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Abstract— The quantum Rayleigh spontaneous emission 

replaces entangled photons with independent ones in 

homogeneous dielectric media where single photons cannot 

propagate in a straight line. Single and independent groups of 

photons, described by the original bare states of Jaynes-

Cummings model, deliver the correct expectation values for the 

number of photons carried by a photonic wavefront, its complex 

optical field, and phase quadratures. The intrinsic longitudinal 

field profile associated with a photonic wavefront is derived for 

any instantaneous number of photons. These photonic properties 

enable a step-by-step analysis of various beam splitters and 

interferometric filters. As a result, generalized expressions are 

derived for the correlation functions characterizing counting of 

coincident numbers of photons for fourth-order interference, 

whether classical or quantum optical, without entangled photons.  

 

Index Terms— Quantum Rayleigh emissions, photonic beam 

splitters and filters, photon coincidence counting, HOM dip with 

no entangled photons.     

I. INTRODUCTION 

ECENT developments in the integration of photonic devices 

for quantum information processing [1-2] are 

characterized by their capability to generate two-photon 

destructive interference for temporally overlapping 

indistinguishable photons, which is commonly known as the 

Hong-Ou-Mandel dip [3]. The reduction in the counting rate of 

coincident detection of photons at two spatially separated 

photodetectors is explained by opposite sign amplitudes for the 

probabilities of detecting each photon pair after having been 

reflected or transmitted by a beam splitter.  Yet, with only one 

pair of photons present in the experimental setup, at any given 

time, the two types of detection cannot take place 

simultaneously.  

In a 1999 review paper [3], Mandel wrote: “…about the 

quantum state of a system: in an experiment the state reflects 

not what is actually known about the system, but rather what is 

knowable, in principle, with the help of auxiliary measurements 

that do not disturb the original experiment. By focusing on what 

is knowable in principle, and treating what is known as largely 

irrelevant, one completely avoids the anthropomorphism and 

any reference to consciousness that some physicists have tried 

to inject into quantum mechanics.“ [1, p. S279].  But on the next 

page of [3, Sect. VI] the following statement appears: “Let us 

consider the quantum state ∣ Ψ 〉 of the photon pair emerging 

from the beam splitter (BS). With two photons impinging on 
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the BS from opposite sides there are really only three 

possibilities for the light leaving BS: (a) one photon emerges 

from each of the outputs 1 and 2; (b) two photons emerge from 

output 1 and none emerges from output 2; (c) two photons 

emerge from output 2 and none emerges from output 1. The 

quantum state of the beam-splitter output is actually a linear 

superposition of all three possibilities in the form ∣Ψ〉 = ( |R |2 – 

| T | 2 ) ∣ 1 〉 1 ∣ 1 〉 2 + √2 i (| R T |2 [ ∣ 2 〉 1 ∣ 0 〉 2  + ∣ 0 〉 1 ∣ 2 〉 2 ] 

where  R and T are the complex beam-splitter reflectivity and 

transmissivity.” But, the possibility of other physical processes 

is ignored. 

The assumptions made in relation to an optical beam splitter 

– operating in the quantum regime – would have the total 

number of photons entering the beam splitter input ports equal 

the number of photons emerging from the two output ports, 

leading to a unitary transformation for the input-output relation 

[4] of the field operators and a ± π/2 phase difference between 

the coefficients R and T.  

However, in line with the concept of knowable elements of 

the experimental configuration suggested by Mandel [3], the 

quantum Rayleigh conversion of photons [5-7] may give rise to 

additional output states: ∣0〉 1 ∣0〉 2, ∣1〉 1 ∣0〉 2 , and ∣ 0 〉 1 ∣ 1 〉 2  

as photons are absorbed and spontaneously re-emitted, 

randomly, and, most likely, not in the direction of interest [5-

7]. The Hamiltonian of interaction between the electric dipoles 

and the optical field is [5]:  

 

𝐻̂ = 𝜅 ( 𝑑̂† ∙ 𝑎̂ +  𝑑̂ ∙ 𝑎̂†)                                         (1) 

 

where 𝑑̂ is the electric dipole  operator raising the atomic  

electron from one level to the next, and 𝑎̂ is the photon 

annihilation operator, with 𝑎̂† its conjugate operator, the photon 

creation operator.  The optically linear susceptibility χ(1) is 

included in the spatial coupling coefficient κ.   

The absorption of one photon through quantum Rayleigh 

conversion leads to the disappearance of an entangled state, that 

is:  𝑎̂1 ( ∣ 0 〉 1 ∣ 0 〉 2  +  ∣ 1 〉 1 ∣ 1 〉 2 )  =  ∣ 0 〉 1 ∣ 1 〉 2   which is 

a product state. A similar annihilation occurs for the second 

photon. Alternatively, the dipole-field interaction of absorption 

projects the state onto the zero-photon state: 1〈 0 ∣ 𝑎̂1 ∣1〉 1 ∣1〉 2  
=  ∣ 1 〉 2 , resulting in one single photon surviving as soon as 

the entangled pair was created in a parametric spontaneously 

down-converted emission in an optically nonlinear crystal.  

Additionally, unless two state functions or relevant operators 

overlap in the space-time of their configuration, i. e.  f 1(r, t) ≠ 

0 and  f 2 (r, t) ≠ 0,  their product will be zero [5].  
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In a nonlinear crystal pumped, e.g., with a continuous wave 

(cw) and for frequency down-converted photons of ω s + ω i = 

ωp , the gain providing medium generating the spontaneous 

emission, will also amplify the initially single photons, 

particularly so in the direction of wavevector matching 

conditions. As a result, the commonly assumed one single 

photon output does not, in reality, physically happen. At least 

several photons will be associated with each individual and 

discrete electronic “click”. 

Based on the analysis of [5], with the Fresnel formulas for 

the optical reflection and transmission coefficients 

corresponding to probability amplitudes of the two events, the 

photonic conservation would apply only to one interface 

between two dielectric media. As additional internal reflections 

inside the glass plate of a beam splitter would take place, the 

assumption of photon number conservation is questionable. 

Furthermore, because of the quantum Rayleigh conversion or 

coupling of photons occurring inside a dielectric medium [8], 

one single photon can only be re-emitted spontaneously in a 

random direction, preventing a straight line propagation.  Only 

a group of photons propagating together can maintain their 

direction of propagation and characteristics through stimulated 

emission induced by the other photons which are not 

temporarily absorbed and re-emitted.   

We can apply the Fresnel formulas if a pure state vector, or 

wavefunction, can be identified for the optical field – measured 

instantaneously [9-10] – of the time-varying photonic 

wavefront, i.e., its amplitude in terms of the flux of photons and 

its phase. Such a function is developed in Section II below, 

taking the form of | Ψ n 〉 = ( | n 〉 + | n −1〉) / √ 2 and delivering, 

classically compatible, c - number values for observable 

expectation values [11].  

A pure state delivers one single measurement [9], [12] 

whereas a mixed state describes the statistical distribution of an 

ensemble of measurements [12].  A photonic wavefront carries 

a number of photons across a plane hosting dipoles and its 

duration will be determined by the response time of the photon-

dipole interaction [9].  

The physical process of quantum Rayleigh conversion of 

photons (QRCP) is associated with the real part of the first-

order optical susceptibility and involves a group of electric 

dipoles interacting simultaneously with two photonic 

wavefronts carrying an arbitrary number of photons across a 

plane over a short time ∆ t → 0. The excited dipoles will emit 

either spontaneously or stimulatedly, depending on the 

circumstances. The spontaneous emission will affect the 

operation of dielectric interface-based beam splitters, while the 

stimulated emission will be active in a fiber-optic beam splitter 

configured as an optical directional coupler. 

A mixed state of one-photon excitation as presented in [13, 

p. 8] is impractical for the description of the QRCP because the 

photon wave packet |1⟩ j ,σ describes an output-measured spatial- 

and temporal-localized packet. “An example is the 

deterministic generation of a single photon from an atom in a 

cavity-QED system. If the packet is dispersed spectrally by a 

prism and detected by an array of photon counters, only one 

counter will click, although which one clicks will be random. 

Such a state is expressed as |1⟩j, σ =∫ 𝑑3𝑘 𝑈𝑗
(𝜎)

(k)|1⟩k,σ  /(2 𝜋)−3      

where  |1 ⟩ j ,σ  is a state with a single excitation having particular 

monochromatic wave vector-polarization state labeled by the 

pair (k, σ). We see that the function 𝑈𝑗
(𝜎)

(k) fully specifies the 

state.” [13, p. 8]  This state is of no utility for evaluating the 

optical field involved in a dipole-photon interaction as the 

expectation values vanish, i.e.,  j ,σ ⟨ 1 | â | 1 ⟩ j ,σ   = 0. For the 

single-photon wave packet, only one radiation mode is taking 

part in the detection or photon coupling processes. Yet, an 

intrinsic photonic field distribution is carried by each 

interacting photon without any dependence on the measured 

statistical distribution of the ensemble of the mixed state. 

The interactions associated with quantum Rayleigh 

conversions of photons require a wavefunction capable of 

delivering transient or instantaneous expectation values for a 

pure state. This is presented in Section II, and followed by the 

description of the intrinsic photonic field profile in Section III. 

These elements will underpin the analysis of various types of 

beam splitters, and interference filters in Section IV. Physical 

aspects of the dynamic and coherent number states are 

discussed in Section V along with the irrelevance of photonic 

entanglement to explain previously published experimental 

results.     

II.  PHOTONIC WAVEFRONT EXPECTATION VALUES AND 

DYNAMIC MOTION 

As the number of photons and related field amplitude and 

phase carried by a photonic wavefront may change as a result 

of the QRCP, the equations of motions for the corresponding 

expectation values will be evaluated with the Ehrenfest’s 

theorem [14-15]. To this end, a pure quantum state is needed, 

capable of delivering correct values for the instantaneous 

number of photons, the optical field amplitude and its 

longitudinal profile and the phase quadratures. 

Photons and their instantaneous properties are detected and 

measured as a sequence of wavefront number states | n 〉  [9] 

which make up  a pure quantum state vector | Ψ ( r, t ) 〉 =                                     

∑ n  c n ( r,  t )  |  n  〉    regardless of the overall distribution to 

which the photons belong [9-10]. The quantum probability of 

occupation of an eigenstate is given by the normalized 

distribution of photons – crossing a surface at location r –with  

the time-varying coefficients | cn | 2 satisfying the condition                                

∑n | cn | 2  = 1, and orthogonality 〈 n | m 〉 =  δ n m .   The detection 

of photons occurs as a result of their optical field exchanging 

energy with electrons of the atomic structure of the detector, 

similarly to the Jaynes - Cummings model [4], [14] for the 

quantized dipole-photon exchange of energy. The detection, or 

any other interaction process, collapses the photonic quantum 

state into an instantaneous eigenvalue of a number operator [15] 

regardless of the ensemble distribution to which it belongs, e.g., 

a coherent state or an arbitrary distribution.   

A. Optical fields of dynamic and coherent number states 

Based on the formalism presented in [5], [16], the magnitude of the 

Poynting vector, i.e. the flux of energy  E  ( or number of  photons /s )  

carried by an optical wavefront of frequency  ω and crossing a plane 

surface at position  z  is given in terms of the electromagnetic field  

magnitudes E and B , or corresponding operators, by  the equalities: 

 

E  =  ω  ε E  2 + c 2 ω B  2  =  0.5  ħ ∙ ω (a a*  +  a* a )                 (2)     
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with  a  =  ( ε / ħ ) 
½  

 (  E + i c B ) and its complex conjugate  a*  . 

 From this relation one defines the annihilation and creation 

operators as: 

â   = ( ε / ħ ) 
½  

  ( Ê   +  B c i ˆ )                                                   (3a) 

â †  = ( ε / ħ ) ½   ( Ê  – B c i ˆ )                                                  (3b) 

                                                                      

with ε  and ℏ  indicating the permittivity of the medium and the 

reduced Planck constant, respectively. The free-space Hamiltonian  

f
Ĥ  is explicitly written as [5]: 

  𝐻̂𝑓 =   ħ ∙ ω  𝑁̂𝑐                                                                            (4a)     

                                                                                              

 𝑁̂𝑐 =  0.5 (  â†  â  +  â  â†  )                                                           (4b)  

 

where 𝑁̂𝑐  is a complete number operator and its  eigenstates  are 

the number states | n 〉. The field operators â and its adjoint â† connect  

 

  〈 n |                               | n 〉  

  â â†                              â† â   

 〈n−1|                            |n−1〉 

            Fig. 1. An illustration of the dynamic and                                                                         
coherent two-component number states.                                     
We note that: 〈 n | â†  = √ n 〈 n −1| ,  and 

〈 n −1| â   =  √ n 〈 n |   .                

  
two consecutive number states, and consequently, a superposition of        

| n −1〉 and | n 〉 should give rise to a non-zero optical field for the 

following state vector: 

 

| Ψ n (t) 〉   =  c 1 (t)  | n 〉  +  c 2 (t)  | n − 1〉                                        (5a)  

                                               

| Ψ n 〉   =  2 – 1/2 ( | n 〉  +  | n − 1〉 )                                                   (5b)                                                 

 

with the normalization of   | c 1 | 2  + | c 2 | 2 = 1 . 

Analogously to the derivation [4] of coherent states of light  | α 〉, the 

non-Hermiticity of the photon annihilation and creation operators 

allows for complex classical numbers ( c –numbers) to be delivered 

when these operators  act on number states. Applying â and â† to | n 〉 

returns a complex c – number    

s n = | s n | exp (− i φ n )                                                                  (6) 

 

which will become the complex amplitude of the state, so that: 

â | n 〉    =    s n | n −1 〉                                                                      (7a)                                                                                      

 

â† | n− 1〉    =    s *n | n 〉                                                                   (7b)    

 

  Recalling that  â and  â†  are adjoint operators of each other, they 

interchange roles when acting on the Hermitian conjugate ( or bra)                                                   

wave functions: 

 

 〈 n −1|  â   =  s n    〈  n |                                                                   (8a)                                                                                             

 

 〈 n  | â†      =  s *n   〈  n − 1 |                                                           (8b)   

 

The condition of the number states being eigenstates of the number 

operator  𝑁̂ =  â†  â   requires that | s n | 2 = n .   

This symmetric Hamiltonian of (4) suggests the two-component 

state vector of (5) as depicted in Fig. 1, and it carries out two 

simultaneous operations, one as a two-step number operator  

 

〈 n |  â†  â |  n 〉 = 〈 n | â†  |  n − 1 〉  s n = 〈  n |  n  〉  s  n  s*n               (9)                                   

 

and the second operation – illustrated in Fig. 1 –  as a one-step 

transition  operator between two consecutive number states, each 

operator acting on the state vector  next to it (or the left-hand operators 

acting on the Hermitian conjugate wave functions  〈 n | , the result 

being: 

〈 n | â†  ∙ â | n〉   =  s *n   〈  n −1 | n −1〉  s n  = | s n | 2 = n                (10a)                              

〈 n −1| â ∙ â† | n −1〉   =  s *n   〈 n | n 〉  s n  = | s n | 2  = n                (10b)   

 

We point out that for   │ Ψ n 〉   from (5b) one obtains                             

〈 Ψ n │ â† â  │ Ψ n 〉 =   0.5 ( n + n − 1 ) = n – ½  and                                               

〈 Ψ n │ â  â† │ Ψ n 〉  =  0.5 ( n + n + 1 ) = n + ½ , leading to                                                 

 〈 Ψ n │ 𝑁̂𝑐│ Ψ n 〉  =   0.5 x 2 n  = n                                 ( 11)  

which is the number of photon carried by the wavefront flux. 

In the Heisenberg picture, the propagating photon field 

operators take the form [5]: 

â (ω , t, z) = â (ω)  f (x , y, z )  e − i ( ω t  −  β  z )                     (12a) 

â† (ω, t, z) = â†  (ω)  f (x , y, z )  e  i ( ω t  −  β  z )                     (12b) 

 

where the spatial distribution  is a solution of the Helmholtz wave 

equation [5] .  The observable quantity of the expectation value of              

the quadrature field operator  𝑄̂ =  â + â†   is found by combining 

 (5b) ,(6), (7), (8) and (12) to yield: 

                                                                                                                                          

〈 Ψ n ( t )│ â │Ψ n ( t ) 〉 = 0.5 e− i ( ω t + φ (0) ) n 1 / 2 e − i φ n    

                                                                                                (13a) 

〈 Ψ n │(  â + â†  )│ Ψ n 〉 =  n 
½

 cos (ω t  −  β
  
z − φ n )      (13b)  

 

reproducing the  c - number 〈 𝑄̂ 〉 corresponding to the 

“classical” optical field with a time-varying number of 

photons n (t) and related phase φ n  (t) .  

The correct expectation values can also be found for the 

quadrature operators [17], i.e.,  𝐶̂ = 𝑎 ̂𝑁̂−1/2  +  𝑁̂−1/2 𝑎̂†   
and 𝑆̂ = 𝑖 (𝑎 ̂𝑁̂−1/2  −  𝑁̂−1/2 𝑎̂† ) : 

 

〈 Ψ n │𝐶̂𝑗│ Ψ n 〉   =  cos (ω t  + φ j  )                           (14a) 

                                                              

〈 Ψ n │𝑆̂𝑗 │Ψ n  〉  =   sin (ω t  + φ j  )                           (14b) 

B. The equations of motion of the optically linear parametric 

interactions.  

As an optical beam propagates through a dielectric medium, the 

magnitude and phase of the expectation value  s n  may be modified by 
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the simultaneous presence of another beam of photons of  the same 

frequency. This effect is described by the Ehrenfest theorem [15]:  

𝑖 ℏ
𝜕

𝜕𝑡
  〈 Ψ𝑛 (𝑡)| 𝑎̂ | Ψ𝑛 (𝑡)〉 =  

  

         =  〈 Ψ𝑛 (𝑡)| [  𝑎̂ , 𝐻̂𝑖𝑛𝑡 ] | Ψ𝑛 (𝑡)〉                            (15) 

 

indicating that  the expectation value of the optical field is 

modified by its commutator with the Hamiltonian of 

interaction   𝐻̂𝑖𝑛𝑡 .    

Having identified a quantum wave function capable of 

delivering the instantaneous magnitude and phase of an optical 

field, we can now apply the formalism of [18-19] to the 

propagation along an optical waveguide directional coupler by 

employing the following composite photonic quantum state 

function │Φ〉 for two optical waves identified by their 

waveguide, their Hamiltonian of interaction and the equation of 

motion derived from (15): 

│Φ 〉   = │Ψ n, 1 〉   │Ψ n, 2 〉                                                (16)                                                                           

                                                            

𝐻̂𝑖𝑛𝑡 = ℏ 𝜔 𝜒
(1)   (𝑎̂2

† 𝑎̂1 +  𝑎̂2 𝑎̂1
† )                                  (17) 

 

  
𝜕

𝜕 𝑡
 〈 Φ | 𝑎̂1 | Φ〉 =  −𝑖ω𝜒(1) 〈 Φ |  𝑎̂2 | Φ〉                    (18)                                     

 

where χ(1) is the real part of the first-order susceptibility of the 

dielectric medium. This interaction will modify the complex 

field amplitude  s n ,  j    ( j = 1 , 2)   of two co-propagating and 

overlapping optical beams of the same frequency, identifiable 

by their respective optical waveguides  ( j = 1 , 2)  . From. (13) 

we have for the expectation values of the optical fields 

 

〈 Φ │ â j │ Φ 〉  =  0.5 e − 
i ( ω t  +  φ j  (0) )     s n, j                       (19)                                         

 

After converting to number of photons, i.e., | s n , j |  2  =  N j  

and corresponding phases φ j , the equation of motion (18) 

provides the rates  of change  of   N j   and  φ j   as follows                       

[18-19]: 

 
𝜕

𝜕 𝑧
 𝑁1 =  𝑔

1
 𝑁1                                                             (20a) 

 

𝑔1 = − 𝜅 ( 
𝑁2

𝑁1
)

1/2
 𝑠𝑖𝑛 𝜃21                                     (20b) 

 

𝜕

𝜕 𝑧
 𝜃21 = (𝛽2 − 𝛽1) + 𝜅 [( 

𝑁1

𝑁2
)

1/2
− ( 

𝑁2

𝑁1
)

1/2
] 𝑐𝑜𝑠 𝜃21                                 

                                                                                (20c) 

𝜕

𝜕 𝑧
 𝜑1 =   𝜅 ( 

𝑁2

𝑁1
)

1/2
 𝑐𝑜𝑠 𝜃21                                (20d) 

 

𝜅 =  
𝑘0

2 𝑛
∫ ∫ 𝑑𝑥 𝑑𝑦 𝜒(1) 𝑓1  𝑓2 𝒆𝟏 ∙  𝒆𝟐                     (20e)       

   

where the gain coefficient  𝑔 includes an overall  coupling 

coefficient  κ  defined in [8] which depends on the polarization 

states e1 and e2 of the photons. The phase difference between 

the two waves  is    θ 2 1   = ( β 2 −  β 1 ) z + φ 2  −  φ 1  ,  β being 

the propagation constant and  z / t =  v p  is the phase velocity.   In  (20e)   

k o and n specify the free-space wavevector and the effective refractive 

index, respectively. It should be noted that equations  (20) describe the 

physically meaningful process of quantum Rayleigh conversion of 

photons [8]. The coupling coefficient of Eq. (20e) indicates that the 

entire local value of the optically linear susceptibility χ (1) is involved 

in the coupling process in the dielectric medium at any point where the 

two spatial distributions f1 and f2  overlap, each having units of  m –1, 

and the squares   f  2 are normalized to a dimensionless unit over the 

cross-section area. This is in contrast to the physically impossible 

coupling between two optical waveguides apparently induced by a 

perturbation of the dielectric constant in the cladding – see reference 

[8] for details.    

Two dynamic number states of (16) co-propagating through 

a dielectric medium will couple photons from one state to the 

other depending on the relative phase between the two waves. 

This process, repeatedly, will eliminate optical waves whose 

phases diverge substantially from the phase of the surviving 

wave which will dominate the output of a lasing cavity.  

Two groups of photons propagating simultaneously across 

the same dielectric medium would exchange photons, 

parametrically, with each other through the real part of the 

susceptibility – see (20) above – which is indicative of a beam 

splitter composed of a fiber-optic directional coupler [1-2].  

C. Interference patterns between the fields of dynamic and 

coherent number states 

Another useful effect is the interference between two waves reaching 

a photodetector. In the context of  this analysis, one obtains that, in so 

far as localized detection of photons of two dynamic and coherent 

number states is concerned, the photocurrent  I p h  generated by the 

interference output of a balanced homodyne detector is calculated by 

combining  the expectation values of the quadrature field operators   

given in (13) to obtain:                           

 

〈  I p h ( t )  〉 = K  ( 〈 Q 1 〉 + 〈 Q 2 〉 ) 2 = 
 

= K  [ Ν 1  cos 2 (ξ 1 ) +  Ν 2  cos 2 (ξ 2 ) +  

 

              +  2 ( Ν 1   Ν 2  ) 1/ 2  cos  (ξ 1 ) cos (ξ 2 ) ]                        (21)                                 

 

with  the constant of   proportionality  K   corresponding to the quantum 

efficiency of photon – to – electron conversion. The phases are defined 

by ξ j = ω j  t  −  β j
  
z − φ j  . This approach of making use of initially 

evaluated expectation values links the quantum regime to the classical 

one [20]. After time-averaging over a large number of optical 

frequency periods, namely, with the averaging time interval T 

satisfying   2 π / ω j  << T << 2 π / | ω 1  - ω 2 ) | we find that 〈cos 2 (ξ ) 〉  
= 1/ 2 and 〈 cos (ξ 1 + ξ 2 ) 〉  = 0, as well as 〈 sin ξ  〉 = 0, to retrieve the 

conventional interference pattern: 

 

〈  I p h ( t )  〉 =  ( K / 2)   [  Ν 1   +  Ν 2  +  

 

              +  2 ( Ν 1   Ν 2  ) 1/ 2  cos  (ξ 1  − ξ 2 ) ]                        (22)                                 

 

which will be applied to two-detector correlations in the following 

Section IV.  Thus, the wavefunction of (5) enables a smooth transition 

between the quantum and classical regimes for any level of optical 
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power and any related phase. The question of measured variances 

induced by system fluctuations will be addressed in Section V below. 

 

III. INTRINSIC FIELD PROFILE OF A PHOTONIC WAVEFRONT 

We can calculate the intrinsic longitudinal field profile of a group of 

photons, or its coherence length, by using the wave function │Ψ n 〉 
from (5b).  Two equations can be identified for the expectation values 

of  â, or the corresponding c - numbers, by combining  (3) and (13a),   

leading to: 

 

〈 Ψ n│ â │Ψ n  〉  =  b 〈 𝛦̂ 〉   + i s  〈 𝛣̂ 〉                                      (23a)                                                                          

 

〈 Ψ n │ â │ Ψ n  〉  =  q  e − i  ω t                                                     (23b)                                                                        

 

where q  = 0.5 √ n  , b =  (ε / ℏ ) 1 / 2     and , s =  (ε  c / ℏ ) 1 / 2   .   We point 

out that both quadratures of the field are represented in the phasor 

notation of   (23).   Eq.  (23a) is obtained from (3) and can be expressed 

in terms of the c – numbers E  =  〈 𝛦̂ 〉 and  B  =  〈 𝛣̂ 〉.  Recalling the 

relations [16] between the vector potential  A ( z , t )  and the fields  as: 

 E = −  ∂ A / ∂ t   and    B  =    x   A                                           (24)                                        

in the  Cartesian frame of coordinates ( x , y , z ),  the vectors have the 

notation, in the plane wave approximation:  A  = ( A , 0 , 0 ) ;                          

E = ( E , 0 , 0 ) ;  B = ( 0 , B , 0 )  and the wave vector   is 

 k  = ( i k x , i k y , β ) for a beam propagating in the  z – direction in an 

optical waveguide. The complex amplitude of the vector potential is 

represented by   

A ( z, t ) = A p ( z ) f (x , y)  e − i ( ω t  −  β  z )                                                  (25)                                                                                  

   

where the lateral profile of the  guided mode is given by    f  ( x , y)  and 

the propagation constant by β =   2 π n eff   / λ .  The second term of the 

curl operation  x   f (x , y) x  = ( ∂  f  / ∂ z ) y  − ( ∂  f  / ∂ y ) z    does 

not lead to wave propagation  and does not affect measurements in a 

plane  perpendicular to the  z - coordinate. The second term will 

therefore be set aside in the remainder of this analytic derivation. 
Relating  Αp  to  a moving source of photons would suggest a 

relative distance   ζ  = z −  z o  with  z o being the temporal location of 

the photons and the localization given by a  Dirac delta function                 

δ ( z− z o ) , resulting in this differential equation after substituting   

(24) and (25) into (23) multiplied by the propagation phase                             

exp i (β z ) of the annihilation operator : 

 
𝜕

𝜕 𝑧
𝐴𝑝  +  𝜎𝐴𝑝  =  𝛾 𝛿( 𝑧 − 𝑧𝑜)                                             (26)                                                                  

where    σ =  b ω / s +  i  β = (  ω / c ) ( 1 + i n eff ) ,  and    γ  = − i q / s  

= i 0.5 (n  ℏ / ε ) 1/2 .  Setting   A p ( z ) = g ( z )   e – σ z   and                                     

 inserting into the differential equation (26) leads to:  ∫ d g  =                      

= γ  ∫  e  σ z   δ ( z −  z o  ) d z   . With   g  =  γ  e σ  z o ,  and for reasons 

of physical symmetry, the longitudinal  distribution of
  the magnitude                                                                

of the vector potential associated with photons of a wavefront is 

found to be: 

A p ( z )  = γ  e – σ  | z  −  z o |                                                                             (27)    

                                              

The vector potential’s decay constant is inversely proportional 

to the wavelength λ  through   Re σ  = 2 π / λ . Thus, the local optical 

field includes contributions from photons in the vicinity of  z o  , as 

illustrated in Fig. 2. The longitudinal optical field profile g f  of 

one photon of wavelength λ , crossing point zo ,  is obtained from 

(27) to be:
 

 

g f  ( z = c t ) =  exp (– 2 π | z − zo
 
| / λ )                                         (28) 

 

which has the form of a Wigner spectral component S (ω, t), 

that is, a time-varying spectral component [21] – as opposed to 

a time-constant amplitude and phase of a Fourier spectrum – 

crossing a surface perpendicular to the wavevector of 

propagation. The exponential decay of the spatio-temporal profile is 

identical to that obtained by Fourier transforming a fully populated 

transmission line of an interference filter [10]. 

 

 

                                                                                 

 

        Fig. 2 Partially overlapping photon   

                  fields. 
 

 

The coupling coefficient of (20e) will be modified below so 

as to take into account the longitudinal profile of the optical 

field given in (28) – which is, in fact, its intrinsic physical 

coherence length – for the operation, as a beam splitter, by an 

optical fiber directional coupler.  

IV. THE BEAM SPLITTERS AND INTERFERENCE FILTERS 

The quantum regime of photonic interference would involve 

only one photon per radiation mode [3]. Yet, as pointed out in 

the Introduction, one single photon propagating by itself, in a 

dielectric medium, will not follow a straight line inside a 

dielectric medium because of the quantum Rayleigh 

spontaneous emission [5-7]. Only a group of monochromatic 

photons propagating together can maintain a straight line of 

propagation as a photon absorbed by an electric dipole will be 

immediately recaptured through stimulated emission by the 

other photons in the group.  

The appearance of temporarily discrete groups of photons in 

the process of parametric down-conversion is due to the 

unavoidable amplification of spontaneously emitted photons, 

particularly so, in the phase-matching direction. Such optical 

signals are best described by means of the mixed time-

frequency (or Wigner-type) spectrum [21], with the frequency 

amplitude itself being a function of time, i. e. ,  S (ω , t ) 

specifying, in other words, a time-varying number of 

monochromatic photons being carried simultaneously by a 

photonic wavefront. 

The analytic elements derived in the previous Sections will 

be applied hereafter. These elements are: the wavefunction of 

(5) of the dynamic and coherent number states which deliver 

the correct expectation values for the number of photons carried 
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by a photonic wavefront and its associated complex amplitude 

in (13). Equally, the optical field profile of a group of photons 

is shown in (27) to be independent of the type of source that 

emitted them, cf. [13]  

Given a photonic optical field, the Fresnel coefficients of 

reflection and transmission can be interpreted as probability 

amplitudes for the respective effects at a dielectric boundary 

[5]. At least three types of beam splitters can be identified: the 

glass plate of Fig. 3, the cubic prism of Fig 4, and the optical 

waveguide directional coupler composed of optical fibers [1-2]. 

Their operations involve the quantum Rayleigh spontaneous 

and stimulated emissions.    

A.  The Glass Plate Beam Splitters and the HOM dip 

For a plate beam splitter sketched in Fig. 3, the primary 

reflected and transmitted optical fields will lead to the 

transformation: 

 â†
 c   =  − r 01  â†

 a   +  t 01  t 10  â†
 b                                     (29a) 

â†
 d   =  t 01  t 10   â†

 a   +  t 01 r 10 t 10   â†
 b                             (29b) 

 

where the subscripts of the reflection r and transmission 

coefficients t indicate the boundary interface, with the first 

subscript corresponding to the incoming direction of the 

photons.  

To illustrate an application of this approach, two groups of 

photons generated as the signal (s) and idler (i) waves in a 

parametric down-conversion of a cw optical pump are 

impinging, from opposite sides, on a glass plate operating as an 

optical beam splitter which is placed in the xy plane. With the 

upper boundary used as the synchronization place for the two 

groups, i.e. τ = 0, the output field operators are:                                     

𝑎̂𝑐 = − 𝑟𝑠 𝑎̂𝑠  +  𝑡𝑖  𝑎̂𝑖  and,  𝑎̂𝑑 =  𝑡𝑠
 𝑎̂𝑠  + 𝑟𝑖  𝑎̂𝑖 , with reflection 

(r) and transmission (t) coefficients identified by the type of 

photons. The relative phases of these photonic wave fronts are:   

 

         a                                 c                                                                   

          n o                                                             

          n 1                   n 1 > n 0             

    n o  

    b                      d 

Fig. 3.  A typical glass plate beam splitter. 

Photons arrive simultaneously at the upper 

dielectric boundary.    
 

θ s r   (τ )  = −ω τ + φ s (t) −π                                        (30a) 
θ i t   (τ )  =    φ  i (t) + γ                                                          (30b) 
θ s t  (τ )  =    φ  s (t)  + γ                                                      (30c) 
θ i r  (τ )  =   ω τ  + φ  i ( t)  + 2γ                                         (30d) 
  

where the random phases of the spontaneously emitted photons 

are denoted by φ  (t) and γ is the phase added during one transit 

propagation between the boundaries of the BS and a (−π) phase 

shift is due to the upwards reflection. Moving the BS in the z-

direction will bring about a time delay ±τ between the two 

wavefronts reaching the same photodetector. The number of 

photons N j (t) detected by photodetector j =1; 2 is evaluated 

from the interference pattern of the instantaneously measured 

flux of photons presented above in (22):  

 

N j ( t )  =  K [  Ns j ( t ) + Ni j  ( t )    +  

 
       + 2 [Ns j  (t) Nij (t)] 1/2  cos [(θ (t ) s j − θ ( t ) i j )]        (31) 

 

where the phases are given by (30a-d), e. g., θ (t) s1  = θ s r   (τ )  

and   θ ( t ) i 1 = θ i t   (t , τ ).   The correlation function  

  

C12 (τ ) = 〈 N 1 ( t )  N 2 ( t +  τ ) 〉                                         (32) 
 

of coincidence counting of photons for the transient 

interference patterns of the two separate photodetector 

intensities, over the coincidence time interval T (a few ns) is 

derived to be: 

 
 C12 (τ ) = No1 No 2 [ 1 +  σ 1  σ 2  Γ1 Γ2  cos  Θ ]                  (33 ) 

 

where σ j  = 2 ( N j s N j i ) 1/2 / (N j s + N j i ) for photodetector             

j = 1 or 2,  and the overlap integral   

Γj (τ ) = 0    g f (t) g f  ( t + τ j )  d t  / 0    g f  
2 (t)  dt  

is normalized. With the phase difference Θ for the intensity 

correlation given by  

 

Θ = [θ  s r  − θ i t ] − θ s t  − θ i r ] =  (ω i  −ω s) τ − π       () 

 

there are two statistical possibilities for the random phases φ s 
and φ i of the spontaneously emitted photons. These two 

random phases can interchange values without affecting the 

result, and the cosine term  0.5 cos Θ should be counted twice 

when calculating, “classically”, the correlation function C12 (τ).  

From (34), Θ = −π for τ = 0, and with equal numbers of 

photons in the interfering waves, so that, σ 1  = σ 2  = 1,  we find 

from (33) a vanishing correlation C12 (0) = 0 , which 

corresponds to the Hong–Ou–Mandel dip [22-23].  

Therefore, there is no need for entangled photons to explain 

the coincidence counting of photons by two separate 

photodetectors. The only requirement is that the two groups of 

photons are split between the two detectors and are 

synchronized at a chosen interface. 

Other combinations of the relative phases Θ are possible by 

setting up a Mach-Zehnder interferometer configuration with 

two identical 50:50 beam splitters,  placing  one  at the input 

and the other at the output of the interferometer [24]. Basically, 

there are four waves or groups of photons reaching each of the 

two photodetectors. We will denote them as s1 for the 

unmodulated signal wave and s2 for the modulated signal wave, 

and as i1 for the unmodulated idler wave and i2 for the 

modulated idler wave.  

Next we choose, for degenerate frequencies of the signal and 

idler waves, the interference term cos (−ω τ + φ  s1 −  φ  s2 ) 

from one of the detectors and the cos (−ω τ + φ  i1 −  φ i 2 ) term 

from the other, and recall that the parametric phase-pulling 

effect [18] leads to  φ  s +  φ  i =  φ p + π / 2 ,  for any initial 
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phases of weak waves, with the coherent phase of the pump 

photons given by φ p.  All this leads to the average value of the 

fourth-order numerical interference:  

〈cos (−ω τ + φ s1 −φ s2)  cos (−ω τ + φ  i1 −φ i 2 ) 〉  =                           

                        = cos (−2 ω τ )                                     (35) 
which oscillates with the pump frequency [24]. Similar 

expectation values may be derived for any combination of any 

two interference patterns, one from each photodetector, e.g. 

[24-26]. It is noteworthy that the phases of the spontaneously 

emitted photons do not appear in the conventional quantum 

descriptions of two-photon beats, e.g. [22-26].   

B.  The Cubic Prism Beam Splitter  

For a cubic beam splitter made up of two butting prisms of 

different refractive indexes as sketched in Fig. 4, the field 

transformation becomes: 

â†
 c   =  − t 01 r 12 t 10  â†

 a   +  t 01 t 12 t 10   â†
 b            (36a) 

 

â†
 d   =    t 01 t 12 t 20  â†

 a   +  t 02  r 21 t 20  â†
 b             (36b) 

 

The subscript 0 indicates free space, and subscripts 1 and 2 

refer to the refractive index of each of the two prisms. 

In the case of the cubic prism BS, any two external surfaces 

can form a resonant cavity through reflection or transmission at 

the diagonal interface. The output states will be affected by 

photons temporarily trapped inside the BS, leading to the 

possibility of additional quantum states, as well as quantum 

Rayleigh coupling of photons – see (20) .   
 

                                               c                                                                                                                                                                            

                      n o       

          a                n 1                       d                                                                     

                                            n 2                            

                                          n o            

                    b       

Fig.  4. A typical cubic prism beam splitter.  Photons 

arrive simultaneously at the diagonal boundary 

interface. n 2 >  n 1 > n 0   

C. The Fiber-optic Beam Splitter 

The longitudinal optical field profile of a group of 

monochromatic photons was derived in (28) and has the form 

of a Wigner spectral component S (ω, t ), that is, a time-varying 

spectral component [21] – as opposed to a time-constant 

amplitude and phase of a Fourier spectrum – crossing a surface 

perpendicular to the wavevector of propagation. 

For the optical directional coupler, the evolution of the 

photons is governed by Eqs. (20) with the possibility of one 

waveguide capturing most of the photons resulting in an 

asymmetric output. The coupling coefficient κ will have to take 

into consideration the temporarily discrete nature of the groups 

of photons by including the longitudinal field profile g f  (z) next 

to the transverse spatial field f, that is: 

 

𝜅 =
𝑘0

2 𝑛
 Γ12 (𝑧𝑜) ∬ 𝑑𝑥 𝑑𝑦 𝜒(1) 𝑓1  𝑓2 𝒆𝟏 ∙  𝒆𝟐 

                                                                                       (37) 

          Γ12 (z o)  =  ∫ dz  g f  (z – z o 1)  g f  (z – z o 2) 

 

This spatio-temporal overlap is characteristic of the quantum 

regime of discrete groups of photons. The phase-dependent 

coupling of photons of (20) is critical in the operation of the 

optical fiber beam splitters by creating, with the adjustable 

phase difference, an asymmetric output [25-26]. 

Future integration of photonic components will replace the 

optical fiber splitter with integrated waveguides.  

  

D.  The Interference Filter 

Experimental configurations for two-photon quantum beats, 

e.g. [22-26], employ interference filters in order to control the 

coherence length of the photon.  

The extent of the correlation fringes is determined by the 

coherence length of the photons, which can be shaped by an 

interference filter, apparently operating on the output spectral 

distribution  Φ (ω 1 , ω 2)  of the ensemble of photons generated 

by an active source over a long time, such as the spontaneous 

parametric down-conversion mechanism [23].  

However, from a physical perspective, a Fourier transform –  

or a superposition of spectral components – necessitates the 

simultaneous presence of the entire range of spectral 

components. But this is not the case when only one photon, at 

any given time, crosses an interference filter. A single 

monochromatic photon propagating through a Fabry-Perot type  

filter, or a  Bragg refractive index grating in a fiber, will be 

delayed randomly by repeated internal reflections and will 

acquire an integer multiple of a bias phase or time-delay. The 

higher the internal reflectivity of the cavity, the longer some 

photons may bounce back and forth inside the cavity resulting 

in a “longer photon” output, which is interpreted as a longer 

coherence length. Such optical signals are best described by 

means of the mixed time-frequency (or Wigner-type) spectrum, 

e.g. [21] with the frequency amplitude itself being a function of 

time S (ω, t) specifying, in other words, a time-varying number 

of monochromatic photons being carried by varying photonic 

wavefronts. The time-stretching of the photonic group will be 

equivalent to pulse expansion for a narrower Fourier spectrum.  

Thus, a group of photons entering, simultaneously, a resonant 

cavity of an interference filter, will exit at different times as the 

higher the internal reflectivity, the longer the time that some 

photons will bounce back and forth inside the cavity. This 

process will cause the initially bunched photons to spread out 

in time and give rise to a longer coherence length for photon 

coincidence counting as in [27]. The wavefunction describing 

this output would take the form: 

 

∣ Φout ( r , t  ) 〉 = Σ m  c n ( r , t)   f n ( r )  δ ( t   − t m )  | Ψn (ω ) 〉 
                                                                                                       (38) 

where the times t m  specify the existence of a group of n photons 

at location r . The pure state of a photonic wavefront is 
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monochromatic and time-dependent –see (5) above, whereas 

the overall mixed state of the ensemble is multi-chromatic and 

time-independent (e.g. the bi-photon wavefunction).  

The temporal profile of the optical field carried by a photon 

or any instantaneous photonic wavefront should be determined 

from a pure quantum state wavefunction because it should be 

unaffected by the spectral distribution of an ensemble of 

measurements. However, for interference to take place, at least 

two coefficients c n have to be non-zero. 

 

V. PHYSICAL ASPECTS OF DYNAMIC NUMBER STATES  

The possibility of measuring expectation values in the context 

of the  dynamic and coherent states of (5)  raises the question of 

the  Heisenberg uncertainty principle [15] which has to do with 

the joint statistical distribution of the measured values of two 

variables corresponding to repeated measurements of 

identically prepared systems [9-10], and applies to the 

simultaneous measurements of two dynamic variables whose 

quantum operators do not commute in a given set of state wave 

functions, the variables being incompatible observables [15].  

The principle of uncertainty does not preclude the existence 

of well-defined numerical values for either variable [15]. 

Limited information about one variable is associated with a 

variance in the measured values, with more information being 

available about the other variable. Measurements yield 

precise instantaneous values – within the constraints of the 

equipment – by collapsing the system’s wave function into a 

specific value [15]. A quantum "spread" implies that 

measurements on identically prepared systems do not return 

identical results because of system-related fluctuations such as 

spontaneous emission, time-varying losses, temperature 

variations, etc. 

One should not confuse prediction with measurements. It is 

the measured values that come into play when plotting the joint 

distribution of two observable, physical variables. A 

measurement of only one variable will still have its own 

variance of values but it is not subject to the Heisenberg 

uncertainty principle, because the physical system is not 

disturbed by the measurement of another variable. One can 

easily measure a well-defined eigenvalue of an operator [15] at 

a given time.  
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