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Abstract: Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an 
application of entropic methods of inference. In ED the dynamics of the probability distribution 
is driven by entropy subject to constraints that are codified into a quantity later identified as the 
phase of the wave function. The central challenge is to specify how those constraints are themselves 
updated. In this paper we review and extend the ED framework in several directions. A new 
version of ED is introduced in which particles follow smooth differentiable Brownian trajectories 
(as opposed to non-differentiable Brownian paths). To construct ED we make use of the fact that 
the space of probabilities and phases has a natural symplectic structure (i.e., it is a phase space with 
Hamiltonian flows and Poisson brackets). Then, using an argument based on information geometry, 
a metric structure is introduced. It is shown that the ED that preserves the symplectic and metric 
structures – which is a Hamilton-Killing flow in phase space – is the linear Schrödinger equation. 
These developments allow us to discuss why wave functions are complex and the connections 
between the superposition principle, the single-valuedness of wave functions, and the quantization 
of electric charges. Finally, it is observed that Hilbert spaces are not necessary ingredients in this 
construction. They are a clever but merely optional trick that turns out to be convenient for practical 
calculations.
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1. Introduction18

Quantum mechanics has been commonly regarded as a generalization of classical mechanics with19

an added element of indeterminism. The standard quantization recipe starts with a description in20

terms of the system’s classical coordinates and momenta {q, p} and then proceeds by applying a series21

of more or less ad hoc rules that replace the classical {q, p} by self-adjoint linear operators {q̂, p̂} acting22

on some complex Hilbert space [1]. The Hilbert space structure is given priority while the probabilistic23

structure is relegated to the less fundamental status of providing phenomenological rules for how to24

handle those mysterious physical processes called measurements. The result is a dichotomy between25

two separate and irreconcilable modes of wave function evolution: one is the linear and deterministic26

Schrödinger evolution and the other is the discontinuous and stochastic wave function collapse [2][3].27

To put it bluntly, the dynamical and the probabilistic aspects of quantum theory are incompatible with28

each other. And furthermore, the dichotomy spreads to the interpretation of the quantum state itself.129

It obscures the issue of whether the wave function describes the ontic state of the system or whether it30

describes an epistemic state about the system.231

1 Excellent reviews with extended references to the literature are given in e.g. [4]-[7].
2 Since the terms ‘ontic’ and ‘epistemic’ are not yet of widespread use outside the community of Foundations of QM a

clarification might be useful. A concept is referred as ‘ontic’ when it describes something that is supposed to be real, to exist
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In the Entropic Dynamics (ED) approach these problems are resolved by placing the probabilistic32

aspects of QM at the forefront while the Hilbert space structure is relegated to the secondary role of a33

convenient calculational tool [8]-[10]. ED tackles QM as an example of entropic inference, a framework34

designed to handle insufficient information.3 The starting point is to specify the subject matter, the35

ontology — are we talking about the positions of particles or the configurations of fields? Once this36

decision is made our inferences about these variables are driven by entropy subject to information37

expressed by constraints. The main effort is directed towards choosing those constraints since it is38

through them that the “physics” is introduced.39

From the ED perspective many of the questions that seemed so urgent in other approaches are40

successfully evaded. For example, when quantum theory is regarded as an extension of classical41

mechanics any deviations from causality demand an explanation. In contrast, in the entropic approach42

uncertainty and probabilities are the norm. Indeterminism is just the inevitable consequence of43

incomplete information and no deeper explanation is needed. Instead, it is the certainty and44

determinism of the classical limit that require explanations. Another example of a question that45

has consumed an enormous effort is the problem of deriving the Born rule from a fundamental Hilbert46

space structure. In the ED approach this question does not arise and the burden of explanation runs in47

the opposite direction: how do objects such as wave functions involving complex numbers emerge48

in a purely probabilistic framework? Yet a third example concerns the interpretation of the wave49

function itself. ED offers an uncompromising and radically epistemic view of the wave function Ψ.50

This turns out to be extremely restrictive: in a fully epistemic interpretation there is no logical room51

for “quantum” probabilities obeying alternative rules of inference. Not only is the probability |Ψ|252

interpreted as a state of knowledge but, in addition, the epistemic significance of the phase of the53

wave function must be clarified and made explicit. Furthermore, it is also required that all updates of54

Ψ, which include both its unitary time evolution and the wave function collapse during measurement,55

must be obtained as a consequence of entropic and Bayesian updating rules.456

There is a large literature on reconstructions of quantum mechanics (see e.g., [23]-[28] and57

references therein) and there are several approaches based on information theory (see e.g., [29]-[41]).58

What distinguishes ED is a strict adherence to Bayesian and entropic methods and also a central59

concern with the nature of time. The issue here is that any discussion of dynamics must inevitably60

include a notion of time but the rules for inference do not mention time — they are totally atemporal.61

One can make inferences about the past just as well as about the present or the future. This means62

that any model of dynamics based on inference must also include assumptions about time, and those63

assumptions must be explicitly stated. In ED “entropic” time is a book-keeping device designed to keep64

track of changes. The construction of entropic time involves several ingredients. One must introduce65

the notion of an ‘instant’; one must show that these instants are suitably ordered; and finally one must66

define a convenient measure of the duration or interval between the successive instants. It turns out67

that an arrow of time is generated automatically and entropic time is intrinsically directional.68

This paper contains a review of previous work on ED and extends the formalism in several new69

directions. In [8]-[10] the Schrödinger equation was derived as a peculiar non-dissipative diffusion in70

out there independently of any observer. A concept is referred as ‘epistemic’ when it is related to the state of knowledge,
opinion, or belief of an agent, albeit an ideally rational agent. Examples of epistemic quantities are probabilities and
entropies. An important point is that the distinction ontic/epistemic is not the same as the distinction objective/subjective.
For example, probabilities are fully epistemic — they are tools for reasoning with incomplete information — but they can
lie anywhere in the spectrum from being completely subjective (two different agents can have different beliefs) to being
completely objective. In QM, for example, probabilities are epistemic and objective. Indeed, at the non-relativistic level
anyone who computes probabilities that disagree with QM will be led to experimental predictions that are demonstrably
wrong. We will say that the wave function Ψ, which is fully epistemic and objective, represents a “physical” state when it
represents information about an actual “physical” situation.

3 The principle of maximum entropy as a method for inference can be traced to the pioneering work of E. T. Jaynes [11]-[13].
For a pedagogical overview including more modern developments see [14][15].

4 There exist many different Bayesian interpretations of probability. In section 13 we comment on how ED differs from the
frameworks known as Quantum Bayesianism [16]-[18] and its closely related descendant QBism [19][20].
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which the particles perform an irregular Brownian motion that resembles the Einstein-Smoluchowski71

(ES) process [42]. The trajectories are continuous and non-differentiable so their velocity is undefined.72

Since the expected length of the path between any two points is infinite this would be a very peculiar73

motion indeed. Here we exhibit a new form of ED in which the Brownian motion resembles the much74

smoother Oernstein-Uhlenbeck (OU) process [42]. The trajectories have finite expected lengths; they75

are continuous and differentiable. On the other hand, although the velocities are well defined and76

continuous, they are not differentiable.577

We had also shown that the irregular Brownian motion at the “microscopic” or sub-quantum level78

was not unique. One can enhance or suppress the fluctuations while still obtaining the same emergent79

Schrödinger behavior at the “macroscopic” or quantum level [43][44]. A similar phenomenon is also80

found in the smoother ED developed here. In both the ES and the OU cases the special limiting case in81

which fluctuations are totally suppressed turns out to be of particular interest because the particles82

evolve deterministically along the smooth lines of probability flow. This means that ED includes the83

Bohmian or causal form of quantum mechanics [45]-[47] as a limiting case.84

ED consists in the entropic updating of probabilities through information supplied by constraints.85

The main concern is how these constraints are chosen including, in particular, how the constraints86

themselves are updated. In [48] an effective criterion was found by adapting Nelson’s seminal insight87

that QM is a non-dissipative diffusion [49]. This amounts to updating constraints in such a way that88

a certain energy functional is conserved. Unfortunately this criterion, while fully satisfactory in a89

non-relativistic setting, fails in curved space-times where the concept of a globally conserved energy90

may not exist.91

The second contribution in this paper is a geometric framework for updating constraints that92

does not rely on the notion of a conserved energy. Our framework draws inspiration from two sources:93

one is the fact that QM has a rich geometrical structure [50]-[58]. The authors of [50]-[56] faced the task94

of unveiling geometric structures that although well hidden are already present in the standard QM95

framework. Our goal runs in the opposite direction: we impose these natural geometric structures as96

the foundation upon which we reconstruct the QM formalism.97

The other source of inspiration is the connection between QM and information geometry [14]-[60]98

that was originally suggested in the work of Wootters [29]. This connection has been explored99

in the context of quantum statistical inference [61], in the operational description of quantum100

measurements [32][34], and in the reconstruction of QM [38][39]. Our previous presentation in101

[10] has been considerably streamlined by recognizing the central importance of symmetry principles102

when implemented in conjunction with concepts of information geometry.103

In ED the degrees of freedom are the probability densities ρ(x) and certain “phase” fields Φ(x)104

that represent the constraints that control the flow of probabilities. Thus we are concerned not just with105

the “configuration” space of probabilities {ρ} but with the larger space of probabilities and phases106

{ρ, Φ}. The latter has a natural symplectic structure, that is, {ρ, Φ} is a phase space. Imposing a107

dynamics that preserves this symplectic structure leads to Hamiltonian flows, Poisson brackets, and so108

much of the canonical formalism associated with mechanics. To single out the particular Hamiltonian109

flow that reproduces QM we extend the information geometry of the configuration space {ρ} to the110

full phase space. This is achieved by imposing a symmetry that is natural in a probabilistic setting: we111

extend the well-known spherically symmetric information geometry of the space {ρ} to the full phase112

space {ρ, Φ}. This construction yields a derivation of the Fubini-Study metric. A welcome by-product113

5 In both the ES and the OU processes, which were originally meant to model the actual physical Brownian motion, friction
and dissipation play essential roles. In contrast, ED is non-dissipative. ED formally resembles Nelson’s stochastic mechanics
[23] but the conceptual differences are significant. Nelson’s mechanics attempted an ontic interpretation of QM as an ES
process driven by real stochastic classical forces while ED is a purely epistemic model that does not appeal to an underlying
classical mechanics.
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is that the joint presence of a symplectic and a metric structure leads to a complex structure. This is the114

reason why QM involves complex numbers.115

The dynamics that preserves the metric structure is a Killing flow. We propose that the116

desired geometric criterion for updating constraints is a dynamics that preserves both the symplectic117

and the metric structures. Thus, in the final step of our reconstruction of QM we show that the118

Hamiltonians that generate Hamiltonian-Killing flows lead to an entropic dynamics described by the119

linear Schrödinger equation.120

We conclude with some comments exploring various aspects of the ED formalism. We show that,121

despite the arrow of entropic time, the resulting ED is symmetric under time reversal. We discuss the122

connections between linearity, the superposition principle, the single-valuedness of wave functions,123

and the quantization of charge. We also discuss the classical limit and the Bohmian limit in which124

fluctuations are suppressed and particles follow deterministic trajectories. Finally, we discuss the125

introduction of Hilbert spaces. We argue that, while strictly unnecessary in principle, Hilbert spaces126

are extremely convenient for calculational purposes.127

This paper focuses on the derivation of the Schrödinger equation but the ED approach has been128

applied to a variety of other topics in quantum theory. These include: the quantum measurement129

problem [21][22]; momentum and uncertainty relations [62][44];6 the Bohmian limit [43][44] and the130

classical limit [66]; extensions to curved spaces [67]; to relativistic fields [68][69]; and the ED of spin131

[71].132

2. The ED of short steps133

We deal with N particles living in a flat 3-dimensional space X with metric δab. For N particles134

the configuration space is XN = X× . . .× X. We assume that the particles have definite positions xa
n135

and it is their unknown values that we wish to infer.7 (The index n = 1 . . . N denotes the particle and136

a = 1, 2, 3 the spatial coordinates.)137

In ED positions play a very special role: they define the ontic state of the system. This is in138

contradiction with the standard Copenhagen notion that quantum particles acquire definite positions139

only as a result of a measurement. For example, in the ED description of the double slit experiment the140

particle definitely goes through one slit or the other but one might not know which. The wave function,141

on the other hand, is a purely epistemic notion and, as it turns out, all other quantities, such as energy142

or momentum, are epistemic too. They do not reflect properties of the particles but properties of the143

wave function [21]-[62].144

Having identified the microstates x ∈ XN we tackle the dynamics. The main dynamical145

assumption is that the particles follow trajectories that are continuous. This represents an enormous146

simplification because it implies that a generic motion can be analyzed as the accumulation of many147

infinitesimally short steps. Therefore, the first task is to find the transition probability P(x′|x) for a148

short step from an initial x to an unknown neighboring x′ and only later we will determine how such149

short steps accumulate to yield a finite displacement.150

The probability P(x′|x) is found by maximizing the entropy

S [P, Q] = −
∫

dx′ P(x′|x) log
P(x′|x)
Q(x′|x) (1)

relative to the joint prior Q(x′|x) subject to constraints given below. (In multidimensional integrals151

such as (1) the notation dx′ stands for d3N x′.)152

6 These are the well-known uncertainty relations due to Heiseberg and to Schrödinger. The entropic uncertainty relations
proposed by Deutsch [63]-[65] have not yet been explored within the context of ED.

7 In this work ED is a model for the quantum mechanics of particles. The same framework can be deployed to construct
models for the quantum mechanics of fields, in which case it is the fields that are ontic and have well-defined albeit unknown
values [68][69]
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The prior — The choice of prior Q(x′|x) must reflect the state of knowledge that is common
to all short steps. (It is through the constraints that the information that is specific to any particular
short step will be supplied.) We adopt a prior that carries the information that the particles take
infinitesimally short steps and also reflects the translational and rotational invariance of the Euclidean
space X but is otherwise uninformative. In particular, the prior expresses total ignorance about any
correlations. Such a prior can itself be derived from the principle of maximum entropy. Indeed,
maximize

S[Q] = −
∫

dx′ Q(x′|x) log
Q(x′|x)

µ(x′)
, (2)

relative to the uniform measure µ(x′),8 subject to normalization, and subject to the N independent
constraints

〈δab∆xa
n∆xb

n〉 = κn , (n = 1 . . . N) , (3)

where κn are small constants and ∆xa
n = x′an − xa

n. The result is a product of Gaussians,

Q(x′|x) ∝ exp−1
2 ∑

n
αnδab∆xa

n∆xb
n , (4)

where, in order to reflect translational invariance and possibly non-identical particles, the Lagrange153

multipliers αn are independent of x but may depend on the index n. Eventually we will let αn → ∞ in154

order to implement infinitesimally short steps. Next we specify the constraints that are specific to each155

particular short step.156

The drift potential constraint — In Newtonian dynamics one does not need to explain why a
particle perseveres in its motion in a straight line; what demands an explanation — that is, a force — is
why the particle deviates from inertial motion. In ED one does not require an explanation for why the
particles move; what requires an explanation is how the motion can be both directional and highly
correlated. This physical information is introduced through one constraint that acts simultaneously on
all particles. The constraint involves a function φ(x) = φ(x1 . . . xN) on configuration space XN that we
call the “drift” potential. We impose that the displacements ∆xa

n are such that the expected change of
the drift potential 〈∆φ〉 is constrained to be

〈∆φ〉 =
N

∑
n=1
〈∆xa

n〉
∂φ

∂xa
n
= κ′(x) , (5)

where κ′(x) is another small but for now unspecified function. As we shall later see this information is157

already sufficient to construct an interesting ED. However, to reproduce the particular dynamics that158

describes quantum systems we must further require that the potential φ(x) be a multi-valued function159

with the topological properties of an angle — φ and φ + 2π represent the same angle.9160

The physical origin of the drift potential φ(x) is at this point unknown so how can one justify its161

introduction? The idea is that identifying the relevant constraints can represent significant progress162

even when their physical origin remains unexplained. Indeed, with the single assumption of a163

constraint involving a drift potential we will explain and coordinate several features of quantum164

mechanics such as entanglement, the existence of complex and symplectic structures, the actual form165

of the Hamiltonian, and the linearity of the Schrödinger equation.166

The gauge constraints — The single constraint (5) already leads to a rich entropic dynamics but
by imposing additional constraints we can construct even more realistic models. To incorporate the

8 In Cartesian coordinates µ = const and may be ignored.
9 The angular nature of the drift potential is explained when the ED framework is extended to particles with spin [71].
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effect of an external electromagnetic field we impose that for each particle n the expected displacement
〈∆xa

n〉 will satisfy
〈∆xa

n〉Aa(xn) = κ′′n for n = 1 . . . N , (6)

where the electromagnetic vector potential Aa(xn) is a field that lives in the 3-dimensional physical167

space (xn ∈ X). The strength of the coupling is given by the values of the κ′′n . These quantities could be168

specified directly but, as is often the case in entropic inference, it is much more convenient to specify169

them indirectly in terms of the corresponding Lagrange multipliers.170

The transition probability — An important feature of the ED model can already be discerned.171

The central object of the discussion so far, the transition probability P(x′|x), codifies information172

supplied through the prior and the constraints. This information does not depend on the positions of173

the particles prior to the initial position x. This implies that ED will take the form of a Markov process.174

The distribution P(x′|x) that maximizes the entropy S [P, Q] in (1) relative to (4) and subject to (5),175

(6), and normalization is176

P(x′|x) = 1
Z

exp−∑
n

(αn

2
δab∆xa

n∆xb
n − α′ [∂naφ− βn Aa(xn)]∆xa

n

)
(7)

where α′ and βn are Lagrange multipliers. This is conveniently written as177

P(x′|x) = 1
Z

exp−∑
n

αn

2
δab (∆xa

n − ∆x̄a
n)
(

∆xb
n − ∆x̄b

n

)
, (8)

with a suitably modified normalization and

∆x̄a
n =

α′

αn
[∂naφ− βn Aa(xn)] = 〈∆xa

n〉 . (9)

A generic displacement is expressed as a drift plus a fluctuation,

∆xa
n = 〈∆xa

n〉+ ∆wa
n , (10)

where
〈∆wa

n〉 = 0 , and 〈∆wa
n∆wb

n′〉 =
1

αn
δnn′δ

ab , (11)

The fact that the constraints (5) and (6) are not independent — both involve the same178

displacements 〈∆xa
n〉 — has turned out to be significant. We can already see in (7) and (9) that it179

leads to a gauge symmetry. As we shall later see the vector potential Aa will be interpreted as the180

corresponding gauge connection field and the multipliers βn will be related to the electric charges181

through βn = qn/h̄c.182

3. Entropic time183

The task of iterating the short steps described by the transition probability (8) to predict motion184

over finite distances leads us to introduce a book-keeping parameter t, to be called time, in order to185

keep track of the accumulation of short steps. The construction of time involves three ingredients: (a)186

we must specify what we mean by an ‘instant’; (b) these instants must be ordered; and finally, (c) one187

must specify the interval ∆t between successive instants — one must define ‘duration’.188

Since the foundation for any theory of time is the theory of change, that is, the dynamics, the189

notion of time constructed below will reflect the inferential nature of entropic dynamics. Such a190

construction we will call “entropic” time [8]. Later we will return to the question of whether and how191

this “entropic” time is related to the “physical” time that is measured by clocks.192
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3.1. Time as an ordered sequence of instants193

ED consists of a succession of short steps. Consider, for example, the ith step which takes the
system from x = xi−1 to x′ = xi. Integrating the joint probability, P(xi, xi−1), over xi−1 gives

P(xi) =
∫

dxi−1P(xi, xi−1) =
∫

dxi−1P(xi|xi−1)P(xi−1) . (12)

No physical assumptions were involved in deriving this equation; it follows directly from the laws of
probability. To establish the connection to time and dynamics we will make the physical assumption
that if P(xi−1) is interpreted as the probability of different values of xi−1 at one “instant” labelled t,
then we will interpret P(xi) as the probability of values of xi at the next “instant” labelled t′. More
explicitly, if we write P(xi−1) = ρt(x) and P(xi) = ρt′(x′) then we have

ρt′(x′) =
∫

dx P(x′|x)ρt(x) . (13)

This equation defines the notion of “instant”: if the distribution ρt(x) refers to one instant t, then the194

distribution ρt′(x′) generated by P(x′|x) defines what we mean by the “next” instant t′. Iterating this195

process defines the dynamics.196

This construction of time is intimately related to information and inference. An instant is an197

informational state that is complete in the sense that it is specified by the information — codified into198

the distributions ρt(x) and P(x′|x) — that is sufficient for predicting the next instant. Thus, the present199

is defined through a sufficient amount of information such that, given the present, the future is independent of200

the past.201

In the ED framework the notions of instant and of simultaneity are intimately related to the202

distribution ρt(x). To see how this comes about consider a single particle at the point ~x = (x1, x2, x3).203

It is implicit in the notation that x1, x2, and x3 occur simultaneously. When we describe a system204

of N particles by a single point x = (~x1,~x2, . . .~xN) in 3N-dimensional configuration space it is also205

implicitly assumed that all the 3N coordinate values refer to the same instant; they are simultaneous.206

The very idea of a point in configuration space assumes simultaneity. And furthermore, whether we207

deal with one particle or many, a distribution such as ρt(x) is meant to describe our uncertainty about208

the possible configurations x of the system at the given instant. Thus, a probability distribution ρt(x)209

provides a criterion of simultaneity.10
210

3.2. The arrow of entropic time211

The notion of time constructed according to eq.(13) is intrinsically directional. There is an absolute
sense in which ρt(x) is prior and ρt′(x′) is posterior. Indeed, the same rules of probability that led us
to (13) can also lead us to the time-reversed evolution,

ρt(x) =
∫

dx′ P(x|x′)ρt′(x′) . (14)

Note, however, that there is a temporal asymmetry: while the distribution P(x′|x), eq.(7), is a Gaussian
derived using the maximum entropy method, its time-reversed version P(x|x′) is related to P(x′|x) by
Bayes’ theorem,

P(x|x′) = ρt(x)
ρt′(x′)

P(x′|x) , (15)

which in general will not be Gaussian.212

10 In a relativistic theory there is more freedom in the choice of instants and this translates into a greater flexibility with the
notion of simultaneity. Conversely, the requirement of consistency among the different notions of simultaneity severely
limits the allowed forms of relativistic ED [69].
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The puzzle of the arrow of time (see e.g. [72][73]) arises from the difficulty in deriving a temporal213

asymmetry from underlying laws of nature that are symmetric. The ED approach offers a fresh214

perspective on this topic because it does not assume any underlying laws of nature — whether they be215

symmetric or not. The asymmetry is the inevitable consequence of constructing time in a dynamics216

driven by entropic inference.217

From the ED point of view the challenge does not consist in explaining the arrow of time —218

entropic time itself only flows forward — but rather in explaining how it comes about that despite the219

arrow of time some laws of physics, such as the Schrödinger equation, turn out to be time reversible.220

We will revisit this topic in section 9.221

3.3. Duration and the sub-quantum motion222

We have argued that the concept of time is intimately connected to the associated dynamics but at223

this point neither the transition probability P(x′|x) that specifies the dynamics nor the corresponding224

entropic time have been fully defined yet. It remains to specify how the multipliers αn and α′ are225

related to the interval ∆t between successive instants.226

The basic criterion for this choice is convenience: duration is defined so that motion looks simple. The
description of motion is simplest when it reflects the symmetry of translations in space and time. In a
flat space-time this leads to an entropic time that resembles Newtonian time in that it flows “equably
everywhere and everywhen.” Referring to eqs.(9) and (11) we choose α′ and αn to be independent of
x and t, and we choose the ratio α′/αn ∝ ∆t so that there is a well defined drift velocity. For future
convenience the proportionality constants will be expressed in terms of some particle-specific constants
mn,

α′

αn
=

h̄
mn

∆t , (16)

where h̄ is an overall constant that fixes the units of the mns relative to the units of time. As we shall227

later see, the constants mn will eventually be identified with the particle masses while the constant228

h̄ will be identified as Planck’s constant. Having specified the ratio α′/αn it remains to specify αn229

(or α′). It turns out that the choice is not unique. There is a variety of motions at the sub-quantum230

“microscopic” level that lead to the same quantum mechanics at the “macroscopic” level.231

In previous work [8]-[10] we chose αn proportional to 1/∆t. This led to an ED in which the
particles follow the highly irregular non-differentiable Brownian trajectories characteristic of an
Einstein-Smoluchowski process. The first new contribution of this paper is to explore the consequences
of choosing αn ∝ 1/∆t3. We write the proportionality constant as h̄/η so that

αn =
mn

η∆t3 , (17)

where a new constant η is introduced.232

It is convenient to introduce a notation tailored to configuration space. Let xA = xa
n, ∂A = ∂/∂xa

n,
and δAB = δnn′δab, where the upper case indices A, B, . . . label both the particles n, n′, . . . and their
coordinates a, b, . . . Then the transition probability (8) becomes

P(x′|x) = 1
Z

exp
[
− 1

2η∆t
mAB

(
∆xA

∆t
− vA

)(
∆xB

∆t
− vB

)]
, (18)

where we used (9) to define the drift velocity,

vA =
〈∆xA〉

∆t
= mAB [∂BΦ− ĀB] . (19)
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(20)

The drift potential is rescaled into a new variable

Φ = h̄φ

which will be called the phase. We also introduced the “mass” tensor and its inverse,

mAB = mnδAB = mnδnn′δab and mAB =
1

mn
δAB , (21)

and ĀA is a field in configuration space with components,

ĀA(x) = h̄βn Aa(xn) , (22)

A generic displacement is then written as a drift plus a fluctuation,

∆xA = vA∆t + ∆wA . (23)

and the fluctuations ∆wA are given by

〈∆wA〉 = 0 and 〈∆wA∆wB〉 = ηmAB∆t3 , (24)

or 〈(
∆xA

∆t
− vA

)(
∆xB

∆t
− vB

)〉
= ηmAB∆t. (25)

It is noteworthy that 〈∆xA〉 ∼ O(∆t) and ∆wA ∼ O(∆t3/2). This means that for short steps the
fluctuations are negligible and the dynamics is dominated by the drift. The particles follow trajectories
that are indeterministic but differentiable. Since ∆wA ∼ O(∆t3/2) the limit

VA = lim
∆t→0

∆xA

∆t
= vA . (26)

is well defined. In words: the actual velocities of the particles coincide with the expected or drift233

velocities. From eq.(19) we see that these velocities are continuous functions. The question of whether234

the velocities themselves are differentiable or not is trickier.235

Consider two successive displacements ∆x = x′ − x followed by ∆x′ = x′′ − x′. The velocities are

VA =
∆xA

∆t
and V′A =

∆x′A

∆t
(27)

The change in velocity is given by a Langevin equation,

∆VA = 〈∆VA〉x′′x′ + ∆UA (28)

where 〈·〉x′′x′ denotes taking the expectations over x′′ using P(x′′|x′), and then over x′ using P(x′|x),
and ∆UA is a fluctuation. It is straightforward to show that

〈∆VA〉x′′x′ = (∂tvA + vB∂BvA)∆t , (29)

so that the expected acceleration is given by the convective derivative of the velocity field along itself,

lim
∆t→0

〈∆VA〉
∆t

= (∂t + vB∂B)vA . (30)

One can also show that236
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〈∆UA〉x′′x′ = 0 , and 〈∆UA∆UB〉x′′x′ = 2ηmAB∆t , (31)

which means that ∆U is a Wiener process and we deal with a Brownian motion of the237

Oernstein-Uhlenbeck type.238

We conclude this section with some general remarks.239

On the nature of clocks — In Newtonian mechanics time is defined to simplify the dynamics.240

The prototype of a clock is a free particle which moves equal distances in equal times. In ED time241

is also defined to simplify the dynamics of free particles (for sufficiently short times all particles are242

free) and the prototype of a clock is a free particle too: as we see in (23) the particle’s mean displacement243

increases by equal amounts in equal times.244

On the nature of mass — In standard quantum mechanics, “what is mass?” and “why quantum245

fluctuations?” are two independent mysteries. In ED the mystery is somewhat alleviated: as we see in246

eq.(25) mass and fluctuations are two sides of the same coin. Mass is an inverse measure of the velocity247

fluctuations.248

The information metric of configuration space — In addition to defining the dynamics the249

transition probability eq.(18) serves to define the geometry of the N-particle configuration space, XN .250

Since the physical single particle space X is described by the Euclidean metric δab we can expect that251

the N-particle configuration space, XN = X× . . .× X, will also be flat, but for non-identical particles a252

question might be raised about the relative scales or weights associated to each X factor. Information253

geometry provides the answer.254

The fact that to each point x ∈ XN there corresponds a probability distribution P(x′|x) means that
to the space XN we can associate a statistical manifold the geometry of which (up to an overall scale
factor) is uniquely determined by the information metric [14][59],

γAB =
∫

dx′ P(x′|x)∂ log P(x′|x)
∂xA

∂ log P(x′|x)
∂xB . (32)

Substituting eqs.(18) into (32) yields

γAB =
1

η∆t3 mAB . (33)

The divergence as ∆t→ 0 arises because the information metric measures statistical distinguishability.255

As ∆t→ 0 the distributions P(x′|x) and P(x′|x + ∆x) become more sharply peaked and increasingly256

easier to distinguish so that γAB → ∞. Thus, up to a scale factor the metric of configuration space is257

basically the mass tensor.258

The practice of describing a many-particle system as a single point in an abstract configuration259

space goes back to the work of H. Hertz in 1894 [75]. Historically the choice of the mass tensor as the260

metric of configuration space has been regarded as being convenient but of no particular significance.261

We can now see that the choice is not just a merely useful convention: up to an overall scale the metric262

follows uniquely from information geometry. Furthermore, it suggests the intriguing possibility of a263

deeper connection between kinetic energy and information geometry.264

Invariance under gauge transformations — The fact that constraints (5) and (6) are not265

independent — they are both linear in the same displacements 〈∆xa
n〉— leads to a gauge symmetry.266
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This is evident in eq.(7) where φ and Aa appear in the combination ∂naφ− βn Aa which is invariant267

under the gauge transformations,268

Aa(xn) → A′a(xn) = Aa(xn) + ∂aχ(xn) , (34)

φ(x) → φ′(x) = φ(x) + ∑
n

βnχ(xn) . (35)

These transformations are local in 3d-space. Introducing

χ̄(x) = ∑
n

h̄βnχ(xn) , (36)

they can be written in the N-particle configuration space,269

ĀA(x) → Ā′A(x) = ĀA(x) + ∂Aχ̄(x) , (37)

Φ(x) → Φ′(x) = Φ(x) + χ̄(x) . (38)

Interpretation: The drift potential φ(x) = φ(~x1,~x2, . . .) is assumed to be an “angle” — φ(x) and270

φ(x) + 2π are meant to describe the same angle. The angle at ~x1 depends on the values of all the other271

positions ~x2,~x3, . . ., and the angle at ~x2 depends on the values of all the other positions ~x1,~x3, . . ., and272

so on. The fact that the origins from which these angles are measured can be redefined by different273

amounts at different places gives rise to a local gauge symmetry. In order to compare angles at different274

locations one introduces a connection field, the vector potential Aa(~x). It defines which origin at ~x + ∆~x275

is the “same” as the origin at ~x. This is implemented by imposing that as we change origins and Φ(x)276

changes to Φ + χ̄ then the connection transforms as Aa → Aa + ∂aχ so that the quantity ∂AΦ− ĀA277

remains invariant.278

A fractional Brownian motion? — The choices αn ∝ 1/∆t and αn ∝ 1/∆t3 lead to
Einstein-Smoluchowski and Oernstein-Uhlenbeck processes respectively. For definiteness throughout
the rest of this paper we will assume that the sub-quantum motion is an OU process but more general
fractional Brownian motions [74] are possible. Consider

αn =
mn

η∆tγ
, (39)

where γ is some positive parameter. The corresponding transition probability (8),

P(x′|x) = 1
Z

exp
[
− 1

2η∆tγ
mAB

(
∆xA − vA∆t

) (
∆xB − vB∆t

)]
, (40)

leads to fluctuations such that

〈∆wA〉 = 0 and 〈∆wA∆wB〉 = ηmAB∆tγ , (41)

or 〈(
∆xA

∆t
− vA

)(
∆xB

∆t
− vB

)〉
= ηmAB∆tγ−2. (42)

We will not pursue this topic further except to note that since 〈∆xA〉 ∼ O(∆t) and ∆wA ∼ O(∆tγ/2) for279

γ < 2 the sub-quantum motion is dominated by fluctuations and the trajectories are non-differentiable,280

while for γ > 2 the drift dominates and velocities are well defined.281
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4. The evolution equation in differential form282

Entropic dynamics is generated by iterating eq.(13): given the information that defines one instant,
the integral eq.(13) is used to construct the next instant. As so often in physics it is more convenient to
rewrite the equation of evolution in differential form. The result is

∂tρ = −∂A

(
vAρ

)
, (43)

where vA is given by (19). Before we proceed to its derivation we note that eq.(43) is a consequence283

of the fact that the particles follow continuous paths. Accordingly, we will follow standard practice284

and call it the continuity equation. Also note that in the OU process considered here (γ = 3) the current285

velocity — the velocity with which the probability flows in configuration space — coincides with the286

drift velocity (19) and with the actual velocities of the particles (26).11
287

The derivation of (43) is obtained following a technique that is well known in diffusion theory
[76]. (For an alternative derivation see [77].) The result of building up a finite change from an initial
time t0 to a later time t leads to the distribution

ρ(x, t) =
∫

dx0 P(x, t|x0, t0)ρ(x0, t0) , (44)

where the finite-time transition probability, P(x, t|x0, t0), is constructed by iterating the infinitesimal
changes described in eq.(13),

P(x, t + ∆t|x0, t0) =
∫

dz P(x, t + ∆t|z, t)P(z, t|x0, t0) . (45)

For small times ∆t the distribution P(x, t+∆t|z, t), given in eq. (18), is very sharply peaked at x = z. In
fact, as ∆t→ 0 we have P(x, t + ∆t|z, t)→ δ(x− z). Such singular behavior cannot be handled directly
by Taylor expanding in z about the point x. Instead one follows an indirect procedure. Multiply by a
smooth test function f (x) and integrate over x,

∫
dx P(x, t + ∆t|x0, t0) f (x) =

∫
dz
[∫

dx P(x, t + ∆t|z, t) f (x)
]

P(z, t|x0, t0) . (46)

The test function f (x) is assumed sufficiently smooth precisely so that it can be expanded about z.
Then as ∆t→ 0 the integral in the brackets, dropping all terms of order higher than ∆t, is

[· · · ] =
∫

dx P(x, t + ∆t|z, t)
(

f (z) +
∂ f

∂zA (xA − zA) + ...
)

= f (z) + vA(z)∆t
∂ f

∂zA + . . . (47)

where we used eq.(23). Next substitute (47) into the right hand side of (46), divide by ∆t, and let
∆t→ 0. Since f (x) is arbitrary the result is

∂tP(x, t|x0, t0) = −∂A[vA(x)P(x, t|x0, t0)] , (48)

11 In the ES type of ED considered in previous papers (γ = 1) [8]-[10] the probability also satisfies a continuity equation — a
Fokker-Planck equation — and the current velocity is the sum of the drift velocity plus an osmotic component

uA = −h̄mAB∂B log ρ1/2

due to diffusion.
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which is the continuity equation for the finite-time transition probability. Differentiating eq.(44) with288

respect to t, and substituting (48) completes the derivation of the continuity equation (43).289

The continuity equation (43) can be written in another equivalent but very suggestive form
involving functional derivatives. For some suitably chosen functional H̃[ρ, Φ] we have

∂tρ(x) = −∂A

[
ρmAB(∂BΦ− ĀB)

]
=

δH̃
δΦ(x)

. (49)

It is easy to check that the appropriate functional H̃ is

H̃[ρ, Φ] =
∫

dx
1
2

ρmAB (∂AΦ− ĀA) (∂BΦ− ĀB) + F[ρ] , (50)

where the unspecified functional F[ρ] is an integration constant.12
290

The continuity equation (49) describes a somewhat peculiar OU Brownian motion in which the291

probability density ρ(x) is driven by the non-dynamical fields Φ, and Ā. This is an interesting ED292

in its own right but it is not QM. Indeed, a quantum dynamics consists in the coupled evolution of293

two dynamical fields: the density ρ(x) and the phase of the wave function. This second field can294

be naturally introduced into ED by allowing the phase field Φ in (19) to become dynamical which295

amounts to an ED in which the constraint (5) is continuously updated at each instant in time. Our296

next topic is to propose the appropriate updating criterion. It yields an ED in which the phase field Φ297

guides the evolution of ρ, and in return, the evolving ρ reacts back and induces a change in Φ.298

5. The epistemic phase space299

In ED we deal with two configuration spaces. One is the ontic configuration space XN = X ×
X× . . . of all particle positions, x = (x1 . . . xN) ∈ XN . The other is the epistemic configuration space or
e-configuration space P of all normalized probabilities,

P =

{
ρ

∣∣∣∣ρ(x) ≥ 0;
∫

dxρ(x) = 1
}

. (51)

To formulate the coupled dynamics of ρ and Φ we need a framework to study paths in the larger space300

{ρ, Φ} that we will call the epistemic phase space or e-phase space.301

Given any manifold such as P the associated tangent and cotangent bundles, respectively TP and302

T∗P, are geometric objects that are always available to us independently of any physical considerations.303

Both are manifolds in their own right but the cotangent bundle T∗P — the space of all probabilities and304

all covectors — is of particular interest because it comes automatically endowed with a rich geometrical305

structure [50]-[56].13 The point is that cotangent bundles are symplectic manifolds and this singles306

out as “natural” those dynamical laws that happen to preserve some privileged symplectic form. This307

observation will lead us to identify e-phase space {ρ, Φ} with the cotangent bundle T∗P and provides308

the natural criterion for updating constraints, that is, for updating the phase Φ.309

5.1. Notation: vectors, covectors, etc.310

A point X ∈ T∗P will be represented as

X = (ρ(x), π(x)) = (ρx, πx) , (52)

12 Eqs.(49) and (50) show the reason to have introduced the new variable Φ = h̄φ. With this choice Φ will eventually be
recognized as the momentum that is canonically conjugate to the generalized coordinate ρ with Hamiltonian H̃.

13 We deal with ∞-dimensional spaces. The level of mathematical rigor in what follows is typical of theoretical physics —
which is a euphemism for “from very low to none at all.” For a more sophisticated treatment see [53][56].
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where ρx represents coordinates on the base manifold P and πx represents some generic coordinates
on the space T∗Pρ that is cotangent to P at the point ρ. Curves in T∗P allow us to define vectors. Let
X = X(λ) be a curve parametrized by λ, then the vector V̄ tangent to the curve at X = (ρ, π) has
components dρx/dλ and dπx/dλ, and is written

V̄ =
d

dλ
=
∫

dx
[

dρx

dλ

δ

δρx +
dπx

dλ

δ

δπx

]
, (53)

where δ/δρx and δ/δπx are the basis vectors. The directional derivative of a functional F[X] along the
curve X(λ) is

dF
dλ

= ∇̃F[V̄] =
∫

dx
[

δF
δρx

dρx

dλ
+

δF
δπx

dπx

dλ

]
, (54)

where ∇̃ is the functional gradient in T∗P, that is, the gradient of a generic functional F[X] = F[ρ, π] is

∇̃F =
∫

dx
[

δF
δρx ∇̃ρx +

δF
δπx
∇̃πx

]
. (55)

The tilde ‘˜’ serves to distinguish the functional gradient ∇̃ from the spatial gradient ∇ f = ∂a f∇xa on311

R3.312

The fact that the space P is constrained to normalized probabilities means that the coordinates ρx

are not independent. This technical difficulty is handled by embedding the ∞-dimensional manifold P
in a (∞ + 1)-dimensional manifold P+1 where the coordinates ρx are unconstrained.14 Thus, strictly,
∇̃F is a covector on T∗P+1, that is, ∇̃F ∈ T∗

(
T∗P+1)

X and ∇̃ρx and ∇̃πx are the corresponding basis
covectors. Nevertheless, the gradient ∇̃F will yield the desired directional derivatives (54) on T∗P
provided its action is restricted to vectors V̄ that are tangent to the manifold P. Such tangent vectors
are constrained to obey

d
dλ

∫
dxρ(x) =

∫
dx

dρx

dλ
= 0 . (56)

Instead of keeping separate track of the ρx and πx coordinates it is more convenient to combine
them into a single index. A point X = (ρ, π) will then be labelled by its coordinates

X I = (X1x, X2x) = (ρx, πx) . (57)

We will use capital letters from the middle of the Latin alphabet (I, J, K . . .); I = (α, x) is a composite
index where α = 1, 2 keeps track of whether x is an upper index (α = 1) or a lower index (α = 2).15

Then eqs.(53-55) are written as

V̄ = V I δ

δX I , where V I =
dX I

dλ
=

[
dρx/dλ

dπx/dλ

]
, (58)

dF
dλ

= ∇̃F[V̄] =
δF

δX I V I and ∇̃F =
δF

δX I ∇̃X I , (59)

where the repeated indices indicate a summation over α and an integration over x.313

5.2. The symplectic form in ED314

In classical mechanics with configuration space {qi} the Lagrangian L(q, q̇) is a function on the315

tangent bundle while the Hamiltonian H(q, p) is a function on the cotangent bundle [78][79]. A316

14 At this point the act of embedding P into P+1 represents no loss of generality because the embedding space P+1 remains
unspecified.

15 This allows us, among other things, the freedom to switch from ρx to ρx as convenience dictates; from now on ρx = ρx = ρ(x).
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symplectic form provides a mapping from the tangent to the cotangent bundles. Given a Lagrangian317

the map is defined by pi = ∂L/∂q̇i and this automatically defines the corresponding symplectic form.318

In ED there is no Lagrangian so in order to define the symplectic map we must look elsewhere. We319

propose that the role played by the Lagrangian in classical mechanics will in ED be played by the320

continuity equation (49).321

The fact that the preservation of a symplectic structure must reproduce the continuity equation
leads us to identify the phase Φx as the momentum canonically conjugate to ρx. This identification
of the e-phase space {ρ, Φ} with T∗P is highly non-trivial. It amounts to asserting that the phase Φx

transforms as the components of a Poincare 1-form

θ =
∫

dx Φxdρx , (60)

(where d is the exterior derivative) and the corresponding symplectic 2-form Ω = −dθ is

Ω =
∫

dx dρx ∧ dΦx =
∫

dx
[
∇̃ρx ⊗ ∇̃Φx − ∇̃Φx ⊗ ∇̃ρx] . (61)

By construction Ω is exact (Ω = −dθ) and closed (dΩ = 0). The action of Ω[·, ·] on two vectors
V̄ = d/dλ and Ū = d/dµ is given by

Ω[V̄, Ū] =
∫

dx
[
V1xU2x −V2xU1x

]
= ΩI JV IU J , (62)

so that the components of Ω are

ΩI J = Ωαx,βx′ =

[
0 1
−1 0

]
δ(x, x′) . (63)

5.3. Hamiltonian flows and Poisson brackets322

Next we reproduce the ∞-dimensional T∗P analogues of results that are standard in
finite-dimensional classical mechanics [78][79]. Given a vector field V̄[X] in e-phase space we can
integrate V I [X] = dX I/dλ to find its integral curves X I = X I(λ). We are particularly interested in
those vector fields that generate flows that preserve the symplectic structure,

£VΩ = 0 , (64)

where the Lie derivative is given by

(£VΩ)I J = VK∇̃KΩI J + ΩKJ∇̃IVK + ΩIK∇̃JVK . (65)

Since by eq.(63) the components ΩI J are constant, ∇̃KΩI J = 0, we can rewrite £VΩ as

(£VΩ)I J = ∇̃I(ΩKJVK)− ∇̃J(ΩKIVK) , (66)

which is the exterior derivative (basically, the curl) of the covector ΩKIVK. By Poincare’s lemma,
requiring £VΩ = 0 (a vanishing curl) implies that ΩKIVK is the gradient of a scalar function, which we
will denote Ṽ[X],

ΩKIVK = ∇̃IṼ . (67)

Using (63) this is more explicitly written as

∫
dx
[

dρx

dλ
∇̃Φx −

dΦx

dλ
∇̃ρx

]
=
∫

dx
[

δṼ
δρx ∇̃ρx +

δṼ
δΦx
∇̃Φx

]
, (68)
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or
dρx

dλ
=

δṼ
δΦx

and
dΦx

dλ
= − δṼ

δρx , (69)

which we recognize as Hamilton’s equations for a Hamiltonian function Ṽ. This justifies calling V̄ the323

Hamiltonian vector vector field associated to the Hamiltonian function Ṽ.324

From (62), the action of the symplectic form Ω on two Hamiltonian vector fields V̄ = d/dλ and
Ū = d/dµ generated respectively by Ṽ and Ũ is

Ω[V̄, Ū] =
∫

dx
[

dρx

dλ

dΦx

dµ
− dΦx

dλ

dρx

dµ

]
, (70)

which, using (69), gives

Ω[V̄, Ū] =
∫

dx
[

δṼ
δρx

δŨ
δΦx
− δṼ

δΦx

δŨ
δρx

]
def
= {Ṽ, Ũ} , (71)

where on the right we introduced the Poisson bracket notation.325

To summarize these results: (1) The condition for a flow generated by the vector field V I to
preserve the symplectic structure, £VΩ = 0, is that V I be the Hamiltonian vector field associated to a
Hamiltonian function Ṽ, eq.(69),

V I =
dX I

dλ
= {X I , Ṽ} . (72)

(2) The action of Ω on two Hamiltonian vector fields (71) is the Poisson bracket of the associated
Hamiltonian functions,

Ω[V̄, Ū] = ΩI JV IU J = {Ṽ, Ũ} . (73)

We conclude that the ED that preserves the symplectic structure Ω and reproduces the continuity
equation (49) is described by the Hamiltonian flow of the scalar functional H̃ in (50). However, the full
dynamics, which will obey the Hamiltonian evolution equations

∂tρ
x =

δH̃
δΦx

and ∂tΦx = − δH̃
δρx , (74)

is not yet fully determined because the integration constant F[ρ] in (50) remains to be specified.326

5.4. The normalization constraint327

Since the particular flow that we will associate with time evolution is required to reproduce the
continuity equation it will also preserve the normalization constraint,

Ñ = 0 where Ñ = 1− |ρ| and |ρ| def
=
∫

dx ρ(x) . (75)

Indeed, one can check that
∂tÑ = {Ñ, H̃} = 0 . (76)

The Hamiltonian flow (72) generated by Ñ and parametrized by α is given by the vector field

N̄ = N I δ

δX I with N I =
dX I

dα
= {X I , Ñ} , (77)

or, more explicitly,

N1x =
dρx

dα
= 0 and N2x =

dΦx

dα
= 1 . (78)
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The conservation of Ñ, eq.(76), implies that Ñ is the generator of a symmetry, namely,

dH̃
dα

= {H̃, Ñ} = 0 . (79)

Integrating (78) one finds the integral curves generated by Ñ,

ρx(α) = ρx(0) and Φx(α) = Φx(0) + α . (80)

This shows that the symmetry generated by Ñ is to shift the phase Φ by a constant α without otherwise328

changing the dynamics. This was, of course, already evident in the continuity equation (43) with329

(19) but the implications are very significant. Not only does the constraint Ñ = 0 reduce by one the330

(infinite) number of independent ρx degrees of freedom but the actual number of Φxs is also reduced331

by one because for any value of α the phases Φx + α and Φx correspond to the same state. (This is332

the ED analogue of the fact that in QM states are represented by rays rather than vectors in a Hilbert333

space.)334

The immediate consequence is that two vectors Ū and V̄ at X that differ by a vector proportional
to N̄,

Ū = V̄ + kN̄ , (81)

are “physically” equivalent. In particular the vector N̄ is equivalent to zero.335

The phase space of interest is T∗P but to handle the constraint |ρ| = 1 we have been led to using336

coordinates that are more appropriate to the larger embedding space T∗P+1. The price we pay for337

introducing one superfluous coordinate is to also introduce a superfluous momentum. We eliminate338

the extra coordinate by imposing the constraint Ñ = 0. We eliminate the extra momentum by declaring339

it unphysical. All vectors that differ by a vector along the gauge direction N̄ are declared equivalent;340

they belong to the same equivalence class. The result is a global gauge symmetry.341

An equivalence class can be represented by any one of its members and choosing a convenient
representative amounts to fixing the gauge. As we shall see below a convenient gauge condition is to
impose ∫

dx ρxV2x = 0 or 〈V2〉 = 0 , (82)

so that the representative “Tangent Gauge-Fixed” vectors (which we shall refer to as TGF vectors) will
satisfy two conditions, eqs.(56) and (82),

|V1| =
∫

dx V1x = 0 and 〈V2〉 =
∫

dx ρxV2x = 0 . (83)

The first condition enforces a flow tangent to the |ρ| = 1 surface; the second eliminates a superfluous342

vector component along the gauge direction N̄.343

We end this section with a comment on the symplectic form Ω which is non-degenerate on T∗P+1
344

but at first sight appears to be degenerate on T∗P. Indeed, we have Ω(N̄, V̄) = 0 for any tangent vector345

V̄. However, we must recall that N̄ is equivalent to 0. In fact, since the TGF equivalent of N̄ is 0, Ω is346

not degenerate on T∗P.347

6. The information geometry of e-phase space348

The construction of the ensemble Hamiltonian H̃ — or e-Hamiltonian — is motivated as follows.349

The goal of dynamics is to determine the evolution of the state (ρt, Φt). From a given initial state350

(ρ0, Φ0) two slightly different Hamiltonians will lead to slightly different final states, say (ρt, Φt) or351

(ρt + δρt, Φt + δΦt). Will these small changes make any difference? Can we quantify the extent to352

which we can distinguish between two neighboring states? This is precisely the kind of question that353

metrics are designed to address. It is then natural that H̃ be in some way related to some choice of354
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metric. But although P is naturally endowed with a unique information metric the space T∗P has none.355

Thus, our next goal is to construct a metric for T∗P.356

Once a metric structure is in place we can ask: does the distance between two neighboring states357

— the extent to which we can distinguish them — grow, stay the same, or diminish over time? There are358

many possibilities here but for pragmatic (and esthetic) reasons we are led to consider the simplest359

form of dynamics — one that preserves the metric. This leads us to study the Hamilton flows (those360

that preserve the symplectic structure) that are also Killing flows (those flows that preserve the metric361

structure).362

In ED entropic time is constructed so that time (duration) is defined by a clock provided by the363

system itself. This leads to require that the generator H̃ of time translations be defined in terms of364

the very same clock that provides the measure of time. Thus, the third and final ingredient in the365

construction of H̃ is the requirement is that the e-Hamiltonian agree with (50) in order to reproduce366

the evolution of ρ given by the continuity equation (49).367

In this section our goal is to transform e-phase space T∗P from a manifold that is merely368

symplectic to a manifold that is both symplectic and Riemannian. The implementation of the other369

two requirements on H̃ — that it generates a Hamilton-Killing flow and that it agrees with the ED370

continuity equation — will be tackled in sections 7 and 8.371

6.1. The metric on the embedding space T∗P+1
372

The configuration space P is a metric space. Our goal here is to extend its metric — given373

by information geometry — to the full cotangent bundle, T∗P. It is convenient to first recall one374

derivation of the information metric. In the discrete case the statistical manifold is the k-simplex375

Σ = {p = (p0 . . . pk) : ∑k
i=0 pi = 1}. The basic idea is to find the most general metric consistent with a376

certain symmetry requirement. To suggest what that symmetry might be we change to new coordinates377

ξ i = (pi)1/2. In these new coordinates the equation for the k-simplex Σ — the normalization condition378

— reads ∑k
i=0(ξ

i)2 = 1 which suggests the equation of a sphere.379

We take this hint seriously and declare that the k-simplex is a k-sphere embedded in a generic
(k + 1)-dimensional spherically symmetric space Σ+1.16 In the ξ i coordinates the metric of Σ+1 is of
the form

d`2 = [a(|p|)− b(|p|)]
(

k

∑
i=0

ξ idξ i

)2

+ |p|b(|p|)
k

∑
i=0

(dξ i)2, (84)

where a(|p|) and b(|p|) are two arbitrary smooth and positive functions of |p| = ∑k
i=0 pi. Expressed in

terms of the original pi coordinates the metric of Σ+1 is

d`2 = [a(|p|)− b(|p|)]
(

k

∑
i=0

dpi

)2

+ |p|b(|p|)
k

∑
i=0

1
pi (dpi)2 . (85)

The restriction to normalized states, |p| = 1 with displacements tangent to the simplex, ∑k
i=0 dpi =

0, gives the information metric induced on the k-simplex Σ,

d`2 = b(1)
k

∑
i=0

1
pi (dpi)2 . (86)

16 We are effectively determining the metric by imposing a symmetry, namely, rotational invariance. One might be concerned
that choosing this symmetry is an ad hoc assumption but the result proves to be very robust. It turns out that exactly the
same metric is obtained by several other criteria that may appear more natural in the context of inference and probability.
Such criteria include invariance under Markovian embeddings, the geometry of asymptotic inference, and the metrics
induced by relative entropy [80][81] (see also [14]).
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The overall constant b(1) is not important; it amounts to a choice of the units of distance.380

To extend the information metric from the k-simplex Σ to its cotangent bundle T∗Σ we focus on381

the embedding spaces Σ+1 and T∗Σ+1 and require that382

(a) the metric on T∗Σ+1 be compatible with the metric on Σ+1; and383

(b) that the spherical symmetry of the (k + 1)-dimensional space Σ+1 be enlarged to full spherical384

symmetry for the 2(k + 1)-dimensional space T∗Σ+1.385

The simplest way to implement (a) is to follow as closely as possible the derivation that led to (85). The
fact that Φ inherits from the drift potential φ the topological structure of an angle suggests introducing
new coordinates,

ξ i = (pi)1/2 cos Φi/h̄ and ηi = (pi)1/2 sin Φi/h̄ . (87)

Then the normalization condition reads

|p| =
k

∑
i=0

pi =
k

∑
i=0

[
(ξ i)2 + (ηi)2

]
= 1 (88)

which suggests the equation of a (2k + 1)-sphere embedded in 2(k + 1) dimensions. To implement (b)386

we take this spherical symmetry seriously. The most general metric in the embedding space that is387

invariant under rotations is388

d`2 = [a(|p|)− b(|p|)]
[

k

∑
i=0

(
ξ idξ i + ηidηi

)]2

+|p|b(|p|)
k

∑
i=0

[
(dξ i)2 + (dηi)2

]
, (89)

where the two functions a(|p|) and b(|p|) are smooth and positive but otherwise arbitrary. Therefore,389

changing back to the (pi, Φi) coordinates, the most general rotationally invariant metric for the390

embedding space T∗Σ+1 is391

d`2 =
1
4
[a(|p|)− b(|p|)]

[
k

∑
i=0

dpi

]2

+|p|b(|p|) 1
2h̄

k

∑
i=0

[
h̄

2pi (dpi)2 +
2pi

h̄
(dΦi)

2
]

. (90)

Generalizing from the finite-dimensional case to the ∞-dimensional case yields the metric on the
spherically symmetric space T∗P+1,

δ ˜̀2 = A
[∫

dx δρx

]2
+ B

∫
dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx)

2
]

. (91)

where we set
A(|ρ|) = 1

4
[a(|ρ|)− b(|ρ|)] and B(|ρ|) = 1

2h̄
|ρ|b(|ρ|) . (92)

6.2. The metric induced on T∗P392

As we saw in section 5.4 the normalization constraint |ρ| = 1 induces a symmetry — points with393

phases differing by a constant are identified. Therefore the e-phase space T∗P can be obtained from394

the spherically symmetric space T∗P+1 by the restriction |ρ| = 1 and by identifying points (ρx, Φx)395

and (ρx, Φx + α) that lie on the same gauge orbit, or on the same ray.396
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Consider two neighboring points (ρx, Φx) and (ρ′x, Φ′x). The metric induced on T∗P is defined
as the shortest T∗P+1 distance between (ρx, Φx) and points on the ray defined by (ρ′x, Φ′x). Setting
|δρ| = 0 the T∗P+1 distance between (ρx, Φx) and (ρx + δρx, Φx + δΦx + δα) is given by

δ ˜̀2 = B(1)
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx + δα)2

]
. (93)

Let
δs̃2 = min

δα
δ ˜̀2 . (94)

Minimizing over δα gives the metric on T∗P,

δs̃2 =
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx − 〈δΦ〉)2

]
, (95)

where we set B(1) = 1 which amounts to a choice of units of length. This metric is known as the397

Fubini-Study metric.398

The scalar product between two vectors V̄ and Ū is

G(V̄, Ū) =
∫

dx
[

h̄
2ρx

V1xU1x +
2ρx

h̄
(V2x − 〈V2〉)(U2x − 〈U2〉)

]
. (96)

It is at this point that we recognize the convenience of imposing the TGF gauge condition (83): the
scalar product simplifies to

G(V̄, Ū) =
∫

dx
[

h̄
2ρx

V1xU1x +
2ρx

h̄
V2xU2x

]
. (97)

An analogous expression can be written for the length δs̃ of a displacement (δρx, δΦx),

δs̃2 =
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx)

2
]

, (98)

where it is understood that (δρx, δΦx) satisfies the TGF condition

|δρ| = 0 and 〈δΦ〉 = 0 . (99)

In index notation the metric (98) of T∗P is written as

δs̃2 = GI JδX IδX J =
∫

dxdx′Gαx,βx′δXxαδXx′β (100)

where the metric tensor GI J is17

GI J = Gαx,βx′ =

[
h̄

2ρx
δxx′ 0
0 2

h̄ ρxδxx′

]
. (101)

17 The tensor GI J in eq.(101) can act on arbitrary vectors whether they satisfy the TGF condition or not. It is only when GI J acts
on TGF vectors that it is interpreted as a metric tensor on T∗P.
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6.3. A complex structure399

Consider contracting the symplectic form ΩI J , eq.(63), with the inverse of the metric tensor,

GI J = Gαx,βx′ =

[
2
h̄ ρxδxx′ 0

0 h̄
2ρx

δxx′

]
. (102)

The result is a mixed tensor J with components

J I
J = −GIKΩKJ =

[
0 − 2

h̄ ρxδxx′
h̄

2ρx
δxx′ 0

]
. (103)

(The reason for the negative sign will become clear below.) The tensor J I
J maps vectors to vectors — as

any mixed (1, 1) tensor should. What makes the tensor J special is that — as one can easily check — its
action on a TGF vector V̄ yields another vector JV̄ that is also TGF and, furthermore, its square is

J I
K JK

J = −δxx′

[
1 0
0 1

]
= −δI

J . (104)

In words, when acting on vectors tangent to T∗P the action of J2 (or Ω2) is equivalent to multiplying400

by −1. This means that J plays the role of a complex structure.401

We conclude that the cotangent bundle T∗P has a symplectic structure Ω, as all cotangent bundles402

do; that it can be given a Riemannian structure GI J ; and that the mixed tensor J provides it with a403

complex structure.404

6.4. Complex coordinates405

The fact that T∗P is endowed with a complex structure suggests introducing complex coordinates,

Ψx = ρ1/2
x exp iΦx/h̄ . (105)

A point Ψ ∈ T∗P+1 has coordinates

Ψµx =

(
Ψ1x

Ψ2x

)
=

(
Ψx

ih̄Ψ∗x

)
, (106)

where the index µ takes two values, µ = 1, 2.406

We can check that the transformation from real coordinates (ρ, Φ) to complex coordinates
(Ψ, ih̄Ψ∗) is canonical. Indeed, the action of Ω on two infinitesimal vectors δX I and δ′X J is

ΩI JδX Iδ′X J =
∫

dx
(
δρxδ′Φx − δΦxδ′ρx

)
,

which, when expressed in Ψ coordinates, becomes

ΩI JδX Iδ′X J =
∫

dx
(
δΨδ′ih̄Ψ∗ − δih̄Ψ∗δ′Ψ

)
= Ωµx,νx′δΨµxδΨνx′ (107)

where

Ωµx,νx′ =

[
0 1
−1 0

]
δxx′ , (108)

retains the same form as (63).407
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Expressed in Ψ coordinates the Hamiltonian flow generated by the normalization constraint (75),

Ñ = 0 with Ñ = 1−
∫

dx Ψ∗xΨx , (109)

and parametrized by α is given by the vector field

N̄ = −
(

Ψx/ih̄
ih̄(Ψx/ih̄)∗

)
. (110)

Its integral curves are
Ψx(α) = Ψx(0)eiα/h̄ . (111)

The constraint Ñ = 0 induces a gauge symmetry which leads us to restrict our attention to vectors
V̄ = d/dλ satisfying two real TGF conditions (83). In Ψ coordinates this is replaced by the single
complex TGF condition, ∫

dx Ψ∗x
dΨx

dλ
= 0 . (112)

In Ψ coordinates the metric on T∗P, eq.(98), becomes

δs̃2 = −2i
∫

dx δΨxδih̄Ψ∗x =
∫

dxdx′Gµx,νx′ δΨµxδΨνx′ , (113)

where the metric tensor and its inverse are

Gµx,νx′ = −iδxx′

[
0 1
1 0

]
and Gµx,νx′ = iδxx′

[
0 1
1 0

]
. (114)

Finally, using Gµx,νx′ to raise the first index of Ωνx′ ,γx′′ gives the Ψ components of the tensor J

Jµx
γx′′

def
= −Gµx,νx′Ωνx′ ,γx′′ =

[
i 0
0 −i

]
δxx′ . (115)

7. Hamilton-Killing flows408

Our next goal will be to find those Hamiltonian flows QI that also happen to preserve the metric
tensor, that is, we want QI to be a Killing vector. The condition for QI is

(£QG)I J = QK∇̃KGI J + GKJ∇̃I QK + GIK∇̃JQK = 0 . (116)

In complex coordinates eq.(114) gives ∇̃KGI J = 0, and the Killing equation simplifies to

(£QG)I J = GKJ∇̃I QK + GIK∇̃JQK = 0 , (117)

or

(£QG)µx,νx′ = −i

 δQ2x′

δΨx
+ δQ2x

δΨx′
; δQ1x′

δΨx
+ δQ2x

δih̄Ψ∗
x′

δQ2x′

δih̄Ψ∗x
+ δQ1x

δΨx′
; δQ1x′

δih̄Ψ∗x
+ δQ1x

δih̄Ψ∗
x′

 = 0 . (118)

If we further require that QI be a Hamiltonian flow, £QΩ = 0, then we substitute

Q1x =
δQ̃

δih̄Ψ∗x
and Q2x = − δQ̃

δΨx
(119)
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into (118) to get
δ2Q̃

δΨxδΨx′
= 0 and

δ2Q̃
δΨ∗xδΨ∗x′

= 0 . (120)

Therefore in order to generate a flow that preserves both G and Ω the functional Q̃[Ψ, Ψ∗] must be
linear in both Ψ and Ψ∗,

Q̃[Ψ, Ψ∗] =
∫

dxdx′ Ψ∗xQ̂xx′Ψx′ , (121)

where Q̂xx′ is a possibly non-local kernel. The actual Hamilton-Killing flow is409

dΨx

dλ
= Q1x =

δQ̃
δih̄Ψ∗x

=
1
ih̄

∫
dx′ Q̂xx′Ψx′ , (122)

dih̄Ψ∗x
dλ

= Q2x = − δQ̃
δΨx

= −
∫

dx′ Ψ∗x′ Q̂xx′ . (123)

Taking the complex conjugate of (122) and comparing with (123), shows that the kernel Q̂xx′ is
Hermitian,

Q̂∗xx′ = Q̂x′x , (124)

and we can check that the corresponding Hamiltonian functionals Q̃ are real,

Q̃[Ψ, Ψ∗]∗ = Q̃[Ψ, Ψ∗] .

The Hamiltonian flows that might potentially be of interest are those that generate symmetry
transformations. For example, the generator of translations is total momentum. Under a spatial
displacement by εa, g(x)→ gε(x) = g(x− ε), the change in f [ρ, Φ] is

δε f [ρ, Φ] =
∫

dx
(

δ f
δρx

δερx +
δ f

δΦx
δεΦx

)
= { f , P̃aεa} (125)

where
P̃a =

∫
dx ρ ∑

n

∂Φ
∂xa

n
=
∫

dx ρ
∂Φ
∂Xa (126)

is interpreted as the expectation of the total momentum, and Xa are the coordinates of the center of
mass,

Xa =
1
M ∑

n
mnxa

n . (127)

In complex coordinates,

P̃a =
∫

dx Ψ∗
(

∑
n

h̄
i

∂

∂xa
n

)
Ψ =

∫
dx Ψ∗

(
h̄
i

∂

∂Xa

)
Ψ , (128)

and the corresponding kernel P̂axx′ is

P̂axx′ = δxx′ ∑
n

h̄
i

∂

∂xa
n
= δxx′

h̄
i

∂

∂Xa . (129)

8. The e-Hamiltonian410

In previous sections we supplied the symplectic e-phase space T∗P with a Riemannian metric
and, as a welcome by-product, also with a complex structure. Then we showed that the condition for
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the simplest form of dynamics — one that preserves all the metric, symplectic, and complex structures
— is a Hamilton-Killing flow generated by a Hamiltonian H̃ that is linear in both Ψ and Ψ∗,

H̃[Ψ, Ψ∗] =
∫

dxdx′ Ψ∗x Ĥxx′Ψx′ . (130)

The last ingredient in the construction of H̃ is that the e-Hamiltonian has to agree with (50) in order to411

reproduce the entropic evolution of ρ given by the continuity eq.(49).412

To proceed we use the identity

1
2

ρmAB(∂AΦ− ĀA)(∂BΦ− ĀB) =
h̄2

2
mAB(DAΨ)∗DBΨ− h̄2

8ρ2 mAB∂Aρ∂Bρ (131)

where
DA = ∂A −

i
h̄

ĀA and ĀA(x) = h̄βn Aa(xn) . (132)

Rewriting H̃[ρ, Φ] in (50) in terms of Ψ and Ψ∗ we get

H̃[Ψ, Ψ∗] =
∫

dx

(
−h̄2

2
mABΨ∗DADBΨ

)
+ F′[ρ] . (133)

where

F′[ρ] = F[ρ]− h̄2

8ρ2 mAB∂Aρ∂Bρ . (134)

According to (121) in order for H̃[Ψ, Ψ∗] to generate an HK flow we must impose that F′[ρ] be linear in
both Ψ and Ψ∗,

F′[ρ] =
∫

dxdx′ Ψ∗xV̂xx′Ψx′ (135)

for some Hermitian kernel V̂xx′ , but F′[ρ] must remain independent of Φ,

δF′[ρ]
δΦx

= 0 . (136)

Substituting Ψ = ρ1/2eiΦ/h̄ into (135) and using V̂∗x′x = V̂xx′ leads to

δF′

δΦx
=

2
h̄

ρ1/2
x

∫
dx′ρ1/2

x′ Im
(

V̂xx′ e
−i(Φx−Φx′)/h̄

)
= 0 (137)

This equation must be satisfied for all choices of ρx′ , which implies

Im
(

V̂xx′ e
−i(Φx−Φx′)/h̄

)
= 0 , (138)

and also for all choices of Φx and Φx′ . Therefore, the kernel V̂xx′ must be local in x,

V̂xx′ = δxx′Vx (139)

where Vx = V(x) is some real function.413

We conclude that the Hamiltonian that generates a Hamilton-Killing flow and agrees with the ED
continuity equation must be of the form

H̃[Ψ, Ψ∗] =
∫

dxΨ∗
(
− h̄2

2
mABDADB + V(x)

)
Ψ . (140)
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The evolution of Ψ is given by the Hamilton equation,

∂tΨx = {Ψx, H̃} = δH̃
δ(ih̄Ψ∗(x))

, (141)

which is the Schrödinger equation,

ih̄∂tΨ = − h̄2

2
mABDADBΨ + VΨ . (142)

In more standard notation it reads

ih̄∂tΨ = ∑
n

−h̄2

2mn
δab
(

∂

∂xa
n
− iβn Aa(xn)

)(
∂

∂xb
n
− iβn Ab(xn)

)
Ψ + VΨ . (143)

At this point we can finally provide the physical interpretation of the various constants introduced
along the way. Since the Schrödinger equation (143) is the tool we use to analyze experimental data we
can identify h̄ with Planck’s constant, mn will be interpreted as the particles’ masses, and the βn are
related to the particles’ electric charges qn by

βn =
qn

h̄c
. (144)

For completeness we write the Hamiltonian in the (ρ, Φ) variables,414

H̃[ρ, Φ] =
∫

d3N x ρ

[
∑
n

δab

2mn

(
∂Φ
∂xa

n
− qn

c
Aa(xn)

)(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)

+ ∑
n

h̄2

8mn

δab

ρ2
∂ρ

∂xa
n

∂ρ

∂xb
n
+ V(x1 . . . xn)

]
. (145)

The Hamilton equations for ρ and Φ are the continuity equation (49),

∂tρ =
δH̃
δΦ

= −∑
n

∂

∂xa
n

[
ρ

δab

mn

(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)]
, (146)

and the quantum analogue of the Hamilton-Jacobi equation,415

∂tΦ = − δH̃
δρ

= ∑
n

−δab

2mn

(
∂Φ
∂xa

n
− qn

c
Aa(xn)

)(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)
+ ∑

n

h̄2

2mn

δab

ρ1/2
∂2ρ1/2

∂xa
n∂xb

n
−V(x1 . . . xn)

]
. (147)

We have just shown that an ED that preserves both the symplectic and metric structures of the e-phase416

space T∗P leads to a linear Schrödinger equation. In particular, such an ED reproduces the quantum417

potential in (147) with the correct coefficients h̄2/2mn.418

9. Entropic time, physical time, and time reversal419

Now that the dynamics has been fully developed we revisit the question of time. The derivation420

of laws of physics as examples of inference led us to introduce the notion of entropic time which421

includes assumptions about the concept of instant, of simultaneity, of ordering, and of duration. It is422

clear that entropic time is useful but is this the actual, real, “physical” time? The answer is yes. By423

deriving the Schrödinger equation (from which we can obtain the classical limit) we have shown that424

the t that appears in the laws of physics is entropic time. Since these are the equations that we routinely425
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use to design and calibrate our clocks we conclude that what clocks measure is entropic time. No notion426

of time that is in any way deeper or more “physical” is needed. Most interestingly, the entropic model427

automatically includes an arrow of time.428

The statement that the laws of physics are invariant under time reversal has nothing to do with
particles travelling backwards in time. It is instead the assertion that the laws of physics exhibit a
certain symmetry. For a classical system described by coordinates q and momenta p the symmetry is
the statement that if {qt, pt} happens to be one solution of Hamilton’s equations then we can construct
another solution {qT

t , pT
t } where

qT
t = q−t and pT

t = −p−t , (148)

but both solutions {qt, pt} and {qT
t , pT

t } describe evolution forward in time. An alternative statement of429

time reversibility is the following: if there is one trajectory of the system that takes it from state {q0, p0}430

at time t0 to state {q1, p1} at the later time t1, then there is another trajectory that takes the system from431

state {q1,−p1} at time t0 to state {q0,−p0} at the later time t1. The merit of this re-statement is that it432

makes clear that nothing needs to travel back in time. Indeed, rather than time reversal the symmetry433

might be more appropriately described as momentum or motion reversal.434

Since ED is a Hamiltonian dynamics one can expect that similar considerations will apply to QM
and indeed they do. It is straightforward to check that given one solution {ρt(x), Φt(x)} that evolves
forward in time, we can construct another solution {ρT

t (x), ΦT
t (x)} that is also evolving forward in

time. The reversed solution is

ρT
t (x) = ρ−t(x) and ΦT

t (x) = −Φ−t(x) . (149)

These transformations constitute a symmetry — i.e., the transformed ΨT
t (x) is a solution of the

Schrödinger equation — provided the motion of the sources of the external potentials is also reversed,
that is, the potentials Aa(~x, t) and V(x, t) are transformed according to

AT
a (~x, t) = −Aa(~x,−t) and VT(x, t) = V(x,−t) . (150)

Expressed in terms of wave functions the time reversal transformation is

ΨT
t (x) = Ψ∗−t(x) . (151)

The proof that this is a symmetry is straightforward; just take the complex conjugate of (143), and let435

t→ −t.436

10. Linearity and the superposition principle437

The Schrödinger equation is linear, that is, a linear combination of solutions is a solution too.
However, this mathematical linearity does not guarantee the physical linearity that is usually referred to
as the superposition principle. The latter is the physical assumption that if there is one experimental
setup that prepares a system in the (epistemic) state Ψ1 and there is another setup that prepares the
system in the state Ψ2 then, at least in principle, it is possible to construct yet a third setup that can
prepare the system in the superposition

Ψ3 = α1Ψ1 + α2Ψ2 , (152)

where α1 and α2 are arbitrary complex numbers. Mathematical linearity refers to the fact that solutions438

can be expressed as sums of solutions. There is no implication that any of these solutions will439

necessarily describe physical situations. Physical linearity on the other hand — the Superposition440

Principle — refers to the fact that the superposition of physical solutions is also a physical solution.441
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The point to be emphasized is the Superposition Principle is not a principle; it is a physical hypothesis442

that need not be universally true.443

10.1. The single-valuedness of Ψ444

The question “Why should wave functions be single-valued?” has been around for a long time.445

In this section we build on and extend recent work [82] to argue that the single- or multi-valuedness of446

the wave functions is closely related to the question of linearity and the superposition principle. Our447

discussion parallels that by Schrödinger [83].18 (See also [84]-[89].)19
448

To show that the mathematical linearity of (143) is not sufficient to imply the superposition
principle we argue that even when |Ψ1|2 = ρ1 and |Ψ2|2 = ρ2 are probabilities it is not generally true
that |Ψ3|2, eq.(152), will also be a probability. Consider moving around a closed loop Γ in configuration
space. Since phases Φ(x) can be multi-valued the corresponding wave functions can be multi-valued
too. Let a generic Ψ change by a phase factor,

Ψ→ Ψ′ = eiδΨ , (153)

then the superposition Ψ3 of two wave functions Ψ1 and Ψ2 changes into

Ψ3 → Ψ′3 = α1eiδ1 Ψ1 + α2eiδ2 Ψ2 . (154)

The problem is that even if |Ψ1|2 = ρ1 and |Ψ2|2 = ρ2 are single-valued (because they are probability
densities), the quantity |Ψ3|2 need not in general be single-valued. Indeed,

|Ψ3|2 = |α1|2ρ1 + |α2|2ρ2 + 2Re[α1α∗2Ψ1Ψ∗2 ] , (155)

changes into
|Ψ′3|2 = |α1|2ρ1 + |α2|2ρ2 + 2Re[α1α∗2ei(δ1−δ2)Ψ1Ψ∗2 ] , (156)

so that in general
|Ψ′3|2 6= |Ψ3|2 , (157)

which precludes the interpretation of |Ψ3|2 as a probability. That is, even when the epistemic states Ψ1449

and Ψ2 describe actual physical situations, their superposition need not.450

The problem does not arise when
ei(δ1−δ2) = 1 . (158)

If we were to group the wave functions into classes each characterized by its own δ then we could451

have a limited version of the superposition principle that applies within each class. We conclude452

that beyond the linearity of the Schrödinger equation we have a superselection rule that restricts the453

validity of the superposition principle to wave functions belong to the same δ-class.454

To find the allowed values of δ we argue as follows. It is natural to assume that if {ρ, Φ} (at some
given time t0) is a physical state then the state with reversed momentum {ρ,−Φ} (at the same time t0)

18 Schrödinger invoked time reversal invariance which was a very legitimate move back in 1938 but today it is preferable to
develop an argument which does not invoke symmetries that are already known to be violated.

19 The answer proposed by Pauli is also worthy of note [84][85]. He proposed that admissible wave functions must form a basis
for representations of the transformation group that happens to be pertinent to the problem at hand. In particular, Pauli’s
argument serves to discard double-valued wave functions for describing the orbital angular momentum of scalar particles.
The question of single-valuedness was revived by Takabayashi [86] in the context of the hydrodynamical interpretation
of QM, and later rephrased by Wallstrom [88][89] as an objection to Nelson’s stochastic mechanics: are these theories
equivalent to QM or do they merely reproduce a subset of its solutions? Wallstrom’s objection is that Nelson’s stochastic
mechanics leads to phases and wave functions that are either both multi-valued or both single-valued. Both alternatives
are unsatisfactory because on one hand QM requires single-valued wave functions, while on the other hand single-valued
phases exclude states that are physically relevant (e.g., states with non-zero angular momentum).
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is an equally reasonable physical state. Basically, the idea is that if particles can be prepared to move
in one direction, then they can also be prepared to move in the opposite direction. In terms of wave
functions the statement is that if Ψt0 is a physically allowed initial state, then so is Ψ∗t0

.20 Next we
consider a generic superposition

Ψ3 = α1Ψ + α2Ψ∗ . (159)

Is it physically possible to construct superpositions such as (159)? The answer is that while constructing455

Ψ3 for an arbitrary Ψ might not be feasible in practice there is strong empirical evidence that there456

exist no superselection rules to prevent us from doing so in principle. Indeed, it is easy to construct457

superpositions of wavepackets with momentum ~p and −~p, or superpositions of states with opposite458

angular momenta, Y`m and Y`,−m. We shall assume that in principle the superpositions (159) are physically459

possible.460

According to eq.(153) as one moves in a closed loop Γ the wave function Ψ3 will transform into

Ψ′3 = α1eiδΨ + α2e−iδΨ∗ , (160)

and the condition (158) for |Ψ3|2 to be single-valued is

e2iδ = 1 or eiδ = ±1 . (161)

Thus, we are restricted to two discrete possibilities ±1. Since the wave functions are assumed461

sufficiently well behaved (continuous, differentiable, etc.) we conclude that they must be either462

single-valued, eiδ = 1, or double-valued, eiδ = −1.463

We conclude that the Superposition Principle appears to be valid in a sufficiently large number of464

cases to be a useful rule of thumb but it is restricted to single-valued (or double-valued) wave functions.465

The argument above does not exclude the possibility that a multi-valued wave function might describe466

an actual physical situation. What the argument implies is that the Superposition Principle would not467

extend to such states.468

10.2. Charge quantization469

From now on we confine our attention to systems that are described by single-valued wave
functions (eiδ = +1)21 and obey the superposition principle. The condition for the wave function to be
single-valued is

∆
Φ
h̄

=
∮

Γ
d`A∂A

Φ
h̄

= 2πkΓ , (162)

where kΓ is an integer that depends on the loop Γ. Under a local gauge transformation

Aa(~x)→ Aa(~x) + ∂aχ(~x) (163)

the phase Φ transforms according to (38),

Φ(x)→ Φ′(x) = Φ(x) + ∑
n

qn

c
χ(~xn) . (164)

20 We make no symmetry assumptions such as parity or time reversibility. It need not be the case that there is any symmetry
that relates the time evolution of Ψ∗t0

to that of Ψt0 .
21 Double-valued wave functions with eiδ = −1 will, of course, find use in the description of spin-1/2 particles. [71]
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The requirement that the gauge symmetry be compatible with the superposition principle amounts to
requiring that the gauge transformed states also be single-valued,

∆
Φ′

h̄
=
∮

Γ
d`A∂A

Φ′

h̄
= 2πk′Γ , (165)

Thus, the allowed gauge transformations are restricted to functions χ(~x) such that

∑
n

qn

h̄c

∮
Γ

d`a
n∂naχ(~xn) = 2π∆kΓ (166)

where ∆kΓ = k′Γ − kΓ is an integer. Consider now a loop γ in which we follow the coordinates of the
nth particle around some closed path in 3-dimensional space while all the other particles are kept fixed.
Then

qn

h̄c

∮
γ

d`a
n∂anχ(~xn) = 2π∆knγ , (167)

where ∆knγ is an integer. Since the gauge function χ(~x) is just a function in 3-dimensional space it is470

the same for all particles and the integral on the left is independent of n. This implies that the charge qn471

divided by an integer ∆knγ must be independent of n which means that qn must be an integer multiple472

of some basic charge q0. We conclude that the charges qn are quantized.473

The issue of charge quantization is ultimately the issue of deciding which is the gauge group474

that generates electromagnetic interactions. We could for example decide to restrict the gauge475

transformations to single-valued gauge functions χ(~x) so that (167) is trivially satisfied irrespective of476

the charges being quantized or not. Under such a restricted symmetry group the single-valued (or477

double-valued) nature of the wave function is unaffected by gauge transformations. If, on the other478

hand, the gauge functions χ(~x) are allowed to be multi-valued, then the compatibility of the gauge479

transformation (163-164) with the superposition principle demands that charges be quantized.480

The argument above cannot fix the value of the basic charge q0 because it depends on the units481

chosen for the vector potential Aa. Indeed since the dynamical equations show qn and Aa appearing482

only in the combination qn Aa we can change units by rescaling charges and potentials according to483

Cqn = q′n and Aa/C = A′a so that qn Aa = q′n A′a . For conventional units such that the basic charge is484

q0 = e/3 with α = e2/h̄c = 1/137 the scaling factor is C = (αh̄c)1/2/3q0. A more natural set of units485

might be to set q0 = h̄c so that all βns are integers and the gauge functions χ(~x) are angles.486

A similar conclusion — that charge quantization is a reflection of the compactness of the gauge
group — can be reached following an argument due to C. N. Yang [90]. Yang’s argument assumes that
a Hilbert space has been established and one has access to the unitary representations of symmetry
groups. Yang considers a gauge transformation

Ψ(x)→ Ψ(x) exp i ∑
n

qn

c
χ(~xn) , (168)

with χ(~x) independent of ~x. If the qns are not commensurate there is no value of χ (except 0) that487

makes (168) be the identity transformation. The gauge group — translations on the real line — would488

not be compact. If, on the other hand, the charges are integer multiples of a basic charge q0, then489

two values of χ that differ by an integer multiple of 2πc/q0 give identical transformations and the490

gauge group is compact. In the present ED derivation, however, we deal with the space T∗P which491

is a complex projective space. We cannot adopt Yang’s argument because a gauge transformation χ492

independent of ~x is already an identity transformation — it leads to an equivalent state in the same ray493

— and cannot therefore lead to any constraints on the allowed charges.494
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11. The classical limits and the Bohmian limit495

11.1. Classical limits496

There are two classical limits that one might wish to consider. One is the mathematical limit h̄→ 0.497

Taking h̄→ 0 leaves unchanged both the velocities va
n of the particles, eq.(19), and the probability flow,498

eq.(146). The main effect is to suppress the quantum potential so that eq.(147) becomes the classical499

Hamilton-Jacobi equation. The symplectic form, eq.(63), survives unscathed but the metric and the500

complex structures, eqs.(101) and (103), do not. But this is not quite classical mechanics. Since the501

velocity fluctuations, eq.(25), remain unaffected the resulting dynamics is a non-dissipative version of502

the classical Oernstein-Uhlenbeck Brownian motion. To recover a deterministic classical mechanics503

one must also take the limit η → 0 .504

The other classical limit arises in the more physically relevant situation where one deals with a
system with a large number N of particles — for example, a speck of dust — and one wishes to study
the motion of an effective macrovariable such as the center of mass (CM), eq.(127). The large N limit
of ED with particles undergoing an ES Brownian motion was studied in [66]. The same argument
goes through essentially unchanged for the OU Brownian motion discussed here. Skipping all details
we find that as a consequence of the central limit theorem the continuity equation for ρcm(Xa) and
the velocity fluctuations are given by the analogues of (43) and (25) for a single particle of mass
M = ∑N

n=1 mn,

∂tρcm =
∂

∂Xa (ρcmVa) with Va =
〈∆Xa〉

∆t
=

1
M

∂Φcm

∂Xa , (169)〈(
∆Xa

∆t
−Va

)(
∆Xb

∆t
−Vb

)〉
=

η∆t
M

. (170)

We also find that under rather general conditions the CM motion decouples from the motion of the
component particles and obeys the single particle HJ equation

− ∂tΦcm =
1

2M

(
∂Φcm

∂Xa

)2
− h̄2

2M
∇2ρ1/2

cm

ρ1/2
cm

+ Vext(X) . (171)

In the large N limit M ∼ O(N) and we obtain a finite velocity Va in (169) provided Φcm ∼ O(N). In505

eq.(171) we see that for a sufficiently large system the quantum potential for the CM motion vanishes.506

Therefore, for N → ∞, the CM follows smooth trajectories described by a classical Hamilton-Jacobi507

equation. Furthermore, eq.(170) shows that as N → ∞ the velocity fluctuations vanish irrespective of508

the value of η. This is a truly deterministic classical mechanics.509

An important feature of this derivation is that h̄ and η remain finite which means that a mesoscopic510

or macroscopic object will behave classically while all its component particles remain fully quantum511

mechanical.512

11.2. The Bohmian limit513

ED models with different values of η lead to the same Schrödinger equation. In other words,514

different sub-quantum models lead to the same emergent quantum behavior. The limit of vanishing η515

deserves particular attention because the velocity fluctuations, eq.(25), are suppressed and the motion516

becomes deterministic. This means that ED includes the Bohmian form of quantum mechanics [45]-[47]517

as a special limiting case — but with the important caveat that the difference in physical interpretation518

remains enormous. It is only with respect to the mathematical formalism that ED includes Bohmian519

mechanics as a special case.520

Bohmian mechanics attempts to provide an actual description of reality. In the Bohmian view the521

universe consists of real particles that have definite positions and their trajectories are guided by a real522

field, the wave function Ψ. Not only does this pilot wave live in 3N-dimensional configuration space523
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but it manages to act on the particles without the particles reacting back upon it. These are peculiarities524

that have stood in the way of a wider acceptance of the Bohmian interpretation. In contrast, ED’s525

pragmatic goal is much less ambitious: to make the best possible predictions on the basis of very526

incomplete information. As in Bohmian mechanics, in ED the particles also have definite positions and527

its formalism includes a function Φ that plays the role of a pilot wave. But Φ is an epistemic tool for528

reasoning; it is not meant to represent anything real. There is no implication that the particles move529

the way they do because they are pushed around by a pilot wave or by some stochastic force. In fact530

ED is silent on the issue of what if anything is pushing the particles. What the probability ρ and the531

phase Φ are designed to do is not to guide the particles but to guide our inferences. They guide our532

expectations of where and when to find the particles but they do not exert any causal influence on the533

particles themselves.534

12. Hilbert space535

The formulation of the ED of spinless particles is now complete. We note, in particular, that the536

notion of Hilbert spaces turned out to be unnecessary to the formulation of quantum mechanics. As we537

shall see next, while strictly unnecessary in principle, the introduction of Hilbert spaces is nevertheless538

very convenient for calculational purposes.539

A vector space — As we saw above the infinite-dimensional e-phase space — the cotangent540

bundle T∗P — is difficult to handle. The problem is that the natural coordinates are probabilities541

ρx which, due to the normalization constraint, are not independent. In a discrete space one could542

single out one of the coordinates and its conjugate momentum and then proceed to remove them.543

Unfortunately, with a continuum of coordinates and momenta the removal is not feasible. The solution544

is to embed T∗P in a larger space T∗P+1. This move allows us to keep the natural coordinates ρx but545

there is a price: we are forced to deal with a constrained system and its attendant gauge symmetry.546

We also saw that the geometry of the embedding space was not fully determined: any spherically
symmetric space would serve our purposes. This is a freedom we can further exploit. For calculational
purposes the linearity of the Schrödinger equation (143) is very convenient but its usefulness is severely
limited by the normalization constraint. If Ψ1 and Ψ2 are flows in T∗P then the superposition Ψ3 in
(152) will also be a flow in T∗P but only when constrained by

|α1|2 + |α2|2 = 1 . (172)

This restriction can be removed by choosing the extended embedding space T∗P+1 to be flat — just set547

A = 0 and B = 1 in eq.(91). (The fact that this space is flat is evident in the metric (89) for the discrete548

case.) We emphasize that this choice is not at all obligatory; it is optional.549

The fact that in the flat space T∗P+1 superpositions are allowed for arbitrary constants α1 and550

α2 means that T∗P+1 is not just a manifold; it is also a vector space. Each point Ψ in T∗P+1 is itself a551

vector. Furthermore, since the vector tangent to a curve is just a difference of two vectors Ψ we see that552

that points on the manifold and vectors tangent to the manifold are objects of the same kind. In other553

words, the tangent spaces T[T∗P+1]Ψ are identical to the space T∗P+1 itself.554

The symplectic form Ω and the metric tensor G on the extended space T∗P+1 are given by eq.(108)
and (114). These expressions now hold for all points Ψ ∈ T∗P+1 and not just for those that happen to
be normalized and gauge fixed according to (83). These tensors are meant to act on vectors but now
they can also act on points. For example, the action of the mixed tensor J, eq.(115), on a wave function
Ψ is

Jµx
νx′Ψ

νx′ =

[
i 0
0 −i

](
Ψx

ih̄Ψ∗x

)
=

(
iΨx

ih̄(iΨx)∗

)
, (173)

which indicates that J plays the role of multiplication by i, that is, when acting on a point Ψ the action555

of J is Ψ
J→ iΨ.556
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Dirac notation — We can at this point introduce the Dirac notation to represent the wave
functions Ψx as vectors |Ψ〉 in a Hilbert space. The scalar product 〈Ψ1|Ψ2〉 is defined using the metric
G and the symplectic form Ω,

〈Ψ1|Ψ2〉
def
=

1
2h̄

∫
dx dx′ (Ψ1x, ih̄Ψ∗1x) (G + iΩ)

(
Ψ2x′

ih̄Ψ∗2x′

)
. (174)

A straightforward calculation gives

〈Ψ1|Ψ2〉 =
∫

dx Ψ∗1Ψ2 . (175)

The map Ψx ↔ |Ψ〉 is defined by

|Ψ〉 =
∫

dx|x〉Ψx where Ψx = 〈x|Ψ〉 , (176)

where, in this “position” representation, the vectors {|x〉}, form a basis that is orthogonal and complete,

〈x|x′〉 = δxx′ and
∫

dx |x〉〈x| = 1̂ . (177)

Hermitian and unitary operators — The bilinear Hamilton functionals Q̃[Ψ, Ψ∗] with kernel
Q̂(x, x′) in eq.(121) can now be written in terms of a Hermitian operator Q̂ and its matrix elements,

Q̃[Ψ, Ψ∗] = 〈Ψ|Q̂|Ψ〉 and Q̂(x, x′) = 〈x|Q̂|x′〉 . (178)

The corresponding Hamilton-Killing flows are given by

ih̄
d

dλ
〈x|Ψ〉 = 〈x|Q̂|Ψ〉 or ih̄

d
dλ
|Ψ〉 = Q̂|Ψ〉 . (179)

These flows are described by unitary transformations

|Ψ(λ)〉 = ÛQ(λ)|Ψ(0)〉 where ÛQ(λ) = exp
(
− i

h̄
Q̂λ

)
. (180)

Commutators — The Poisson bracket of two Hamiltonian functionals Ũ[Ψ, Ψ∗] and Ṽ[Ψ, Ψ∗],557

{Ũ, Ṽ} =
∫

dx
(

δŨ
δΨx

δṼ
δih̄Ψ∗x

− δŨ
δih̄Ψ∗x

δṼ
δΨx

)
,

can be written in terms of the commutator of the associated operators,then

{Ũ, Ṽ} = 1
ih̄
〈Ψ|[Û, V̂]|Ψ〉 . (181)

Thus the Poisson bracket is the expectation of the commutator. This identity is much sharper than558

Dirac’s pioneering discovery that the quantum commutator of two q-variables is analogous to the559

Poisson bracket of the corresponding classical variables. Further parallels between the geometric and560

the Hilbert space formulation of QM can be found in [50]-[58].561

13. Remarks on ED and Quantum Bayesianism562

Having discussed the ED approach in some detail it is now appropriate to comment on how563

ED differs from the interpretations known as Quantum Bayesianism [16]-[18] and its closely related564

descendant QBism [19][20]; for simplicity, I shall refer to both as QB. Both ED and QB adopt an565

epistemic degree-of-belief concept of probability but there are important differences:566
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(a) QB adopts a personalistic de Finetti type of Bayesian interpretation while ED adopts an567

impersonal entropic Bayesian interpretation somewhat closer but not identical to Jaynes’ [12]-[15].568

In ED the probabilities do not reflect the subjective beliefs of any particular person. They are tools569

designed to assist us in those all too common situations in which are confused and due to insufficient570

information we do not know what to believe. The probabilities will then provide guidance as to what571

agents ought to believe if only they were ideally rational. More explicitly, probabilities in ED describe572

the objective degrees of belief of ideally rational agents who have been supplied with the maximal573

allowed information about a particular quantum system.574

(b) ED derives or reconstructs the mathematical framework of QM — it explains where the575

symplectic, metric, and complex structures, including Hilbert spaces and time evolution come from.576

In contrast, at its current stage of development QB consists of appending a Bayesian interpretation577

to an already existing mathematical framework. Indeed, assumptions and concepts from quantum578

information are central to QB and are implicitly adopted from the start. For example, a major QB579

concern is the justification of the Born rule starting from the Hilbert space framework while ED starts580

from probabilities and its goal is to justify the construction of wave functions; the Born rule follows as581

a trivial consequence.582

(c) ED is an application of entropic/Bayesian inference. Of course, the choices of variables583

and of the constraints that happen to be physically relevant are specific to our subject matter —584

quantum mechanics — but the inference method itself is of universal applicability. It applies to585

electrons just as well as to the stock market or to medical trials. In contrast, in QB the personalistic586

Bayesian framework is not of universal validity. For those special systems that we call ‘quantum’587

the inference framework is itself modified into a new “Quantum-Bayesian coherence” in which the588

standard Bayesian inference must be supplemented with concepts from quantum information theory.589

The additional technical ingredient is a hypothetical structure called a “symmetric informationally590

complete positive-operator-valued measure”. In short, Born’s Rule is not derived but constitutes an591

addition beyond the raw probability theory.592

(d) QB is an anti-realist neo-Copenhagen interpretation; it accepts complementarity. (Here593

complementarity is taken to be the common thread that runs through all Copenhagen interpretations.)594

Probabilities in QB refer to the outcomes of experiments and not to ontic pre-existing values. In595

contrast, in ED probabilities refer to ontic positions — including the ontic positions of pointer variables596

— and thus contributes to solve the problem of quantum measurement (see [21][22]).597

14. Some final remarks598

We conclude with a summary of the main assumptions:599

• Particles have definite but unknown positions and follow continuous trajectories.600

• The probability of a short step is given by the method of maximum entropy subject to a drift601

potential constraint that introduces directionality and correlations, plus gauge constraints602

that account for external electromagnetic fields.603

• The accumulation of short steps requires a notion of time as a book-keeping device. This604

involves the introduction of the concept of an instant and a convenient definition of the605

duration between successive instants.606

• The e-phase space {ρ, Φ} has a natural symplectic geometry that results from treating the607

pair (ρx, Φx) as canonically conjugate variables.608

• The information geometry of the space of probabilities is extended to the full e-phase space609

by imposing the latter be spherically symmetric.610

• The drift potential constraint is updated instant by instant in such a way as to preserve both611

the symplectic and metric geometries of the e-phase space.612

The resulting entropic dynamics is described by the Schrödinger equation. Different sub-quantum613

Brownian motions all lead to the same emergent quantum mechanics. In previous work we dealt with614
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an Einstein-Smoluchowski process; here we have explored an Oernstein-Uhlenbeck process. Other615

“fractional” Brownian motions might be possible but have not yet been studied.616

A natural question is whether these different sub-quantum Brownian motions might have617

observable consequences. At this point our answer can only be tentative. To the extent that we618

have succeeded in deriving QM and not some other theory one should not expect deviations in the619

predictions for the standard experiments that are the subject of the standard quantum theory — at least620

not in the nonrelativistic regime. As the ED program is extended to other regimes involving higher621

energies and/or gravity it is quite possible that those different sub-quantum motions might not be622

empirically equivalent.623

ED achieves ontological clarity by sharply separating the ontic elements — the positions of624

particles — from the epistemic elements — the probabilities ρ and the phases Φ. ED provides a625

dynamics of probabilities and not a dynamics of particles. Of course, if probabilities at one instant are626

large in one place and at a later time they are large in some other place one infers that the particles627

must have moved — but nothing in ED describes what it is that has pushed the particles around. ED is628

a mechanics without a mechanism.629

We can elaborate on this point from a different direction. The empirical success of ED suggests630

that its epistemic probabilities are in agreement with ontic features of the physical world. It is highly631

desirable to clarify the precise nature of this agreement. Consider, for example, a fair die. Its property632

of being a perfect cube is an ontic property of the die which is reflected at the epistemic level in the633

equal assignment of probabilities to each face of the die. In this example we see that the epistemic634

probabilities achieve objectivity, and therefore usefulness, by corresponding to something ontic. The635

situation in ED is similar except for one crucial aspect. The ED probabilities are objective and they636

are empirically successful. They must therefore reflect something real. However, it is not yet known637

what those underlying ontic properties might possibly be. Fortunately, for the purposes of making638

predictions knowing those epistemic probabilities is all we need.639

The trick of embedding the e-phase space T∗P in a flat vector space T∗P+1 is clever but optional.640

It allows one to make use of the calculational advantages of linearity. This recognition that Hilbert641

spaces are not fundamental is one of the significant contributions of the entropic approach to our642

understanding of QM. The distinction — whether Hilbert spaces are necessary in principle as opposed643

to merely convenient in practice — is not of purely academic interest. It can be important in the search644

for a quantum theory that includes gravity: Shall we follow the usual approaches to quantization645

that proceed by replacing classical dynamical variables by an algebra of linear operators acting on646

some abstract space? Or, in the spirit of an entropic dynamics, shall we search for an appropriately647

constrained dynamics of probabilities and information geometries? First steps towards formulating a648

first-principles theory along this lines are given in [70][91].649
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