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1 Abstract: In a previous paper[1], a variation of the Collision-time Statistics method was applied to
> identify the relevant perturbers for line broadening under the action of a constant magnetic field. As
s discussed, that version was simplified and inadequate for low magnetic field and/or large perturber
s mass (ions). The purpose of the present work is to augment the previous work, so that such cases can
s be handed efficiently. The results may also be used to construct analytic, i.e. impact/unified models
s under the usual assumptions in these models.

»  Keywords: Stark broadening; Magnetic field; spiralling trajectories; Collision-time statistics.

s 1. Introduction

° In a previous paper[1], a variation of the Collision-time Statistics method was applied to identify
10 the relevant perturbers for line broadening under the action of a constant magnetic field. As discussed,
1 that version was simplified and inefficient for low magnetic field and/or or large perturber mass
1z (ions), because an unnecessarily large number of perturbers, the vast majority of which only contribute
1z negligibly to broadening, were generated. The purpose of the present work is to augment the previous
1« work, so that such cases can be handled efficiently. The main problem with the previous treatment
15 was the case of large Larmor radii, larger than the effective interaction range (e.g. Debye length) and
16 corresponding slow cyclotron frequencies, as in the case of large perturber mass and/or low magnetic
1z field. In such cases the motion of the perturbers in the plane perpendicular to the magnetic field
1= may be quite far from completing a full cycle. As a result in the simplified treatment of [1] a large
1»  number of ineffective perturbers would be included in that case. It is believed[2] that “as long as
20 the gyro-radii of the electrons are much larger than the Debye sphere” the particle trajectories, or,
a1 equivalently, the dielectric function would be unaffected by the magnetic field, since the perpendicular
22 motion involves presumably much smaller length scales than the parallel motion, although this belief
23 remains to be quantified. It is shown here that this criterion is not quite correct and that the key
2« parameter determining the adequacy of neglecting spiralling is the ratio of the cyclotron frequency to
25 the width of the line in question.

26 2. Theoretical Formulation
27 Asin [1] we assume that:

28 a. the distribution functions, e.g. the Maxwellian velocity distribution is not affected by the B-field.
29 b. the shielding is also not affected, e.g. Debye screening

30 We also consider a neutral emitter in this work.
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a1 2.1. Collision-time Statistics

32 To include all and only the relevant perturbers, we use a modification of the collision-time
33 statistics method of Hegerfeld and Kesting[3] with Seidel’s improvement[4]- see Ref.[5] for details, as
s« discussed in [1].

As in [1], perturbers move in a helical path characterized by the parallel constant velocity v,
where the magnetic field direction defines the z-axis (passing through the emitter), the perpendicular
velocity with magnitude v, and impact parameter p, which is the distance of the center of the spiral to
the z-axis, i.e. the perpendicular motion in the x-y plane is a circular motion with the Larmor radius
rp = (% around the center p, with wy, = |Q|B/m the cyclotron frequency and Q the perturber charge.
For the impact parameter p

max(0,7L — Rymax) < p < Rypax + 7L (1)

s, ie. the impact parameter lies in a disk or annulus depending on whether the range R4y of the
36 interaction, discussed below, is larger or smaller than 7.
The relevant quantities for the helical trajectory R(t) are as follows: The z-coordinate of the
trajectory is
R;(t) = vz (t — t;) = vzt + 2o, )

with
Zo) = —Uzt; 3)

sz, with the times of closest approach t; representing the time the perturber trajectory intersects the x-y
ss  plane and being uniformly distributed. zg thus represents how far from the x-y plane the perturber is
30 att=0.
Hence
Ry(t) = pcos® +rp cos(wrt + 1), Ry(t) = psinf + rp sin(wrt + ) 4)

a0 where 8 describes the position of the impact parameter vector in the x-y plane and is uniformly
a1 distributed in (0,27). ¢ is an angle describing where on the circular trajectory projection the perturber
.2 finds itself at t = 0 and is also uniformly distributed in (0, 277) and ultimately related to the time
a3 the B-field was turned on. Each perturber is thus characterized by the vector (vz,v, 0,0,9, t;) , or
s equivalently zj instead of ;.

a5 Asin [1] we consider as “relevant " perturbers those that come closer to the emitter than a distance
46 Ry, defined so that the interaction is negligible for distances larger than Ry, during the time
a7 interval of interest (0,7). For a Debye interaction, we usually take Ryux = 3Ap, where Ap denotes the
s shielding(Debye) length. This is because the interation becomes negligible (< 3% for larger distances).
49 Therefore for a perturber to be relevant the condition R(#) < Ry;5x must hold for at least one time
so tin (0, T), where T is the time of interest, i.e. a time large enough that the Fourier transform of the
s1  line profile C(t) has decayed to negligible levels, or an asymptotic form is identifiable. C(t) is a linear
s2 combination of products of time evolution operators (U-matrices) of the upper and lower levels. These
ss time evolution operators -needed for times 0 < t < 7- are determined by solving the Schroedinger
s« equation in the Debye-shielded field V(t). Therefore a particle will only be relevant if for at least one
ss time in the interval [0,7] it comes closer than R4y to the emitter(if not, then the perturbation produced
s by that particle is negligible due to Debye screening), which means that for at least one time ¢ in [0,7]

(02t +20)* + (0 cos 0 + rp cos(wit + ) + (psin + rpsin(wit + 9))* < Rjgq ©)
This reads:
R%,mx — (vt — vzti)2 > p2 + r% + 2prp cos(wrt + P —0) (6)

s> Thus we generate v;,v,,p,t; and 6 as before, but also draw ¢, uniformly distributed in (0,27) as
se illustrated in in Fig. 1 and effectively only accept perturbers if, for at least one time in (0,7) Eq.6 is
so  satisfied. The maximum value of the LHS occurs for t = t;. This in general imposes restrictions (i.e. not
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(pcos# + rLcas

Figure 1. x-y trajectory projections for r; > Ryax. Shown is the annular region between concentric
circles with the origin (the emitter position) as center and radii r; — Ryax and rp, + Ryuax, respectively.
For an impact parameter at a distance p from the center in the annular region, a circle with radius r|,
(dashed) represents the projection of the perturber path in the x-y plane. Hence a point on that circle is
(pcos + rp cos(wt + 1), psin6 + rp, sin(wt + ), with 1 the angle on the dashed circle. This must be
no more than Ry, away from the center, else this perturber does not contribute.

o

o all i contribute for a given 0) on the values of 6 and ¢ that a perturber can have and still contribute
1+ effectively to broadening, specifically:

o

62 o a. Ifr; < Ryyuyand p < Ryyax — 71, Riax 2> p + 11 and Eq.6 is satisfied for t = t; for any 6, ¢ and
63 wt. Therefore in this case we have no restriction and 6 and ¢ can independently take any value.
o b. In all other cases, Eq.6 results in the restriction:

R2  _2_ 42
arccos(m”x—prL) <l|wrt+¢—0| )
201,
64 Note that for Case b, the argument of the inverse cosine is absolutely < 1. Specifically:
1. If r; > Ry, then
2 22
0> M > 1 8)
201y

The left of the inequality follows because R;;5x < rp alone. The right part also follows since

7L — Ripax < 4 < 7L+ Rpax = —Rypax < 0—TL < Rinax )
Hence
R2, — 1% — p?
Riuax > p* 11 —2prp = =0 L—— > —1 (10)
PrL

2. For r;, < Ryuax, Eq.9 is also valid since 1 — Ryax < 0 < p, as is Eq.10. Since, as already
discussed the case p < Ryuux — 11 imposes no restriction, we only consider here the case Ryux — 11 <
0 < Rygx + ., which implies p — rp, < Ryax < p + rp. It thus remains to show that

R%mzx — 1’% B P2
—= <1 (11)
2011,

es  which follows from Ry < p+ L.
66 Thus
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Figure 2. The shaded area shows the difference ¢ — 6 that satisfies Eq.6.
67 e a. Forrp < Ryux, p < 11, Eq.6is satisfied for t = t; for any 6, ¢ and wy t and there is no restriction
o8 on ¢, 0 and wrt.
69 e b. In all other cases, the restriction imposed by Eq.7 applies and the argument of the inverse
70 cosine is always absolutely < 1.

Hence the angle difference ) — # must be in the shaded area shown in Fig. 2. So for at least one
time ¢ in (0, 7), the following must hold for the perturber with parameters p, 1, 8, P to contribute:

RZ 22
| +wpt — 0] > arccos(m“x—pr’“) (12)
2p0rp,
.ie.
R, —p? 1
Y+ wrt > 9+arccos(maxTLL),lP+th >0 (13)
or
R2,, — % — 12
9—arccos(m”xTLL) >+ wrt,0 >+ wrt (14)

The net result is that for each 6, only a a range of ¢,

R2 —pz—r%

A < 2(7 — arccos(— 207 ) +wr T (15)
L

1 contributes( this means that a fraction %—;f contributes compared to the simplified case discussed in the

~

72 Pprevious work, i.e. the collision volume is smaller by %—;f). If this is < 1 we effectively have rectilinear
7s  trajectories for the time of interest. If this turns out to be larger than 27r, we have a full revolution and
7« we can use the simplified formulas discussed in[1]. As mentioned, we are mainly interested in the
s situation where Rz < rp and wp T < 27, as this is the case of large r;, but slow wy, otherwise the
o+ relation between ¢ and 6 is always satisfied for at least one t in (0, T).

~

~

We can use the variable x = p — rp with —Ry;0x < x < Rypay and write the argument of the inverse

cosine as

2 2 2 2 2
Rmax_p — 1L _ Rmuxfx

2pr - 2r(x+rr)

—1 (16)

»  Note that for low B (large r1) this tends to -1, hence the inverse cosine is close to 7. This means that
s in this limit [ — 6| = 71, e.g. we get a AP ~ 0 (but note that in that limit we had divergencies in the
s relevant functions when computing the collision volume in [1]).

~

~

N
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Figure 3. The shaded area shows the difference ¢ — 6 that satisfies Eq.6.

Figure 4. Illustration of the relation between 6 and 1 for the case r; > Ryux. Impact parameters p
lie between the dashed and dash-dotted circles with radii 71, — Ryuax and 71, + Ryax. The part of the
circular trajectory projections that are within Ry (bold circle) of the emitter (i.e. the center) are in the
opposite direction of the impact parameter vector, e.g. to the north for the southern circular trajectory
projection.

80 This situation is depicted in Fig. 3, which shows the typical situation for the phase space of the
s1 quantity ¢ — 0 that contributes. This is also illustrated in Fig. 4, which shows, for the same p, 4 different
s2 angles 6, which determine the centers of the spirals and the parts of the circular projections of these
s spirals that are effective. For instance if the center of the spiral, i.e. the vector of the impact parameter
sa is the the right (6 ~ 0), then ¢ ~ 7 (the leftmost of the circular trajectory projection) for ry, > Ryuy.
es Similarly, if the impact parameter vector is to the south (6 ~ 371/2), then the relevant ¢ is to the north
ss Of the circular trajectory projection, e.g. ¢ ~ 71/2).

2 szV%

87 In the limit B = 0 (or infinite perturber mass) ,arccos( Rmangin
wrT

ss | integrations a term .-

) = w and we get from the 6 and

so  2.2. Collision Volume

The collision-time statistics method first computes the number of relevant particles, i.e. the density
times the relevant volume, i.e. the above cylinder. This volume is as before[1], except that we also
account for the polar angle 8, describing the orientation of the impact parameter with respect to the
x-axis and the angle ¢ describing the position of the particle on the perpendicular x-y plane at time
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Table 1. Ag—ff) vs. relevant parameters

r 4 Ay(p)
CULT RmLax max(pl,rL) 27T
> 271 1
<2 <1 <1 1

R%mx *Pz *”%

< o<1 o>1 0 (1= )y L w
arCCOS(W)
< 1 PR R

t=0, i.e. we have the extra integrations f027r g—z 02” g—ﬁ The ¢ integration simply returns a factor of 1 if
wy T > 27, but it does so even under the weaker condition wyT > 2 arccos(%), or
W > cos(wpT/2) (17)
s Otherwise it gives a factor of %lf with Ay defined in Eq.15.
The nonnegative root of Eq.17 is
p1 = —cos(wpT/2)rL + \/R%W — sin®(wypt/2)r? (18)
, i.e. the results of [1] are also valid for p < p;, which in turn requires that
Ropax > 7L (19)
(else p1 < 0), which also guarantees the reality of pj, i.e.
Ripax > sin(wpt/2)rL (20)

o1 The 6 angular integration simply returns 1 in either case. As a result, the results of [1] need no
o2 modification for w; T > 27. Otherwise, the collision volume calculation runs as follows:

03 Hence for v; < Ryaxwr, ie. rp < Ruyax , AP(p) = 1. However, as already discussed, this is aso
e« valid(e.g. no restriction on ¢ is required ) also for p < rr, hence Ay(p) =1 for p < max(rr,p1) = p2.
o5 For small R4y /71, and w T, rp is the maximum of the two. The collision volume reads:
2 2
v Rijax—(p—71)
max+ wr

0 00 R T
V=2 f—oo f(?]z)dl)z fo fZ(vL)dUL fmax(O YR ) PdPAIP(P) f 2 dti (21)
IwL max

_ R%nax‘(ﬂ_rL)z

[vz]
= 27 [, F(o)do [ olo, o, [T (oalt4 2/ R (o P)AY o)y
oL max

= 27T(C1 + Cz)

v
Riax+ ‘,TLL

oo with f(v;) = ,/ﬁe’mvg/ T and fo(v,) = &v e ML/ AT denoting a one and two-dimensional
sz Maxwellian velocity distributions respectively and with Ay redefined as in Table 1:
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o8 C;7 and C; are:
(¢S] [e] RmuxJFZ}L
Gy =7 [Z f(va)veldv: [ fa(vi)doy fmx(o 5 PAODY(P) (22)
= (loz))7 f~ fa(o1)doL fm:;x vuf Ry) PP (0)
Riyax Rinax+ w Rimax+ w
= (lozD)rlfy ™" favr)doy [y Eododp(p) + [r0, (01 )d0L fu Ry PdPAlP(P)]
= <|vZ|>TR$nax(Il +L+ 13)
with ([v.|) = [Z |o|f(v)do = 2kT The integrals I; — I3 are given explicitly below. However, we

first define the dimensionless quantltles

[
- 23
Wi Rinax @3)
and
_ P2 _ Cwin? 2
r= = max(— cos(wrt/2)s +1/1 —sin“(wyT/2)s%,5) (24)
Rmux
and
m
g = Ryaxwr kT (25)
9 (essentialy the averaged inverse s Ryax/71).
Rinaxwr, 02 Riaxwr, 2 [
L Rmazx/O fz(?&)d?&/o pdp :/o fz(?&)diupﬂzl) (26)
. RZ 7‘027?2
Ryaxwr, Rupax+ 2k arccos (—1%5 L) Wi T
L= Rmz%x/o fa(vy)do, /pz Fo((1- p- L)+ e )dp (27)
and o o
o0 Rumax+ - arccos(~2x P11
2 wL o 201y, wrT
I3 Rmux /RWXWL f2(vl>de /Z)Ji_Rmax P(( T ) 27T )dP (28)
100 Whlle
leZY+
2 - Zf f z)z dvz fo f2 (20 d'UL f M ~Ryax) \/R%mx - (P - TL)2PdPA1/’(P) (29)
max+w
=2f5 flo)dor [ oot gV Riex = (0 = r)%edpdy p)
Rinax MHX+W
- Z[f “r fZ(vL dUL f() t \/Rmax (P - rL)ZpdpAl/J(p)
o max"l'z)*L
+ SRpeo, L@ AVL [0 /Ry — (0 — 1) 2pdpAtp(p)]
WL max
- 2R1%mx(]l + IZ + ]3)
101 with
J = Rm{:z))x ORWXOJL f2 (& dUJ_ f \/Rmux - - T’L)Zpdp (30)

E

= foqz dxe™*[$ (arcsin(s) — arcsin(s —

1/2 .
X~ r of course functions of x.

ithx = " and s —
102 W1 x—wan S = 7

))+ (s242)V1—52 (s +24sr—2r%)V/1—s242sr— r]
6
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R2 —‘02—1’2
_ *Rinaxwr, RmnxJFwL arccos(%) wrT
J2 = ngx/o fZ(Ul)de /Pz " \/R%nax - (P - TL)Zp(l - T - ) 2T )dp
(31)
and
3 {o¢] R;nax+% > o arccos(maprLir%) (ULT
] Rmax /mux(UL fZ(UJ_)dUL /Z)tRmax \/Rmax B (p B rL) p(l B 7T ) + 27'[ )dp
(32)
103 Note that the only difference from the previous work[1] is the factor Ay (p) for w; T < 271. Also

e note that in [1], the corresponding integrations to infinity, e.g. the equivalents of I3 and J3 diverged as
ws g — 0. This divergence has been eliminated here due to the Ay factor. This is shown in Appendix A,
s which evaluates the I3 and J3 integrals.

107 The remaining contributions vanished in [1] as ¢ — 0 and clearly continue to do so here.

108 As already mentioned in[1], the number of particles that are in this volume, and hence need to be
e simulated, is simply the volume multiplied by the perturber density.

uo 2.3. Generating perturbers

11 To generate perturbers we proceed as in [1], but also generate for each perturber an angle

12 0, uniformly distributed in (0,277). Once we have generated v,,v,p,t; and 6, we also generate ¢

2 R2
M) — wpT),0 + 27 — arccos( ’”‘” rL i ))-

201y,

114 In more detail, we first draw a random number uniformly distributed in (O 1). If this is smaller
us than %, then we generate |v;|, v, ,p from the distribution P; (|v;|,v,,p) = |vz|f(vz) f2(v 1 )p by
ue generating independently a v, with the probability distribution |v,|f (vz) a v, with the probability

7 distribution f,(v, ) and a p with the probability density pdp in ((max(0, &~ wr — Ruax), Riax + Ll)

us  uniformly distributed in (6 + arccos(

118 Otherwise we generate from the distribution P,(|v;|,v1,0) = f(v2)f2(v1 )/ R3uax — (0 — 71)2.
us The generation of impact parameters was done by a rejection method, as straightforward inversion is
10 Not possible.

121 Once vz, v, and p have been generated, t; is selected as a uniformly distributed time in
w22 (—/R2, — (0 —11)%, |0z|T + /R34 — (0 — r1)?). 6 and ¢ are also generated as discussed above.

123 3. Conclusions

124 The present work extends the simplified theory for spiralling motion in a constant magnetic field
s presented in [1] which was typically efficient for electron perturbers to more cases of practical interest,
16 1.e. ion perturbers and/or weak magnetic fields. The results of [1] are seen to hold for w7 > 27t and
12z are here extended to wy T < 277, i.e. a regime typical for ions or weak magnetic field, thus validating
12s the common wisdom that ion trajectories are usually unaffected by spiralling. In addition, this work
120 identifies relevant parameters (e.g. 4, wy T) and criteria for using a straight line and also allows the
o efficient treatment of spiraling ion trajectories if needed. The results of this work are also a useful
11 basis for approximate standard treatments, i.e. impact/unified theories, if (strong) collisions are
12 isolated/disentangled and further, to perturbative impact/unified treatments if these collisions may
s be handled in perturbation theory.

134 With regard to the notion[2] , discussed in the introduction, that the relevant quantity for
s neglecting spiralling is that 77, > Ry, the present paper shows that although the idea is qualitatively
e correct, i.e. one may indeed neglect spiralling for small B and/or large perturber mass, leading to
17 a large Larmor radius, the actual situation is more complex and described by Table 1. Specifically,
s to neglect spiralling, it is necessary that “t* < 1 or equivalently gk << 1, i.e. the ratio of the
19 cyclotron frequency to the width(HWHM) of the line is important. This is because if this ratio is small,
uo then the perturber motion does not cover a full revolution and if very small, the motion is essentially
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11 unaffected by the magnetic field. However, if the line is very narrow (7 is large) there may be enough
w2 time to complete at least a sizeable portion of a revolution, even if the Larmor radius is much larger
us than the Debye length.
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151 Appendix A: Calculation of the I3 and 3 double integrals

152 Note that the integrands are the same except that |, involves and extra factor of
153 \/R%nax - (P - rL)z'
154 Note that these integrals are the only contributions for ¢ = 0(B = 0).

1ss A1 The I3 integration

156 For I, and I3, the non-trivial p integrals reduce to (x = p/Ryax)
1- xZ — SZ 1 2 1— x —g2
/dxx arccos(T) = i[2x%arccos(L55) + /st +252(x2 +1) — (22 —1)2]  (33)

1+s%—x2 )
/st 282(x241) — (x2—1)2

+1 arctan(

For both I; and I3, the upper limit if s 4- 1, for which

1—x%—s2
arccos( Txs ) = arccos(—1) =7 (34)
and
Vst 222 4 1) - (2 - 1)2 =0 (35)

Hence the middle term vanishes, while the arctangent is

1 2 .2
R ) = arctan(——

arctan =
(\/—s4+252(x2+1) — (x2—1)2 0+ )

T
) (36)

2_.2
If (as in I3) the lower limit is s — 1, the argument of the square root is also 0, arccos( 1‘;‘“_5 ) =

arccos(—1) = 7 and

1+ 52 — x2 2s T
arctan( \/_54 +252<x2 + 1) — (xz — 1)2) = arCtan(OT) =7 (37)
157 13 is
1_2 82
I3 = meaxwL dv) fr(v)) fs+ dxx(1+ % — ‘M‘%) (39)
= v 40121050+ 5) — #51) = [+ SR S et/

2
= : 2ot (o7 +n1/z%)] = S (1+297) + (1 —erf(q ))gﬁjm

158 Note that unlike the simplified version[1], I3 does not diverge because the w; T cancells the q_l
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s A.2 The J3 integration

We break the J3 integral as
J3 =I5+ ]2 (39)

10 Where using s = 1 , we have:

axWL

=G meaxwL do fo(vy) fsjl dxxy/1— (x —s)? =207 %% [[7 53752'12% (40)
_ 2

= gt [ya gl o) = T 2T (1 —erf(g))

, which does not diverge for w; — 0 and

52

2
) arccos 1=X = e
o= [ doipaten) [ de /1o o WS By —ogr [Tee Ny @)
R 1

maxW[,

with
1—(x—s)?

-1
N3 = / dxy/1— (x —s)2x[1 _ arccos( ;— =i )] (42)

Using z = x — s this becomes:

1 arccos(—1 + 51=2)
N; = / 1dzm(s +2)[1— - 2G40 — N3y + N (43)
with
1 arccos(—1 )
Naj = / dzv/1 - 222[1 — e + 2 ] (44)
-1
and
1 arccos(—1+ 5122
Nay = s/ dzy/1— 22[1 — E EIED (45)
-1

1—22
25(z+s)
—(x=5)?

2 )] — 0 which gives a vanishing contribution for N3;. However, for N3,
this is multiplied by s — oo so the result is not immedjiately clear. Since Taylor-expanding the inverse

If wp — 0,5 — o0, and 5 — 0, hence the argument of the inverse cosine is very nearly -1, and thus

arccos 71+
we have [1 — ( =

cosine around -1 does not work due to the infinite derivative, we can use Frobenius’s method or write

1—z?
_ 46
* 25(z+s) -0 (46)
and write
arccos(—1+ x) = 7t — arccos(1 — x) (47)

Next, use L'Hopital’s rule to evaluate as x — 0

arccos(1 — x) o2

x1/72 (48)

with the final result that

1-— 1*22 1722 1
_ 1/ — 1 — 22 49
st " arccos( - 1+2 (z+s m\l 2s(z+s) 1+2z/s & z 49

11 Therefore we again have no divergence for small g (large s); furthermore the above large s asymptotic
Larccos(—1 + 2S(z+s) )]

12 result is useful numerically due to possible underflows of [1 — 77~
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