Abstract: This article presents the copper ions adsorption process using an activated carbon from winemaking wastes. The pH, temperature, activated carbon amount and initial copper concentration were varied based on a full factorial 2^k experimental design. Kinetic and thermodynamic studies were also carried out. The adsorption kinetics was found follow a pseudo-second-order model. The adsorption data fit better to the Langmuir isotherm. The ANOVA demonstrated that both pH of the solution and activated carbon dosage had the greatest influence on copper adsorption. The activation energy was -32 kJ·mol$^{-1}$ suggesting that the copper adsorption is a physisorption process. The best fit to a linear correlation was the moving boundary equation that controls the kinetics for the adsorption copper ions onto the activated carbon. The X-ray photoelectron spectroscopy (XPS) results reveal the existence of different copper species (Cu$^{2+}$, Cu$^{+}$ and or Cu0) on the surface of the carbonaceous adsorbent after the adsorption, which could suggest a simultaneous reduction process.

Keywords: activated carbon; adsorption; copper; winemaking wastes.

1. Introduction

The contamination of water by toxic heavy metals is a worldwide environmental problem that has increasingly focused the attention of the scientific community [1]. Heavy metals such as Cu, Cd, Pb and Zn, among others, are present in the water through the discharge of industrial wastewater and are toxic to human beings and other living species when their concentrations exceed certain values [2]. In humans, the poisoning by copper ingestion may show systemic effects such as hemolysis or liver and kidney damage. In addition, other local effects have been reported such as irritation of upper respiratory tract, gastrointestinal disturbance with vomiting and diarrhea and a form of contact dermatitis [1]. All of these effects contribute to a necessary treatment of the wastewater that containing copper [3]. The U.S. Environmental Protection Agency (EPA) has set a guidance level for copper in drinking water at 1.3 mg·L$^{-1}$ [4].

Copper ions may be present in waters through several sources such as mining operations, machinery, electric power, chemical industry, electroplating processes, petroleum refining or pesticides industries [5]. To copper removal, different methods have been studied such as precipitation [6], on exchange [7], membrane filtration [8] or ionic flocculation [9]. Nevertheless, these remove methods are usually expensive being the adsorption process a highly effective and economical method [3]. Therefore, the adsorption method to remove heavy metal ions from aqueous solutions by a low-cost adsorbent (which is defined as a material that is abundant in nature, or is a by-product or waste material from industry) is a constant research development [2].
In this sense, activated carbons are known as very effective adsorbents. This type of the materials is characterized by have highly porosity, great surface area, variable characteristics of surface chemistry, and high degree of surface reactivity [10,11]. However, active carbons have high production costs and are usually more expensive than other types of adsorbents. For this reason, nowadays, the production of activated carbons from renewable and cheaper precursors have led a growing attention to the researchers [12,13].

In recent years, activated carbons from different wastes such as barley straw [14], pistachio wood [15], coconut shells [16], wild olive cores [17] or winewastes [18] have been tested as effective candidates to carried out metal removal by the adsorption method.

This research describes the obtaining and characterization of activated carbon from a winemaking waste, bagasse. Different experiments were assessed modified the pH value, copper concentration, adsorbent dosage and temperature in order to investigate the adsorbent capacity of copper ions onto AC.

The results were analyzed by a statistical experimental design and the influence of three factors were considered: pH of the solution, metal concentration and adsorbent dosage.

2. Results and discussion

2.1. Adsorption experiment

2.1.1. Influence of the pH of the solution

The pH is a variable that have a great effect on the adsorption process [19]. To evaluate the surface charge of the AC the zeta potential measurements were assessed. The value of PZC for the obtained activated carbon is 3.4. The AC surface is positively charged between 0 to the PZC pH. For pH values higher than 3.4, the AC surface exhibit a negative charge.

The effect of the pH on the Cu adsorption was studied by different experiments. The experimental conditions were 25 mg of activated carbon was added to 100 mL solution containing 0.01 g·L⁻¹ of copper ions. The pH of the solutions was adjusted at 1, 3 and 5 using 0.1 M HCl. Figure 1 exhibits the adsorbed copper amount onto the activated carbon versus the contact time.

![Figure 1. Copper uptake onto the carbon at different pH values as a function of the contact time](image-url)
The adsorption capacity increases with the solution pH. The Cu\(^{2+}\) removal is quite low at pH 1 and 3, this could be due that at these pH values, the surface of the AC is positively charged, so there is electrostatic repulsion between the surface and the metal charge. When the pH increasing pH beyond PZC (i.e., pH 5 value experiment), the negative charge on the AC surface increases, leading to an enhancing the metal adsorption [20]. Thereby, the subsequently experiments were carried out at the pH value where the observed adsorption was maximum.

2.1.2. Effect of Cu\(^{2+}\) concentration

The adsorption of different copper concentration (0.005-0.02 g·L\(^{-1}\)) with an amount of 25 mg of the activated carbon at pH 5 were analyzed (Figure 2). As expected, the removed Cu\(^{2+}\) amount decrease with the increase of the initial concentration. However, even in the highest concentration studied, the copper adsorption is nearly to 36 mg Cu/g AC, probably due to the fact of the rapid saturation of the activated sites with a certain metal concentration [21].

![Figure 2. Effect of copper concentration as a function of the contact time.](https://example.com/figure2.png)

2.1.3. Effect of activated carbon dosage

In order to evaluate the effect of the adsorbent dosage for Cu\(^{2+}\) adsorption, solutions of 0.01g·L\(^{-1}\) Cu\(^{2+}\) were put in contact with different masses (12.5-75 mg) of the activated carbon at pH 5. Figure 3 shows the obtained results. As can be appreciated the Cu amount adsorbed onto the AC increase with the adsorbent dosage.
2.1.4. Effect of the temperature

The copper adsorption was analyzed at different temperatures. Figure 4 exhibits copper uptake as a function of time for the different temperatures studied. The amount of copper adsorbed increases when so did the temperature.

Figure 3. Effect of the adsorbent dosage on metal uptake.

Figure 4. Copper uptake at different temperatures.
2.1.5. Equilibrium isotherms

The study of equilibrium isotherms was carried out using the Langmuir, Freundlich and Temkin equations. The calculated constant parameters and correlation coefficients are given in Table 1.

Table 1. Calculated parameters values for the different linear models.

<table>
<thead>
<tr>
<th>Langmuir</th>
<th>Freundlich</th>
<th>Temkin</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_m (mg·g$^{-1}$)</td>
<td>b (L·mg$^{-1}$)</td>
<td>R_L</td>
</tr>
<tr>
<td>16.95</td>
<td>3.94</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The greater correlation coefficient was obtained for Langmuir isotherm. The maximum adsorption capacity (q_m) calculated from this model is similar to the experimental one 22 mg·g$^{-1}$. In addition, the Langmuir non-dimensional factor (separation factor, R_L) of 0.03 indicates a favorable adsorption process [4,22].

2.1.6. Kinetic study

The results derived from Figure 4 were used to fit various kinetics models and, the calculated results from these fits are summarized in Table 2.

Table 2. Kinetic parameters for copper adsorption at different temperatures.

<table>
<thead>
<tr>
<th></th>
<th>Pseudo-first-order</th>
<th></th>
<th>Pseudo-second-order</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T (K)</td>
<td>R^2</td>
<td>K_1 (min$^{-1}$)</td>
<td>q_e (mg·g$^{-1}$)</td>
<td>R^2</td>
</tr>
<tr>
<td>303</td>
<td>0.687</td>
<td>0.04</td>
<td>9.200</td>
<td>0.994</td>
</tr>
<tr>
<td>333</td>
<td>0.567</td>
<td>0.07</td>
<td>10.344</td>
<td>0.997</td>
</tr>
<tr>
<td>353</td>
<td>0.702</td>
<td>0.05</td>
<td>10.568</td>
<td>0.999</td>
</tr>
</tbody>
</table>

In order to estimate the adsorption type, the kinetics rate constants (lnk_{obs}) were fitted versus $1/T$, with slope $-E_a/R$ [23]. The activation energy is frequently used for differentiating between physical and chemical adsorption. In the case of the physical adsorption, the reactions are readily reversible, equilibrium attained rapidly and thus energy requirements are small (between the range of 5 to 40 kJ·mol$^{-1}$). However, the chemical adsorption is specific, involves stronger forces and thus requires larger activation energies (40 to 800 kJ·mol$^{-1}$) [23]. In the present case, the calculated activation was -32 kJ·mol$^{-1}$ which suggested a physical-sorption process.

Table 3 summarized the obtained results of the thermodynamic parameters. The calculated values for enthalpy change (-13.9 kJ·mol$^{-1}$) and free energy change (-16.53, -32.10 and -33.19 kJ·mol$^{-1}$) indicate that the copper adsorption by the activated carbon is an exothermic, spontaneous and favorable process.

Table 3. Obtained results of the thermodynamic parameters.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T (K)</td>
<td>$ΔH$ (kJ·mol$^{-1}$)</td>
<td>$ΔG$ (kJ·mol$^{-1}$)</td>
</tr>
<tr>
<td>303</td>
<td>-13.9</td>
<td>-16.53</td>
</tr>
<tr>
<td>333</td>
<td>-32.10</td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>-33.19</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Thermodynamic parameters at different temperatures.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>ΔH^0 (kJ·mol$^{-1}$)</th>
<th>ΔS^0 (J·mol$^{-1}$·K$^{-1}$)</th>
<th>ΔG^0 (kJ·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td></td>
<td></td>
<td>16.53</td>
</tr>
<tr>
<td>333</td>
<td>13.93</td>
<td>54.55</td>
<td>32.10</td>
</tr>
<tr>
<td>353</td>
<td></td>
<td></td>
<td>33.19</td>
</tr>
</tbody>
</table>

2.2. Characterization of the AC and AC-Cu

2.2.1. Scanning electron microscopy (SEM)

SEM micrographs of the initial AC and AC-Cu are exhibit in Figure 5. A clear change can be appreciated when the copper is adsorbed onto the AC surface. Initially, a porous structure was observed characteristic of an active carbon. After the Cu adsorption, the pores structure changes where a different contrast was appreciated. In addition, microanalysis carried out which indicates the presence of peak at 1 keV characteristics of Cu kα in the sample.

Figure 5. SEM images of the AC (a) before and (b) after the Cu adsorption and (c) EDS microanalysis of the AC-Cu sample.

2.2.2. X-ray photoelectron spectroscopy (XPS) analysis

XPS spectrum of C 1s regions for both AC and AC-Cu samples are depicted in Figure 6a and b. Registered spectra are similar in terms of the shape and position of the bands. A broad and asymmetric band is observed in both cases suggested the existence of different carbon species. The
deconvolution of the bands exhibited four peaks around 285 (C-C bond), 286 (C-OH bond), 288 (C=O bond), and 290 (COOH bond) [24–26].

On the other hand, XPS spectrum for AC-Cu sample concerning Cu 2p core level excitation is shown in Figure 6c in order to understand the electronic structure of copper species at superficial level. The obtained spectrum shows two main peaks centered at around 933 eV and 953 eV which can be attributed with Cu 2p₃/₂ and 2p₁/₂, respectively. In addition, Cu 2p₃/₂ peak exhibits a shoulder band that could be indicating that the Cu²⁺ components are different in chemical environment [27,28] as a previously reported. These observed peaks appeared at ~934.3 eV and ~932.6 eV and can be assigned to octa-coordinated of Cu²⁺ ions and tetra-coordinated of Cu¹⁻Cu⁰ species [27,28]. It should be noted it is difficult to distinguish between Cu⁺ and Cu⁰ peaks, since the Cu 2p binding energies of both species are very close [29]. So, the obtained results suggested that Cu²⁺ could be reduced to Cu⁺ even Cu⁰. Despite of the kinetic studies shown that the adsorption process is a physic-sorption process, the obtained results from XPS analyses could be suggest a chemisorption process. Finally, the band at 945 eV can be assigned at satellite bands. This band is generated by an electron transfer from a ligand orbital to a 3d orbital of Cu. Therefore, since Cu⁰ or Cu⁺ species have completely filled d level, the observed satellite band confirms that the Cu²⁺ specie are present in the surface of the material [28,30,31].

![Figure 6. XPS spectra of the activated carbon and AC-Cu activated carbon.](image)

2.3. Post-treatment of the adsorption process

2.3.1. Scanning electron microscopy (SEM)

To investigate about the possibilities to recover copper from the Cu(II)-bearing solutions, and as a first approach, these were precipitated with sodium borohydride. As a result of this precipitation a near black solid is yielded, which apparently is formed by cuprite and zero valent copper.
The overall reaction responsible for such precipitation could be written as:

$$6\text{Cu}^{2+} + 6\text{H}_2\text{O} + \text{BH}_4^- \rightarrow 2\text{Cu}_2\text{O} + 2\text{Cu}^0 + 12\text{H}^+ + \text{B(OH)}_4^-$$ \hspace{1cm} (Eq. 1)

The subsequent SEM study carried out indicate that the solid is formed by nanoparticles agglomerates having various shapes: nanoplates and octahedral, characteristics of the Cu$_2$O/Cu phases nanostructures [32,33].

2.4. Adsorption mechanisms

Adsorption process mechanism can be controlled by several diffusion steps: (a) film diffusion (bulk diffusion and external film diffusion); (b) particle diffusion (intraparticle or internal diffusion); (c) moving boundary process, proper sorption reaction between sorbent and active sites, mass action; apart of chemical reaction that may contribute to the control of mass transfer [34].

The calculated parameters for each of the different studied models [35] are summarized in Table 4. The obtained correlation coefficients show that the copper adsorption can be best explained by the moving boundary process.

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>film-diffusion</td>
<td>0.946</td>
<td>0.058</td>
</tr>
<tr>
<td>particle-diffusion</td>
<td>0.951</td>
<td>0.050</td>
</tr>
<tr>
<td>moving boundary</td>
<td>0.982</td>
<td>0.012</td>
</tr>
</tbody>
</table>

2.4. Statistical analysis

In order to know the influence of various variables, copper concentration (A), pH (B) and carbon dosage (C) in the adsorption of Cu(II) onto AC a full factorial design of 23 were done [36,37]. By means of the statistical analysis of the factor considered, the Pareto chart allows to detect the factor and interaction effects that are considered statically significant with a p-values <0.05 [38,39]. The only statically significant factor is the pH see Figure 7, the positive sign indicates a positive effect between an increase in the pH and the percentage of copper adsorbed.

![Pareto Chart of the Effect](image)

Figure 7. Pareto chart diagram.

The mathematical model obtained for this design was:
Elimination (%) = 37.52 - 3.553·[Cu(II)] + 34.595·pH + 8.183·[AC] - 3.553·[Cu(II)]·pH + 1.33·[Cu(II)]·[AC] + 8.183·pH·[AC]
(Eq. 2)

where R² were 96.81.

Figure 8 shows the response surface as a function of two factor keeping the other factor at certain level, this is the best way to evaluate the relationship between the factor and response [40]. The graph a), shows an increases in Cu²⁺ adsorption with the increases of the pH, this rise looks like slightly higher for the lower copper concentration. In the case of pH and AC concentration, graph b), the behavior is similar an increases in the pH arise the copper removal percentage, this effect is more remarkable for the higher level of AC concentration.

Figure 8. Response surface plot for copper metal removal (%). a) Cu concentration-pH effect; b) pH-AC concentration; c) Cu concentration-AC concentration.
Figure 9 shows the cube graph to the copper removal percentage, the optimum recovery percentage of Cu(II) obtained with the model is 94.26% according to the conditions A: Cu Concentration of 5 mg·L⁻¹, B: pH 5 and C: AC dosage 75 mg.

Figure 9. The cube graph of copper removal percentage.

3. Materials and Methods

3.1. Obtention of the activated carbon

Activated carbon (AC) from a winemaking waste, bagasse, were obtained as described [10,18]: an aqueous suspension of bagasse waste (75 g·L⁻¹) of the production of Albariño wine (Denomination of Origin 'Rías Baixas', Galicia) and supplied by the Misión Biológica de Galicia (CSIC), was introduced into a Berghof BR300 high pressure reactor at 523 K and 30 bars for 3 h. The obtained mixture was filtered to separate the generated hydrothermal carbon (HTC), which was dried. A mixture HTC/KOH (weight ratio 1:2) was introduced at 1073 K for 2 h in a Carbolite STF 15 tubular furnace under a N₂ atmosphere (150 mL·min⁻¹) in order to generated the AC. After cooling down to room temperature, the AC was washed with MilliQ water until pH~5. Finally, the AC was dried at 353 K.

3.2. Characterization of the activated carbon

Zeta potential measurements were carried out using a Zetasizer Malvern Nano ZS (Malvern Panalytical Ltd., Worcestershire, UK) at 298 K. Aqueous suspensions were prepared between the pH range of 1 and 7 using HCl 0.1 M. All solutions were dispersed with a sonicator Bandelin Electronic Sonopuls HD 3100, (Bandelin electronic GmbH & Co. KG, Berlin, Germany) with amplitude of 80% for 300 s.

The porous structure of the activated carbon was characterized by N₂ adsorption at 77 K using the Micromeritics ASAP, 2020 Accelerated Surface Area and Porosimetry System. The sample was partially degassed at 623 K for 16 h. The specific surface was determined by analyzing the adsorption isotherm via the BET equation and DFT models, employing Micromeritics and Quantachrome software. The obtained results exhibit that the microporous surface (Sₘₐ) of the AC was 1111 m²·g⁻¹ and the Sₐᵢₘ₉ 2662 m²·g⁻¹. In addition, the size of the pores were <2 nm (Average micropore size, L₀ = 1.71). So, the AC show a microporous structure indicating that the material is suitable for metal adsorption.

3.3. Batch adsorption experiments

The metal adsorption by the activated carbon was carried out via batch experiments performed in Erlenmeyer flasks. The control of the temperature was performed using a Selecta Termotronic thermostat-controlled bath equipped with multiple Lab Companion MS-52M stirrers until equilibrium was reached. The stirring speed was constant for all adsorption experiment at 500
revolutions per minute (rpm). 1 mL of sample were collected at 0, 5, 10, 20, 30, 40, 50, 60, 120 and 180
min and filtered through a syringe filters with a 0.22 µm pore and 13 mm diameter.

Copper content in the solution was analyzed by AAS spectrometry and the copper content in
the carbon was estimated by the mass balance. The pH of the solutions was adjusted using a pH
meter and adding HCl (0.1 M). The adsorption capacity (q_e (mg·g⁻¹)) was calculated by following
equations:

\[q_e = \frac{(C_0-C_e)V}{m} \]
(Eq. 3)

where \(C_0 \) (mg·L⁻¹) is the initial concentration of copper in solution, \(C_e \) (mg·L⁻¹) is the copper
concentration at equilibrium, \(q_e \) (mg·g⁻¹) is the amount of copper adsorbed on the activated carbon at
equilibrium, \(V \) (L) is the volume of the solution and \(m \) (g) is the mass of the activated carbon.

The equilibrium adsorption isotherm data were plotted using the Langmuir, Freundlich and
Temkin linear forms models [41]:

\[\frac{C_e}{q_e} = \frac{1}{q_m b} + \frac{1}{q_m} c_e \]
(Langmuir)
(Eq. 4)

\[\ln q_e = \ln K_F + \frac{1}{n} \ln C_e \]
(Freundlich)
(Eq. 5)

\[q_e = B \cdot \ln A_e + B \cdot \ln c_e \]
(Temkin)
(Eq. 6)

where \(q_e \) (mg·g⁻¹) is adsorbed metal amount by mass of activated carbon in the equilibrium; \(K_F \) (L·g⁻¹)
is the Freundlich constant; \(1/n \) is indicative of the intensity of adsorption; \(q_m \) (mg·g⁻¹) is the
maximum adsorption capacity of the adsorbent per unit mass of adsorbate; \(b \) (L·mg⁻¹) is the
Langmuir constant related with the adsorption energy; \(C_e \) (mg·L⁻¹) is the metal concentration in the
equilibrium; \(A_e \) Temkin isotherm equilibrium binding constant (L·g⁻¹); \(B \) (R·T/b) constant related to
heat of sorption (J·mol⁻¹); \(R \) Temkin isotherm constant; \(R \) universal gas constant (8.314·10³
kJ·K⁻¹·mol⁻¹) and \(R_i \) the adimensional Langmuir constant or the equilibrium parameter and
indicates if the isotherm is reversible (\(R_i=0 \)), favorable (0<\(R_i<1 \)), lineal (\(R_i=1 \)) or unfavorable (\(R_i>1 \))
where \(R_i=1/(1+b·C_0) \).

The Batch kinetics experiments for copper adsorption on AC were carried out at different
temperatures and were analyzed using the pseudo-first and pseudo-second order kinetics models:

\[\ln(q_e - q_t) = \ln q_e - K_1 \cdot t \]
(pseudo-first order)
(Eq. 7)
[42]

\[\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{1}{q_e} \cdot t \]
(pseudo-second order)
(Eq. 8)
[43]

where \(q_e \) (mg·g⁻¹) is the adsorbed metal amount per mass of the activated carbon at different contact
time (t) and at equilibrium \(q_e \) (mg·g⁻¹); \(K_1 \) (L·min⁻¹) and \(K_2 \) (g·min·mg⁻¹) are the first and second order
adsorption constant, respectively.

Thermal parameters were calculated from (Eq. 9) and (Eq. 10). Enthalpy change (\(\Delta H^0 \)) and
entropy change (\(\Delta S^0 \)) were calculated from slope and intercept of a plot of log \((q_e/C_0)\) versus 1/T
according (Eq. 9) [44]:

\[\log \frac{q_e}{C_0} = \frac{\Delta S^0}{2.303R} + \frac{\Delta H^0}{2.303RT} \]
(Eq. 9)

\[\Delta G^0 = \Delta H^0 - T\Delta S^0 \]
(Eq. 10)

where \(R \) is the universal gas constant (8.314 J·mol⁻¹·K⁻¹); \(T \) the absolute temperature (K).
The rate law that govern the copper adsorption by the activated carbon were assessed. Three possible adsorption mechanisms have been evaluated: the diffusion of Cu species from the aqueous solution to the AC surface (Eq. 11) [45], the diffusion of ions within the AC (Eq. 12) [46] and the moving boundary process (Eq. 13) [47]:

- **film-diffusion controlled mechanism:** \(\ln(1 - F) = -k \cdot t \) (Eq. 11)
- **particle-diffusion controlled mechanism:** \(\ln(1 - F^2) = -k \cdot t \) (Eq. 12)
- **moving boundary mechanism:** \(3 - 3 \cdot (1 - F)^2 - 2 \cdot F = k \cdot t \) (Eq. 13)

where \(k \) is the corresponding constant and \(F \) is defined to (Eq. 14):

\[
F = \frac{[\text{AM}]_t}{[\text{AM}]_e}
\]

(Eq. 14)

where \([\text{AM}]_t\) and \([\text{AM}]_e\) are the concentrations of metal adsorbed after a time (\(t\)) and in equilibrium (\(e\)), respectively.

The surface of the AC and the AC loaded with Cu (AC-Cu) was examined by field emission scanning electron microscope (FE-SEM) using a JEOL JSM 7600 microscope and X-ray photoelectron spectroscopy (XPS). Spectra were recorded using a Fisons MT500 spectrometer equipped with a hemispherical electron analyzer (CLAM2) and a non-monochromatic Mg K\(\alpha\) X-Ray source operated at 300 W. Spectra were collected at a pass energy of 20 eV (typical for high-resolution conditions). The area under each peak was calculated after subtraction of the S-shaped background and fitting the experimental curve to a combination of Lorentzian and Gaussian lines of variable proportions. Binding energies were calibrated to the C 1s peak at 285.0 eV. The atomic ratios were computed from the peak intensity ratios and reported atomic sensitivity factors.

The structural characterization was carried out through X-ray diffraction (XRD) using a Siemens D5000 diffractometer equipped with a Cu anode (Cu K\(\alpha\) radiation) and a LiF monochromator.

3.4. Experimental design

In order to estimate the major effect and higher-order interaction a full factorial 2k design was used. Three parameters and two levels for each parameter were analyzed 23. Where the three factors pH, metal concentration and AC amount were selected as independent variables and the response variable was the Cu(II) removal percentage. The independent variables were varied at two levels, upper and lower limits for each one. Area total of 10 experiments were carried out 2\(^3\)-8 and 2 central point. The experiments were done at 500 rpm and room temperature. The design of experiment was constructed and analyzed using Statgraphics centurion XVI version, 13.2.04. The significant factor where studied according to Pareto charts and analysis of variance (ANOVA) testing at 95% confidence.

4. Conclusions

Activated carbon from winemaking wastes was used to copper removed in aqueous solutions. In addition, competitive adsorption with other metal was also investigated. Different parameters which affect to the metal adsorption were assessed. Kinetic studies show that the Cu adsorption is better adjusted to a second-order kinetic. The experimental results fit a Langmuir isotherm. Thermodynamic studies have shown that the copper adsorption is an exothermic, spontaneous and favorable process. Also, the law that govern the adsorption was the moving boundary process. In addition, it is possible the recovery of zero valent copper from the eluates, thought this step must be investigated more deeply. The full factorial experimental design showed that the pH and the pH-AC dosage interaction have a great effect in the Cu removed process. The optimal conditions obtained by the design of the experiments was 5 mg·L\(^{-1}\) Cu concentration, pH 5 and 10 mg AC dosage.
Therefore, the active carbon obtained from winemaking wastes is useful for Cu²⁺ removal from wastewater.

Funding: “This research was funded by ESTANNIO Programme, grant number RTC-2017-6629-5 (Spanish Ministry of Science, Innovation and Universities”). We acknowledge support of the publication fee by the CSIC Open Access Publication Support. Initiative through its Unit of Information Resources for Research (URICI).

Acknowledgments: The authors would like the Dr. Irene Llorente (CENIM-CSIC) for performing the XPS measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References

28. Li, B.; Luo, X.; Zhu, Y.; Wang, X. Immobilization of Cu(II) in KIT-6 supported CoOx and catalytic

46. Saha, B.; Iglesias, M.; Dimming, I.W.; Streat, M. Sorption of trace heavy metals by thiol containing

Sample Availability: Not available.