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The Quantum Regime Operation of Beam
Splitters and Interference Filters

Andre Vatarescu

Abstract— The quantum Rayleigh spontaneous emission
replaces entangled photons with independent ones in
homogeneous dielectric media where single photons cannot
propagate in a straight line. Single and independent groups of
photons, described by the original bare states of Jaynes-
Cummings model, deliver the correct expectation values for the
number of photons carried by a photonic wavefront, its complex
optical field, and phase quadratures. The intrinsic longitudinal
field profile associated with a photonic wavefront is derived for
any instantaneous number of photons. These photonic properties
enable a step-by-step analysis of various beam splitters and
interferometric filters. As a result, generalized expressions are
derived for the correlation functions characterizing counting of
coincident numbers of photons for fourth-order interference,
whether classical or quantum optical, without entangled photons.

Index Terms— Quantum Rayleigh emissions, photonic beam
splitters and filters, photon coincidence counting, HOM dip with
no entangled photons.

. INTRODUCTION

ECENT developments in the integration of photonic devices

for quantum information processing [1-2] are

characterized by their capability to generate two-photon
destructive interference  for  temporally  overlapping
indistinguishable photons, which is commonly known as the
Hong-Ou-Mandel dip [3]. The reduction in the counting rate of
coincident detection of photons at two spatially separated
photodetectors is explained by opposite sign amplitudes for the
probabilities of detecting each photon pair after having been
reflected or transmitted by a beam splitter. Yet, with only one
pair of photons present in the experimental setup, at any given
time, the two types of detection cannot take place
simultaneously.

In a 1999 review paper [3], Mandel wrote: “...about the
quantum state of a system: in an experiment the state reflects
not what is actually known about the system, but rather what is
knowable, in principle, with the help of auxiliary measurements
that do not disturb the original experiment. By focusing on what
is knowable in principle, and treating what is known as largely
irrelevant, one completely avoids the anthropomorphism and
any reference to consciousness that some physicists have tried
to inject into quantum mechanics.“ [1, p. S279]. But on the next
page of [3, Sect. VI] the following statement appears: “Let us
consider the quantum state | ¥ ) of the photon pair emerging
from the beam splitter (BS). With two photons impinging on
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the BS from opposite sides there are really only three
possibilities for the light leaving BS: (a) one photon emerges
from each of the outputs 1 and 2; (b) two photons emerge from
output 1 and none emerges from output 2; (c) two photons
emerge from output 2 and none emerges from output 1. The
quantum state of the beam-splitter output is actually a linear
superposition of all three possibilities in the form |¥) = (R > -
ITI2)11)211)2+V2i((RTP[12)110)2 +10)112).]
where R and T are the complex beam-splitter reflectivity and
transmissivity.” But, the possibility of other physical processes
is ignored.

The assumptions made in relation to an optical beam splitter
— operating in the quantum regime — would have the total
number of photons entering the beam splitter input ports equal
the number of photons emerging from the two output ports,
leading to a unitary transformation for the input-output relation
[4] of the field operators and a + n/2 phase difference between
the coefficients R and T.

However, in line with the concept of knowable elements of
the experimental configuration suggested by Mandel [3], the
quantum Rayleigh conversion of photons [5-7] may give rise to
additional output states: [0)1 0) 2, 11}110) 2, and [0 )111)»
as photons are absorbed and spontaneously re-emitted,
randomly, and, most likely, not in the direction of interest [5-
7]. The Hamiltonian of interaction between the electric dipoles
and the optical field is [5]:

A=x(d"-a+ d-ah 1)

where d is the electric dipole operator raising the atomic
electron from one level to the next, and & is the photon
annihilation operator, with @ its conjugate operator, the photon
creation operator. The optically linear susceptibility ¥ is
included in the spatial coupling coefficient .

The absorption of one photon through quantum Rayleigh
conversion leads to the disappearance of an entangled state, that
is: @ (10)110)2 + 11)111)2) =10)111)2 whichis
a product state. A similar annihilation occurs for the second
photon. Alternatively, the dipole-field interaction of absorption
projects the state onto the zero-photon state: 1( 0| @, [1)111) 2
= | 1) 2, resulting in one single photon surviving as soon as
the entangled pair was created in a parametric spontaneously
down-converted emission in an optically nonlinear crystal.
Additionally, unless two state functions or relevant operators
overlap in the space-time of their configuration, i. e. f(r, t) #
Oand f,(r,t)#0, their product will be zero [5].
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In a nonlinear crystal pumped, e.g., with a continuous wave
(cw) and for frequency down-converted photons of ® s + @ i =
wp , the gain providing medium generating the spontaneous
emission, will also amplify the initially single photons,
particularly so in the direction of wavevector matching
conditions. As a result, the commonly assumed one single
photon output does not, in reality, physically happen. At least
several photons will be associated with each individual and
discrete electronic “click”.

Based on the analysis of [5], with the Fresnel formulas for
the optical reflection and transmission coefficients
corresponding to probability amplitudes of the two events, the
photonic conservation would apply only to one interface
between two dielectric media. As additional internal reflections
inside the glass plate of a beam splitter would take place, the
assumption of photon number conservation is questionable.
Furthermore, because of the quantum Rayleigh conversion or
coupling of photons occurring inside a dielectric medium [8],
one single photon can only be re-emitted spontaneously in a
random direction, preventing a straight line propagation. Only
a group of photons propagating together can maintain their
direction of propagation and characteristics through stimulated
emission induced by the other photons which are not
temporarily absorbed and re-emitted.

We can apply the Fresnel formulas if a pure state vector, or
wavefunction, can be identified for the optical field — measured
instantaneously [9-10] - of the time-varying photonic
wavefront, i.e., its amplitude in terms of the flux of photons and
its phase. Such a function is developed in Section Il below,
taking the form of | ¥, )= (|n) +|n—1))/V 2 and delivering,
classically compatible, ¢ - number values for observable
expectation values [11].

A pure state delivers one single measurement [9], [12]
whereas a mixed state describes the statistical distribution of an
ensemble of measurements [12]. A photonic wavefront carries
a number of photons across a plane hosting dipoles and its
duration will be determined by the response time of the photon-
dipole interaction [9].

The physical process of quantum Rayleigh conversion of
photons (QRCP) is associated with the real part of the first-
order optical susceptibility and involves a group of electric
dipoles interacting simultaneously with two photonic
wavefronts carrying an arbitrary number of photons across a
plane over a short time A t — 0. The excited dipoles will emit
either spontaneously or stimulatedly, depending on the
circumstances. The spontaneous emission will affect the
operation of dielectric interface-based beam splitters, while the
stimulated emission will be active in a fiber-optic beam splitter
configured as an optical directional coupler.

A mixed state of one-photon excitation as presented in [13,
p. 8] is impractical for the description of the QRCP because the
photon wave packet |1) j , describes an output-measured spatial-
and temporal-localized packet. “An example 1is the
deterministic generation of a single photon from an atom in a
cavity-QED system. If the packet is dispersed spectrally by a
prism and detected by an array of photon counters, only one
counter will click, although which one clicks will be random.

Such a state is expressed as |1); ,=/ d3k Uj(”)(k)|1)k,,, 12m)™3
where |1) ;. isa state with a single excitation having particular

monochromatic wave vector-polarization state labeled by the
pair (k, ). We see that the function Uj(”)(k) fully specifies the

state.” [13, p. 8] This state is of no utility for evaluating the
optical field involved in a dipole-photon interaction as the
expectation values vanish, i.e., j,(1]&|1)j, =0. Forthe
single-photon wave packet, only one radiation mode is taking
part in the detection or photon coupling processes. Yet, an
intrinsic photonic field distribution is carried by each
interacting photon without any dependence on the measured
statistical distribution of the ensemble of the mixed state.

The interactions associated with quantum Rayleigh
conversions of photons require a wavefunction capable of
delivering transient or instantaneous expectation values for a
pure state. This is presented in Section Il, and followed by the
description of the intrinsic photonic field profile in Section I1I.
These elements will underpin the analysis of various types of
beam splitters, and interference filters in Section 1V. Physical
aspects of the dynamic and coherent number states are
discussed in Section V along with the irrelevance of photonic
entanglement to explain previously published experimental
results.

Il.  PHOTONIC WAVEFRONT EXPECTATION VALUES AND
DYNAMIC MOTION

As the number of photons and related field amplitude and
phase carried by a photonic wavefront may change as a result
of the QRCP, the equations of motions for the corresponding
expectation values will be evaluated with the Ehrenfest’s
theorem [14-15]. To this end, a pure quantum state is needed,
capable of delivering correct values for the instantaneous
number of photons, the optical field amplitude and its
longitudinal profile and the phase quadratures.

Photons and their instantaneous properties are detected and
measured as a sequence of wavefront number states | n ) [9]
which make up a pure quantum state vector | ¥ (r, t) ) =
Ynca(r, t) | n) regardless of the overall distribution to
which the photons belong [9-10]. The quantum probability of
occupation of an eigenstate is given by the normalized
distribution of photons — crossing a surface at location r —with
the time-varying coefficients | ¢, | 2 satisfying the condition
Yn|ca|? =1, and orthogonality (n|m)= §,m. The detection
of photons occurs as a result of their optical field exchanging
energy with electrons of the atomic structure of the detector,
similarly to the Jaynes - Cummings model [4], [14] for the
quantized dipole-photon exchange of energy. The detection, or
any other interaction process, collapses the photonic quantum
state into an instantaneous eigenvalue of a number operator [15]
regardless of the ensemble distribution to which it belongs, e.g.,
a coherent state or an arbitrary distribution.

A. Optical fields of dynamic and coherent number states

Based on the formalism presented in [5], [16], the magnitude of the
Poynting vector, i.e. the flux of energy  ( or number of photons /s)
carried by an optical wavefront of frequency « and crossing a plane
surface at position z is given in terms of the electromagnetic field
magnitudes E and B , or corresponding operators, by the equalities:

F=wc¢E?+c?wB?2=057%-w(@a* + a*a) @)
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with a = (e/h)l/2 ( E+icB)and its complex conjugate a* .
From this relation one defines the annihilation and creation
operators as:

a =(e/n)” (E + icB)
at =(e/h)” (E—icB)

(32)
(3b)

with ¢ and A indicating the permittivity of the medium and the
reduced Planck constant, respectively. The free-space Hamiltonian

H . isexplicitly written as [5]:

ﬁf: h-w ﬁc (4a.)

N.=05(a"a+4aah) (4b)

where N, is a complete number operator and its eigenstates are
the number states | n ). The field operators & and its adjoint 4" connect

(nl — In)
G Gt Gt 6
(n-1] Y- |n-1)

Fig. 1. An illustration of the dynamic and
coherent two-component number states.
We note that: (n | dt =V n(n-1|, and
(n-1]d =Vn(n| .

two consecutive number states, and consequently, a superposition of
|n—1) and | n ) should give rise to a non-zero optical field for the
following state vector:

[¥n(®) =ca(®) In) +c2() n—1) (52)

[¥n) =27Y2(In) +|n-1)) (5b)

with the normalization of |c 1|2 +|c2|2=1.

Analogously to the derivation [4] of coherent states of light | o ), the
non-Hermiticity of the photon annihilation and creation operators
allows for complex classical numbers ( ¢ —numbers) to be delivered
when these operators act on number states. Applying dand " to |n )
returns a complex ¢ — number

Sn=|sn|exp(—igpn) O]

which will become the complex amplitude of the state, so that:
ajn) = sp|n-1) (7a)

afn—1) = s*n) (7b)

Recalling that aand &' are adjoint operators of each other, they
interchange roles when acting on the Hermitian conjugate ( or bra)
wave functions:

—
=
<
Q:

I

Sp (n| (8a)

—~
>
2

1

S* (n—1| (8b)
The condition of the number states being eigenstates of the number
operator N = &' & requiresthat|s,|%=n.
This symmetric Hamiltonian of (4) suggests the two-component
state vector of (5) as depicted in Fig. 1, and it carries out two
simultaneous operations, one as a two-step number operator

(nj @ afn)y=(nfan-1)sy=(n|n)sns* ©)

and the second operation — illustrated in Fig. 1 — as a one-step
transition operator between two consecutive number states, each
operator acting on the state vector next to it (or the left-hand operators
acting on the Hermitian conjugate wave functions { n |, the result
being:

(n|af-ajn) =s* (n—-1|n—1) sy =|sa|?=n (10a)
(n—1|a-af|n-1) =s* (n|n) snp=|sa|?=n (10h)

We pointoutthatfor | W) from (5b) one obtains
(¥Yn]afa | ¥n)= 05(n+n-1)=n-% and
(¥Yn]adaf|¥n) =05(n+n+1)=n+%,leading to
(¥n| N.|¥n) = 05x2n =n (11)

which is the number of photon carried by the wavefront flux.
In the Heisenberg picture, the propagating photon field
operators take the form [5]:

a(w,t,2)=a() f(x,y,2) e—-i(wt—ﬂz)
(o, t,7) =4 (o) f(x,y,z) € (@t-F2)

(12a)
(12b)

where the spatial distribution is a solution of the Helmholtz wave
equation [5] . The observable quantity of the expectation value of
the quadrature field operator Q = & + &' is found by combining
(5b) ,(6), (7), (8) and (12) to yield:

(Po(t)|a|¥a(t))=05€" i(ot+o©)1/2g ~i¢n
(13a)

(Yo |(a+a")| ¥a)=n"cos(wt—Bz—pa) (13b)
reproducing the ¢ - number ( Q ) corresponding to the
“classical” optical field with a time-varying number of
photons n (t) and related phase ¢ (1) .

The correct expectation values can also be found for the
quadrature operators [17],i.e., C = @aN~Y/2 + N~1/2 gt
andS=i(@N? — N~Y2ga%):

(Po |G| Pa) =cos(ot +9;j) (14a)
(Po |S; |¥n) = sin(wt +9;) (14b)

B. The equations of motion of the optically linear parametric
interactions.

As an optical beam propagates through a dielectric medium, the
magnitude and phase of the expectation value s, may be modified by
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the simultaneous presence of another beam of photons of the same
frequency. This effect is described by the Ehrenfest theorem [15]:

(ha (%, 121, (0) =

= (Yo OI[ @, Hine ] 1 ¥, (0) (15)
indicating that the expectation value of the optical field is
modified by its commutator with the Hamiltonian of
interaction Hy,, .

Having identified a quantum wave function capable of
delivering the instantaneous magnitude and phase of an optical
field, we can now apply the formalism of [18-19] to the
propagation along an optical waveguide directional coupler by
employing the following composite photonic quantum state
function |®) for two optical waves identified by their
waveguide, their Hamiltonian of interaction and the equation of
motion derived from (15):

|®) =[¥n1) [¥n2) (16)
Ape =howx® (@l a + a,al) (17)
a A . A

S ®lan @) = —iox® (D] & | D) (18)

where ¥ is the real part of the first-order susceptibility of the
dielectric medium. This interaction will modify the complex
field amplitude s, ; (j=1,2) oftwo co-propagating and
overlapping optical beams of the same frequency, identifiable
by their respective optical waveguides (j=1,2) . From. (13)
we have for the expectation values of the optical fields
(®]aj|d)=05e '(?tro,0) 5 | (19)

After converting to number of photons, i.e., [ sn j| 2 = N;j

and corresponding phases ¢ j, the equation of motion (18)
provides the rates of change of N; and ¢; as follows

[18-19]:
B
N2
g1=—K (N—i) sinf,, (20b)

% 21 = (B2 —P1) + K [( x—;)l/z - (%)1/2] cos 651

1

(20c)
8 NA1/2
S P1= K (N—i) cos 0y, (20d)
k
K= ﬁffdxdy)(mfl f2e1" e (20e)

where the gain coefficient g includes an overall coupling
coefficient « defined in [8] which depends on the polarization
states e; and e, of the photons. The phase difference between
the two waves is 021 =(f2— f1)2+¢p2— @1, pheing
the propagation constantand z/t= v isthe phase velocity. In (20e)

k o and n specify the free-space wavevector and the effective refractive
index, respectively. It should be noted that equations (20) describe the
physically meaningful process of quantum Rayleigh conversion of
photons [8]. The coupling coefficient of Eq. (20e) indicates that the
entire local value of the optically linear susceptibility y @ is involved
in the coupling process in the dielectric medium at any point where the
two spatial distributions f; and f, overlap, each having units of m 2,
and the squares f 2 are normalized to a dimensionless unit over the
cross-section area. This is in contrast to the physically impossible
coupling between two optical waveguides apparently induced by a
perturbation of the dielectric constant in the cladding — see reference
[8] for details.

Two dynamic number states of (16) co-propagating through
a dielectric medium will couple photons from one state to the
other depending on the relative phase between the two waves.
This process, repeatedly, will eliminate optical waves whose
phases diverge substantially from the phase of the surviving
wave which will dominate the output of a lasing cavity.

Two groups of photons propagating simultaneously across
the same dielectric medium would exchange photons,
parametrically, with each other through the real part of the
susceptibility — see (20) above — which is indicative of a beam
splitter composed of a fiber-optic directional coupler [1-2].

C. Interference patterns between the fields of dynamic and
coherent number states

Another useful effect is the interference between two waves reaching
a photodetector. In the context of this analysis, one obtains that, in so
far as localized detection of photons of two dynamic and coherent
number states is concerned, the photocurrent |, generated by the
interference output of a balanced homodyne detector is calculated by
combining the expectation values of the quadrature field operators
given in (13) to obtain:

(1o (t) )=K ((Q1)+(Q2))2=
=K [N1cos?(£1)+ N2 cos?(&2) +

+ 2(N1 N2 ) Y% cos (¢1) cos (£2)] (1)
with the constant of proportionality K corresponding to the quantum
efficiency of photon—to —electron conversion. The phases are defined
by&j=wj t — Bjz— ¢;. This approach of making use of initially
evaluated expectation values links the quantum regime to the classical
one [20]. After time-averaging over a large number of optical
frequency periods, namely, with the averaging time interval T
satisfying 27/ wj <<T<<2n/|w1 - w2)|we find that {cos ? (¢) )
=1/2and(cos(¢1+¢&2)) =0,aswell as (sin & ) =0, to retrieve the
conventional interference pattern:

( Ton(t) }=(K/2) [ N1 + N2+
+2(N1 N2 )Y2 cos (£1 —¢&2)] (22)
which will be applied to two-detector correlations in the following

Section IV. Thus, the wavefunction of (5) enables a smooth transition
between the quantum and classical regimes for any level of optical
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power and any related phase. The question of measured variances
induced by system fluctuations will be addressed in Section V below.

I1l. INTRINSIC FIELD PROFILE OF A PHOTONIC WAVEFRONT

We can calculate the intrinsic longitudinal field profile of a group of
photons, or its coherence length, by using the wave function |¥n)
from (5b). Two equations can be identified for the expectation values
of 4, or the corresponding ¢ - numbers, by combining (3) and (13a),
leading to:

(¥nl @ |¥n)=Db(E) +is(B) (232)

(Po|a|Pa)y=qe ' (23h)

whereq =05Vn ,b= (/)2 and,s= (¢ c/h )2 . We point
out that both quadratures of the field are represented in the phasor
notation of (23). Eq. (23a) is obtained from (3) and can be expressed
in terms of the c —numbersE = ( £ ) and B = ( B ). Recalling the
relations [16] between the vector potential A (z,t) and the fields as:
E=—0A/0t and B= vx A (24)
inthe Cartesian frame of coordinates (x, Y, z), the vectors have the
notation, in the plane wave approximation: A =(A,0,0);
E=(E,0,0); B=(0,B,0) and the wave vector is

k =(ikx,iky,f) forabeam propagating in the z—direction inan
optical waveguide. The complex amplitude of the vector potential is
represented by

A(zt)=Ap(z)f(x,y) e '(@t-£2) (25)

where the lateral profile of the guided modeisgivenby f (x,y) and
the propagation constantby f= 2 znes /4. The second term of the
curl operation v x f(x,y)x =(0f/0z)y —(0f/0y)z does
not lead to wave propagation and does not affect measurements in a
plane perpendicular to the z - coordinate. The second term will
therefore be set aside in the remainder of this analytic derivation.

Relating Ap to a moving source of photons would suggest a
relative distance ¢ =z — z, with z, being the temporal location of
the photons and the localization given by a Dirac delta function
d(z-2,), resulting in this differential equation after substituting
(24) and (25) into (23) multiplied by the propagation phase
exp i (8 z) of the annihilation operator :

0
ZAP + 04, = yé(z—-2z,) (26)

where o= bw/s+if=(wl/c)(l+inef), and y =—iq/s
=i05(n hl/e)Y?. Setting Ap(z)=g(z) e 7% and

inserting into the differential equation (26) leads to: f dg =

=y [ e925(z-12,)dz .With g = y €72°, and for reasons
of physical symmetry, the longitudinal distribution of the magnitude
of the vector potential associated with photons of a wavefront is
found to be:

Ap(z) =ye 7122l 27)

The vector potential’s decay constant is inversely proportional
to the wavelength 4 through Re ¢ =2=/A. Thus, the local optical
field includes contributions from photons in the vicinity of z, , as
illustrated in Fig. 2. The longitudinal optical field profile g+ of
one photon of wavelength 4, crossing point z,, is obtained from
(27) to be:
gr(z=ct)=exp(-2mn|z-2|/2) (28)
which has the form of a Wigner spectral component S (w, t),
that is, a time-varying spectral component [21] — as opposed to
a time-constant amplitude and phase of a Fourier spectrum —
crossing a surface perpendicular to the wavevector of
propagation. The exponential decay of the spatio-temporal profile is
identical to that obtained by Fourier transforming a fully populated
transmission line of an interference filter [10].

NAL

Fig. 2 Partially overlapping photon
fields.

>
»

The coupling coefficient of (20e) will be modified below so
as to take into account the longitudinal profile of the optical
field given in (28) — which is, in fact, its intrinsic physical
coherence length — for the operation, as a beam splitter, by an
optical fiber directional coupler.

IV. THE BEAM SPLITTERS AND INTERFERENCE FILTERS

The quantum regime of photonic interference would involve
only one photon per radiation mode [3]. Yet, as pointed out in
the Introduction, one single photon propagating by itself, in a
dielectric medium, will not follow a straight line inside a
dielectric medium because of the quantum Rayleigh
spontaneous emission [5-7]. Only a group of monochromatic
photons propagating together can maintain a straight line of
propagation as a photon absorbed by an electric dipole will be
immediately recaptured through stimulated emission by the
other photons in the group.

The appearance of temporarily discrete groups of photons in
the process of parametric down-conversion is due to the
unavoidable amplification of spontaneously emitted photons,
particularly so, in the phase-matching direction. Such optical
signals are best described by means of the mixed time-
frequency (or Wigner-type) spectrum [21], with the frequency
amplitude itself being a function of time, i.e., S (w ,t)
specifying, in other words, a time-varying number of
monochromatic photons being carried simultaneously by a
photonic wavefront.

The analytic elements derived in the previous Sections will
be applied hereafter. These elements are: the wavefunction of
(5) of the dynamic and coherent number states which deliver
the correct expectation values for the number of photons carried

doi:10.20944/preprints201909.0191.v1


https://doi.org/10.20944/preprints201909.0191.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2019

by a photonic wavefront and its associated complex amplitude
in (13). Equally, the optical field profile of a group of photons
is shown in (27) to be independent of the type of source that
emitted them, cf. [13]

Given a photonic optical field, the Fresnel coefficients of
reflection and transmission can be interpreted as probability
amplitudes for the respective effects at a dielectric boundary
[5]. At least three types of beam splitters can be identified: the
glass plate of Fig. 3, the cubic prism of Fig 4, and the optical
waveguide directional coupler composed of optical fibers [1-2].
Their operations involve the quantum Rayleigh spontaneous
and stimulated emissions.

A. The Glass Plate Beam Splitters and the HOM dip

For a plate beam splitter sketched in Fig. 3, the primary
reflected and transmitted optical fields will lead to the
transformation:
afc = —rp 8'a +ty ty &s
g =to ty éTa +tuloty s

(29a)
(29b)

where the subscripts of the reflection r and transmission
coefficients t indicate the boundary interface, with the first
subscript corresponding to the incoming direction of the
photons.

To illustrate an application of this approach, two groups of
photons generated as the signal (s) and idler (i) waves in a
parametric down-conversion of a cw optical pump are
impinging, from opposite sides, on a glass plate operating as an
optical beam splitter which is placed in the xy plane. With the
upper boundary used as the synchronization place for the two
groups, i.e. 7 = 0, the output field operators are:
d,=—-rnd; + t;a;and, a4y = tgds +1; a; , with reflection
(r) and transmission (t) coefficients identified by the type of
photons. The relative phases of these photonic wave fronts are:

a c
no\

/ AN
b d

Fig. 3. Atypical glass plate beam splitter.
Photons arrive simultaneously at the upper
dielectric boundary.

Osr (1) =—w T+ @s(t) -7 (30a)
Oic (1) = i) +y (30b)
Ose (1) = @s(t) +y (30c)
0ir (1) = wt+@i(t) +2y (30d)

where the random phases of the spontaneously emitted photons
are denoted by ¢ (t) and yis the phase added during one transit
propagation between the boundaries of the BS and a (—m) phase
shift is due to the upwards reflection. Moving the BS in the z-

direction will bring about a time delay +7 between the two
wavefronts reaching the same photodetector. The number of
photons N (t) detected by photodetector j =1; 2 is evaluated
from the interference pattern of the instantaneously measured
flux of photons presented above in (22):

Nj(t) = K[ Nsj(t)+Nij (t) +

+ 2 [Nsj (1) Nij (01 72 cos[(0 (t) sj— 0 (t)ij)]  (31)
where the phases are given by (30a-d), e. g., 0 () 1 = 05 (T)
and 6 (t)i1= 8. (¢, ). The correlation function

Ci2 (7) = (N2 (t) N (t+ 7)) (32)
of coincidence counting of photons for the transient
interference patterns of the two separate photodetector
intensities, over the coincidence time interval T (a few ns) is
derived to be:

C12(T)2N01N02[1+ c.0,[11>cos @] (33)
where 6 ;=2 (N;s N ;i) Y2/ (N;s+ N ;i) for photodetector
j=1or2, and the overlap integral

Li(r)=olT g¢(®) gr(t+7)dt/ofT g¢?(t) dt

is normalized. With the phase difference ® for the intensity
correlation given by

®=[Hsr—eit]—[05t—9ir]: ((l)i—a)s) T—T (34)
there are two statistical possibilities for the random phases ¢
and ¢ i of the spontaneously emitted photons. These two
random phases can interchange values without affecting the
result, and the cosine term 0.5 cos ® should be counted twice
when calculating, “classically”, the correlation function Ci2 (7).

From (34), ® =—x for 7 = 0, and with equal numbers of
photons in the interfering waves, so that, 6, =o ,=1, we find
from (33) a vanishing correlation Ci2 (0) = 0 , which
corresponds to the Hong—Ou—Mandel dip [22-23].

Therefore, there is no need for entangled photons to explain
the coincidence counting of photons by two separate
photodetectors. The only requirement is that the two groups of
photons are split between the two detectors and are
synchronized at a chosen interface.

Other combinations of the relative phases ® are possible by
setting up a Mach-Zehnder interferometer configuration with
two identical 50:50 beam splitters, placing one at the input
and the other at the output of the interferometer [24]. Basically,
there are four waves or groups of photons reaching each of the
two photodetectors. We will denote them as si1 for the
unmodulated signal wave and s2 for the modulated signal wave,
and as i1 for the unmodulated idler wave and i2 for the
modulated idler wave.

Next we choose, for degenerate frequencies of the signal and
idler waves, the interference term cos (~w 7+ @ 1 — @ 2 )
from one of the detectors and the cos (—w 7+ @ i1— @i2) term
from the other, and recall that the parametric phase-pulling

effect [18] leadsto ¢ s+ @ i= @p+ m/ 2, for any initial
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phases of weak waves, with the coherent phase of the pump
photons given by ¢,. All this leads to the average value of the
fourth-order numerical interference:
(COS (—w T+ @s1 —@s) COS(—w T+ @it —@iz)) =
=cos(—2 w T) (35)

which oscillates with the pump frequency [24]. Similar
expectation values may be derived for any combination of any
two interference patterns, one from each photodetector, e.g.
[24-26]. It is noteworthy that the phases of the spontaneously
emitted photons do not appear in the conventional quantum
descriptions of two-photon beats, e.g. [22-26].

B. The Cubic Prism Beam Splitter

For a cubic beam splitter made up of two butting prisms of
different refractive indexes as sketched in Fig. 4, the field
transformation becomes:

A’y = —tourntw s + tatntn a8 (36a)

a'y = toutwnto 8a + terate a, (36h)
The subscript 0 indicates free space, and subscripts 1 and 2
refer to the refractive index of each of the two prisms.

In the case of the cubic prism BS, any two external surfaces
can form a resonant cavity through reflection or transmission at
the diagonal interface. The output states will be affected by
photons temporarily trapped inside the BS, leading to the
possibility of additional quantum states, as well as quantum
Rayleigh coupling of photons — see (20) .

C
|
a ni d
— ——»
n:2
T no

Fig. 4. A typical cubic prism beam splitter. Photons
arrive simultaneously at the diagonal boundary

interface. N2> N1>No

C. The Fiber-optic Beam Splitter

The longitudinal optical field profile of a group of
monochromatic photons was derived in (28) and has the form
of a Wigner spectral component S (w, t), that is, a time-varying
spectral component [21] — as opposed to a time-constant
amplitude and phase of a Fourier spectrum — crossing a surface
perpendicular to the wavevector of propagation.

For the optical directional coupler, the evolution of the
photons is governed by Egs. (20) with the possibility of one
waveguide capturing most of the photons resulting in an
asymmetric output. The coupling coefficient x will have to take
into consideration the temporarily discrete nature of the groups

of photons by including the longitudinal field profile g ¢ (z) next
to the transverse spatial field f, that is:

ko €Y
K= 5e T @) [[dxdyx D fi frer- e
37)
2 (zo) = [ dz g1(z—201) 91(z2—202)

This spatio-temporal overlap is characteristic of the quantum
regime of discrete groups of photons. The phase-dependent
coupling of photons of (20) is critical in the operation of the
optical fiber beam splitters by creating, with the adjustable
phase difference, an asymmetric output [25-26].

Future integration of photonic components will replace the
optical fiber splitter with integrated waveguides.

D. The Interference Filter

Experimental configurations for two-photon quantum beats,
e.g. [22-26], employ interference filters in order to control the
coherence length of the photon.

The extent of the correlation fringes is determined by the
coherence length of the photons, which can be shaped by an
interference filter, apparently operating on the output spectral
distribution @ (01, ®2) of the ensemble of photons generated
by an active source over a long time, such as the spontaneous
parametric down-conversion mechanism [23].

However, from a physical perspective, a Fourier transform —
or a superposition of spectral components — necessitates the
simultaneous presence of the entire range of spectral
components. But this is not the case when only one photon, at
any given time, crosses an interference filter. A single
monochromatic photon propagating through a Fabry-Perot type
filter, or a Bragg refractive index grating in a fiber, will be
delayed randomly by repeated internal reflections and will
acquire an integer multiple of a bias phase or time-delay. The
higher the internal reflectivity of the cavity, the longer some
photons may bounce back and forth inside the cavity resulting
in a “longer photon” output, which is interpreted as a longer
coherence length. Such optical signals are best described by
means of the mixed time-frequency (or Wigner-type) spectrum,
e.g. [21] with the frequency amplitude itself being a function of
time S (w, t) specifying, in other words, a time-varying number
of monochromatic photons being carried by varying photonic
wavefronts. The time-stretching of the photonic group will be
equivalent to pulse expansion for a narrower Fourier spectrum.

Thus, a group of photons entering, simultaneously, a resonant
cavity of an interference filter, will exit at different times as the
higher the internal reflectivity, the longer the time that some
photons will bounce back and forth inside the cavity. This
process will cause the initially bunched photons to spread out
in time and give rise to a longer coherence length for photon
coincidence counting as in [27]. The wavefunction describing
this output would take the form:

|¢)0u[(r,t)):2m Cn(r,t) fn(r) S(t —tm) |an((D)>
(38)

where the times t , specify the existence of a group of n photons

at location r . The pure state of a photonic wavefront is

doi:10.20944/preprints201909.0191.v1


https://doi.org/10.20944/preprints201909.0191.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2019

monochromatic and time-dependent —see (5) above, whereas
the overall mixed state of the ensemble is multi-chromatic and
time-independent (e.g. the bi-photon wavefunction).

The temporal profile of the optical field carried by a photon
or any instantaneous photonic wavefront should be determined
from a pure quantum state wavefunction because it should be
unaffected by the spectral distribution of an ensemble of
measurements. However, for interference to take place, at least
two coefficients ¢ , have to be non-zero.

V. PHYSICAL ASPECTS OF DYNAMIC NUMBER STATES

The possibility of measuring expectation values in the context
of the dynamic and coherent states of (5) raises the question of
the Heisenberg uncertainty principle [15] which has to do with
the joint statistical distribution of the measured values of two
variables corresponding to repeated measurements of
identically prepared systems [9-10], and applies to the
simultaneous measurements of two dynamic variables whose
quantum operators do not commute in a given set of state wave
functions, the variables being incompatible observables [15].

The principle of uncertainty does not preclude the existence
of well-defined numerical values for either variable [15].
Limited information about one variable is associated with a
variance in the measured values, with more information being
available about the other variable. Measurements yield
precise instantaneous values — within the constraints of the
equipment — by collapsing the system’s wave function into a
specific value [15]. A quantum "spread” implies that
measurements on identically prepared systems do not return
identical results because of system-related fluctuations such as
spontaneous emission, time-varying losses, temperature
variations, etc.

One should not confuse prediction with measurements. It is
the measured values that come into play when plotting the joint
distribution of two observable, physical variables. A
measurement of only one variable will still have its own
variance of values but it is not subject to the Heisenberg
uncertainty principle, because the physical system is not
disturbed by the measurement of another variable. One can
easily measure a well-defined eigenvalue of an operator [15] at
a given time.
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