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Abstract: In a previous paper[1], a variation of the Collision-time Statistics method was applied to1

identify the relevant perturbers for line broadening under the action of a constant magnetic field. As2

discussed, that version was simplified and inadequate for low magnetic field and/or large perturber3

mass (ions). The purpose of the present work is to augment the previous work, so that such cases can4

be handed efficiently. The results may also be used to construct analytic, i.e. impact/unified models5

under the usual assumptions in these models.6

Keywords: Stark broadening; Magnetic field; spiralling trajectories; Collision-time statistics.7

1. Introduction8

In a previous paper[1], a variation of the Collision-time Statistics method was applied to identify9

the relevant perturbers for line broadening under the action of a constant magnetic field. As discussed,10

that version was simplified and inefficient for low magnetic field and/or or large perturber mass11

(ions), because an unnecessarily large number of perturbers, the vast majority of which only contribute12

negligibly to broadening, were generated. The purpose of the present work is to augment the previous13

work, so that such cases can be handled efficiently. The main problem with the previous treatment14

was the case of large Larmor radii, larger than the effective interaction range (e.g. Debye length) and15

corresponding slow cyclotron frequencies, as in the case of large perturber mass and/or low magnetic16

field. In such cases the motion of the perturbers in the plane perpendicular to the magnetic field17

may be quite far from completing a full cycle. As a result in the simplified treatment of [1] a large18

number of ineffective perturbers would be included in that case. It is believed[2] that “as long as19

the gyro-radii of the electrons are much larger than the Debye sphere" the particle trajectories, or,20

equivalently, the dielectric function would be unaffected by the magnetic field, since the perpendicular21

motion involves presumably much smaller length scales than the parallel motion, although this belief22

remains to be quantified. It is shown here that this criterion is not quite correct and that the key23

parameter determining the adequacy of neglecting spiralling is the ratio of the cyclotron frequency to24

the width of the line in question.25

2. Theoretical Formulation26

As in [1] we assume that:27

a. the distribution functions, e.g. the Maxwellian velocity distribution is not affected by the B-field.28

b. the shielding is also not affected, e.g. Debye screening29

We also consider a neutral emitter in this work.30
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2.1. Collision-time Statistics31

To include all and only the relevant perturbers, we use a modification of the collision-time32

statistics method of Hegerfeld and Kesting[3] with Seidel’s improvement[4]- see Ref.[5] for details, as33

discussed in [1].34

As in [1], perturbers move in a helical path characterized by the parallel constant velocity vz,
where the magnetic field direction defines the z-axis (passing through the emitter), the perpendicular
velocity with magnitude v⊥ and impact parameter ρ, which is the distance of the center of the spiral to
the z-axis, i.e. the perpendicular motion in the x-y plane is a circular motion with the Larmor radius
rL = v⊥

ωL
around the center ρ, with ωL = |Q|B/m the cyclotron frequency and Q the perturber charge.

For the impact parameter ρ

max(0, rL − Rmax) ≤ ρ ≤ Rmax + rL (1)

, i.e. the impact parameter lies in a disk or annulus depending on whether the range Rmax of the35

interaction, discussed below, is larger or smaller than rL.36

The relevant quantities for the helical trajectory R(t) are as follows: The z-coordinate of the
trajectory is

Rz(t) = vz(t− ti) = vzt + z0, (2)

with
z0 = −vzti (3)

, with the times of closest approach ti representing the time the perturber trajectory intersects the x-y37

plane and being uniformly distributed. z0 thus represents how far from the x-y plane the perturber is38

at t=0.39

Hence
Rx(t) = ρ cos θ + rL cos(ωLt + ψ), Ry(t) = ρ sin θ + rL sin(ωLt + ψ) (4)

where θ describes the position of the impact parameter vector in the x-y plane and is uniformly40

distributed in (0, 2π). ψ is an angle describing where on the circular trajectory projection the perturber41

finds itself at t = 0 and is also uniformly distributed in (0, 2π) and ultimately related to the time42

the B-field was turned on. Each perturber is thus characterized by the vector (vz, v⊥, ρ, θ, ψ, ti) , or43

equivalently z0 instead of ti.44

As in [1] we consider as “relevant " perturbers those that come closer to the emitter than a distance45

Rmax, defined so that the interaction is negligible for distances larger than Rmax during the time46

interval of interest (0,τ). For a Debye interaction, we usually take Rmax ≈ 3λD, where λD denotes the47

shielding(Debye) length. This is because the interation becomes negligible (≤ 3% for larger distances).48

Therefore for a perturber to be relevant the condition R(t) ≤ Rmax must hold for at least one time49

t in (0, τ), where τ is the time of interest, i.e. a time large enough that the Fourier transform of the50

line profile C(t) has decayed to negligible levels, or an asymptotic form is identifiable. C(t) is a linear51

combination of products of time evolution operators (U-matrices) of the upper and lower levels. These52

time evolution operators -needed for times 0 ≤ t ≤ τ- are determined by solving the Schroedinger53

equation in the Debye-shielded field V(t). Therefore a particle will only be relevant if for at least one54

time in the interval [0,τ] it comes closer than Rmax to the emitter(if not, then the perturbation produced55

by that particle is negligible due to Debye screening), which means that for at least one time t in [0,τ] :56

(vzt + z0)
2 + (ρ cos θ + rL cos(ωLt + ψ))2 + (ρ sin θ + rL sin(ωLt + ψ))2 ≤ R2

max (5)

This reads:
R2

max − (vzt− vzti)
2 ≥ ρ2 + r2

L + 2ρrL cos(ωLt + ψ− θ) (6)

Thus we generate vz, v⊥, ρ, ti and θ as before, but also draw ψ, uniformly distributed in (0, 2π) as57

illustrated in in Fig. 1 and effectively only accept perturbers if, for at least one time in (0,τ) Eq.6 is58

satisfied. The maximum value of the LHS occurs for t = ti. This in general imposes restrictions (i.e. not59
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Figure 1. x-y trajectory projections for rL ≥ Rmax. Shown is the annular region between concentric
circles with the origin (the emitter position) as center and radii rL − Rmax and rL + Rmax, respectively.
For an impact parameter at a distance ρ from the center in the annular region, a circle with radius rL

(dashed) represents the projection of the perturber path in the x-y plane. Hence a point on that circle is(
ρ cos θ + rL cos(ωt + ψ), ρ sin θ + rL sin(ωt + ψ)

)
, with ψ the angle on the dashed circle. This must be

no more than Rmax away from the center, else this perturber does not contribute.

all ψ contribute for a given θ) on the values of θ and ψ that a perturber can have and still contribute60

effectively to broadening, specifically:61

• a. If rL < Rmax and ρ ≤ Rmax − rL, Rmax ≥ ρ + rL and Eq.6 is satisfied for t = ti for any θ, ψ and62

ωLt. Therefore in this case we have no restriction and θ and ψ can independently take any value.63

• b. In all other cases, Eq.6 results in the restriction:

arccos(
R2

max − ρ2 − r2
L

2ρrL
) ≤ |ωLt + ψ− θ| (7)

Note that for Case b, the argument of the inverse cosine is absolutely ≤ 1. Specifically:64

1. If rL ≥ Rmax, then

0 ≥
R2

max − r2
L − ρ2

2ρrL
≥ −1 (8)

The left of the inequality follows because Rmax ≤ rL alone. The right part also follows since

rL − Rmax ≤ ρ ≤ rL + Rmax ⇒ −Rmax ≤ ρ− rL ≤ Rmax (9)

Hence

R2
max ≥ ρ2 + r2

L − 2ρrL ⇒
R2

max − r2
L − ρ2

2ρrL
≥ −1 (10)

2. For rL ≤ Rmax, Eq.9 is also valid since rL − Rmax ≤ 0 ≤ ρ, as is Eq.10. Since, as already
discussed the case ρ ≤ Rmax − rL imposes no restriction, we only consider here the case Rmax − rL ≤
ρ ≤ Rmax + rL, which implies ρ− rL ≤ Rmax ≤ ρ + rL. It thus remains to show that

R2
max − r2

L − ρ2

2ρrL
≤ 1 (11)

which follows from Rmax ≤ ρ + rL.65

Thus66
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Figure 2. The shaded area shows the difference ψ− θ that satisfies Eq.6.

• a. For rL ≤ Rmax, ρ ≤ rL, Eq.6 is satisfied for t = ti for any θ, ψ and ωLt and there is no restriction67

on ψ, θ and ωLt.68

• b. In all other cases, the restriction imposed by Eq.7 applies and the argument of the inverse69

cosine is always absolutely ≤ 1.70

Hence the angle difference ψ− θ must be in the shaded area shown in Fig. 2. So for at least one
time t in (0, τ), the following must hold for the perturber with parameters ρ, rL, θ, ψ to contribute:

|ψ + ωLt− θ| ≥ arccos(
R2

max − ρ2 − r2
L

2ρrL
) (12)

. i.e.

ψ + ωLt ≥ θ + arccos(
R2

max − ρ2 − r2
L

2ρrL
), ψ + ωLt ≥ θ (13)

or

θ − arccos(
R2

max − ρ2 − r2
L

2ρrL
) ≥ ψ + ωLt, θ ≥ ψ + ωLt (14)

The net result is that for each θ, only a a range of ψ,

∆ψ ≤ 2
(
π − arccos(

R2
max − ρ2 − r2

L
2ρrL

)
)
+ ωLτ (15)

contributes( this means that a fraction ∆ψ
2π contributes compared to the simplified case discussed in the71

previous work, i.e. the collision volume is smaller by ∆ψ
2π ). If this is� 1 we effectively have rectilinear72

trajectories for the time of interest. If this turns out to be larger than 2π, we have a full revolution and73

we can use the simplified formulas discussed in[1]. As mentioned, we are mainly interested in the74

situation where Rmax < rL and ωLτ < 2π, as this is the case of large rL, but slow ωL, otherwise the75

relation between ψ and θ is always satisfied for at least one t in (0, τ).76

We can use the variable x = ρ− rL with−Rmax ≤ x ≤ Rmax and write the argument of the inverse
cosine as

R2
max − ρ2 − r2

L
2ρrL

=
R2

max − x2

2rL(x + rL)
− 1 (16)

Note that for low B (large rL) this tends to -1, hence the inverse cosine is close to π. This means that77

in this limit |ψ− θ| ≈ π, e.g. we get a ∆ψ ≈ 0 (but note that in that limit we had divergencies in the78

relevant functions when computing the collision volume in [1]).79
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Figure 3. The shaded area shows the difference ψ− θ that satisfies Eq.6.

JJ

Figure 4. Illustration of the relation between θ and ψ for the case rL � Rmax. Impact parameters ρ

lie between the dashed and dash-dotted circles with radii rL − Rmax and rL + Rmax. The part of the
circular trajectory projections that are within Rmax(bold circle) of the emitter (i.e. the center) are in the
opposite direction of the impact parameter vector, e.g. to the north for the southern circular trajectory
projection.

This situation is depicted in Fig. 3, which shows the typical situation for the phase space of the80

quantity ψ− θ that contributes. This is also illustrated in Fig. 4, which shows, for the same ρ, 4 different81

angles θ, which determine the centers of the spirals and the parts of the circular projections of these82

spirals that are effective. For instance if the center of the spiral, i.e. the vector of the impact parameter83

is the the right (θ ≈ 0), then ψ ≈ π (the leftmost of the circular trajectory projection) for rL � Rmax.84

Similarly, if the impact parameter vector is to the south (θ ≈ 3π/2), then the relevant ψ is to the north85

of the circular trajectory projection, e.g. ψ ≈ π/2).86

In the limit B = 0 (or infinite perturber mass) ,arccos( R2
max−ρ2−r2

L
2ρrL

) = π and we get from the θ and87

ψ integrations a term ωLτ
2π .88

2.2. Collision Volume89

The collision-time statistics method first computes the number of relevant particles, i.e. the density
times the relevant volume, i.e. the above cylinder. This volume is as before[1], except that we also
account for the polar angle θ, describing the orientation of the impact parameter with respect to the
x-axis and the angle ψ describing the position of the particle on the perpendicular x-y plane at time
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Table 1. ∆ψ(ρ)
2π vs. relevant parameters

ωLτ rL
Rmax

ρ
max(ρ1,rL)

∆ψ(ρ)
2π

≥ 2π 1
< 2π ≤ 1 ≤ 1 1

< 2π ≤ 1 > 1
(
1−

arccos(
R2

max−ρ2−r2
L

2ρrL
)

π

)
+ ωLτ

2π

< 2π > 1
(
1−

arccos(
R2

max−ρ2−r2
L

2ρrL
)

π

)
+ ωLτ

2π

t=0, i.e. we have the extra integrations
∫ 2π

0
dθ
2π

∫ 2π
0

dψ
2π . The ψ integration simply returns a factor of 1 if

ωLτ ≥ 2π, but it does so even under the weaker condition ωLτ ≥ 2 arccos( R2
max−ρ2−r2

L
2ρrL

), or

R2
max − ρ2 − r2

L
2ρrL

≥ cos(ωLτ/2) (17)

Otherwise it gives a factor of ∆ψ
2π with ∆ψ defined in Eq.15.90

The nonnegative root of Eq.17 is

ρ1 = − cos(ωLτ/2)rL +
√

R2
max − sin2(ωLτ/2)r2

L (18)

, i.e. the results of [1] are also valid for ρ ≤ ρ1, which in turn requires that

Rmax > rL (19)

(else ρ1 ≤ 0) , which also guarantees the reality of ρ1, i.e.

Rmax ≥ sin(ωLτ/2)rL (20)

The θ angular integration simply returns 1 in either case. As a result, the results of [1] need no91

modi f ication for ωLτ ≥ 2π. Otherwise, the collision volume calculation runs as follows:92

Hence for v⊥ < RmaxωL, i.e. rL < Rmax , ∆ψ(ρ) = 1. However, as already discussed, this is aso93

valid(e.g. no restriction on ψ is required ) also for ρ < rL, hence ∆ψ(ρ) = 1 for ρ ≤ max(rL, ρ1) = ρ2.94

For small Rmax/rL and ωLτ, rL is the maximum of the two. The collision volume reads:95

V = 2π
∫ ∞
−∞ f (vz)dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

ρdρ∆ψ(ρ)
∫ τ+

√
R2

max−(ρ−rL)
2

|vz |

−
√

R2
max−(ρ−rL)

2

|vz |

dti (21)

= 2π
∫ ∞
−∞ f (vz)dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

(|vz|τ + 2
√

R2
max − (ρ− rL)2)∆ψ(ρ)ρdρ

= 2π(C1 + C2)

with f (vz) =
√

m
2πkT e−mv2

z /2kT and f2(v⊥) = m
kT v⊥e−mv2

⊥/2kT denoting a one and two-dimensional96

Maxwellian velocity distributions respectively and with ∆ψ redefined as in Table 1:97
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C1 and C2 are:98

C1 = τ
∫ ∞
−∞ f (vz)|vz|dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

ρdρ∆ψ(ρ) (22)

= 〈|vz|〉τ
∫ ∞

0 f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

max(0, v⊥
ωL
−Rmax)

ρdρ∆ψ(ρ)

= 〈|vz|〉τ[
∫ RmaxωL

0 f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

0 ρdρ∆ψ(ρ) +
∫ ∞

RmaxωL
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

v⊥
ωL
−Rmax

ρdρ∆ψ(ρ)]

= 〈|vz|〉τR2
max(I1 + I2 + I3)

with 〈|vz|〉 =
∫ ∞
−∞ |v| f (v)dv =

√
2kT
πm The integrals I1 − I3 are given explicitly below. However, we

first define the dimensionless quantities:

s =
v⊥

ωLRmax
(23)

and
r =

ρ2

Rmax
= max(− cos(ωLτ/2)s +

√
1− sin2(ωLτ/2)s2, s) (24)

and

q = RmaxωL

√
m

2kT
(25)

(essentialy the averaged inverse s Rmax/rL).99

I1 = R−2
max

∫ RmaxωL

0
f2(v⊥)dv⊥

∫ ρ2

0
ρdρ =

∫ RmaxωL

0
f2(v⊥)dv⊥

ρ2
2(v⊥)

2
(26)

I2 = R−2
max

∫ RmaxωL

0
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

ρ2

ρ(
(
1−

arccos( R2
max−ρ2−r2

L
2ρrL

)

π

)
+

ωLτ

2π
)dρ (27)

and

I3 = R−2
max

∫ ∞

RmaxωL

f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

v⊥
ωL
−Rmax

ρ(
(
1−

arccos( R2
max−ρ2−r2

L
2ρrL

)

π

)
+

ωLτ

2π
)dρ (28)

while100

C2 = 2
∫ ∞
−∞ f (vz)dvz

∫ ∞
0 f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

max(0, v⊥
ωL
−Rmax)

√
R2

max − (ρ− rL)2ρdρ∆ψ(ρ) (29)

= 2
∫ ∞

0 f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

max(0, v⊥
ωL
−Rmax)

√
R2

max − (ρ− rL)2ρdρ∆ψ(ρ)

= 2[
∫ RmaxωL

0 f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

0

√
R2

max − (ρ− rL)2ρdρ∆ψ(ρ)

+
∫ ∞

RmaxωL
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

v⊥
ωL
−Rmax

√
R2

max − (ρ− rL)2ρdρ∆ψ(ρ)]

= 2R3
max(J1 + J2 + J3)

with101

J1 = R−3
max
∫ RmaxωL

0 f2(v⊥)dv⊥
∫ ρ2

0

√
R2

max − (ρ− rL)2ρdρ (30)

=
∫ q2

0 dxe−x[ s
2 (arcsin(s)− arcsin(s− r)) + (s2+2)

√
1−s2−(s2+2+sr−2r2)

√
1−s2+2sr−r2

6 ]

with x =
mv2
⊥

2kT and s = x1/2

q , r of course functions of x.102
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J2 = R−3
max

∫ RmaxωL

0
f2(v⊥)dv⊥

∫ Rmax+
v⊥
ωL

ρ2

√
R2

max − (ρ− rL)2ρ
(
1−

arccos( R2
max−ρ2−r2

L
2ρrL

)

π

)
+

ωLτ

2π
)dρ

(31)
and

J3 = R−3
max

∫ ∞

RmaxωL

f2(v⊥)dv⊥
∫ Rmax+

v⊥
ωL

v⊥
ωL
−Rmax

√
R2

max − (ρ− rL)2ρ
(
1−

arccos( R2
max−ρ2−r2

L
2ρrL

)

π

)
+

ωLτ

2π
)dρ

(32)
Note that the only difference from the previous work[1] is the factor ∆ψ(ρ) for ωLτ < 2π. Also103

note that in [1], the corresponding integrations to infinity, e.g. the equivalents of I3 and J3 diverged as104

q→ 0. This divergence has been eliminated here due to the ∆ψ factor. This is shown in Appendix A,105

which evaluates the I3 and J3 integrals.106

The remaining contributions vanished in [1] as q→ 0 and clearly continue to do so here.107

As already mentioned in[1], the number of particles that are in this volume, and hence need to be108

simulated, is simply the volume multiplied by the perturber density.109

2.3. Generating perturbers110

To generate perturbers we proceed as in [1], but also generate for each perturber an angle111

θ, uniformly distributed in (0,2π). Once we have generated vz, v⊥, ρ, ti and θ, we also generate ψ112

uniformly distributed in
(
θ + arccos( R2

max−r2
L−ρ2

2ρrL
)−ωLτ), θ + 2π − arccos( R2

max−r2
L−ρ2

2ρrL
)
)
.113

In more detail, we first draw a random number uniformly distributed in (0,1). If this is smaller114

than C1
C1+C2

, then we generate |vz|, v⊥, ρ from the distribution P1(|vz|, v⊥, ρ) = |vz| f (vz) f2(v⊥)ρ by115

generating independently a vz with the probability distribution |vz| f (vz), a v⊥ with the probability116

distribution f2(v⊥) and a ρ with the probability density ρdρ in ((max(0, v⊥
ωL
− Rmax), Rmax +

v⊥
ωL

).117

Otherwise we generate from the distribution P2(|vz|, v⊥, ρ) = f (vz) f2(v⊥)ρ
√

R2
max − (ρ− rL)2.118

The generation of impact parameters was done by a rejection method, as straightforward inversion is119

not possible.120

Once vz, v⊥ and ρ have been generated, ti is selected as a uniformly distributed time in121

(−
√

R2
max − (ρ− rL)2, |vz|τ +

√
R2

max − (ρ− rL)2). θ and ψ are also generated as discussed above.122

3. Conclusions123

The present work extends the simplified theory for spiralling motion in a constant magnetic field124

presented in [1] which was typically efficient for electron perturbers to more cases of practical interest,125

i.e. ion perturbers and/or weak magnetic fields. The results of [1] are seen to hold for ωLτ ≥ 2π and126

are here extended to ωLτ < 2π, i.e. a regime typical for ions or weak magnetic field, thus validating127

the common wisdom that ion trajectories are usually unaffected by spiralling. In addition, this work128

identifies relevant parameters (e.g. q, ωLτ) and criteria for using a straight line and also allows the129

efficient treatment of spiraling ion trajectories if needed. The results of this work are also a useful130

basis for approximate standard treatments, i.e. impact/unified theories, if (strong) collisions are131

isolated/disentangled and further, to perturbative impact/unified treatments if these collisions may132

be handled in perturbation theory.133

With regard to the notion[2] , discussed in the introduction, that the relevant quantity for134

neglecting spiralling is that rL � Rmax, the present paper shows that although the idea is qualitatively135

correct, i.e. one may indeed neglect spiralling for small B and/or large perturber mass, leading to136

a large Larmor radius, the actual situation is more complex and described by Table 1. Specifically,137

to neglect spiralling, it is necessary that ωLτ
2π � 1 or equivalently ωL

HWHM � 1 , i.e. the ratio of the138

cyclotron frequency to the width(HWHM) of the line is important. This is because if this ratio is small,139

then the perturber motion does not cover a full revolution and if very small, the motion is essentially140
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unaffected by the magnetic field. However, if the line is very narrow (τ is large) there may be enough141

time to complete at least a sizeable portion of a revolution, even if the Larmor radius is much larger142

than the Debye length.143
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Appendix A: Calculation of the I3 and J3 double integrals151

Note that the integrands are the same except that Jn involves and extra factor of152 √
R2

max − (ρ− rL)2.153

Note that these integrals are the only contributions for q = 0(B = 0).154

A.1 The I3 integration155

For I2 and I3, the non-trivial ρ integrals reduce to (x = ρ/Rmax)156

∫
dxx arccos(

1− x2 − s2

2xs
) = 1

4 [2x2 arccos( 1−x2−s2

2xs ) +
√
−s4 + 2s2(x2 + 1)− (x2 − 1)2] (33)

+ 1
2 arctan( 1+s2−x2√

−s4+2s2(x2+1)−(x2−1)2
)

For both I2 and I3, the upper limit if s + 1, for which

arccos(
1− x2 − s2

2xs
) = arccos(−1) = π (34)

and √
−s4 + 2s2(x2 + 1)− (x2 − 1)2 = 0 (35)

Hence the middle term vanishes, while the arctangent is

arctan(
1 + s2 − x2√

−s4 + 2s2(x2 + 1)− (x2 − 1)2
) = arctan(

−2s
0+

) = −π

2
(36)

If (as in I3) the lower limit is s− 1, the argument of the square root is also 0, arccos( 1−x2−s2

2xs ) =

arccos(−1) = π and

arctan(
1 + s2 − x2√

−s4 + 2s2(x2 + 1)− (x2 − 1)2
) = arctan(

2s
0+

) =
π

2
(37)

I3 is157

I3 =
∫ ∞

RmaxωL
dv⊥ f2(v⊥)

∫ s+1
s−1 dxx(1 + ωLτ

2π −
arccos 1−x2−s2

2xs
π ) (38)

=
∫ ∞

RmaxωL
dv⊥ f2(v⊥)(2s(1 + ωLτ

2π )− 4s−1
2 ) = [ e−q2

2 + ωLτ
2π

2
q
∫ ∞

q2 dxx1/2e−x]

= [ e−q2

2 + 2ωLτ
2π (e−q2

+ π1/2 1−er f (q)
2q )] = e−q2

2 (1 + 2ωLτ
π ) + (1− er f (q)) 〈|vz |〉τ

2Rmax

Note that unlike the simplified version[1], I3 does not diverge because the ωLτ cancells the q−1.158
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A.2 The J3 integration159

We break the J3 integral as
J3 = J31 + J32 (39)

where using s = v⊥
RmaxωL

, we have:160

J31 = ωLτ
2π

∫ ∞
RmaxωL

dv⊥ f2(v⊥)
∫ s+1

s−1 dxx
√

1− (x− s)2 = 2q2 ωLτ
2π

∫ ∞
1 se−s2q2 sπ

2 (40)

= π
2

ωLτ
2π [
√

π
1−er f (q)

2q + e−q2
] = ωLτe−q2

4 + τ
8Rmax

√
2πkT

m (1− er f (q))

, which does not diverge for ωL → 0 and

J32 =
∫ ∞

RmaxωL

dv⊥ f2(v⊥)
∫ s+1

s−1
dx
√

1− (x− s)2x(1−
arccos 1−x2−s2

2xs
π

) = 2q2
∫ ∞

1
se−s2q2

N3 (41)

with

N3 =
∫ s+1

s−1
dx
√

1− (x− s)2x[1−
arccos(−1 + 1−(x−s)2

2xs )

π
] (42)

Using z = x− s this becomes:

N3 =
∫ 1

−1
dz
√

1− z2(s + z)[1−
arccos(−1 + 1−z2

2s(z+s) )

π
] = N31 + N32 (43)

with

N31 =
∫ 1

−1
dz
√

1− z2z[1−
arccos(−1 + 1−z2

2s(z+s) )

π
] (44)

and

N32 = s
∫ 1

−1
dz
√

1− z2[1−
arccos(−1 + 1−z2

2s(z+s) )

π
] (45)

If ωL → 0, s→ ∞, and 1−z2

2s(z+s) → 0, hence the argument of the inverse cosine is very nearly -1, and thus

we have [1− arccos(−1+ 1−(x−s)2
2xs )

π ]→ 0 which gives a vanishing contribution for N31. However, for N32

this is multiplied by s→ ∞ so the result is not immediately clear. Since Taylor-expanding the inverse
cosine around -1 does not work due to the infinite derivative, we can use Frobenius’s method or write

x =
1− z2

2s(z + s)
→ 0 (46)

and write
arccos(−1 + x) = π − arccos(1− x) (47)

Next, use L’Hopital’s rule to evaluate as x → 0

arccos(1− x)
x1/2 → 21/2 (48)

with the final result that

s[1− π−1 arccos(−1 +
1− z2

2s(z + s)
)]→ s

π

√
2(1− z2)

2s(z + s)
= π−1

√
1− z2

1 + z/s
→ π−1

√
1− z2 (49)

Therefore we again have no divergence for small q (large s); furthermore the above large s asymptotic161

result is useful numerically due to possible underflows of [1− π−1 arccos(−1 + 1−z2

2s(z+s) )].162
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