, one difference I suspect
121 would have been obvious. Somewhere between the split with tarsiers and the evolution of crown
122 simians, these tiny primates began to use their hands for more than locomotion, social play, and
123 food acquisition. They began to groom manually.

124

125 **GROOMING ADAPTATIONS**

126

127 Simians use their hands to groom, although the manner in which they do so can vary
128 phylogenetically. The fur is parted with the hands or fingers, usually either with flat, outstretched
129 palms or (in the more dexterous apes) with fine manipulation of the fingers. Parasites or debris
130 are gently picked out with the hand or by using a sort of oral grooming, although only the lips
131 and teeth are used, not necessarily the tongue. Lemuriforms and tarsiers groom orally, like other
132 mammals, although they occasionally grasp the fur with both hands and lick or comb between

133 the two hand-holds. The lower anterior teeth are often raked through the fur, which is referred to
134 as dental combing. Despite these differences in grooming technique, the frequency and function
135 are similar in lemuriforms (Bishop 1962; Jolly 1966).

136 Unlike haplorhines, adapiforms, and the stem members of their clade, lemuriforms are
137 equipped with a built-in toiletry kit in their anterior oral cavity. The toothcomb, consisting of
138 four or six procumbent teeth (including both incisors and canines), is used to for dental combing.
139 The toothcomb is a synapomorphy of the lemuriform clade, although it has been lost or
140 significantly modified in some lineages, namely the aye-aye (*Daubentonia madagascariensis*)
141 and some recently extinct subfossil lemurs (Godfrey et al. 2010; Szalay & Seligsohn 1977).
142 Additionally, lemuriforms have a keratinised and typically serrated sublingua or “under-tongue”,
143 a lesser-known soft structure, which is used to remove hair that accumulates on the toothcomb.
144 Following oral grooming, the sublingua is thought to flick forward, allowing its serrated,
145 keratinised tip to fit between the tine-like anterior teeth and remove the hair (Jones 1918; Roberts
146 1941).

147 Evidence of this cleaning function of the toothcomb can be found using scanning electron
148 microscopy, which often shows fine striations made by the passing hair on the lateral and medial
149 sides and lingual ridges of the teeth (Rose et al. 1981). Striations indicating dental grooming
150 have also been found in omomyiforms from the late Eocene (Schmid 1983). Tarsiers groom
151 orally and exhibit dental combing (Crompton & Andau 1986), and according to Musser and
152 Dagosto (1987) some tarsier species also show striations on the lower incisors and canines.
153 However, not all species show these striations, and the differences may be due to grooming
154 frequency, thickness and length of the pelage, and the spacing of the anterior dentition.

155 Although tarsiers groom orally and exhibit dental combing, they lack a toothcomb
156 (Ankel-Simons 2007). Views that lemuriform dentition and its derived toothcomb are
157 “primitive” for primates are dated and originally derived from the scala naturae paradigm
158 (Rosenberger et al. 1985). However, they persist either to place fossil primates as intermediates
159 between strepsirrhines and simians (Franzen et al. 2009) or to ally tarsiers with strepsirrhines
160 (Schwartz 2003) contrary to molecular evidence (Schmitz et al. 2001). In the case of the latter,
161 Schwartz went so far as to blatantly ignore that he was comparing tarsier incisors to lemuriform
162 canines in his attempt to suggest homology. Although signs of dental microwear indicate dental
163 combing, the lack of striations does not preclude oral grooming, nor does it imply the manual
164 grooming seen in simians.

165 Lemuriforms also bear a grooming claw, a specialized “ungula” or nail on their second
166 pedal digit. This grooming adaptation is not nearly as exclusive since it is also found in
167 haplorhines. Tarsiers, for example, have grooming claws on both the second and third pedal
168 digits. As with the toothcomb, grooming claws have also been given undue weight when
169 determining the phylogeny of living and fossil primates (Franzen et al. 2009; Schwartz &
170 Tattersall 1985). Evidence of its existence in fossil primates and in living haplorhines has been
171 debated historically, but that has changed recently. Soligo and Müller (1999) examined the shape
172 and histology, concluding the grooming claw was a symplesiomorphy in primates, and its
173 disappearance in simians may have coincided with the evolution of manual grooming, improved
174 manual dexterity, and increased social complexity. Maiolino et al. (2011) recently discovered a
175 more reliable metric for assessing the presence or absence of grooming claws by going beyond
176 histology and instead evaluating the apical tuft of the distal phalanges. Their results showed that
177 grooming claws could be found to varying degrees in platyrhines, such as owl monkeys (*Aotus*).

178 Consequently, the presence of a grooming claw on the second pedal digit may be a
179 symplesiomorphic trait for primates, retained not only in lemuriforms and tarsiers, but also in
180 some New World monkeys. Alternatively, the trait might be convergent in three lineages.
181 Regardless, it cannot be a diagnostic feature of grooming style.

182 Since the absence of a toothcomb, dental microwear, or a grooming claw cannot prove
183 the existence of manual grooming among fossil primates and the timing of its origins, its traces
184 must be sought elsewhere. But first, why did manual grooming evolve in the first place?
185 Surprisingly, searches of the academic literature have yielded no published conjecture. To fill the
186 void, here are some ideas.

187 First, the transition away from oral grooming was probably not for health reasons since
188 the debris and parasites removed in manual grooming are usually ingested (Spruijt et al. 1992).
189 One possibility involves concealed grooming. To notice simians grooming, you have to watch
190 closely if their back is turned or they are behind a tree. Very little movement can be seen to clue
191 you in to their activities. In contrast, all one needs to see is the tip of a tail when prosimians
192 groom. While licking, the bobbing of the head causes flexion of the spine, which shifts the whole
193 body. Furthermore, manual grooming frees the eyes to sporadically scan for threats. This might
194 suggest that manual grooming evolved to help conceal grooming from peers for the purpose of
195 coalition formation. If that were the case, then “tactical deception” (in the form of rapid trial and
196 error learning—see Byrne and Whiten (1992)) may have preceded manual grooming. However,
197 too little information is available about the frequency coalition formation in wild simians and
198 whether concealed grooming is actually used.

199 Alternatively, concealed grooming may have evolved in response to the increased
200 predation risk associated with diurnality. By reducing sudden movements which can draw the
201 gaze of a predator and by steadying the eyes to occasionally watch for predators, manual
202 groomers may have had an advantage during the middle to late Eocene, especially since visual
203 predators such as falcons, hawks, and eagles were evolving around that time (Feduccia 1999). Of
204 course, none of this explains why simians evolved manual grooming, but social lemurs did not.
205 Perhaps the answers to the grooming riddle will be found in genetics or neurology if it is ever
206 found at all.

207

208 **MANUAL ANATOMY AND DEXTERITY**

209

210 Alison Jolly (née Bishop (1962)) once noted, “The Primate hand preceded the Primate
211 brain.” In truth, the brain evolved with the hands. Grasping hands and feet in primates likely
212 evolved in tandem with the visual system for visually guided predation and plant foraging
213 (Godinot 2007; Preuss 2007a); alternatively grasping feet and hands may have evolved for a
214 fine-branch niche (Cartmill 1992; Sargis et al. 2007). What we know is that the earliest primates
215 had grasping hands and feet and likely used them for food acquisition and locomotion (Bloch &
216 Boyer 2002). Given that Jolly was making reference to some of the advanced cognitive abilities
217 seen in some simian lineages, she was, in fact, partly right—the fundamental features of the
218 primate hand evolved early on.

219 The manipulative abilities and locomotor preferences found among primates are
220 influenced not only by the elaborate neural connections affecting tactile abilities, but also by the

221 morphology of the hand. The hands of extant primates differ according to phylogeny.
222 Lemuriform hands have a widely divergent thumb for grasping, are typically ectaxonic (4th digit
223 is the longest), and have long digits. In some lemuriforms, paraxony (where both 3rd and 4th
224 digits are the longest) is seen. Simians hands have less divergent thumbs, are typically mesaxonic
225 (3rd digit is the longest)—sometimes paraxonic, as in some cebids (Cebidae)—and have shorter
226 digits (Ankel-Simons 2007; Jouffroy et al. 1991). The mesaxony and paraxony in simians allows
227 for a wider range of hand positions, allowing the hand kinematics to adjust to the substrate on
228 which the primate is moving (Lemelin & Schmitt 1998). The hands of tarsiers—which have a
229 less divergent thumb, are mesaxonic, and have long digits—may serve as an approximation for
230 what the first primate hands were like. If that is the case, strepsirrhines evolved a more divergent
231 thumb to specialize in grasping, while simians mostly retained hands adapted for a generalized
232 arboreal locomotion (Godinot 1992). Recent analysis of lemuriform and adapiform hindlimb
233 anatomy supports the view that their common ancestor specialized in using vertical supports for
234 clinging and leaping, whereas the common ancestor of all primates only had adaptations for
235 leaping (Gebo 2011).

236 Not much is known about the manual anatomy of Eocene primates due to taphonomic
237 bias in the fossil record. Material from the hands of a few Holarctic adapiforms has been found,
238 which allow comparisons with living taxa. These show that adapiforms generally had widely
239 divergent thumbs and very long digits, suggesting that their grasp lacked power (Godinot 1992).
240 In contrast, early simians had only moderate thumb divergence and grasping ability (Godinot &
241 Beard 1991).

242 The foundation for our understanding of manual dexterity and utility is largely due to
243 Napier (1956), who studied primate hands and defined two primary types of grips: the power

244 grip and the precision grip (Napier 1993). Among extant primates, only catarrhines are capable
245 of true opposition of the thumb, which requires rotation of the thumb. Most prosimians and
246 platyrhines have pseudo-opposable thumbs (Napier 1993), while tarsiers and marmosets have
247 non-opposable thumbs (Ankel-Simons 2007). Despite the lack of true opposition in platyrhines,
248 capuchins (Cebinae) have evolved especially dexterous hands capable of destructive foraging
249 (Christel & Fragaszy 2000; MacNeilage 1990; Napier & Napier 1967; Pouydebat et al. 2009;
250 Spinozzi et al. 2004). Otherwise, both prosimians and platyrhines (with the exception of
251 capuchins) have only whole-hand control and are generally incapable of a precision grip.
252 Lemuriforms are capable of fine control of the hand, although some, such as the members of
253 Lemuridae, have difficulty picking up small objects off a flat surface and instead favour using
254 their teeth (Bishop 1962). Since more insectivorous prosimians use their hands when feeding—
255 whereas herbivorous lemurs often feed directly with the mouth—hand use and dexterity seem to
256 be greatly influenced by ecology. Also, the gripping of fur during infancy or grooming differs
257 from that seen with food or locomotion, with the grip depending on the close contact between the
258 phalanges (Jolly 1964). Interestingly, lemuriforms appear to possess the dexterity required for
259 basic manual grooming (using the fur grip seen in lemur infants or flat palms to part the fur), as
260 seen in platyrhines, yet do not exhibit the behaviour. Torigoe (1985) noted the same discrepancy
261 between hand use and anatomy in regards to object manipulation.

262 Like prosimians, platyrhines also use the same prehensile pattern for both small and
263 large objects, but they differ in that they tend to explore novel objects with their fingertips first
264 rather than grab them outright, groom manually, and use a preferred hand orientation when
265 grasping branches as part of their above-branch quadrupedalism. Some platyrhines demonstrate
266 more advanced hand control by using scissor grips, where objects are secured by the sides of two

267 digits, or when they pick up an object by curling a finger around it. Extant catarrhines go beyond
268 whole-hand control, having fully opposable thumbs, while terrestrial species exhibit finer control
269 of the hand. Even among colobus monkeys (*Colobus*), where the thumb is reduced or nearly
270 absent, objects are either held between the fingers and the palm or are picked up using the index
271 finger and the stump of the thumb (Jolly 1964; Napier & Napier 1967). Hominoid hands are
272 generally more dexterous and are capable of specialized grips (Marzke & Wullstein 1996).

273 Jolly proposed that increased object play or manual grooming may have been pre-
274 adaptations for more dexterous hands (Bishop 1962). Alternatively, ecological factors such as
275 foraging may have driven the evolution of this trait (MacNeilage 1990). As with some other
276 “traditional simian hallmarks”, such as increased brain size, improved manual dexterity in both
277 simian branches appears to have evolved independently and much later than object play and
278 manual grooming, making them unlikely catalysts. This does not rule them out as pre-
279 adaptations, although ecological factors sound like the most plausible selective force. For
280 example, foraging by captive golden lion tamarins (*Leontopithecus rosalia*) does bear a strong
281 resemblance to grooming, with both hands used to part the substrate through which they
282 searched. Likewise, destructive foraging in tufted capuchins (*Sapajus apella*) mirrors the object
283 play they exhibit in captivity (unpublished data). To understand the significance and intricacies
284 of object manipulation among extant primates, a brief review of ethology and primate cognition
285 is in order.

286

287 **OBJECT MANIPULATION AND PLAY**

288

289 Object manipulation and object play have long affected our perceptions of animal
290 intelligence (Byrne & Whiten 1992). Intelligence tests from the 1960s and earlier focused
291 extensively on these traits, resulting in the biased conclusions that lemurs were significantly less
292 “intelligent” than simians—particularly capuchins (Cebinae) and some macaques (*Macaca*),
293 which were and still are some of the most common research subjects. Since then, we have come
294 to learn that lemurs sometimes favour using their mouth over their hands when manipulating
295 objects, and results from newer research that factored this in have yielded results that are
296 surprisingly contradictory to earlier conclusions (Jolly 1966). (See Fichtel and Kappeler (2009)
297 for a thorough review.)

298 When Jolly began her research, she favoured object play over grooming as an explanation
299 for the origins of simian intelligence (Jolly 1964). She later viewed social learning, which was
300 present in prosimians, as a preadaptation for object manipulation and intelligence (Jolly 1966).
301 This was one of the first arguments for the social hypotheses that dominate cognition studies
302 today. But first, what are the characteristics of object manipulation, and how do they differ
303 between primate groups?

304 Captive prosimians, and particularly lemurs, tend to sniff, lick, pick up, and chew novel
305 objects. They may also pull on branches to bring food closer, as well as hold or carry objects
306 they have picked up. Responsiveness to novel objects can range from low to high, depending on
307 the study and the species. However, all of these responses closely resemble foraging behaviours
308 or directly involve food. In contrast, captive simians are known to roll, twist, and bend objects
309 (Glickman & Sroges 1966; Jolly 1964; Parker 1974; Torigoe 1985). Yet we cannot generalize
310 these captive behaviours to all simians. Many platyrhines and leaf-eating catarrhines appear to
311 favour foraging responses similarly observed in lemurs (Glickman & Sroges 1966).

312 Jolly initially attributed very little of the object manipulations in her studies to “object
313 play” (Bishop 1962; Jolly 1964), instead showing that prosimians use their hands in stereotyped
314 ways, primarily for grasping food or branches. Later, she noted that food was a motivator for the
315 rare bouts of non-stereotyped “object play”. She wrote: “...there was much social play, and
316 locomotor play in springy branches, yet the lemurs were never seen to manipulate or investigate
317 an object other than food” (Jolly 1966). Here object play is equated with object manipulation, yet
318 it is only a subset of such behaviour. Play behaviours are difficult to define and categorise since
319 social play may be directed at an object, or locomotor play may include social elements
320 (Thompson 1998). Most play behaviours are structurally similar to species-typical behaviours.
321 However, not all object manipulation—even in adults—classifies as play. Besides being possible
322 artefacts of captivity or domestication (Hall 1998), some behaviours, such as tool use appear to
323 be different. Yet it seems unlikely that object manipulation arose out of play, since the purpose
324 of play is thought to be practice for existing behavioural adaptations (Burghardt 1998), not to
325 generate new ones.

326 Some object manipulation seen in primates may be adult object play. In some cases, this
327 seems unlikely, particularly in species such as ring-tailed lemurs (*Lemur catta*), where locomotor
328 and social play cease in adulthood, yet they are sometimes reported to “play with objects”
329 (unpublished data). Often “play” or manipulation behaviour seen in adults reflects species-
330 typical behaviours, such as foraging, scent-marking, and nest-building, particularly in prosimians
331 (Ehrlich 1970; Jaenicke & Ehrlich 1982; Jolly 1964; Renner et al. 1992). Differences in object
332 manipulation have also been noted for wild versus captive animals, with wild animals showing
333 more interest in animate objects and recently captured animals showing less interest in objects
334 compared to their captive-reared counterparts. The willingness to manipulate objects also merits

335 consideration since this can be affected by social factors as well as unintentional conditioning or
336 baiting (Jolly 1964, 1966).

337 Although baiting is often controlled for (Fornasieri et al. 1990), unintentional
338 conditioning is frequently overlooked and nearly unavoidable in captivity. Captive animals can
339 learn that objects placed within their enclosures are always safe and frequently contain food or
340 other enriching properties (Glickman & Sroges 1966). Indeed, Torigoe (1985) noted that the
341 most common object manipulation behaviours exhibited by lemurs were related to food
342 acquisition. Although this makes distinguishing foraging manipulation from the “characteristic”
343 simian object manipulation more challenging in a captive environment, it would still be very
344 telling if prosimians universally failed to demonstrate unconditioned/unbaited object
345 manipulation. However this does not necessarily suggest that advanced object manipulation
346 evolved from foraging behaviours since many lemurs forage, and even the excessively curious
347 aye-aye treats novel objects strictly as foraging opportunities (unpublished data).

348 It was Humphrey (1976) who noted that advanced object manipulation may derive from
349 the more basic acts of exploring and manipulating our social world. Picking up where Jolly left
350 off, his work helped spark the social hypotheses, such as Machiavellian intelligence. Yet
351 Humphrey, nor anyone who followed in his footsteps, has explained how this manipulative
352 ability found its way out through the hands. From what the literature seems to suggest, advanced
353 object manipulation is a product of increased intelligence, particularly trial and error learning.
354 Yet as we will see, even the popular social hypotheses are riddled with inconsistencies and in
355 need of support.

356

357 **SOCIAL INTELLIGENCE**

358

359 The Machiavellian Intelligence hypothesis started off by focusing on the importance of
360 social interactions for the evolution of intelligence within primates (Byrne & Whiten 1988). Over
361 time, correlations were found between the relative size of the neocortex and the group or
362 grooming clique size (Dunbar 1998; Kudo & Dunbar 2001).

363 The transition to diurnality is thought to have resulted in higher predation, necessitating
364 the formation of semi-permanent groups, while group living increases competition for resources.

365 The enlargement of the metabolically expensive brain offset the cost of living in groups by
366 enabling the enhanced cognition needed for the use of manipulative tactics, which includes
367 monitoring increasingly complex social networks (Byrne & Corp 2004). (See Figure II.) This
368 seemed to fit primates well, since social lemurs were seen to be less cognitively developed and
369 less socially complex (Byrne 2000). Group sizes of social lemurs are often significantly smaller
370 than that of simians (Dunbar 1998), and grooming is used to reduce aggression between dyads,
371 not to form coalitions (Fichtel & Kappeler 2009).

372 However, cracks began to appear when the social hypotheses could not explain the
373 unusual aspects of lemur social organization and the “arrested development” of their social
374 complexity. Indeed, the greater the social complexity in lemurs, the smaller their brain—a trend
375 opposite to what is predicted by the social hypotheses (MacLean et al. 2009). The less supported
376 ecological hypotheses, which contended that big brains were fuelled by high-fruit diets and that
377 group sizes were constrained by resource availability, suggested that lemur brains and group
378 sizes were constrained by the limitations of their extreme habitat in Madagascar (Cunningham &

379 Janson 2007; Kappeler 1997; Wright 1997), although the recently extinct, monkey lemurs
380 (Archaeolemuridae) did not conform to this view. The brains of these Malagasy lemurs were
381 quite large by strepsirrhine standards, despite being no more complex than that of indriids
382 (Indriidae) (Godfrey et al. 2010; Tattersall 1973). Regardless, the tenets of these ecological
383 hypotheses have since started to integrate with the social hypotheses by suggesting that large
384 social structures seen in simians helped improve foraging tactics, favouring yet larger group sizes
385 (Thierry 2008).

386 Despite the bolstering from ecological principles, problems still exist. Behaviourally,
387 anatomically, and phylogenetically, the story does not add up. The most common theme is that
388 we have falsely assumed that all simians are equivalent to catarrhines. We often forget how
389 much like prosimians the platyrhines are, especially when compared to catarrhines.

390 Except for the fact that prosimians are less inclined to manipulate objects without food
391 value, both they and platyrhines demonstrate comparable cognitive skills, differing primarily in
392 their performance on discrimination learning tasks and numerical discrimination (Fichtel &
393 Kappeler 2009). It should be noted that prosimians also perform slightly below cotton top
394 tamarins on object permanence tests (Deppe et al. 2009). Socially, both groups sometimes
395 exhibit tactical deception, which is likely the result of trial and error learning (Byrne 2000).

396 Social lemurs and platyrhines are also very similar socially. Although the average troop
397 size of lemurs is smaller than that of platyrhines, the latter are intermediate between lemurs and
398 catarrhines. Also, most platyrhine species live in small lemur-sized troops (Kappeler &
399 Heymann 1996) with only Peruvian red uakaris (*Cacajao calvus ucayalii*) living in troops with
400 >100 individuals. Neither lemurs nor platyrhines live in multi-level social systems (Bowler et al.

401 2012). Small coalitions have been observed in social lemurs, but such occurrences are rare
402 (Fichtel & Kappeler 2009). The only other major social differences are that social lemurs exhibit
403 an even sex ratio and troops in some species tend to be less stable (Kappeler 1997).

404 Shultz et al. (2011) and Shultz and Dunbar (2007) argued that the transition from loose
405 aggregations to stable or bonded groups facilitated the evolution of the advanced social
406 behaviours that resulted in larger brains. However, this creates a problem since according to their
407 own data, some lemurs also live in stable or bonded groups while not all platyrhines do. If this is
408 correct, then big brains could not have evolved first (see Figure III).

409 With all of these chronological and ethological inconsistencies, along with how the social
410 hypotheses cannot explain the emergence of non-foraging hand use—even from “socially
411 complex” early simians—clearly a piece of the puzzle is missing. What we need is a theory of
412 hand and mind.

413

414 **MANUAL GROOMING AND OBJECT MANIPULATION: A LINK?**

415

416 So how do we make sense of this? If the social and ecological models fail to explain the
417 peculiarities of lemur sociality, and platyrhines are more like prosimians than most people
418 realize, then how did enhanced cognition evolve in the simian clade, and why did the hand take
419 on a life of its own? The solution could be simple, and it may be found exactly where Jolly
420 predicted: in a social setting—albeit the catalyst might not have acted simply as a preadaptation
421 for a more dexterous hand. Manual grooming may have opened the door for a very primitive,
422 calculating mind, originally evolved to respond to the physical world. This may seem unlikely,

423 given that grooming behaviours are governed at lower levels of the brain—in orally grooming
424 rodents (Spruijt et al. 1992). Indeed, the neural changes that followed the switch from licking to
425 picking may have been relatively minor, and were probably not followed by a significant
426 increase in neocortex size since neural structure can change without an increase in brain size
427 (Preuss 2007b). However, as simians have evolved, cognitive advances have occurred as a result,
428 based on either social or ecological selective forces, as predicted by either Machiavellian
429 Intelligence or the integrated social and ecological hypotheses. To understand what happened at
430 the base of the simian clade, a “licking to picking hypothesis” may prove to be the best approach.

431 To understand how manual grooming could spark novel hand use and an increased
432 interest in objects, all we have to do is look at the effects of artificial selection on domestic
433 animals. In dogs, we now know that the process of domestication has endowed our canine
434 companions with the ability to understand pointing and gaze cues (Hare et al. 2002). Other social
435 cognitive skills have also been documented in other domestic animals (Rosati et al. 2010). Most
436 relevant and astounding of all is the case of Holstein cattle. According to Grandin and Johnson
437 (2005), the process of selecting for continual eating (to increase milk production) has resulted in
438 a breed that is notorious for manipulating objects with its mouth. Whereas other free-ranging
439 cattle breeds might sniff and occasionally lick/chew a novel, neutral object, Holsteins will lick
440 and chew incessantly. They are even known to open gate latches with their tongues, initially by
441 trial and error. However, once they learn the trick, they can open the latches easily and some
442 have mastered nearly every latch on the market.

443 Surprisingly, this behaviour has not been explored academically. If these observations are
444 correct, the parallel should be obvious. Admittedly, the degree differs—most platyrhines do not
445 incessantly manipulate non-food objects, but all captive species have been observed to do so

446 from time to time (unpublished data). But that could be expected given the difference in
447 phylogeny and neural anatomy.

448 The next question is where this manipulative behaviour would come from. Why would
449 compulsive eating or manual grooming trigger such radically new behaviour? The answer is that
450 it is not radically new. In fact, practical and theoretical work on Bayesian decision theory
451 indicates that the brain evolved for handling complex movement and interaction with the
452 environment by handling sensory input, past experience, noise, and uncertainty to adapt to the
453 environment. Working with each of these variables, Bayesian inference involves calculating
454 probabilities of outcomes to enable an organism to generate the appropriate physiological
455 response in a dynamic and changing world (Orbán & Wolpert 2011). By neurologically freeing
456 the hands to groom manually, it could open the door for this basic proprioceptive circuitry to
457 emerge through the hands. If this is correct, our view of cognition as an abstract, tactical planner
458 may be anthropocentric (Barrett & Rendall 2010). At its core, the brain is about the body. The
459 mind is an emergent property.

460 The basic principles of this can be seen in tool use. In the brain, tools are treated as an
461 extension of the body plan. This proprioception occurs in the parietal cortex where
462 somatosensory and visual inputs are merged. Our brains already perform complex calculations to
463 manipulate the body, which suggests an embedded, neural link between self-manipulation and
464 object manipulation (Iriki et al. 2010). To put it simply, self-manipulation evolved into object
465 manipulation, which in turn, evolved into advance proprioception and tool use. Interestingly, the
466 purpose of grooming may be de-arousal, in which case grooming may represent a shift from
467 processing exteroceptive information (from the outside world) to processing proprioceptive

468 information (Spruijt et al. 1992), further supporting the link between internal and external
469 manipulation, with grooming acting as a potential bridge.

470 By viewing tool use as a proprioceptive act, we may now be able to explain some
471 perplexing prosimian behaviours that resemble tool use. Although prosimians have not been
472 observed using objects as tools in the wild, they can be trained to do so, yet will also select the
473 most effective tool for the task, and not necessarily the one they were trained on. It appears they
474 understand the functional qualities of the tool and can even manipulate and reposition tools to
475 make them effective, which puts them on par with capuchins (Santos et al. 2005). Without
476 training, lemurs have been observed using their tails to collect water from a pond. Some
477 members appeared to pick this behaviour up through social learning (Hosey et al. 1997). Wild
478 slender lorises have been observed licking their arms to make them sticky, and then placing it in
479 the path of ants to collect them (Kumara et al. 2005). Some people consider the act of pulling a
480 branch closer for accessing fruit or leaves as an example of tool use in primates, which is also
481 seen in some diurnal lemurs (Iriki et al. 2010; Jolly 1964; Milliken et al. 2005). Each of these
482 suggests that fundamental Bayesian inferencing can emerge in prosimians as basic
483 proprioception naturally, or as an extension of the body plan with training. Simians, however,
484 may do this automatically and more frequently.

485 The enlarged brain of simians includes a significantly evolved neocortex, where sensory
486 and motor processing occurs. This includes the parietal cortex, which has undergone significant
487 change in simians. Brodmann areas 3b, 1, 2, and 5—which are involved in object exploration,
488 reaching, and grasping—have evolved and specialized within various simian lineages (Kass
489 2010; Padberg et al. 2007). Brodmann area 5 and the posterior parietal cortex in particular appear
490 to have evolved for specialized hand use (Hinkley et al. 2007). These somatosensory and motor

491 areas, which include the intraparietal sulcus (IPS), also assist with the understanding of
492 intentionality in social situations (Hamilton & Grafton 2006). Sure enough object manipulation
493 and social cognition appear to be linked in the brain (Hopkins 2010).

494 This makes perfect sense because social interactions follow the same basic Bayesian
495 inference principles as object manipulation (Körding & Wolpert 2006). This falls in line with the
496 view that tactical deception in most primates is best explained through trial and error learning
497 (Byrne & Whiten 1992), and may clarify why lemurs sometimes demonstrated tactical deception
498 in controlled studies and only rarely in the wild (Barrett & Rendall 2010; Fichtel & Kappeler
499 2009; Genty & Roeder 2006; Genty et al. 2008).

500 It appears that there is a relationship between object manipulation, social manipulation,
501 and grooming within simians, but not within prosimians. This cognitive divide may seem small,
502 yet is significant. This “Lennian divide”—named here in honour of the individual who helped
503 me see it—sets simians apart from prosimians in their manipulation of objects, and may help
504 explain other behavioural differences as well. Furthermore, by learning to work around the
505 Lennian divide in our study of social lemurs and other prosimians, we may find other surprising
506 cognitive abilities not predicted by current models. For example, might lemurs demonstrate
507 Theory of Mind under the right circumstances? As for simians, the Lennian divide may finally
508 explain why we think with our hands and shed light on the root of our cognitive abilities.

509

510 **CONCLUDING REMARKS**

511

512 What defines a crown simian as opposed to a stem simian? Is it a full postorbital septum,
513 something special about the cusps on our molars, or the shape of the talus bones in the ankles?
514 As a myriad of anatomical differences flesh out in the fossil record, slowly revealing the order in
515 which they evolved, palaeontologists are left to decide which traits were most significant and
516 best define the simian clade. Meanwhile, researchers in the behavioural sciences see distinct
517 differences between simians and all other primates. However, behaviours do not always fossilize.
518 Sometimes we get lucky and find an oviraptor guarding a clutch of eggs, turtles locked in coitus,
519 or predator and prey frozen in mortal combat. But these are the exceptions.

520 Sociality lies at the heart of the simian clade and eventually spurred the evolution of large
521 brains, problem solving, and social learning, but those early simian communities were no more
522 complex than what we see in modern lemurs (Shultz et al. 2011). Here I argue that the evolution
523 of the simian/prosimian behavioural gap, or “Lennian divide”, may stand as a defining moment
524 in simian evolution, more so than the full convergence of a few bony plates behind the eye. As
525 detailed above, manual grooming and advanced object manipulation may have been linked traits
526 that emerged at the same time. It is this multi-tool of social and technical behaviours that acts as
527 the cornerstone of the simian cognition.

528 Although we will probably never find manually grooming primates frozen in the fossil
529 record, interdisciplinary scrutiny can help identify the proximate causes of this behaviour, while
530 palaeontology can piece together the ecosystems in which our ancestors lived to slowly unveil
531 the ultimate causes of these behavioural changes. By collaborating we can take what we know
532 about primate behaviour, the behaviour of other animals, ecosystem evolution,
533 palaeocommunities, neuroscience, and genetics and define crown simians by the very behaviour

534 that unites both our clade and our social groups. The challenge is great, but evolution has honed
535 our hands and minds for the task.

536

537 ACKNOWLEDGMENTS

538

539 I am grateful to the following researchers for their feedback and reviews of the
540 manuscript: Jelle Zijlstra, Richard Byrne, Alison Jolly, John Fleagle, Marc Godinot, Friderun
541 Ankel-Simons, Todd M. Preuss, Temple Grandin, and Ian Tattersall. I am thankful to Leslie
542 Digby for her time and initial advice, and to the Duke Lemur Center staff for their support.
543 Special thanks to David Kaplan for helping me find the one of the final pieces to the puzzle. This
544 paper is dedicated to Lenny or “Obi” (*Lemur catta*, North American Regional Studbook #2353),
545 who helped me to see the obvious and inspired this research.

546

547 REFERENCES

548

549 **Ankel-Simons, F.** 2007. *Primate Anatomy: An Introduction*, 3rd edn. San Diego: Elsevier Academic
550 Press.
551 **Barrett, L. & Rendall, D.** 2010. Out of our minds: The neuroethology of primate strategic behavior. In:
552 *Primate Neuroethology* (Ed. by M. L. Platt & A. A. Ghazanfar), pp. 570-586. Oxford: Oxford University
553 Press.
554 **Bishop, A.** 1962. Control of the hand in lower primates. *Annals of the New York Academy of Sciences*,
555 102, 316-337.
556 **Bloch, J. I. & Boyer, D. M.** 2002. Grasping primate origins. *Science*, 298, 1606-1610.
557 **Bowler, M., Knogge, C., Heymann, E. & Zinner, D.** 2012. Multilevel societies in New World
558 primates? Flexibility may characterize the organization of Peruvian red uakaris (*Cacajao calvus ucayalii*).
559 *International Journal of Primatology*, 33, 1-15.

560 **Burghardt, G. M.** 1998. The evolutionary origins of play revisited: Lessons from turtles. In: *Animal*
561 *Play: Evolutionary, Comparative, and Ecological Perspectives* (Ed. by M. Bekoff & J. A. Byers), pp. 1-
562 26. Cambridge: Cambridge University Press.

563 **Byrne, R. W. & Whiten, A.** 1988. *Machiavellian Intelligence: Social Expertise and the Evolution of*
564 *Intellect in Monkeys, Apes, and Humans*. Oxford: Oxford University Press.

565 **Byrne, R. W. & Whiten, A.** 1992. Cognitive evolution in primates: evidence from tactical deception.
566 *Man*, 27, 609-627.

567 **Byrne, R. W.** 1995. *The Thinking Ape: Evolutionary Origins of Intelligence*. Oxford: Oxford University
568 Press.

569 **Byrne, R. W.** 2000. Evolution of primate cognition. *Cognitive Science*, 24, 543-570.

570 **Byrne, R. W. & Corp, N.** 2004. Neocortex size predicts deception rate in primates. *Proceedings of the*
571 *Royal Society B: Biological Sciences*, 271, 1693-1699.

572 **Cartmill, M.** 1992. New views on primate origins. *Evolutionary Anthropology: Issues, News, and*
573 *Reviews*, 1, 105-111.

574 **Chaimanee, Y., Chavasseau, O., Beard, K. C., Kyaw, A. A., Soe, A. N., Sein, C., Lazzari, V.,**
575 **Marivaux, L., Marandat, B., Swe, M., Rugbumrung, M., Lwin, T., Valentin, X., -Maung-Thein, Z.-**
576 **M. & Jaeger, J.-J.** 2012. Late Middle Eocene primate from Myanmar and the initial anthropoid
577 colonization of Africa. *Proceedings of the National Academy of Sciences*, 109, 10293-10297.

578 **Christel, M. I. & Fragaszy, D.** 2000. Manual function in *Cebus apella*. Digital mobility, preshaping, and
579 endurance in repetitive grasping. *International Journal of Primatology*, 21, 697-719.

580 **Covert, H. H.** 2002. The earliest fossil primates and the evolution of prosimians: Introduction. In: *The*
581 *Primate Fossil Record* (Ed. by W. C. Hartwig), pp. 15-18. New York, USA: Cambridge University Press.

582 **Crompton, R. & Andau, P.** 1986. Locomotion and habitat utilization in free-ranging *Tarsius bancanus*:
583 A preliminary report. *Primates*, 27, 337-355.

584 **Cunningham, E. & Janson, C.** 2007. A socioecological perspective on primate cognition, past and
585 present. *Animal Cognition*, 10, 273-281.

586 **Deppe, A., Wright, P. & Szelistowski, W.** 2009. Object permanence in lemurs. *Animal Cognition*, 12,
587 381-388.

588 **Dunbar, R. I. M.** 1991. Functional significance of social grooming in primates. *Folia Primatologica*, 57,
589 121-131.

590 **Dunbar, R. I. M.** 1998. The social brain hypothesis. *Evolutionary Anthropology*, 6, 178-190.

591 **Dunkel, A. R., Zijlstra, J. S. & Groves, C. P.** 2011/2012. Giant rabbits, marmosets, and British
592 comedies: etymology of lemur names, part 1. *Lemur News*, 16, 64-70.

593 **Ehrlich, A.** 1970. Response to novel objects in three lower primates: Greater galago, slow loris, and owl
594 monkey. *Behaviour*, 37, 55-63.

595 **Feduccia, A.** 1999. *The Origin and Evolution of Birds*. New Haven: Yale University Press.

596 **Fichtel, C. & Kappeler, P. M.** 2009. Human universals and primate symplesiomorphies: Establishing the
597 lemur baseline. In: *Mind the Gap: Tracing the Origins of Human Universals* (Ed. by P. M. Kappeler & J.
598 B. Silk), pp. 395-426. Heidelberg: Springer.

599 **Fornasieri, I., Anderson, J. R. & Roeder, J. J.** 1990. Responses to a novel food acquisition task in three
600 species of lemurs. *Behavioural Processes*, 21, 143-156.

601 **Franzen, J. L., Gingerich, P. D., Habersetzer, J., Hurum, J. H., von Koenigswald, W. & Smith, B.**
602 H. 2009. Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and
603 paleobiology. *PLoS One*, 4, e5723.

604 **Gebo, D. L.** 2011. Vertical clinging and leaping revisited: Vertical support use as the ancestral condition
605 of strepsirrhine primates. *Am J Phys Anthropol*, 146, 323-335.

606 **Genty, E. & Roeder, J.-J.** 2006. Can lemurs learn to deceive? A study in the black lemur (*Eulemur*
607 *macaco*). *Journal of Experimental Psychology: Animal Behavior Processes*, 32, 196-200.

608 **Genty, E., Foltz, J. & Roeder, J.-J.** 2008. Can brown lemurs (*Eulemur fulvus*) learn to deceive a human
609 competitor? *Animal Cognition*, 11, 255-266.

610 **Glickman, S. E. & Sroges, R. W.** 1966. Curiosity in zoo animals. *Behaviour*, 26, 151-187.

611 **Godfrey, L. R., Junger, W. L. & Burney, D. A.** 2010. Subfossil lemurs of Madagascar. In: *Cenozoic*
612 *Mammals of Africa* (Ed. by L. Werdelin & W. J. Sanders), pp. 351-367. Berkeley: University of
613 California Press.

614 **Godinot, M. & Beard, K.** 1991. Fossil primate hands: A review and an evolutionary inquiry
615 emphasizing early forms. *Human Evolution*, 6, 307-354.

616 **Godinot, M.** 1992. Early euprimate hands in evolutionary perspective. *Journal of Human Evolution*, 22,
617 267-283.

618 **Godinot, M.** 2006. Lemuriform origins as viewed from the fossil record. *Folia Primatologica*, 77, 446-
619 464.

620 **Godinot, M.** 2007. Primate origins: A reappraisal of historical data favoring tupaiid affinities. In: *Primate*
621 *Origins: Adaptations and Evolution* (Ed. by M. J. Ravosa & M. Dagosto), pp. 83-142. New York:
622 Springer.

623 **Grandin, T. & Johnson, C.** 2005. *Animals in Translation*. London: Bloomsbury Publishing.

624 **Hall, S. L.** 1998. Object play by adult animals. In: *Animal Play: Evolutionary, Comparative, and*
625 *Ecological Perspectives* (Ed. by M. Bekoff & J. A. Byers), pp. 45-60. Cambridge: Cambridge University
626 Press.

627 **Hamilton, A. F. d. C. & Grafton, S. T.** 2006. Goal representation in human anterior intraparietal sulcus.
628 *The Journal of Neuroscience*, 26, 1133-1137.

629 **Hare, B., Brown, M., Williamson, C. & Tomasello, M.** 2002. The domestication of social cognition in
630 dogs. *Science*, 298, 1634-1636.

631 **Hinkley, L., Padberg, J. & Krubitzer, L.** 2007. Hand use and the evolution of posterior parietal cortex
632 in primates. In: *Evolution of Nervous Systems: A Comprehensive Review* (Ed. by J. H. Kass), pp. 1-34.
633 Oxford: Elsevier.

634 **Hoffstetter, R.** 1974. Phylogeny and geographical deployment of the Primates. *Journal of Human*
635 *Evolution*, 3, 327-350.

636 **Hopkins, W. D.** 2010. The comparative neuropsychology of tool use in primates with specific reference
637 to chimpanzees and capuchin monkeys. In: *Primate Neuroethology* (Ed. by M. L. Platt & A. A.
638 Ghazanfar), pp. 587-614. Oxford: Oxford University Press.

639 **Horvath, J. E., Weisrock, D. W., Embry, S. L., Fiorentino, I., Balhoff, J. P., Kappeler, P., Wray, G.**
640 **A., Willard, H. F. & Yoder, A. D.** 2008. Development and application of a phylogenomic toolkit:
641 Resolving the evolutionary history of Madagascar's lemurs. *Genome Research*, 18, 489-499.

642 **Hosey, G., Jacques, M. & Pitts, A.** 1997. Drinking from tails: Social learning of a novel behaviour in a
643 group of ring-tailed lemurs (*Lemur catta*). *Primates*, 38, 415-422.

644 **Humphrey, N. K.** 1976. The social function of intellect. In: *Growing Points in Ethology* (Ed. by P. P. G.
645 Bateson & R. A. Hinde), pp. 303-317. Oxford: Cambridge U Press.

646 **Iriki, A., Yamazaki, Y. & Sakura, O.** 2010. Evolution of an intellectual mind in the primate brain. In:
647 *Primate Neuroethology* (Ed. by M. L. Platt & A. A. Ghazanfar), pp. 615-631. Oxford: Oxford University
648 Press.

649 **Jaenicke, C. & Ehrlich, A.** 1982. Effects of animate vs. inanimate stimuli on curiosity behavior in
650 greater galago and slow loris. *Primates*, 23, 95-104.

651 **Jolly, A.** 1964. Prosimians' manipulation of simple object problems. *Animal Behaviour*, 12, 560-570.

652 **Jolly, A.** 1966. Lemur social behavior and primate intelligence. *Science*, 153, 501-506.

653 **Jones, F. W.** 1918. The sublingua and the plica fimbriata. *Journal of anatomy*, 52, 345-353.

654 **Jouffroy, F., Godinot, M. & Nakano, Y.** 1991. Biometrical characteristics of primate hands. *Human*
655 *Evolution*, 6, 269-306.

656 **Kappeler, P. M. & Heymann, E. W.** 1996. Nonconvergence in the evolution of primate life history and
657 socio-ecology. *Biological Journal of the Linnean Society*, 59, 297-326.

658 **Kappeler, P. M.** 1997. Determinants of primate social organization: comparative evidence and new
659 insights from Malagasy lemurs. *Biological Reviews*, 72, 111-151.

660 **Kass, J. H.** 2010. Sensory and motor systems in primates. In: *Primate Neuroethology* (Ed. by M. L. Platt
661 & A. A. Ghazanfar), pp. 177-200. Oxford: Oxford University Press.

662 **Kay, R. F., Ross, C. & Williams, B. A.** 1997. Anthropoid origins. *Science*, 275, 797-804.

663 **Körding, K. P. & Wolpert, D. M.** 2006. Bayesian decision theory in sensorimotor control. *Trends in*
664 *Cognitive Sciences*, 10, 319-326.

665 **Kudo, H. & Dunbar, R. I. M.** 2001. Neocortex size and social network size in primates. *Animal*
666 *Behaviour*, 62, 711-722.

667 **Kumara, H. N., Kumar, S. & Singh, M.** 2005. A novel foraging technique observed in slender loris
668 (*Loris lydekkerianus malabaricus*) feeding on red ants in the Western Ghats, India. *Folia Primatologica*,
669 76, 116-118.

670 **Lemelin, P. & Schmitt, D.** 1998. The relation between hand morphology and quadrupedalism in
671 primates. *Am J Phys Anthropol*, 105, 185-197.

672 **Love, A.** 2006. Introductory textbooks and disciplinary acculturation: a case study from social
673 anthropology. In: *Academic Writing in Context: Implications and Applications : Papers in Honour of*
674 *Tony Dudley-Evans* (Ed. by M. Hewings). Birmingham, UK: Continuum.

675 **MacLean, E. L., Barrickman, N. L., Johnson, E. M. & Wall, C. E.** 2009. Sociality, ecology, and
676 relative brain size in lemurs. *Journal of Human Evolution*, 56, 471-478.

677 **MacNeilage, P. F.** 1990. Grasping in modern primates: The evolutionary context. In: *Vision and Action: The Control of Grasping* (Ed. by M. A. Goodale), pp. 1-13. Norwood, New Jersey: Ablex Publishing.

678 **Maiolino, S., Boyer, D. M. & Rosenberger, A.** 2011. Morphological correlates of the grooming claw in
679 distal phalanges of platyrhines and other primates: A preliminary study. *The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology*, 294, 1975-1990.

680 **Marivaux, L., Tabuce, R., Lebrun, R., Ravel, A., Adaci, M., Mahboubi, M. h. & Bensalah, M.** 2011.
681 Talar morphology of azibiids, strepsirrhine-related primates from the Eocene of Algeria: Phylogenetic
682 affinities and locomotor adaptation. *Journal of Human Evolution*, 61, 447-457.

683 **Marzke, M. & Wullstein, K.** 1996. Chimpanzee and human grips: A new classification with a focus on
684 evolutionary morphology. *International Journal of Primatology*, 17, 117-139.

685 **Milliken, G. W., Ferra, G., Kraiter, K. S. & Ross, C. L.** 2005. Reach and posture hand preferences
686 during arboreal feeding in sifakas (*Propithecus* sp.): A test of the postural origins theory of behavioral
687 lateralization. *Journal of Comparative Psychology*, 119, 430-439.

688 **Musser, G. G. & Dagosto, M.** 1987. The identity of *Tarsius pumilus*, a pygmy species endemic to the
689 montane mossy forests of central Sulawesi. *American Museum Novitates*, 1-53.

690 **Napier, J. R.** 1956. The prehensile movements of the human hand. *Journal of Bone & Joint Surgery, British Volume*, 38-B, 902-913.

691 **Napier, J. R. & Napier, P. H.** 1967. *A Handbook of Living Primates: Morphology, Ecology and Behaviour of Nonhuman Primates*. London: Academic Press.

692 **Napier, J. R.** 1993. *Hands*. Princeton, New Jersey: Princeton University Press.

693 **Orbán, G. & Wolpert, D. M.** 2011. Representations of uncertainty in sensorimotor control. *Current Opinion in Neurobiology*, 21, 629-635.

694 **Padberg, J., Franca, J. G., Cooke, D. F., Soares, J. G. M., Rosa, M. G. P., Fiorani, M., Gattass, R. & Krubitzer, L.** 2007. Parallel evolution of cortical areas involved in skilled hand use. *The Journal of Neuroscience*, 27, 10106-10115.

695 **Parker, C. E.** 1974. Behavioral diversity in ten species of nonhuman primates. *Journal of Comparative and Physiological Psychology*, 87, 930-937.

696 **Poux, C., Madsen, O., Marquard, E., Vieites, D. R., de Jong, W. W. & Vences, M.** 2005.
697 Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores,
698 and rodents as inferred from nuclear genes. *Systematic Biology*, 54, 719-730.

699 **Pouydebat, E., Gorce, P., Coppens, Y. & Bels, V.** 2009. Biomechanical study of grasping according to
700 the volume of the object: Human versus non-human primates. *Journal of Biomechanics*, 42, 266-272.

701 **Preuss, T. M.** 2007a. Evolutionary specializations of primate brain systems. In: *Primate Origins: Adaptations and Evolution* (Ed. by M. J. Ravosa & M. Dagosto), pp. 625-675. New York: Springer.

702 **Preuss, T. M.** 2007b. Primate brain evolution in phylogenetic context. In: *Evolution of Nervous Systems: A Comprehensive Review* (Ed. by J. H. Kass), pp. 1-34. Oxford: Elsevier.

713 **Renner, M., Bennett, A., Ford, M. & Pierre, P.** 1992. Investigation of inanimate objects by the greater
714 bushbaby (*Otolemur garnettii*). *Primates*, 33, 315-327.

715 **Roberts, D.** 1941. The dental comb of lemurs. *Journal of anatomy*, 75, 236-238.231.

716 **Rosati, A. G., Santos, L. R. & Hare, B.** 2010. Primate social cognition: Thirty years after Premack and
717 Woodruff. In: *Primate Neuroethology* (Ed. by M. L. Platt & A. A. Ghazanfar), pp. 117-143. Oxford:
718 Oxford University Press.

719 **Rose, K. D., Walker, A. & Jacobs, L. L.** 1981. Function of the mandibular tooth comb in living and
720 extinct mammals. *Nature*, 289, 583-585.

721 **Rosenberger, A. L., Strasser, E. & Delson, E.** 1985. Anterior dentition of *Notharctus* and the adapid-
722 anthropoid hypothesis. *Folia Primatologica*, 44, 15-39.

723 **Ross, C. F.** 1996. Adaptive explanation for the origins of the Anthropoidea (Primates). *American Journal*
724 *of Primatology*, 40, 205-230.

725 **Ross, C. F.** 2000. Into the light: The origin of Anthropoidea. *Annual Review of Anthropology*, 29, 147-
726 194.

727 **Ryan, T. M., Silcox, M. T., Walker, A., Mao, X., Begun, D. R., Benefit, B. R., Gingerich, P. D.,**
728 **Kohler, M., Kordos, L., McCrossin, M. L., Moya-Sola, S., Sanders, W. J., Seiffert, E. R., Simons, E.,**
729 **Zalmout, I. S. & Spoor, F.** 2012. Evolution of locomotion in Anthropoidea: the semicircular canal
730 evidence. *Proceedings of the Royal Society B: Biological Sciences*.

731 **Santos, L. R., Mahajan, N. & Barnes, J. L.** 2005. How prosimian primates represent tools: experiments
732 with two lemur species (*Eulemur fulvus* and *Lemur catta*). *Journal of Comparative Psychology*, 119, 394-
733 403.

734 **Sargis, E. J., Boyer, D. M., Bloch, J. I. & Silcox, M. T.** 2007. Evolution of pedal grasping in Primates.
735 *Journal of Human Evolution*, 53, 103-107.

736 **Schmid, P.** 1983. Front dentition of the Omomyiformes (Primates). *Folia Primatologica*, 40, 1-10.

737 **Schmitz, J., Ohme, M. & Zischler, H.** 2001. SINE insertions in cladistic analyses and the phylogenetic
738 affiliations of *Tarsius bancanus* to other primates. *Genetics*, 157, 777-784.

739 **Schwartz, J. H. & Tattersall, I.** 1985. Evolutionary relationships of living lemurs and lorises
740 (Mammalia, Primates) and their potential affinities with European Eocene Adapidae. pp. 1-100. New
741 York: American Museum of Natural History.

742 **Schwartz, J. H.** 2003. How close are the similarities between *Tarsius* and other primates? In: *Tarsiers:*
743 *Past, Present, and Future* (Ed. by P. C. Wright, Simons, E.L., & Gursky, S.), pp. 50-96. New Brunswick,
744 New Jersey: Rutgers University Press.

745 **Seiffert, E. R., Simons, E. L., Ryan, T. M. & Attia, Y.** 2005. Additional remains of *Wadilemur elegans*,
746 a primitive stem galagid from the late Eocene of Egypt. *Proc Natl Acad Sci U S A*, 102, 11396-11401.

747 **Shultz, S. & Dunbar, R. I. M.** 2007. The evolution of the social brain: anthropoid primates contrast with
748 other vertebrates. *Proceedings of the Royal Society B: Biological Sciences*, 274, 2429-2436.

749 **Shultz, S., Opie, C. & Atkinson, Q. D.** 2011. Stepwise evolution of stable sociality in primates. *Nature*,
750 479, 219-222.

751 **Soligo, C. & Müller, A. E.** 1999. Nails and claws in primate evolution. *Journal of Human Evolution*, 36,
752 97-114.

753 **Spinozzi, G., Truppa, V. & Laganà, T.** 2004. Grasping behavior in tufted capuchin monkeys (*Cebus*
754 *apella*): Grip types and manual laterality for picking up a small food item. *Am J Phys Anthropol*, 125, 30-
755 41.

756 **Spruijt, B. M., van Hooff, J. A. R. A. M. & Gispen, W. H.** 1992. Ethology and neurobiology of
757 grooming behavior. *Physiological Reviews*, 72, 825-852.

758 **Steiper, M. E. & Seiffert, E. R.** 2012. Evidence for a convergent slowdown in primate molecular rates
759 and its implications for the timing of early primate evolution. *Proceedings of the National Academy of*
760 *Sciences*, 109, 6006-6011.

761 **Switek, B.** 2010. Ancestor or adapiform? *Darwinius* and the search for our early primate ancestors.
762 *Evolution: Education and Outreach*, 3, 468-476.

763 **Szalay, F. S. & Seligsohn, D.** 1977. Why did the strepsirrhine tooth comb evolve? *Folia Primatologica*,
764 27, 75-82.

765 **Tabuce, R., Marivaux, L., Lebrun, R., Adaci, M., Bensalah, M., Fabre, P. H., Fara, E., Gomes**

766 **Rodrigues, H., Hautier, L., Jaeger, J. J., Lazzari, V., Mebrouk, F., Peigne, S., Sudre, J., Tafforeau,**
767 **P., Valentin, X. & Mahboubi, M.** 2009. Anthropoid versus strepsirrhine status of the African Eocene
768 primates *Algeripithecus* and *Azibius*: craniodental evidence. *Proceedings of the Royal Society B:*
769 *Biological Sciences*, 276, 4087-4094.

770 **Tattersall, I.** 1973. Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates). *Anthropological*
771 *papers of the American Museum of Natural History*, 52, 1-110.

772 **Thierry, B.** 2008. Primate socioecology, the lost dream of ecological determinism. *Evolutionary*
773 *Anthropology: Issues, News, and Reviews*, 17, 93-96.

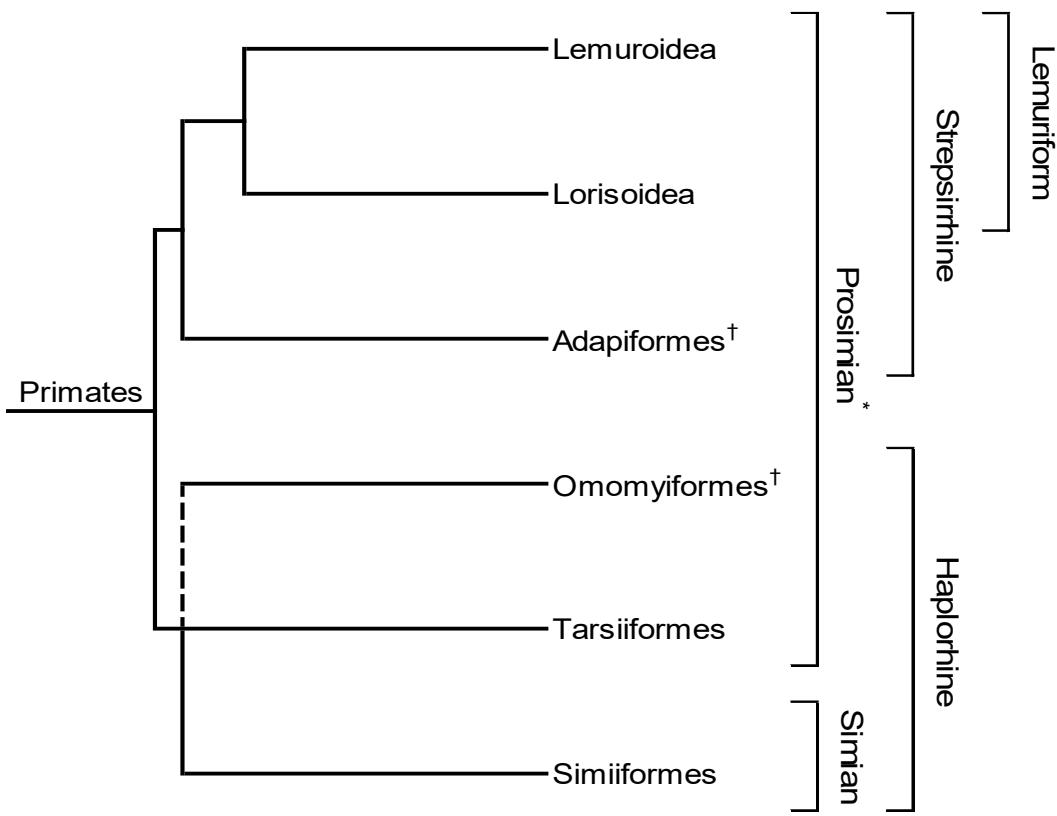
774 **Thompson, K. V.** 1998. Self assessment in juvenile play. In: *Animal Play: Evolutionary, Comparative,*
775 *and Ecological Perspectives* (Ed. by M. Bekoff & J. A. Byers), pp. 183-204. Cambridge: Cambridge
776 University Press.

777 **Torigoe, T.** 1985. Comparison of object manipulation among 74 species of non-human primates.
778 *Primates*, 26, 182-194.

779 **Williams, B. A., Kay, R. F. & Kirk, E. C.** 2010a. New perspectives on anthropoid origins. *Proceedings*
780 *of the National Academy of Sciences*, 107, 4797-4804.

781 **Williams, B. A., Kay, R. F., Kirk, E. C. & Ross, C. F.** 2010b. *Darwinius masillae* is a strepsirrhine—a
782 reply to Franzen *et al.* (2009). *Journal of Human Evolution*, 59, 567-573.

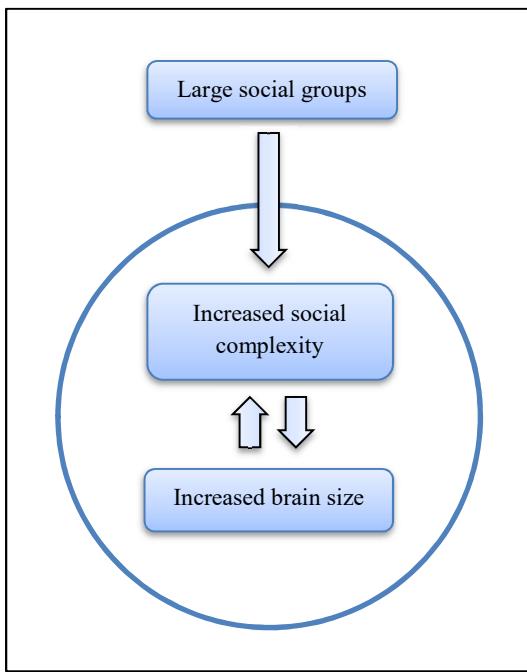
783 **Wilson, D. E. & Hanlon, E.** 2010. *Lemur catta* (Primates: Lemuridae). *Mammalian Species*, 58-74.


784 **Wright, P. C.** 1997. Behavioral and ecological comparisons of Neotropical and Malagasy primates. In:
785 *New World Primates: Ecology, Evolution, and Behavior* (Ed. by W. G. Kinzey), pp. 127-142. New York:
786 Aldine de Gruyter.

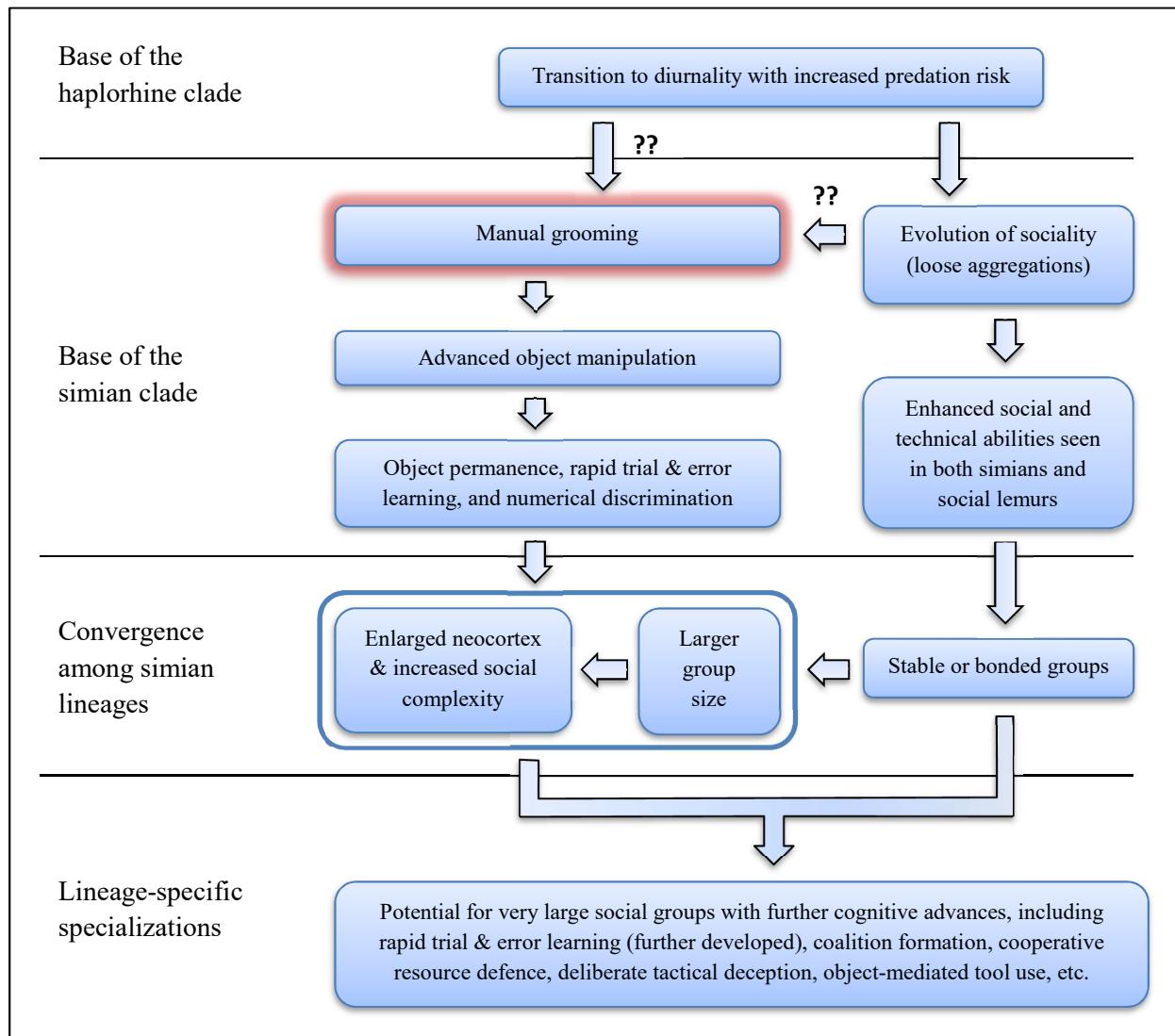
787 **Yoder, A. D. & Yang, Z.** 2004. Divergence dates for Malagasy lemurs estimated from multiple gene
788 loci: geological and evolutionary context. *Molecular Ecology*, 13, 757-773.

789

790


791 **Figure I: Simplified phylogeny of primates, extant and extinct**

792


793 †Extinct taxa

794 *Paraphyletic grouping

795 **Figure II: Social hypotheses**

796

797 Adapted from Byrne (1995), the social hypotheses predict that large social groups exert a
798 selective pressure to increase both social complexity and brain size.

799 **Figure III: Licking to Picking Hypothesis**

800

801 The licking to picking hypothesis helps put the evolution of social and technical cognition into
 802 phylogenetic context. Manual grooming may have been linked to advanced object manipulation,
 803 which gave rise to the derived cognitive skills that are less developed in social lemurs. All other
 804 cognitive skills shared with social lemurs would be either convergent or ancestral (Fichtel &
 805 Kappeler 2009). This simplified illustration does not rule out the influences of social and
 806 ecological factors at various levels where not specified.

807 **Table I: Glossary of cladistic, phylogenetic, taxonomic, and geologic terms discussed in text**

Adapiform	Infraorder Adapiformes, an extinct branch of strepsirrhine primate, distantly related to lemurs
Catarrhine	Parvorder Catarrhini within Simiiformes, which includes Old World monkeys and apes (+humans).
Cercamoniine	Superfamily Cercamoniinae, a branch of adapiform primates, which may have given rise to lemuriforms very early in its radiation from Asia
Eosimiiform	Infraorder Eosimiiformes, a suspected stem group to simians originating in Asia
Haplorhine	Suborder Haplorhini, includes simians, tarsiers, and possibly the extinct omomyiforms.
Lemuriform	Infraorder Lemuriformes, includes the lemurs (lemuroids) of Madagascar and the lorises and galagos (lorisoids) of Africa and Asia.
Lemuroid	Superfamily Lemuroidea, includes only the lemurs of Madagascar; see Dunkel et al. (2011/2012) regarding the proper use of the colloquial term “lemur”.
Lorisoid	Superfamily Lorisoidae, includes only the lorises and galagos of Africa and Asia.
Omomyiform	Infraorder Omomyiformes, an extinct branch of tarsier-like haplorhines
Platyrrhine	Parvorder Platyrrhini within Simiiformes, also known as New World monkeys.
Prosimian	Formerly a taxonomic rank (Prosimii), the term is still used to describe a paraphyletic group of primates (tarsiers & strepsirrhines) that exhibit low encephalisation and share behavioural characteristics.
Simian	Infraorder Simiiformes, includes monkeys and apes (+humans). Also referred to as anthropoids, but see Hoffstetter (1974).
Strepsirrhine	Suborder Strepsirrhini, includes lemuriforms and the extinct adapiforms.
Crown group	A monophyletic clade consisting of all species descended from a common ancestor, both living and extinct.
Stem group	A paraphyletic clade of extinct species descended from a common ancestor, excluding the related crown group.
Ghost lineage	Undiscovered fossil species suspected to exist due to discrepancies within the fossil record itself or between it and molecular divergence dates.
Symplesiomorphy	An ancestral trait shared by two or more taxa.
Synapomorphy	A derived trait (apomorphy) shared by two or more taxa.
Paleogene period	Paleocene–Oligocene epochs.
Paleocene epoch	~66 to ~56 Ma.
Eocene epoch	~56 and ~34 Ma, divided into the early Eocene (~56 to ~49 Ma), middle Eocene (~49 to ~37 Ma), and the late Eocene (~37 to ~34 Ma).
Oligocene epoch	~34 Ma to ~23 Ma.