
Linearized Stability of Bardeen de-Sitter Thin-Shell Wormholes

Hassan Alshal1, 2, ý

1Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
2Department of Physics, University of Miami, Coral Gables, FL 33146, USA.

ABSTRACT

A thin-shell wormhole is crafted by the cut-and-paste method of two Bardeen de-Sitter black holes
using Darmois-Israel formalism. Energy conditions are considered for different values of magnetic
charge while both mass and cosmological constant are fixed. The attractive and repulsive charac-
teristics of the throat of the thin-shell wormhole are also examined through the radial acceleration.
Dynamics and stability of the wormhole are studied around the static solutions of the linearized
radial perturbations at the throat of the wormhole. The regions of stability are determined by check-
ing out the condition of concavity of the potential as a function in the throat radius for different
values of magnetic charges.

PACS numbers: 04.90.+e, 04.20.-q, 04.20.Gz

I. INTRODUCTION

The first wormhole solution was discovered by Ludwig
Flamm [1]. It was rediscovered as the Einstein-Rosen
bridge [2] while Einstein and Rosen were trying to
develop a non-Boscovichian, i.e., singularity-free,
atomic model of gravity and electromagnetism.
Later, Wheeler developed a theory about geons
[3], topologically unstable gravitoelectromagnetic
quasi-solitons that can connect widely separated
spacetime regions. Misner and Wheeler tried to
develop the theory of geons into a geometrical unified
classical theory [4]. In Misner and Wheeler project
the wormhole term was coined.

Between the development of geons and the rejuvena-
tion of Morris and Thorne traversable wormholes [5],
Ellis studied the flow of “substantial ether” through
a drainhole [6]. Also Bronnikov analyzed tunnel-like
solutions [7], which are considered the precursors
to the studies of wormholes in modified theories of
gravity [8]. Geons reappear again in galileon theory
as a scalar-tensor theory [9]. Even in Euclidean
space, Ellis variant p-norm drainholes can be used as
pedagogical examples to study electrostatics [10–13].
A recent study discusses erudite and deep-seated
examples, in both flat space and curved spacetime,
in which the objects behavior around wormholes are
analyzed in terms of scalar, electromagnetic, and
gravitational fields [14]. More on wormholes can be
found in Ref. [15].

To find a wormhole solution to field equation, one can
choose some equations of state such as phantom en-
ergy [16, 17], Chaplygin gas [18], and/or quintessence
[19]. Then, rotating spacetimes [20], evolving worm-
holes [21], thin-shell spacetimes [22], dust shell
wormholes [23] and/or Casimir wormholes [24] can be
implemented to the field equations to “ameliorate”
the violation of energy conditions associated with
the flaring-out condition, which is necessary for the
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field equations to have wormhole solutions. There are
numerous studies that consider different black holes
creating thin-shell wormholes in de-Sitter and anti-de-
Sitter spacetimes [25–30]. Stability of these thin-shell
wormholes are examined too [31–47]. Also thin-
shell wormholes can be obtained from regular black
holes [48, 49], which is the general theme of this letter.

In this letter we construct Bardeen de-Sitter thin-
shell wormholes. The Bardeen black hole [50] is an
interesting regular black hole, i.e., with no geometric
singularity. Bardeen black hole can be discerned as a
quantum-corrected Schwarzschild black hole [51] by
applying the generalized uncertainty principle [52–60]
to the black hole and studying the consequent effects
on the corresponding thermodynamics. Singularity-
free black hole comes with special feature that is
such black hole does not continue collapsing until it
completely evaporates [61]. Instead, the outer horizon
of a regular black hole is shrinking meanwhile the
inner horizon is growing until the two horizons meet
[62, 63]. Therefore, employing a regular black hole
in thin-shell wormhole construction comes with the
advantage of having viable spacetime, especially in
particle collisions [64], despite the raised questions on
the stability of the inner horizon and the evaporation
timescale [65]. Bardeen black hole can be used in
de-Sitter background (BdS) [66]. The BdS black hole
anti-evaporation scenario has been also studied [67].
The BdS solution in arbitrary dimensions and the
corresponding thermodynamics for each dimension
are also considered [68]. One can implement electric
charge to construct thin-shell wormholes from regular
ABG black holes [49]. Magnetic monopoles are
hypothetically created in Beyond Standard Model
theories. Despite they have not been discovered yet
in nature, the anti-evaporation scenario makes the
Bardeen black holes more stable compared with the
ABG black holes. This is because ABG black holes
quickly discharge through Hawking radiation and
pair creations when they are close to the quantum
Planck scale [69, 70]. The nonlinear electrodynamics
associated with such regular black holes could keep
the weak energy condition satisfied [71].
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In section (II), we use Visser’s technique of cut-and-
paste [72, 73], together with Darmois-Israel formalism
[74], to connect two BdS regions of spacetime through
a thin shell. Cut-and-paste method ensures utilizing
diminutive amount of exotic matter, hence a traveler
through such wormholes can avoid the regions where
the exotic matter is [73]. The exotic matter is con-
fined at the thin-shell regions similar to the matter
of ABG thin-shell wormholes [49]. We also study the
components of the stress-energy-momentum surface
tensor using the extrinsic curvature. We comment
on the violation of energy conditions, because of
the exotic matter at the wormhole throat, in terms
of stress components. The jump in the extrinsic
curvature is considered upon passing through charged
shells [75]. From the discontinuity in the extrinsic
curvature, we can compare the effect of magnetic
charges on our chosen non-vacuum spacetime to the
vacuum spacetime in Ref. [76]. We also calculate
the attraction and repulsion nature of the wormhole
throat in terms of the acceleration.

In section (III), we analyze the linear stability of
BdS thin-shell wormhole by studying the concavity
condition on the “speed of sound” as a function in
BdS parameters: the mass, the magnetic monopoles
and the cosmological constant. And we see the
change in stability regions upon varying the amount
of magnetic monopoles while both mass and cosmo-
logical constant are fixed.

In section (IV) we summarize and comment on the
results of the previous two sections.

II. VISSER’S CUT-AND-PASTE TECHNIQUE
AND THE DARMOIS-ISRAEL FORMALISM

The BdS black hole is constructed [66] starting with
the metric

ds2
BdS =−

(
1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1
dr2

+ r2dθ2 + r2 sin2(θ)dφ2 .
(1)

The field equations are derived from the action [77]:

A =
ˆ
d4x
√
−g

R− 2Λ
16π − 1

4π
3M
|µ|3

( √
2µ2F

1 +
√

2µ2F

) 5
2
 ,

(2)
where µ is the magnetic monopole charge, M is the
mass of the black hole, and F = 1

4F
µνFµν is the non-

interacting part of Lagrangian density for a classical
electrodynamics field tensor Fµν .
Therefore, eq.(1) becomes:

ds2
BdS = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2 sin2(θ)dφ2,

(3)
where

f(r) = 1− 2Mr2

(r2 + µ2)3/2 −
Λ
3 r

2 . (4)

And by finding the roots of f(r) = 0, or the roots of
the decic polynomial

r10Λ2 + r8 (3Λ2µ2 − 6Λ
)

+ r6 (3Λ2µ4 − 18Λµ2 + 9
)

+ r4 (Λ2µ6 − 18Λµ4 + 27µ2 − 36M2)
+ r2 (27q4 − 6Λµ6)+ 9µ6 = 0,

(5)
one can determine the location of the inner, event
(rh) and cosmological (rc) horizons of the BdS. How-
ever, we must avoid the combinations of M,µ, and
Λ that lead to formation extreme BdS [28]—at which
the event and cosmological horizons coincide by set-
ting f(r) = f ′(r) = 0 —so the throat radius a of the
wormhole still exists as rh < a < rc.

2 4 6 8 10
r

-3

-2

-1

1

grr

BdS

RSdS

SdS

Figure 1: The behavior of grr metric component for
Bardeen de-Sitter (BdS: M = 1,Λ = 0.01, µ = 0.5),
Reissner-Nordstrom de-Sitter
(RNdS: M = 1,Λ = 0.01, Q = 0.5),
and Schwarzschild de-Sitter (SdS: M = 1,Λ = 0.01).

Following the cut-and-paste technique [72, 76], one
can easily construct a geodesically complete manifold
Γ = Γ+

⋃
Γ− by pasting the region of timelike hy-

persurfaces, named a thin shell ∂Γ = ∂Γ+
⋃

∂Γ− ,
where ∂Γ± := {r± = a | a > rh}, that bounds the
bulk of two BdS. This follows after cutting spacetime
regions Γ± := {r± ≤ a | a > rh} inside the throat ra-
dius a.
Now we follow Darmois-Israel formalism [78, 79] by
defining the coordinates of Γ as xµ := (t, r, θ, φ) and
the coordinates of the shell ∂Γ as ζi := (τ, θ, φ), where
τ is the proper time that a comoving frame measures
on the throat of the wormhole. The induced metric of
the shell is:

ds2
∂Γ = −dτ2 + r2dθ2 + r2 sin2(θ)dφ2, (6)

where the parametric equation that relates Γ to ∂Γ is
r = a(τ).

In vacuum spacetime [80], the interior solution r0 is
matched to the exterior one a at the junction surface
∂Γ, which is also known as thin-shell surface when
the surface stress terms are present. The surface
stresses are determined by the discontinuity in the
extrinsic curvature Kij . Junction surface restricts the
exotic matter of the interior wormhole to a finite
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region1. To minimize the violation of the average null
energy condition (ANEC), the wormhole should be
constructed such that the exotic matter is restricted
to the junction region r0 < r < a with the limit
r0 → a that turns the junction into thin-shell.

For our BdS non-vacuum spacetime, the discontinuity
in the extrinsic curvature is shown in terms of the
surface stresses, just like the vacuum spacetime.
However, the discontinuity is caused by the charges
[75]. This discontinuity determines the jump in the
electromagnetic field tensor Fµν and, consequently,
the jump in the electromagnetic stress-energy-
momentum tensor across the thin-shell.

We use the Gauss-Codazzi decomposition of spacetime
such that it yields Israel’s junction condition on Γ.
The condition is described by the energy momentum
tensor on the shell Sij = diag (−σ, pθ, pφ) as

Sij = − 1
8π
([
Kij
]
− δijK

)
, (7)

where
[
Kij
]

= Ki +
j −Ki −j , and K =

[
Kii
]
.

We define the unit vectors n±µ normal to ∂Γ as

n±µ = ±
( ∣∣∣∣gαβ ∂f∂xα ∂f

∂xβ

∣∣∣∣−1/2
∂f

∂xµ

)
. (8)

And the extrinsic curvature, or the second fundamen-
tal form, is defined in terms of the unit vectors as

K±ij = −nµ
(
∂2xµ

∂ζiζj
+ Γµ±νρ

∂xν

∂ζi
∂xρ

∂ζj

)
(9)

We substitute eq.(4) in eq.(8) to get:

n±µ =
(
∓ȧ,±

√
ȧ2 + f(a)
f(a) , 0, 0

)
. (10)

Then, we substitute eq.(10) in eq.(9) to get the com-
ponents of the extrinsic curvature as

Kθ ±θ = Kφ ±φ = ±1
a

√
1− 2Ma2

(a2 + µ2)3/2 −
Λ
3 a

2 + ȧ2 ,

Kτ ±τ = ±
6Ma3

(µ2+a2)5/2 − 4Ma
(µ2+a2)3/2 − 2Λa

3 + ä√
1− 2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + ȧ2
.

(11)
We use the the last results to define the surface
stresses as

σ = − 1
π
Kθθ = − 1

2πa

√
1− 2Ma2

(a2 + µ2)3/2 −
Λ
3 a

2 + ȧ2 ,

(12)

p = pθ = pφ = 1
8π
(
Kττ +Kθθ

)
= 3

8πa

1
3 −

2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + 2Ma4

(a2+µ2)5/2 + aä+ ȧ2√
1− 2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + ȧ2
.

(13)

1See figure 1 of Ref. [80].

And for the static configuration, i.e., ȧ = ä = 0, the
surface stress become

σ0 = − 1
2πa0

√
1− 2Ma2

0
(a2

0 + µ2)3/2 −
Λ
3 a

2
0 , (14)

p0 = 1
8π
(
Kττ +Kθθ

)
= 3

8πa0

1− 2Ma2
0

(a2
0+µ2)3/2 − Λ

3 a
2
0 + 2Ma4

0
(a2

0+µ2)5/2√
1− 2Ma2

0
(a2

0+µ2)3/2 − Λ
3 a

2
0

− 1
4πa0

1√
1− 2Ma2

0
(a2

0+µ2)3/2 − Λ
3 a

2
0

.

(15)

From the last two equations, surface density σ0
imposes the violation of the weak energy condi-
tion (WEC). Meanwhile, the null energy condi-
tion (NEC), σ0 + p0 > 0, can be maintained
with no need to any exotic effect from the com-
bined mass and pressure of the matter as long as

f(a0) < 6Ma4
0

(a2
0 + µ2)5/2 . And for the strong energy con-

dition (SEC), σ0 + 3p0 > 0, it is also maintained with

f(a0) < 9Ma4
0

(µ2 + a2
0)5/2 −

6Ma2
0

(µ2 + a2
0)3/2 − Λa2

0.

2 4 6 8 10
a0

-0.04

-0.03

-0.02

-0.01

0.01

0.02

Energy Conditions

σ

σ+p

σ+2p

σ+3p

(a) µ = 0.1.

2 4 6 8 10
a0

-0.08

-0.06

-0.04

-0.02

0.02

Energy Conditions

σ

σ+p

σ+2p

σ+3p

(b) µ = 1.

Figure 2: The energy conditions expressed in terms
of σ and p vs. the throat radius a0 with fixed M = 1
and Λ = 0.01, and different values of magnetic
monopole: µ = 0.1 for figure.2.(a) and µ = 1 for
figure.2.(b).

For BdS black hole with no radial pressure, pr = 0,
and a mass density that it localized at the throat
ρ = σ0 δ(r − a0), the total amount of exotic matter
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necessary to keep the wormhole open is

Ωσ =
ˆ 2π

0

ˆ π

0

ˆ +∞

−∞

√
−g σ0 δ(r − a0) dr dθ dφ

= −2a0

√
1− 2Ma2

0
(a2

0 + µ2)3/2 −
Λ
3 a

2
0 .

(16)
We can examine the attractive and repulsive charac-
ters of the constructed thin-shell wormhole by study-
ing the four-acceleration aµ = uν∇νuµ, where uµ =
(1/
√
f(r), 0, 0, 0). The geodesic equation of a test par-

ticle is

d2r

dτ2 = −ar , (17)

where the radial acceleration is given by

ar = Γrtt
(
dt

dτ

)2
= Mr3

(r2 + µ2)5/2 −
Λ
3 r −

2Mµ2r

(r2 + µ2)5/2 .

(18)
We notice that the wormhole has attractive or repul-
sive nature if ar > 0 or ar < 0 respectively.

0.5 1.0 1.5 2.0 2.5 3.0
a

-5

-4

-3

-2

-1

1

2
ar

μ=0

μ=0.1

μ=0.5

μ=0.8

(a) Different attractive and repulsive behaviors of ar at
small a values for different µ values.

4 6 8 10 12 14
a

-0.10

-0.05

0.05

0.10
ar

μ=0

μ=0.3

μ=0.5

μ=0.8

(b) Convergent behavior of ar at large a values for
different µ values. ar becomes repulsive at almost the

same value of a regardless the value of µ.

Figure 3: Attraction and repulsion in terms of
acceleration ar vs. the throat radius a with fixed
M = 1 and Λ = 0.01, and different values of
magnetic monopole µ.

III. LINEARIZED STABILITY ANALYSIS

The stability of the wormhole can be checked [76] by
performing linear perturbation about the static con-
figuration (a = a0) for eq.(14) and eq.(15), where for
vacuum spacetime µ = 0. One can easily notice that

differentiating eq.(12) with respect to τ yields the con-
tinuity equation

d(σA)
dτ

+ p
dA

dτ
= 0 , (19)

which directly leads to

σ′ = −2
a

(σ + p) , (20)

where A = 4πa2 is the area of the wormhole throat,
σ′ = σ̇/ȧ, the dot means d/dτ , and the prime means
d/da.
If we rearrange eq.(12), we define a potential function

V (a) = f(a)− 4π2a2σ2 = −ȧ . (21)

Then we substitute with eq.(20) in the first derivative
of eq.(21) to get

V ′(a) = 6Ma3

(µ2 + a2)5/2 −
4Ma

(µ2 + a2)3/2

− 2Λa
3 + 8π2aσ(σ + 2p) .

(22)

And for the second derivative of (21), we parameterize
the pressure to be a function in the density p := p(σ)
[22]. Then we introduce a new parameter ϑ(σ) =
dp/dσ, which can be seen as the “speed of sound”.
And the second derivative of (21) becomes

V ′′(a) = f ′′(a)− 8π2 [2σ(σ + p)(1 + 2ϑ) + (σ + 2p)2]
= f ′′(a) +

[
1
a2

(
af ′(a)− 2f(a)

)(
1 + 2ϑ

)

− 1
2

(
f ′(a)
f(a)

)2
]
.

(23)
To linearize the model, we apply Taylor expansion to
the potential function around the static point a = a0
such that eq.(21) becomes

V (a) =V (a0) + (a− a0)V ′(a0)

+ 1
2(a− a0)2V ′′(a0) +O

[
(a− a0)3] . (24)

We use eq.(14) and eq.(15) to evaluate eq.(21) and
eq.(22) at a = a0. Therefore, we get V (a0) =
V ′(a0) = 0. Meanwhile eq.(23) becomes

V ′′(a0) = 30a2
0M

(a2
0 + µ2)5/2 −

4M
(a2

0 + µ2)3/2 −
30a4

0M

(a2
0 + µ2)7/2

− 2Λ
3 −

1
a2

0
(1 + 2ϑ)

(
6Ma2

0

(µ2 + a2
0)5/2 −

2
a2

0

)

− 1
2

− 4Ma0

(µ2+a2
0)3/2 + 6Ma3

0

(µ2+a2
0)5/2 − 2Λa0

3

1− 2Ma2
0

(µ2+a2
0)3/2 −

Λa2
0

3


2

.

(25)
Of course we can use (1 + 2ϑ) = (σ′ + 2p′)/σ′ to
express ϑ in terms of the metric parameters M,µ,
and a . But we will not as we need to study the
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behavior of ϑ when the throat is stable.

The concave down condition V ′′(a0) < 0 results
in provoking either expansion or contraction of the
throat when any small perturbation occurs. While

the convex, or the concave up, condition V (a0)′′ > 0
stabilizes the throat with a local minimum of V (a0) at
a0. Therefore, we solve for ϑ0 at that local minimum
to get

ϑ0 <
1
2

{
1− a2

0(
6Ma2

0

(µ2+a2
0)5/2 − 2

a2
0

)[ 30a2
0M

(a2
0 + µ2)5/2 −

4M
(a2

0 + µ2)3/2 −
30a4

0M

(a2
0 + µ2)7/2 −

2Λ
3

− 1
2

− 4Ma0

(µ2+a2
0)3/2 + 6Ma3

0

(µ2+a2
0)5/2 − 2Λa0

3

1− 2Ma2
0

(µ2+a2
0)3/2 −

Λa2
0

3


2 ]}

.

(26)

Or

ϑ0 <
1
2

(
1−
−

4Λa2
0

(
6µ2M−3Ma2

0+Λ(µ2+a2
0)5/2)2

3(µ2+a2
0)2(6Ma2

0+(Λa2
0−3)(µ2+a2

0)3/2)2 + 30Ma2
0

(µ2+a2
0)5/2 − 4M

(µ2+a2
0)3/2 −

30Ma4
0

(µ2+a2
0)7/2

6M
(µ2+a2

0)5/2 − 2
a4

0

)
. (27)
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Figure 4: Regions of stability of the thin-shell wormhole for the Bardeen de-Sitter solution for fixed values of
M = 1 and Λ = 0.01, and different values of µ. Stable regions are the blue shaded domains.
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IV. DISCUSSION

In this letter we construct Bardeen de-Sitter thin-shell
wormhole. We use Visser’s technique of cut-and-
paste with Darmois-Israel formalism to connect two
BdS regions of spacetime through a thin shell. We
compare the asymptotic behavior of the metric with
that of SdS and RNdS as in fig.(1). We also study
the components of the stress-energy-momentum
surface tensor using the extrinsic curvature. We
find that WEC is always violated. However, both
NEC and SEC can be maintained upon imposing the
inequalities that relate f(r) to f ′(r). The energy
conditions are shown in fig.(2). Then, we calculate
the radial acceleration to express the attractive and
repulsive nature of the wormhole throat. The results
are plotted in fig.(3).

Also we analyze the linear stability of BdS thin-shell
wormhole by studying the concavity behavior on the
“speed of sound” as a function in BdS parameters: the

mass, the magnetic monopoles and the cosmological
constant. And we see the change in stability regions
upon varying the charge of magnetic monopoles while
both mass and cosmological constant are fixed. The
analysis is demonstrated in fig.(4). We conclude that
for a diminutive value of cosmological constant and
small value of magnetic charge, relative to the amount
of mass, we find different regions of stability. Once the
mass is equal to the magnetic charge, we no longer
have stability regions. So to keep the Bardeen de-
Sitter thin shell wormhole, and for a minute value of
the cosmological constant, we suggest choosing the
value of magnetic charge to be always less than the
value of mass.

***

The author would like to thank the anonymous referee
of the manuscript for the constructive suggestions to
amend the presentation of the letter.
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