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Abstract:
In this paper we describe a nonparametric maximum likelihood (NPML) method for estimating 
multivariate mixing distributions. Given N independent observations, convexity theory shows that 
the NPML estimator is discrete with at most N support points. The original infinite NPML problem 
then becomes the finite dimensional problem of finding the location and probability of the support 
points. The probability of the support points is found by a Primal-Dual Interior-Point method; the 
location of the support points is found by an Adaptive Grid method. Our method is able to handle 
high-dimensional and complex multivariate mixture models. An important application is discussed 
for the problem of population pharmacokinetics and a non-trivial example is treated. Our algorithm 
has been successfully applied in hundreds of published pharmacometric studies. In addition to 
population pharmacokinetics, this research also applies to empirical Bayes estimation and many 
other areas of applied mathematics.

Keywords: mixture distribution; mixture model; high dimensional statistics; nonparametric 
maximum likelihood; primal-dual interior-point method; adaptive grid14

1. Introduction15

Pharmacometric observations can be described statistically by a mixture model. In this case,
the probability of random variable arguments (the PK population model) of the pharmacokinetic
compartmental model are described by a mixing distribution. The problem of estimating the mixing
distribution from a set of pharmacometric observations can be stated as follows. Let Y1, ..., YN be a
sequence of independent but not necessarily identically distributed random vectors constructed from
one or more observations from each of N subjects in the population. Let q1, ..., qN be a sequence of
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independent and identically distributed random vectors belonging to a compact subset Q of Euclidean
space with common but unknown distribution F. The fqig are not observed. It is assumed that the
conditional densities p(Yijqi) are known, for i = 1, ..., N. The mixing distribution of Yi with respect to
F is given by p(YijF) =

R
p(Yijqi)dF(qi). Because of independence of the fYig, the mixing distribution

of the fYig with respect to F is given by

L(F) = p(Y1, ..., YN jF) =
N

Õ
i=1

Z
p (Yijqi) dF (qi) (1)

The mixing distribution problem is to maximize the likelihood function L(F) with respect to all probability16

distributions F on Q.17

Remark. The distribution FML that maximizes L(F) is a consistent estimator of the true mixing18

distribution. This was proved originally by Kiefer and Wolfowitz in 1956 [1] . The consistency of FML
19

is especially important for our application to population pharmacokinetics where FML is used as a20

prior distribution for Bayesian dosage regimen design.21

The algorithm described in this paper differs from most other published methods in a number of22

ways. Our algorithm allows for high dimensional Q. Most published methods require the dimension of23

Q to be small and many require the dimension of Q to be 1, see Section 1.1. We have treated examples24

where the dimension of Q is as high as 29, see Section 3.25

Also most published algorithms require the fYig to be identically distributed and assume that the26

conditional densities fp(Yijqi)g are rather simple, such as p(Yijqi) is a multivariate normal density27

with mean vector qi and covariance matrix S. Even if S is unknown and has to be estimated, the28

structure of this model is straightforward. However, the estimation of S has to be done carefully to29

avoid singularities, see Wang and Wang [2]. As will be described in Section 3, we allow p(Yijqi) to be30

calculated from a system of nonlinear ordinary differential-algebraic equations.31

We now describe the details of our algorithm. It was proved by Lindsay [3] and Mallet [4] ,
under simple hypotheses on the conditional densities fp(Yijqi)g, that the global maximizer FML of
L(F) could be represented by a discrete distribution with at most N support points. This result leads
immediately to a finite dimensional optimization problem for FML, namely to maximize the likelihood
function

L(l, f) =
N

Õ
i=1

K

å
k=1

lk p (Yijfk) (2)

with respect to the support points f = (f1, ..., fK) and weights l = (l1, ..., lK) such that fk 2 Q, lk �32

0 for k = 1, ..., K, K � N and åK
k=1 lk = 1.33

In our algorithm l(l, f) = log L(l, f) is maximized, so that

l(l, f) =
N

å
i=1

log
K

å
k=1

lk p (Yijfk) (3)

and the maximization problem becomes

maximize l(l, f) (4)

such that f 2 QK, l = (l1, ..., lK) 2 RK
+, K � N and åK

k=1 lk = 1.34

Although the maximization problem in Eq. (4) is finite dimensional, it is still high dimensional.35

The dimension of the maximization problem in Eq. (4) is N(dim Q) + (N � 1).36

The optimization problem in Eq. (4) is naturally divided into two problems:37

Problem 1. Given a set of support points ffkg, find the optimal weights flkg.38

Problem 2. Given the solution to Problem 1, find a better set of support points.39

Problems 1 and 2 are solved cyclically until convergence, i.e. no significant improvement in40

l(l, f).41
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Problem 1 is a convex programming problem. In our algorithm, we solve this problem by the42

Primal-Dual Interior-Point (PDIP) method. This type of method is standard in convex optimization43

theory, see Boyd and Vandenberghe [5]. However, the exact implementation for a specific problem44

varies from problem to problem. The exact details of our implementation is described in the Appendix.45

See also Bell [6], Baek [7] and Yamada et al. [8]. Our PDIP implementation is very fast and can easily46

handle thousands of variables.47

Finding a better set of support points in Problem 2 is a more difficult problem. This location48

problem is a non-convex global optimization problem with many local extrema and whose dimension49

is potentialy N � dim Q. The details of our algorithm, called the Adaptive Grid (AG) method, will be50

described in Section 2.3 and in Algorithm 1.51

Roughly speaking, Problems 1 and 2 are solved as follows. An initial large grid of possible52

support points is defined in Q. Problem 1 is solved on this large grid. After PDIP, most of the original53

grid points are removed due to near-zero weights leaving a smaller high-probability grid. Problem 154

is then solved on this smaller grid. Then the Adaptive Grid method for Problem 2 takes place. For55

each remaining grid point, up to 2� dim Q new (daughter) support points are added. A daughter56

point outside the search space Q or too close to a parent point is discarded. The new grid contains57

the current high-probability points plus the added daughter points. The algorithm is then ready for58

Problem 1, again. By construction, each iteration increases the value of l(l, f). This process continues59

until the function l(l, f) does not significantly change.60

1.1. Other algorithms61

Because of space limitations, in this section we only discuss NPML methods that optimize62

Eq. 4; methods that treat multivariate distributions; and methods which allow general conditional63

probabilities fP(Yi, qi)g. As explained in this paper, any such NPML algorithm has to address two64

problems: locations of support points and weights of support points. NPAG does locations by an65

Adaptive Grid method and weights by the Primal-Dual Interior-Point (PDIP) method.66

The original methods of Lindsay [3] and Mallett [4] were based on algorithms of optimal design67

in the style of Fedorov [9]. In Schumitzky [10], an algorithm was proposed which did both locations68

and weights by the EM algorithm. It was very stable but also very slow.69

In Lesperance and Kalbfleisch [11], a new method was introduced which did weights by the dual70

method described in Section 5 of Lindsay [3] and locations by what they called the Intra-Simplex71

Direction Method (ISDM). Even though, the Lesperance and Kalbfleisch paper was restricted to72

univariate distributions, the ISDM method has been generalized to the multivariate case. To briefly73

describe ISDM, let D(q, F) be the directional derivative of log L(F) in the direction of the Dirac74

distribution dq supported at q 2 Q. (This function is defined in Section 4 below.) ISDM is an iterative75

algorithm. At stage k, let Fk be the current estimate FML. Then find all the local maxima of D(q, Fk).76

These local maxima are added to the current set of support points and a new Fk+1 is calculated. If77

there are no new local maxima, then the algorithm is done.78

In Pilla, Bartolucci, and Lindsay [12], another new method was developed where the locations79

were found by an initial fine grid. But the weights were found by a dual version of the PDIP method.80

In Savic, Kjellsson, and Karlsson [13], a nonparametric method was added to the popular81

NONMEM program. NONMEM-NP is a hybrid parametric-nonparametric approach The locations82

of support points were found by a parametric maximum likelihood algorithm. Then the weights83

were found by maximizing Eq. (4) relative to the newly found support points. NONMEM-NP can84

handle high dimensional and complex multivariate distributions. An extension to NONMEM-NP was85

developed in Savic and Karlsson [14] where additional support points are added to the original set. A86

comparison between NONMEM-NP and NPAG is discussed in Leary [15].87

In Wang and Wang [2] , a new algorithm was developed for multivariate distributions. The88

locations were found by a combination of EM and a variant of ISDM. The weights were found by a89
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family of Quadratic Programs. In [2], examples are done for 8 and 13 dimensional mutivariate mixing90

distributions.91

Note: The Quadratic Programming algorithm (QP) of Wang and Wang [2] has a very attractive92

feature. For a prescribed set of support points, QP finds the zero probabilities exactly. Thus QP avoids93

the Grid Condensation step where support points from PDIP with sufficiently low probabilities are94

deleted. However, QP and PDIP are based on different numerical methods and a comparison of the95

efficiency of both algorithms has not been determined.96

We finally mention that the NPML problem is a special case of a finite mixture model problem97

with unknown supports and weights. For a discussion of this approach see Tatarinova and Schumitzky98

[16].99

The algorithms which have shown by published examples to handle the highest dimensional100

multivariate problems are NONMEM NP, Wang and Wang [2], and NPAG.101

1.2. Benders Decomposition102

For any set of grid points f = (f1, ..., fm) in Qm, let l = l̂(f) be the corresponding set of103

optimal weights given by the PDIP method. Then the function F(f) = l(l̂(f), f) depends only104

on f and can be maximized directly. For optimization methods, this technique is called Benders105

Decomposition. The NPAG algorithm maximizes F(f) by an adaptive search method. In a method106

proposed by James Burke, F(f) is maximized by a Newton type method. Since the function F(f) is107

not necessarily differentiable, a relaxed Newton method must be used similar to what is described in108

the Appendix for the Primal-Dual Algorithm. For details of Benders Decomposition as applied to our109

problem, see Bell [6], Baek [7] and Jordan-Squire [17].110

2. Materials and Methods111

2.1. Pmetrics112

The simulations and NPAG optimizations in this paper can be duplicated in R, using programs in113

the Pmetrics package [18]. R and Pmetrics are free software. R is available from many download sites.114

Pmetrics is available from lapk.org. NPAG is run using the NPrun() command in Pmetrics. Sample115

datasets and compartmental models are also available at lapk.org.116

2.2. NPAG Subprograms117

NPAG is a Fortran program consisting of a number of subroutines as described below. The118

main program performs the Adaptive Grid (AG) method (consisting of expansion and compression119

algorithms) and calls the Primal-Dual Interior-Point (PDIP) subprogram. The PDIP algorithm solves120

the maximization problem of Eq. (4) for a fixed grid and is described precisely in the Appendix.121

2.3. NPAG Implementation (NPAG - Algorithm 1)122

For the purpose of this discussion, we can think of PDIP as a function l̂ from Qm into the set Sm =123

fl 2 Rm
+ : åm

k=1 lk = 1g defined as follows: If f = (f1, ..., fm) then l̂(f) = (l̂1, ..., l̂m) maximizes124

Eq. (4) relative to the fixed set of grid points (f1, ..., fm). In this case we write G = (f, l̂(f)) and l(G)125

= l(f, l̂(f)).126

In NPAG there are two types of grids: expanded and condensed. The expanded grids are the127

initial grid and the grids after Grid Expansion (Algorithm 2). The condensed grids are generated by128

Grid Condensation (Algorithm 3). Each cycle of NPAG begins with an expanded grid. The likelihood129

calculation is done on the condensed grids.130

Now for the Adaptive Grid method. Assume that Q is a bounded Q-dimensional hyper-rectangle.131

Initially we let f0
expanded = (f0

1 , ..., f0
M) be the set of M Faure grid points in Q, see [19–21]. Alternatively,132
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we could initially let f0
expanded be generated by a uniform distribution on Q or by a prior run of the133

program.134

Remark. The Faure grid points for a hyper-rectangle Q are a low-discrepancy set which in some135

sense optimally and uniformly covers Q. In our implementation of NPAG, the Faure point sets come in136

discrete sizes which nest with each other. (Allowable number of points equals 2129, 5003, 10007, 20011,137

40009, 80021, and multiples of 80021.) This nesting property is useful for checking the optimality of138

FML, see Section 4. We have found that replacing the initial Faure set by a set generated by a uniform139

distribution on Q increases the time to convergence but results in the same optimal distribution.140

Now set G0
expanded = (f0, l̂(f0)). Our approach is to generate a sequence of solutions Gn to Eq.141

(4) of increasingly greater likelihood, where unless otherwise specified, Gn refers to the condensed142

grid at the nth cycle of the algorithm. If Gn has log likelihood negligibly different than Gn�1, then Gn
143

is considered the optimal solution to Eq. (4) and is relabeled FML. If not, then the process continues144

using the fn as the new seed. This loop is repeated until FML is found.145

The stopping conditions for NPAG are defined precisely in Algorithm 1. If the stopping conditions146

are not met prior to a set maximum number of iterations, the program will exit after writing the last147

calculated Gn into a file.148

2.4. Grid Expansion (EXPAND - Algorithm 2)149

The crux of the Adaptive Grid method is how to go from G0 to G1 or more generally, from Gn to150

Gn+1. The details of doing this are now explained roughly below and precisely in Algorithm 1.151

Let Q be the dimension of Q. Suppose at stage n we have a grid of high-probability support152

points fn. We then add 2Q daughter points for each support point fk 2 fn. The daughter points are153

the vertices of a small hyper-rectangle centered at each fk with size proportional to the original size of154

the hyper-rectangle defining Q. The size of this small hyper rectangle decreases as the accuracy of the155

estimates increases. (See Algorithm 2.)156

Let fn+1
expanded = fn [Daughter-Points. Then the PDIP subprogram is applied to fn+1

expanded resulting157

in the new solution set Gn+1
expanded = (fn+1

expanded, l̂(fn+1
expanded)); see Algorithm 1. The solution set Gn+1

expanded158

is now ready for grid condensation.159

2.5. Grid Condensation (CONDENSE - Algorithm 3)160

The above solution set Gn+1
expanded may have many support points with very low probability. We161

remove all support points which have corresponding probability less than (max l)Dl, where l is the162

vector of current probabilities and the default for Dl is 10�3. (Note that at this point the remaining163

probabilities are not normalized.) The probabilities of the remaining support points are normalized164

by a second call to the PDIP subprogram. This second call to PDIP is very fast. The likelihood165

associated with these remaining support points and normalized probabilities is then used to update the166

program control parameters and check for convergence (Algorithm 1 and Section 2.7). If convergence167

is attained, then the output of this second call to PDIP provides the support points and probabilities168

of the final solution. If convergence is not attained, then the remaining support points are sent to the169

Grid Expansion subprogram (Algorithm 2), initializing the next cycle.170

At the end of the program, the output of this second call to PDIP provides the location and171

weights of the final solution.172

2.6. PDIP Subprogram - See Appendix A173

The PDIP subprogram finds the optimal solution to Eq. 4 with respect to l for fixed f. PDIP174

employs a primal-dual interior-point method that uses a relaxed Newton method to solve the175

corresponding Karush-Kuhn-Tucker equations. (See Eqs. 14 -17 of Appendix A.)176

For any Y=(Y1, ..., YN) and any f=(f1, ..., fK) 2 QK, the input to the PDIP subprogram is the177

N � K matrix fp(Yijfk)g. The output consists of the optimal weights l̂(f) and the corresponding178
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log-likelihood l(l̂(f), f). An in-depth description of the PDIP algorithm and its implementation is179

presented in Appendix A. See also [6–8].180

2.7. NPAG Stopping Conditions181

As explained above, a potential solution to FML is not accepted as a global optimum until successive182

sequences of Gn produce final distributions evaluating to sufficiently close log likelihood. The various183

upper and lower bounds D for NPAG control and stopping conditions are defined below and are used184

in Algorithms 1, 2, and 3.185

DL Primary upper bound on the allowable difference between two successive estimated186

Log-Likelihoods; the default initialization is 10�4.187

DF Secondary upper bound on the allowable difference between two successive estimated188

Log-Likelihoods of potential FML; the default initialization is 10�2.189

De Sets an upper bound on the accuracy variable eps of Algorithm 1. The default initialization for190

De is 10�4. The default initialization for eps is 0.2 and is stepped down until eps � De191

DF and De define the two stopping conditions for Algorithm 1.192

DD Sets a lower bound on how close two support points can get; the default initialization is 10�4.193

Dl Sets a lower bound factor on the probabilities of the weights l; the default initialization is 10�3.194

2.8. Calculation of p(Yijfk)195

Given observations Yi, i = 1, ..., N and grid points fk, k = 1, ..., K, the PDIP subprogram only196

depends on the N � K matrix fp(Yijfk)g. NPAG can be used for any problem once this matrix is197

defined. However, the default setting of NPAG is for the problem of population pharmacokinetics. For198

a good background of population pharmacokinetics see Davidian and Giltinan [22,23].199

In population pharmacokinetics, generally Yi = (yi,1, ..., yi,M) is a matrix of vector observations
for the i-th subject. Since NPAG allows multiple outputs, each yi,m is itself a q-dimensional vector yi,m
=(yi,m,1, � � � , yi,m,q). The observations yi,m,j, are then typically given by a regression equation of the
form:

yi,m,j = fi,m,j(qi) + ni,m,j, j = 1, � � � , q (5)

ni,m,j � N(0, (si,m,j(qi))
2)

qi are unobserved parameters specific for Yi

In the above Eq. 5, fi,m,j is a known nonlinear function depending on the model structure, the dosage200

regimen, the sampling schedule, all covariates and of course the subject-specific parameter vector201

qi. Except for simple models, fi,m,j requires the solution of (possibly nonlinear) ordinary differential202

equations.203

In the current implementation of NPAG, it is assumed that the (yi,1, ..., yi,M) are independent.
Then

p(Yijfk) =

exp

 
�1

2

M

å
m=1

(yi,m � fi,m(fk))S�1
i,m(fk)(yi,m � fi,m(fk))

T

!
ÕM

m=1
p

(2p)q det Si,m(fk)
(6)

where fi,m = ( fi,m,1, ..., fi,m,q) and Si,m = diag(s2
i,m,1, ..., s2

i,m,q). For the purposes of matrix multiplication204

in Eq. 6 ,we think of yi,m and fi,m as q-dimensional row vectors.205

To complete the description of Eq. 6 we need to model the standard deviation terms si,m,j of the
assay noise. In our implementation of NPAG, four different models are allowed. Let

ai,m,j(fk) = c0 + c1 fi,m,j(fk) + c2 f 2
i,m,j(fk) + c3 f 3

i,m,j(fk) (7)
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and set

si,m,j =

8>>>>><>>>>>:
ai,m,j assay error polynomial only

gai,m,j multiplicative errorq
a2

i,m,j + g2 additive error

g constant level of error

(8)

The parameter g in Eq. 8 is a variance factor. Artificially increasing the variance during the first206

several cycles of NPAG increases the likelihood for each f, allowing the algorithm to use these cycles207

to find a better initial state from which to begin optimization. NPAG also has an option to “optimize"208

g. This changes NPAG from a nonparametric method to a “semiparametric" method and will not be209

discussed here. The interested reader can consult [8].210

Next if c0 = 0 in Eq. 7, then ai,m,j can become very small for certain values of f that in early
iterations can be far from optimal. This in turn causes numerical problems as the likelihood is infinite
if si,m,j = 0. One way to avoid this problem is to take si,m,j = constant. Another way would be to
assume that ai,m,j is known and is given by

ai,m,j = c0 + c1yi,m,j + c2y2
i,m,j + c3y3

i,m,j (9)

That is, to approximate s by using a polynomial of the observed values rather than model predicted211

values. In our experience with NPAG, the approximation of Eq. 9 is useful for ensuring computational212

stability (especially during the early cycles of the algorithm). However, from a theoretical perspective,213

this change violates the conditions of maximum likelihood and will not be discussed here. Again the214

interested reader can consult [8].215

2.9. Convergence216

For a given initial grid f0, the NPAG algorithm is only guaranteed to find a local maximum of217

L(F) . More precisely, if f� is the final grid of NPAG starting from f0, then l̂(f�) is a global maximum218

on f� but the support points f� may be only a local maximum.219

Global convergence of a nonparameteric maximum likelihood method for estimation of a220

multivariate mixing distribution is very difficult. For one-dimensional distributions the problem221

is straightforward. The idea of proof goes back to at least Fedorov [9] in 1972, which involves the use222

of Directional Derivatives.223

Let F be any distribution on Q. Then the directional derivative of log L(F) in the direction of the224

Dirac distribution dq supported at q is defined by225

D(q, F)=[åN
i=1 P(Yijq)/P(YijF)] � N, q 2 Q, where p(YijF) =

R
p(Yijq)dF(q). Let Fk be the226

current NPML estimate at iteration k. The Fedorov method involves maximizing D(q, Fk) for q 2 Q,227

at every iteration. Then the point at which the maximum occurs is added in an optimal way to Fk to228

give Fk+1. Under the assumptions of regularity, Fedorov shows that L(Fk) converges to L(FML), see229

Fedorov [9], (Theorem 2.5.3). Many improvements to this method have been made. In Lesperance and230

Kalbfleisch [11] and Wang and Wang [2], instead of just adding the point at which D(q, Fk) occurs,231

all the points where local maxima occur are added in an optimal way. Again under the assumptions232

of regularity, convergence as above is proved. In one-dimension these methods are very efficient. In233

higher dimensions, these methods are not computationally practical.234

We now suggest a method to check whether the final distribution of NPAG is globally optimal
and if not optimal, how close it is to the optimal. It also involves the use of the directional derivative
D(q, F), but only at the last iteration of NPAG. Now define

D(F) = max
q2Q

D(q, F)
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Note that the max in the above expression is only over Q and not over QN . It is proved in Lindsay [3]235

that F� is a global maximum of L(F), i.e. F�=FML, if and only if D(F�) = 0. Even if D(F�) 6= 0, it is236

useful to make this computation as it is also proved in Lindsay [3] that L(FML)� L(F�) � D(F�), so237

this last expression gives an estimate of the accuracy of the final NPAG result.238

Now even though we said above it is not practical to calculate D(F) at every iteration of an239

algorithm, we are just suggesting to make this calculation at the end of the algorithm. This calculation240

can be performed by a deterministic or stochastic optimization algorithm.241

3. Examples242

First of all, the NPAG program has been used successfully in high-dimensional and very complex243

pharmacokinetic-pharmacodynamic models. In Ramos-Martin et al. [24], the NPAG program was244

used for a population model of the pharmacodynamics of vancomycin for CoNS infection in neonates.245

(Vancomycin is an antibiotic used to treat a number of serious bacterial infections. Coagulase-negative246

staphylococci (CoNS) are the most commonly isolated pathogens in the neonatal intensive care unit. )247

This model had 7 nonlinear differential equations and 11 random parameters. The population was248

a combination of 300 experimental and animal subjects. In Drusano et al. [25], the NPAG program249

was used for a population model of two drugs for the treatment of tuberculosis. This model had 5250

nonlinear differential equations, 3 nonlinear algebraic equations, 1671 observations from 6 outputs251

and 29 random parameters. In the algebraic equations, the state variables were only defined implicitly252

and had to be solved for by an iterative method.253

The above two examples are too complex to use for simulation purposes. Consequently we
present here a simpler model which has an analytic solution and which can be checked by other
algorithms. Nevertheless, the estimation of parameters in this model is not trivial. We consider a
three-compartment PK model with a continuous IV infusion into the central compartment and a bolus
input into the absorption compartment. The individual subject model is described by the following
differential equations:

dx1

dt
= �Kax1, x1(t) =

(
0 for 0 � t < 5

b if t = 5

dx2

dt
= Kax1 �

�
Kel + Kcp

�
x2 + Kpcx3 + r(t), x2(0) = 0

dx3

dt
= Kcpx2 � Kpcx3, x3(0) = 0

and output equation254

y1(t) = x2(t)/Vc + w(t), w(t) � N(0, s2), s = 5.5255

The inputs are a bolus b = 2000 at t = 5 and a continuous infusion r(t) = 500, for t � 0. This model256

has 5 random parameters (V, Ka, Kel , Kcp, Kpc). A diagram of this model is given in Figure 1. It is257

known that this model is structurally identifiable, see Godfrey [26]. However, we have found that258

for a continuous IV infusion, the parameters Kcp and Kpc are very difficult to estimate in a noisy259

environment.260

The details of the simulation are as follows. There were 300 simulated subjects. The random261

variables (V, Ka, Kcp, Kpc) were independently simulated from normal distributions with means262

respectively equal to (1.2, 0.8, 0.2, 2.0) and standard deviations equal to 25% coefficient of variation.263

The random variable Kel was independently simulated from a bimodal mixture of two normal264

distributions with means respectively equal to 0.5 and 1.5, with standard deviations equal to 10%265

coefficient of variation, and with weights equal to 0.2 and 0.8. This distribution would apply to an266

elimination rate constant with a bimodal distribution where 80% of the subjects have a mean of 1.5,267

and only 20% have a mean of 0.5. The power of the nonparametric method allows the detection of the268

20% group.269
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Table 1. Simulation versus optimization. Row 1: True simulated means for each parameter. Row 2:
NPAG estimates of corresponding means. Row 3: True simulated variances for each parameter. Row 4:
NPAG estimated variances for each parameter.

Kel Vc Ka Kcp Kpc

mSIM 1.305 1.194 0.800 0.205 0.408

mNPAG 1.308 1.189 0.798 0.209 0.410

s2
SIM 0.170 0.093 0.042 0.002 0.010

s2
NPAG 0.173 0.086 0.040 0.003 0.011

Twelve observations were taken at times270

t = 1.1, 5.4, 6.1, 6.5, 6.7, 7.8, 8.4, 9.2, 13.5, 15.3, 15.5, 15.8.271

These sampling times were chosen in an ad hoc fashion and are not to be considered optimal. In Figure272

2 we show the profiles of the 300 noisy model outputs y1. These profiles are plotted as piecewise linear273

functions with nodes at the observation times.274

The initial Faure set had 80, 321 support points. After the first iteration of the NPAG algorithm,275

the number of support points was down to 300, where it essentially stayed for the rest of the algorithm.276

After 100 iterations NPAG was stopped based on the convergence criteria of Section 3.5.277

The simulated and estimated marginal distributions are shown in Figures 3 and 4. It is seen that278

the estimated marginal distributions were quite accurate. when compared to the simulated histograms.279

In particular the bimodal shape of Kel was uncovered.280

NPAG is designed to estimate the whole joint distribution of the parameters. As mentioned earlier,281

the estimate FML is especially important for our application to population pharmacokinetics where282

FML is used as a prior distribution for Bayesian dosage regimen design. However, FML is a consistent283

estimator of the true mixing distribution and consequently, the moments of FML should be consitent284

estimators of the true moments. Means and variances of parameter estimates for FML can be easily285

obtained by integrating the corresponding marginal distributions. So as a check of this fact, in Table 1,286

the comparisons of estimated versus simulated means and variances are shown. Again, results are287

quite accurate, see Table 1.288

Finally, in Figure 5 we include a graph of Predicted versus Observed values which shows the all289

around good fit of the data. The predicted values are gotten as follows: For each subject, the Bayesian290

mean estimate of the parameters are found using the final NPAG distribution as a prior and that291

subject’s observations. Then based on these parameter means, the subject’s concentration profile is292

calculated.293

4. Final Remarks and Conclusions294

4.1. Final Remarks295

The NPAG program was developed at the USC Laboratory of Applied Pharmacokinetics. James296

Burke (University of Washington) developed the Primal-Dual Interior-Point method discussed in the297

Appendix. Robert Leary (Pharsight Corporation) developed the Adaptive Grid method and wrote the298

original Fortran program for NPAG. Michael Neely, MD (USC Children’s Hospital of Los Angeles)299

developed the program package Pmetrics which contains NPAG as a subprogram. Pmetrics is an R300

package for nonparametric and parametric population modeling and simulation and is available at301

www.lapk.org, see Neely et al. [18].302
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4.2. Conclusions303

We have desribed a nonparametric maximum likelihood method called NPAG for estimating304

multivariate mixing distributions. NPAG is based on an iterative algorithm employing the Primal-Dual305

Interior-Point method and an Adaptive Grid method. Our method is able to handle high-dimensional306

and complex mixture models. Other methods are discussed. A detailed description of NPAG is given.307

The important application to population pharmacokinetics is described and a non-trivial example is308

given.309

In addition to population pharmacokinetics, this research also applies to empirical Bayes310

estimation, see Koenker and Mizera [27] and to many other areas of applied mathematics, see Banks311

et al. [28].312

Figure 1. Model.

Figure 2. True simulated model profiles.
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Algorithm 1 NPAG Algorithm. Input: (Y , f0, a, b, DD, DL, DF, De, Dl), a and b are the lists of lower
and upper bounds, respectively, of Q; DD is the minimum distance allowable between points in the
estimated FML. Dx see §2.7. Output: (f, l, l(l, f)).

1: procedure NPAG(Y , f0, a, b, DD) . Estimate FML given Y

2: Initialization: f = f0, LogLike = �1030, F0 = 1030, F1 = 2 � F0, eps = 0.2, De = 10�4,

DF = 10�2, DL = 10�4, Dl = 10�3, n = 0

3: while eps � De or jF1 � F0j � DF do

4: Calculate Y(f) . N � K matrix fp(Yijfk)g
5: [l̂(f), l(l̂(f), f)] � PDIP(Y(f)) . Appendix A

6: if (MAXCYCLES == 0) then

7: FML
est  � l(l̂(f), f)

8: l � l̂(f)

9: return [f, l, FML
est ]

10: end if

11: n � n + 1

12: fc  � CONDENSE(f, l̂(f), Dl) . Alg. 3

13: [l̂(fc), l(l̂(fc), fc)] � PDIP(Y(fc)) . PDIP returns Gn

14: NewLogLike = l(l̂(fc), fc)

15: if (n > MAXCYCLES) then

16: FML
est  � l(l̂(fc), fc)

17: l � l̂(fc)

18: return [f, l, FML
est ]

19: end if

20: if jNewLogLike� LogLikej � DL and eps > De then

21: eps = eps/2 . Adjust precision

22: end if

23: if eps � De then . check EXIT conditions

24: F1 = NewLogLike

25: if jF1 � F0j � DF then

26: FML
est  � F1

27: f � fc; l � l̂(fc)

28: return [f, l, FML
est ]

29: else

30: F0 = F1; eps = 0.2 . Reset Algorithm

31: end if

32: end if

33: f � fe  � EXPAND(fc, eps, a, b, DD) . Alg. 2

34: LogLike NewLogLike

35: end while

36: end procedure

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2019                   doi:10.20944/preprints201909.0231.v1

https://doi.org/10.20944/preprints201909.0231.v1


12 of 19

(a) Kel (b) Vc

(c) Kcp (d) Kpc

(e) Ka

Figure 3. Histogram of simulated PK parameters.
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Algorithm 2 EXPAND. Input: f=(f1, � � � , fK), DG, Q = [a1, b1] � [a2, b2] � ... � [aQ, bQ], a =
[a1, � � � , aQ], b = [b1, � � � , bQ], DD. Output: f0=(f01, � � � , f0M), where M � K(1 + 2Q). Note: In
this algorithm, f=(f1, � � � , fK) is a Q� K matrix, with Q = dim Q.

function EXPAND(f, DG, a, b, DD)

2: Initialize: [Q, K] = size(f), I = Q�Q Identity matrix, newf � f

for k = 1, ..., K do . K = number of input support points

4: for d = 1, ..., Q do . Q = dim Q

T(d) = DG(b(d)� a(d))

6: if f(d, k) + T(d) � b(d) then . Check upper boundary

f+ = f(:, k) + T(d)I(:, d)

8: dist = 1030

end if

10: for kin = 1 : length(newf) do

newdist = å abs(f+ � newf(:, kin))./(b� a) . x ./y done component-wise

12: dist = min(dist, newdist)

end for

14: if dist � DD then . Check distance to new support point

newf � [newf, f+]

16: end if

if f(d, k)� T(d) � a(d) then . Check lower boundary

18: f� = f(:, k)� T(d)I(:, d)

dist = 1030

20: end if

for kin = 1 : length(newf(1, :)) do

22: newdist = å(abs(f� � newf(:, kin)) ./(b� a)) . x./y done component-wise

dist = min(dist, newdist)

24: end for

if dist � DD then . Check distance to new support point

26: newf � [newf, f�]

end if

28: end for

end for

30: f � newf

end function

Algorithm 3 Condense Algorithm. Input: (f, l, Dl), Output: fc Note: fc is considered a subset of f

function CONDENSE(f, l, Dl)

ind = find ( l > (max l)Dl ) . Inequality and max are performed component-wise

fc = f(:, ind)

return fc

end function
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(a) Kel (b) Vc

(c) Kcp (d) Kpc

(e) Ka

Figure 4. Estimated Marginals of PK parameters.

Figure 5. Predicted vs. Observed.
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The following abbreviations are used in this manuscript:325

AG Adaptive Grid
ISDM Intrasimplex direction method
NPAG Nonparametric adaptive grid algorithm
NPML Nonparametric maximum likelihood
PDIP Primal-dual interior point method
QP Quadratic programming

326
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Appendix A. A Primal-Dual Interior-Point Algorithm (PDIP)327

To make this paper self-contained, we outline here the PDIP algorithm which was written by328

James Burke. This algorithm is a FORTRAN subroutine of NPAG. The description below is based on329

the Matlab and C++ codes found in Bradley Bell’s website, see [6]. Definition of general terms and330

theorems can be found in Boyd and Vandenberghe [5].331

Appendix A.1. Duality Theory and the Basic Problem332

Given a set of support points ffkg, the problem of finding the optimal weights flkg in Eq. 4 can
be posed as the following optimization problem

P min F (Yl) s.t. 0 � l, e|l = 1,

where Y 2 Rn�m is the matrix whose (i, j) entry is p(yi j fj) and where in general, the function
F : Rk 7! R[ f+¥g is given by

F(z) =

(
�åk

i=1 log zi , 0 < z, and

+¥ , otherwise.
(A1)

The symbol e is always to be interpreted as the vector of all ones of the appropriate dimension.333

The problem P is a convex programming problem since the objective function F is convex and
the constraining region is a convex set. The Fenchel-Rockafellar dual of the convex program P is the
problem

D min F(w) s.t. L|w � me.

From Boyd we obtain the following Karush-Kuhn-Tucker (KKT) equations relating the solutions to the334

problem P and D.335

me = Y|w + y (A2)

e = WYl (A3)

0 = LYe (A4)

where for any vector x, we define X to be the diagonal matrix having x along the diagonal.336

Appendix A.2. An Interior-Point Path-Following Algorithm337

The relaxed KKT is given by

me = Y|w + y (A5)

e = WYl (A6)

me = LYe (A7)

0 � l, 0 � w, 0 � y, (A8)

for m > 0. (m is the relaxation parameter.) A damped Newton’s method is used to solve the above338

system.339

Consider the function F : R2m+n 7! R
2m+n given by

F(l, w, y) =

264Y|w + y
WYl

LYe

375 .
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A triple (l, w, y) solves Eqs. A.A5 to A.A8 if and only if

F (l, w, y) =

0B@ me
e

me

1CA (A9)

and 0 � l, 0 � w, and 0 � y. Path-following algorithms attempt to solve A9 by applying Newton’s
method for progressively smaller values of the relaxation parameter m. We first need the derivative of
F. It follows

F0(l, w, y) =

264 0 Y| I
WY Z 0

Y 0 L

375
where z = Yl.340

At the kth iteration of the algorithm, the Newton step is given by the solution to the nonsingular
linear system

F
�

lk, wk, yk
�

+ F0
�

lk, wk, yk
�
�
h
Lk, W k, Yk

i|
=
h
em, en, mkem

i|
(A10)

where y is constrained to satisfy the first KKT condition yk = em �Y|wk.341

The above set of equations can be reduced by standard techniques. It follows:

Dw = H�1r2 (A11)

Dy = �YDw (A12)

Dl = r1 � l� D1Dy (A13)

where H = D2 � YD1Y|, D2 = ZW�1, D1 = LY�1, r1 = mY�1e, r2 = W�1e � Yr1 where the342

superscript k is suppressed for simplicity.343

Appendix A.3. The Algorithm344

To describe the algorithm we need to define the variables:345

q = 1
m åm

i=1 liyi346

r = ke�WZek¥347

and the scaled duality gap348

g = jF(w)+F(Yl)j
1+jF(Yl)j .349

(Initialization )350

Initially choose l0 = em/m, w0 = en/Yl0, and y0 = em � Y|w0. (Division of two vectors is351

performed component-wise.) Set # = 10�8.352

(Iteration )353

At iteration k + 1, set354

mk+1 = skqk
355

where the reduction factor s is defined by

s =

(
1 , if m � # and r > #,

min(0.3, (1� d1)2), (1� d2)2, jr�mj
r+100t , otherwise.
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The next iterates are given by lk+1 = lk + d1[Dlk], wk+1 = wk + d2[Dwk] and yk+1 = yk + d2[Dyk],
where the “damping” factors d1 and d2 are defined by

d1,0 = �
�

min(min(L�1Dl),�1
2

)

��1

d2,0 = �
�

min(min(Y�1Dy), min(W�1Dw),�1
2

)

��1

d1 = min(1, 0.99995d1,0)

d2 = min(1, 0.99995d2,0)

(Exit Conditions)356

Iterate Eqs. A.11-A-13 until357

m � # and r � # and g � #.358

If these conditions are not satisfied after a set number of iterations, then write “PDIP did not converge359

in the given number of iterations.”360
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