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Abstract7

A recently developed thermodynamic theory for the determination of the driv-8

ing force of crystallization and the crystal–melt surface tension is applied to the9

ice–water system employing the new Thermodynamic Equation of Seawater TEOS-10

10. The deviations of approximative formulations of the driving force and the11

surface tension from the exact reference properties are quantified, showing that the12

proposed simplifications are applicable for low to moderate undercooling and pres-13

sure differences to the respective equilibrium state of water. The TEOS-10 based14

predictions of the ice crystallization rate revealed pressure-induced deceleration15

of ice nucleation with an increasing pressure, and acceleration of ice nucleation16

by pressure decrease. This result is in, at least, qualitative agreement with labo-17

ratory experiments and computer simulations. Both the temperature and pressure18

dependencies of the ice–water surface tension were found to be in line with the19

le Chatelier–Braun principle, in that the surface tension decreases upon increasing20

degree of metastability of water (by decreasing temperature and pressure), which21

favors nucleation to move the system back to a stable state. The reason for this22

behavior is discussed. Finally, the Kauzmann temperature of the ice–water system23

was found to amount TK=116K, which is far below the temperature of homo-24

geneous freezing. The Kauzmann pressure was found to amount pK=−212MPa,25

suggesting favor of homogeneous freezing upon exerting a negative pressure on the26

liquid. In terms of thermodynamic properties entering the theory, the reason for27

the negative Kauzmann pressure is the higher mass density of water in comparison28

to ice at the melting point.29

1 Introduction30

1.1 Motivation31

The outstanding importance of homogeneous freezing for a variety of natural and32

technical processes such as the microphysical evolution of atmospheric clouds (e.g.,33
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Meyers et al. 1992; Khvorostyanov and Sassen 1998b; Lohmann and Krcher 2002;34

Lohmann et al. 2003; Pruppacher and Klett 2004; Heymsfield et al. 2005; Jensen and35

Ackerman 2006; Barahona and Nenes 2008; Jensen et al. 2008; Zasetsky et al. 2009;36

Khvorostyanov and Curry 2009; Khvorostyanov and Curry 2012; Hellmuth et al. 2013;37

Khvorostyanov and Curry 2014; Lohmann et al. 2016), the cryopreservation of or-38

ganelles, cells, tissues, extracellular matrices, organs, and foods (e.g., Pegg 2007; Es-39

pinosa et al. 2014, 2016)1, and water vitrification (e.g., Debenedetti and Stanley 2003;40

Bhat et al. 2005; Zobrist et al. 2008) stimulated a highly visible number of investiga-41

tions on the thermophysical behavior of undercooled and deeply undercooled water42

• within the framework of laboratory studies and evaluation of experimental data43

(e.g. McDonald 1953; Butorin and Skripov 1972; Hagen et al. 1981; Hare and44

Sorensen 1987; Henderson and Speedy 1987; Speedy 1987; Bartell and Huang45

1994; Gránásy 1995; Huang and Bartell 1995; Jeffery and Austin 1997; Benz46

et al. 2005; Holten et al. 2005; Stöckel et al. 2005; Souda 2006; Tabazadeh et al.47

2002; Vortisch et al. 2000; Malila and Laaksonen 2008; Atkinson et al. 2016),48

• by computer simulations (e.g., Gránásy 1995, 1999; Matsumoto et al. 2002; Ox-49

toby 2003; Nada et al. 2004; Laird and Davidchack 2005; Vega and Abascal50

2005; Bai and Li 2006; Bartell and Wu 2006; Hernández de la Peña and Kusalik51

2006; Vega et al. 2006; Vrbka and Jungwirth 2006; Moore and Molinero 2011;52

Espinosa et al. 2014, 2016; Tanaka and Kimura 2019),53

• and in form of fundamental theoretical considerations and synoptical views (e.g.,54

Bartell 1995; Ford 2001; Debenedetti 2003; Debenedetti and Stanley 2003).55

Comprehensive overviews on the fundamental thermodynamic and molecular proper-56

ties of water and the transition from clusters to liquid are given, e.g., by Ludwig (2001),57

on undercooled and glassy water by Debenedetti (2003), and on the notions, meth-58

ods, and challenges to determine the crystal–melt interfacial free energy by Gránásy59

(1995) and Laird and Davidchack (2005). Basic studies on the thermodynamic behav-60

ior of metastable liquids others than water but closely related to them were performed,61

e.g., by Skripov (1974), Skripov and Baidakov (1972), Skripov and Koverda (1984),62

Debenedetti et al. (1991), Baidakov (1995, 2008, 2012, 2014), Baidakov and Prot-63

senko (2005, 2008), Skripov and Faizullin (2006), Baidakov et al. (2007), Bartell and64

Wu (2007). In the last decade highly accurate equations of state (EoS) for water and65

ice became available, which are based on data from the experimentally accessible parts66

of the phase diagram of water: (i) for stable water (Wagner and Pruß, 2002; Wagner67

et al., 2011; Guder, 2006); (ii) for seawater (Feistel and Hagen, 1995; Feistel, 2003,68

2008; Feistel et al., 2008) (iii) for hexagonal ice (Feistel, 2009; Feistel and Hagen,69

1998, 1999; Feistel and Wagner, 2005a,b,c, 2006), (iii) for undercooled water (Holten70

et al., 2011, 2012, 2014). The application of these EoS’ is supported by the availability71

of international guidelines and standards for execution (Feistel et al., 2010b; Wright72

et al., 2010; Feistel, 2012, 2018; IAPWS R6-95, 2016; IAPWS, 2007; IAPWS R13-73

08, 2008; IAPWS R10-06, 2009; IAPWS, 2009, 2012; IAPWS G12-15, 2015; IOC,74

SCOR, and IAPSO, 2010). The aforementioned list of works contributing to water-75

to-ice crystallization, however, must inevitably remain incomplete and can be further76

extended.77

1See also https://en.wikipedia.org/wiki/Cryopreservation, visited on August 8,

2019.
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The classical theory of nucleation (CNT) and growth processes is till now the ma-78

jor tool in the interpretation of experimental data on crystal nucleation and growth (e.79

g., Gutzow and Schmelzer 1995; Gutzow and Schmelzer 2013; Skripov and Koverda80

1984; Debenedetti 1996; Kelton and Greer 2010; Herlach et al. 2007; Skripov 1974;81

Skripov and Faizullin 2006). In its physical ingredients it is based on the thermo-82

dynamic theory of heterogeneous systems as developed by Josiah W. Gibbs (Gibbs,83

1877a,b, 1961). Following Gibbs’ method in the specification of the properties of the84

critical clusters, it turns out that they correspond widely to the properties of the newly85

evolving macroscopic phases. This consequence of Gibbs’ theory gives the foundation86

of one of the main approximations of CNT in application to crystal nucleation, namely87

the identification of the bulk properties of the critical crystallites with the properties of88

the evolving macroscopic crystalline phase (Schmelzer and Abyzov, 2016b).89

In line with such approximation, the surface tension in between melt and critical90

crystal can be identified with the respective value for a planar equilibrium coexistence91

of the respective liquid and crystalline phases. The latter assumption is denoted com-92

monly as capillarity approximation. In the framework of CNT, frequently a curvature93

dependence of the surface tension is introduced in order to reconcile theory with exper-94

iment while the bulk properties of the critical clusters are assumed to be more or less95

defined as described above. Moreover, the introduction of a curvature dependence of96

the surface tension is the major tool to arrive at a correct description of nucleation rates97

measured experimentally. Alternatively, the theoretical expressions for the kinetic pre-98

factor in the expression for the steady-state nucleation rate can be modified. However,99

this approach results as a rule only in minor changes of the theoretical predictions (Gut-100

zow and Schmelzer 1995, Gutzow and Schmelzer 2013, Skripov and Koverda 1984).101

Alternative approaches have been advanced in recent decades based on general-102

izations of the classical Gibbs’ approach going beyond these simplest approximations103

(Gutzow and Schmelzer, 2013; Schmelzer et al., 2016b; Schmelzer and Abyzov, 2018).104

These methods allow one to describe and in this way to account for also variations of105

the bulk properties of critical clusters in dependence on the degree of deviation from106

equilibrium. They are, however, much more complex and not as easy applicable as107

the classical theory. Consequently, at least as a first estimate, CNT based on Gibbs’108

classical method of description will retain also in future to serve as a valuable tool in109

treating experimental data.110

1.2 Rationale of the present study111

Based on such considerations, in recent papers of Schmelzer and Abyzov (2016a,b) and112

Schmelzer et al. (2016a, 2018) two of the basic ingredients of CNT have been revisited:113

the methods of specification of the thermodynamic driving force of nucleation and the114

dependence of the surface tension on the degree of deviation from equilibrium (i.e., the115

degree of metastability) or, equivalently, on the size of the critical clusters (Schmelzer116

et al., 2019a,b). This analysis has been performed for crystal nucleation caused by117

both variations of temperature and pressure. In particular, it was shown there that for118

both cases the Tolman equation can be employed as an appropriate approximation for119

the description of the curvature dependence of the surface tension and not only for120

variations of external pressure at isothermal conditions as studied by Tolman (1949).121

Moreover, also going beyond Tolman’s analysis it is shown that Tolman’s approach122

can be employed also for multi-component systems provided the composition of the123

crystal phase (as employed as the basic assumption in CNT) and the composition of124
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the liquid (as it is most frequently studied in crystallization) are considered as or kept125

constant. Consequences from the basic equations derived have been discussed in the126

cited papers mainly for the most frequently occurring situation that the specific volume127

of the crystal phase is smaller as compared to the respective value of the liquid phase.128

Here, we discuss ice nucleation in water as a very important in many respects ex-129

ample where the opposite condition is fulfilled, i.e. where the specific volume of the130

crystal phase is larger as compared to the respective value for the liquid phase. As131

the first topic of the analysis we will explore which qualitative differences arise in132

comparison to other systems discussed earlier. Since we restrict the analysis here to a133

one-component case, it is also reasonable to expect that the basic assumptions of CNT134

may be fulfilled in a good approximation. At least, such conclusion was drawn quite re-135

cently based on molecular dynamics studies of melt crystallization for Lennard–Jones136

systems (Baidakov, 2014). Possible generalizations of the theory in terms of the gen-137

eralized Gibbs’ approach accounting for variations of density of the critical crystallites138

(as performed by some of us for the description of condensation and boiling (Schmelzer139

and Schmelzer Jr., 2001, 2003; Schmelzer and Baidakov, 2001), or segregation in so-140

lutions (Schmelzer et al., 2000; Abyzov and Schmelzer, 2007; Schmelzer and Abyzov,141

2007)) will not be discussed here. Having in mind the aforementioned importance of142

ice-crystal nucleation in a variety of processes in nature, we will further analyze in143

detail the degree of quantitative accuracy in the application of the general relations,144

derived in the mentioned papers, to this particular realization of crystal nucleation.145

The paper is structured as follows. In Section 2, the basic relations describing (i)146

the dependence of the thermodynamic driving force on temperature and pressure, (ii)147

the dependence of the surface tension on temperature and pressure inclusive the param-148

eters determining the curvature dependence of the surface tension of critical clusters, as149

well as (iii) the equations for Kauzmann temperature and pressure are discussed with150

respect to their relevance for crystallization processes (Schmelzer et al. 2016b,a, 2018;151

Kauzmann 1948). The relations given in Section 2 are applied to ice-crystal nucle-152

ation in undercooled water. The required thermodynamic bulk properties of liquid and153

crystal phases of water are take from the advanced EoS of seawater TEOS-10 (Feistel154

et al. 2010b, Part 1; Wright et al. 2010, Part 2; IOC, SCOR, and IAPSO 2010; Feistel155

2012; Feistel 2018), presented in Section 3. The results and discussion in Section 4 will156

complete the paper. The four Appendices at the end of the paper include the deriva-157

tion of the thermodynamic calculus applied here (Appendix A), details on the behavior158

and description of water below the temperature of homogeneous freezing (Appendix159

B), the rationale of an approach analyzed here to determine the crystal–melt interface160

energy with consideration of empirical information about the molecular structure of161

undercooled water (Appendix C), and the details of the determination of the ice–water162

activation energy applied here in the nucleation rate calculus, respectively (Appendix163

D). The results presented in these Appendices can be consulted as the foundation of164

the approach followed in the main part of the paper and for the theoretical description165

of metastability of undercooled liquids. In addition, some directions of future research166

are anticipated there.167
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2 Basic equations168

2.1 Steady-state nucleation rate according to CNT169

According to CNT, the steady-state rate, J, of homogeneous nucleation of critical clus-
ters of phase α from its metastable maternal phase β reads (e.g., Pruppacher and Klett
2004; Gutzow and Schmelzer 2013; Hellmuth et al. 2013) (see Appendices A.1 and
A.2):

J = Jkin exp

(
−∆G(cluster)

c

kBT

)
,

∆G(cluster)
c =

1
3

Aα σαβ =
16π

3

σ3
αβ(

∆g(bulk)
df,c

)2 , ∆g(bulk)
df,c = pα − pβ .

Rα =
2σαβ

∆g(bulk)
df,c

.

(1)

In Eq. (1) the quantity Jkin is a kinetic prefactor determining the rate of cluster forma-170

tion in the absence of a thermodynamic energy barrier. The latter is described by the171

Boltzmann term on the right-hand side of Eq. (1) with ∆G(cluster)
c denoting the Gibbs172

free energy required to form a critical cluster (subscript c) with radius Rα , surface area173

Aα=4πR2
α , and surface tension σαβ . The physical quantity kB is the Boltzmann con-174

stant. The quantity ∆g(bulk)
df,c is called thermodynamic driving force of nucleation. It is175

determined originally by the pressure difference, pα−pβ , between the critical cluster176

of phase α and the maternal phase β .177

However, in application to crystal nucleation alternative approaches for its speci-178

fication are required and employed respectively. We will discuss them in Section 2.2.179

Note that in the present approach, we consider critical crystal clusters as to be of spher-180

ical shape and employ the Gibbs’ treatment developed originally for fluid-like systems.181

The theoretical foundation of such treatment is discussed in detail in Schmelzer et al.182

(2019a,b).183

2.2 Different ways to determine the thermodynamic driving force as function of184

pressure and temperature185

(a) Exact form of the thermodynamic driving force
According to Gibbs’ classical approach, the critical cluster of phase α is assumed to
be in thermodynamic equilibrium with its maternal phase β , comprising mechanical
equilibrium (Laplace equation), chemical (or diffusion) equilibrium, and thermal equi-
librium between the coexisting macrophases α and β . For a one-component system
these equilibrium conditions read (see Appendix A.2, Paragraph (a)):

pα − pβ =
2σαβ

Rα

, (2)

µ̂β (pβ ,Tβ )− µ̂α(pα ,Tα) = 0 , (3)

Tβ −Tα = 0 . (4)
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Here, µ̂α and µ̂β are the mass-specific (indicated by the “wide hat” symbol (̂ )) chem-186

ical potentials of the respective macrophases α and β . Adopting the closure conditions187

pβ=p and Tβ=T , assuming that pressure and temperature in the ambient phase are188

given, and having at one’s disposal the knowledge about the chemical potentials of the189

considered component in both macrophases, the chemical equilibrium given by Eq. (3)190

provides a condition for the direct determination of pα=pα(p,T ) and therewith for the191

thermodynamic driving force of nucleation, ∆g(bulk)
df,c according to Eq. (1).192

(b) Approximative form of the thermodynamic driving force
Alternatively, the thermodynamic driving force can be approximated as follows (Gut-
zow and Schmelzer 1995; Gutzow and Schmelzer 2013; Schmelzer and Abyzov 2016b;
Schmelzer et al. 2016a, 2019a) (see Appendix A.2, Paragraph (b)):

∆g(bulk)
df,c (T, p)

∣∣∣
approx

≈ ρ̂α(p,T )
[
µ̂β (p,T )− µ̂α(p,T )

]
. (5)

Here, ρ̂α(p,T ) denotes the mass density of cluster phase α .193

(c) Thermodynamic driving force from the Gibbs fundamental equation
Equivalently, ∆g(bulk)

df,c (T, p) can also be determined from the governing equation for
the total differential of the Gibbs free energy, G, of a homogeneous, single-component
system of n molecules, entropy S and volume V , applied to the macrophases α and β

(Schmelzer et al., 2016a, Eqs. (4)–(9) therein) (see Appendix A.2, Paragraph (c)):

∆g(bulk)
df,c (T, p)

∣∣∣
num

= −
T∫

T ?
m

∆s(T, p?m)dT +

p∫
p?m

∆v(T, p)dp .

∆s(T, p) =
Ŝβ (T, p)− Ŝα(T, p)

V̂α(T, p)
=

∆ Ŝ(T, p)

V̂α(T, p)
,

∆v(T, p) =
V̂β (T, p)−V̂α(T, p)

V̂α(T, p)
=

∆V̂ (T, p)

V̂α(T, p)
.

(6)

Here, Ŝα,β and V̂α,β denote the mass-specific entropies and mass-specific volumes of194

the respective macrophases α and β . The integration in Eq. (6) starts at some particu-195

lar α−β equilibrium state (T ?
m , p?m) (subscript m) and ends at an actual non-equilibrium196

state (T, p). The reference equilibrium state is set to p?m=105 Pa and T ?
m=273.15K. The197

superscript ? is used to distinguish the chosen reference state from any other equilib-198

rium state along the melting line (Tm, pm) with Tm(p) denoting the melting temperature199

and pm(T ) the melting pressure, respectively. The system is first transferred in a re-200

versible isobaric process at p=p?m from T ?
m to T , and then subsequently transferred in201

an isothermal process at T=const. from p?m to p, i.e., via the path (T ?
m , p?m)→ (T, p?m)202

→ (T, p). As the Gibbs free energy is a thermodynamic potential, the difference in the203

mass-specific Gibbs free energy does not depend on the particular way to transfer the204

system from its equilibrium state (T ?
m , p?m) to any non-equilibrium state (T, p). Know-205

ing Ŝα,β and V̂α,β , the driving force ∆g(bulk)
df,c (T, p)

∣∣∣
num

can be obtained from Eq. (6) by206

numerical integration.207

(d) Linearized form of the thermodynamic driving force from the Gibbs fundamental
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equation
Expanding the integrands ∆s(T, p) and ∆v(T, p) in Eq. (6) into Taylor series up to
the linear terms, Schmelzer et al. (2016a, Eq. (23) therein) obtained the following
analytical solution of the integral, Eq. (6) (see Appendix A.2, Paragraph (d)):

∆g(bulk)
df,c (T, p)

∣∣∣
lin
≈ ∆hm

∆T
T ?

m

(
1− γT,m

∆T
2T ?

m

)
+∆vm∆ p

(
1− γp,m

∆ p
2p?m

)
,

γT,m =
∆ ĉp,m

∆ Ŝm
, γp,m =

p?m∆κT,m

εm∆vm
.

(7)

Here, ∆T=T ?
m−T is the temperature difference, called undercooling for T<T ?

m . Anal-208

ogously, ∆ p=p−p?m is the pressure difference, corresponding to an overpressure for209

p>p?m and to an underpressure for p<p?m. The quantity ∆hm=∆ ĤM,m/V̂α(T ?
m , p?m) is210

the volumetric melting enthalpy with ∆ ĤM,m=∆ ĤM(T ?
m) denoting the mass-specific211

enthalpy of melting at temperature T ?
m . Furthermore, ∆vm=∆V̂m/V̂α(T ?

m , p?m), with212

∆V̂m=V̂β (T ?
m , p?m)−V̂α(T ?

m , p?m) denoting the difference of the mass-specific volumes,213

∆ ĉp,m=ĉp,β (T ?
m , p?m)−ĉp,α(T ?

m , p?m) the difference of the mass-specific isobaric heat ca-214

pacities, ∆ Ŝm=Ŝβ (T ?
m , p?m)−Ŝα(T ?

m , p?m) the difference of the mass-specific entropies,215

∆κT,m=κT,β (T ?
m , p?m)−κT,α(T ?

m , p?m) the difference of the isothermal compressibilities216

between macrophases α and β , and εm=V̂α(T ?
m , p?m)/V̂β (T ?

m , p?m), respectively. In com-217

parison with Eq. (5), Eq. (7) has the huge advantage that the driving force is expressed218

in terms of directly measurable thermodynamic parameters and of the deviations of219

temperature and pressure from the respective parameters of the chosen macroscopic220

equilibrium state. By this reason, not relations in the form of Eq. (5), but in the form of221

Eq. (7) are commonly employed in the theoretical analysis of crystal nucleation pro-222

cesses. A similar relation we will derive in the next section with respect to the surface223

tension.224

2.3 Dependence of the surface tension on temperature and pressure225

The crystal–melt interface energy has a large impact on the thermodynamic energy bar-226

rier for homogeneous freezing, because it enters the expression of the critical formation227

work by the power to three, i.e. ∆G(cluster)
c ∝ σ3

αβ
. Nevertheless, “This interface energy228

is almost never known in supercooled liquids” (Vortisch et al., 2000). According to Bai229

and Li (2006), interfacial energies are, unfortunately, very weak and extremely difficult230

to obtain experimentally for systems with two condensed phases such as solid–liquid231

systems. Consequently, much work has been devoted to the determination of the sur-232

face tension at the crystal–melt interface (e.g., McDonald 1953; Bartell 1995; Huang233

and Bartell 1995; Gránásy 1995, 1999; Jeffery and Austin 1997; Laird and Davidchack234

2005; Bai and Li 2006; Baidakov 2012; Baidakov et al. 2013; Espinosa et al. 2014,235

2016; Ickes et al. 2015)2.236

A comprehensive evaluation of methods to determine the ice–water surface tension237

and its temperature dependence was performed by Ickes et al. (2017, Section 4.1238

2According to Bartell (1995, pp. 1083–1084 therein), the surface tension is argued to play a role anal-

ogously to that of the activation energy in the kinetics of chemical reactions. The author further wrote that

although its name is suggestive of a thermodynamic variable, the surface tension is a kinetic parameter whose

most important role is to facilitate the estimation of nucleation rates at greater or smaller degrees of under-
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therein). According to these authors, owing to sampling problems and the onset of239

heterogeneous freezing of undercooled water on parts of any experimental setup, di-240

rect measurements of σαβ are restricted to macroscopic water drops at temperatures241

T≥T ?
m=273.15K. These measurements are then extrapolated to ice crystals of micro-242

scopic sizes in undercooled water, either by fitting σαβ to measured nucleation rates243

employing CNT (e.g. Jeffery and Austin 1997), or alternatively by theoretical consid-244

erations and molecular models (e.g. Espinosa et al. 2014, 2016).245

According to Schmelzer and Abyzov (2016a), Schmelzer et al. (2016a, Eq. (30)
therein), and Schmelzer et al. (2018), the dependence of the surface tension of criti-
cal crystallites on pressure and temperature can be expressed for small deviations from
equilibrium as

σαβ (T, p)
σαβ ,m

∼=
T ∆S(T, p)

Tm∆Sm
=

T ∆ Ŝ(T, p)

Tm∆ Ŝm
, (8)

with ∆ Ŝ(T, p) and ∆ Ŝm defined in Eqs. (6) and (7). By linearization of the scaling
law given by Eq. (8) Schmelzer and Abyzov (2016a), Schmelzer et al. (2016a, Eq.
(32) therein), and Schmelzer et al. (2018) derived the following expression for the
temperature and pressure dependence of the surface tension of critical crystallites (see
Appendix A.3):

σαβ (T, p)
σαβ ,m

∼=
T
T ?

m

(
1− γT,m

∆T
T ?

m
−χp,m

∆ p
p?m

)
, χp,m =

p?m∆αp,m

∆sm
. (9)

Here, σαβ ,m=σαβ (T ?
m , p?m) denotes the surface tension at the melting point, ∆αp,m =246

αp,β (T ?
m , p?m)−αp,α(T ?

m , p?m) the corresponding difference of the isobaric thermal ex-247

pansion coefficients between macrophases α and β , and ∆sm=∆ Ŝm/V̂α(T ?
m , p?m).248

According to Gibbs (1877a), the surface tension of a crystallite depends on its curva-
ture. The shape of this dependence was elaborated by Tolman (1949). Generalizing
Tolman’s formula, Schmelzer et al. (2019b) derived the following expression for the
curvature dependence of the surface tension (Schmelzer et al. 2019a, Schmelzer et al.
2019b, Eqs. (3), (33), (34) & references therein):

σαβ (Rα) =
σαβ ,∞

1+
2δ (Rα)

Rα

, δ ≈ δ∞

(
1+

l2
∞

2δ∞Rα

)
, σαβ ,∞ = σαβ ,m . (10)

cooling from a given measured nucleation rate. To what extent σαβ reflects the true thermodynamic variable

in serving as a closure parameter to explain freezing experiments has not be determined very precisely so far.

Ibidem, this originates from the obvious difficulties to measure the work required to increase the interfacial

area between a solid and another phase without performing other work (e.g., elastic or plastic deformation).

The possibility of the coexistence of two phases at equilibrium at ambient pressure at only a single tempera-

ture poses another problem. With reference to theoretical considerations, σαβ might be considered to have a

physical meaning only at that single temperature and not at the deep undercooling encountered in nucleation

experiments. As CNT is argued to have only qualitative validity, Bartell (1995) considered σαβ to be to

some extent “a bit of a fiction”. Similar problems have been discussed already by Gibbs in connection with

the problem down to which critical cluster sizes thermodynamic concepts are applicable.
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Here, δ denotes the Tolman parameter. At low degree of metastability the curvature of
the critical embryo is small and the Tolman parameter approaches its planar equilib-
rium value, δ = δ∞. For the case of constant pressure, p=p?m, and weak undercooling
one arrives at the following expression for δ∞ in the limit T→T ?

m (superscript (T ))
(Schmelzer et al., 2019a, Eq. (69) therein) (see Appendix A.3):

δ
(T )
∞

∣∣∣∣
p=p?m

≈
σαβ ,m

∆hm
(1+ γT,m) . (11)

Analogously, for the case of constant temperature, T=T ?
m , and sufficiently weak devia-

tions of the pressure from p?m one obtains the following dependence of the Tolman pa-
rameter in the limit p→p?m (superscript (p)) (Schmelzer et al., 2019a, Eq. (70) therein)
(see Appendix A.3):

δ
(p)
∞

∣∣∣∣
T=T ?

m

≈
σαβ ,m

p?m∆vm
χp,m . (12)

2.4 Kauzmann temperature and pressure249

In his seminal paper Kauzmann (1948) discussed in detail the possibility that the en-250

tropy differences between liquid and crystal may approach zero at low temperatures de-251

noted today as Kauzmann temperature, TK (see Schmelzer et al. (2018) and Schmelzer252

and Tropin (2018) for a detailed discussion). According to Debenedetti et al. (1991),253

TK imposes a sharply defined thermodynamic limit to the possible existence of the liq-254

uid state of a given substance, since upon further undercooling the hypothetical liquid255

would have a lower entropy than the corresponding crystalline phase (referred to as256

“entropy catastrophe”). Ibidem, the Kauzmann temperature is unattainable because the257

slowing down of molecular motion inevitably drives kinetically controlled glas transi-258

tions.259

As shown recently with respect to crystal nucleation, the Kauzmann temperature ex-260

hibits the interesting peculiarity that the thermodynamic driving force does assume a261

maximum there (Schmelzer et al., 2016b; Schmelzer and Abyzov, 2016b). Indeed, the262

fulfillment of the condition ∆s(TK , p?m)=0 in Eq. (6) leads immediately to a maximum263

of ∆g(bulk)
df,? (TK , p?m).264

In analogy to the Kauzmann temperature, Schmelzer and Abyzov (2016b) and Schmelzer
et al. (2016a) introduced the concept of Kauzmann pressure, pK , defined by the condi-
tion ∆v(T ?

m , pK)=0 in Eq. (6), leading to a maximum of ∆g(bulk)
df,? (T ?

m , pK). The Kauz-
mann temperature and pressure are determined by the following expressions (Schmelzer
et al., 2016a, Eqs. (24) & (26) therein) (see Appendix A.4):

TK = T ?
m

[
γT,m−1

γT,m

]
, pK = p?m

[
γp,m +1

γp,m

]
. (13)

3 The advanced Thermodynamic Equation of Seawater TEOS-10265

The basic equations presented in Section 2 were previously applied to crystallization266

of glass-forming melts, e.g. by Schmelzer and Abyzov (2016a,b, 2018), Schmelzer267

et al. (2016a,b, 2018, 2019a,b), and Schmelzer and Tropin (2018). In the present study,268

this calculus will be applied to ice-forming melts, i.e. to undercooled water (phase269

β ) and hexagonal ice (phase α). The reqired thermodynamic data are taken from an270

advanced seawater standard, the International Thermodynamic Equation Of Seawater271
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Ĥ
β

Jk
g−

1
liq

en
th

al
py

si
(T
,p
)

(1
4.

3)

Sp
ec

ifi
c

en
th

al
py

of
ic

e
Ĥ

α
Jk

g−
1

ic
e

en
th

al
py

si
(T
,p
)

(S
8.

4)

Sp
ec

ifi
c

m
el

tin
g

en
th

al
py

∆
Ĥ
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2010 (TEOS-10), which was adopted in June 2009 by the International Oceanographic272

Commission of United Nations Educational, Scientific and Cultural Organisation (UN-273

ESCO/IOC) on its 25th General Assembly in Paris. To support the application of this274

standard, a comprehensive source code library for the thermodynamic properties of275

liquid water, water vapor, ice, seawater, and humid air, is available referred to as the276

Sea–Ice–Air (SIA) library. The background information and equations (including ref-277

erences for the primary data sources) required for the determination of the properties of278

single phases and components as well as of phase transitions and composite systems as279

implemented in the library are presented in two key papers of Feistel et al. (2010b, Part280

1) and Wright et al. (2010, Part 2), in the TEOS-10 Manual (IOC, SCOR, and IAPSO,281

2010), in an introductory paper of Feistel (2012) and a comprehensive review paper of282

Feistel (2018).283

TEOS-10 is based on four independent thermodynamic functions, which are defined in284

terms of the independent observables temperature, pressure, density, and salinity:285

• a Helmholtz function of fluid water, known as IAPWS-95 (Wagner and Pruß,286

2002; IAPWS R6-95, 2016),287

• a Gibbs function of hexagonal ice (Feistel and Wagner, 2006; IAPWS R10-06,288

2009),289

• a Gibbs function of seasalt dissolved in water (Feistel, 2003, 2008; IAPWS R13-290

08, 2008), and291

• a Helmholtz function for dry air (Lemmon et al., 2000).292

In combination with air–water cross-virial coefficients (Hyland and Wexler, 1983; Har-293

vey and Huang, 2007; Feistel et al., 2010a) this set of thermodynamic potentials is used294

as the primary standard for pure water (in liquid, vapor, and solid states), seawater, and295

humid air from which all other properties are derived by mathematical operations, i.e.296

without the need for additional empirical functions.297

The IAPWS-95 fluid water formulation, which is of key importance for the descrip-298

tion of atmospheric water also within the framework of TEOS-10, is based on ITS-90299

and on the evaluation of a comprehensive and consistent data set, which was assem-300

bled from a total of about 20000 experimental data of water. The authors of this water301

standard took into account all available information given in the scientific articles de-302

scribing the data collection and critically reexamined the available data sets w.r.t. their303

internal consistency and their basic applicability for the development of a new equa-304

tion of state for water. Only those data were incorporated into the final nonlinear fitting305

procedure, which were judged to be of high quality. These selected data sets took into306

account experimental data which were available by the middle of the year 1994 (Wag-307

ner and Pruß, 2002). The availability of reliable experimental data on undercooled308

liquid water was restricted to a few data sets for several properties only along the iso-309

bar p=1013.25hPa (Wagner and Pruß, 2002, Section 7.3.2 therein), which set the310

lower limit of the temperature range of IAPWS-95 (and so of TEOS-10) to T=236K311

(ϑ=−37.15 ◦C). This temperature is called the temperature of homogeneous ice nu-312

cleation (or homogeneous freezing temperature), TH , which represents the lower limit313

below which it is very difficult to undercool water. The thermodynamic functions from314

the SIA source code library, which are used in the present analysis, are given in Table315

1.316

By virtue of the definition range of TEOS-10, its application to liquid water is restricted317

to temperatures T≥TH . In order to complete the picture of water, the reader is referred318
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to the comprehensive review of Debenedetti (2003) on undercooled and glassy water.319

In Appendix B we have added selected findings on the physical behavior of deeply320

undercooled water at T<TH and its thermodynamic description, which includes the321

derivation of the conditions for the binodal, spinodal, and the relations linking statis-322

tical fluctuations to thermodynamic observables (Appendix B.1), the existing forms of323

water in dependence on temperature (Appendix B.2), characterization of the anoma-324

lies of water (Appendix B.3), hypotheses on the nature of water in deeply undercooled325

states (Appendix B.4), the characterization of glassy water (Appendix B.5), a rationale326

of Speedy’s stability-limit conjecture (Appendix B.6), and a review of selected findings327

on spinodal decomposition in undercooled liquids (Appendix B.7), respectively.328

4 Results and discussion329

4.1 Thermodynamic driving force of water-to-ice nucleation330

Table 2 contains the key thermodynamic parameters of the ice–water system at the331

reference equilibrium state (T ?
m , p?m), which are used for the subsequent calculations.332
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Table 2: TEOS-10 based thermodynamic parameters of the ice–water system at the

reference equilibrium state T ?
m=273.15K and p?m=0.1MPa.

Symbol Equation Value Unit

∆ Ŝm (7) 1.221 kJkg−1 K−1

∆sm (9) 1.119 MJm−3 K−1

∆ ĉp,m (7) 2.123 kJkg−1 K−1

∆ ĤM,m (7) 333.427 kJkg−1

∆hm (7) 305.659 MJm−3

∆V̂m (7) −9.069·10−5 m3 kg−1

∆vm (7) −8.313·10−2 1

∆κT,m (7) 3.911·10−10 Pa−1

∆αp,m (9) −2.276·10−4 K−1

γT,m (7) 1.739 1

γp,m (7) −4.704·10−4 1

χp,m (9) −2.034·10−5 1

δ
(T )
∞ (11) 2.8 Å

δ
(p)
∞ (12) 0.76 Å

In Table 3 the exact, TEOS-10 based thermodynamic driving force of the ice–water333

system, ∆g(bulk)
df,c =pα−pβ according to Eq. (1), is presented as function of undercooling334

∆T=T ?
m−T and the pressure difference ∆ p=p−p?m.335

Negative values of ∆g(bulk)
df,c mean that there is no driving force to nucleation, i.e. the336

formation of ice crystallites from undercooled water is impossible. The driving force337

to ice nucleation (or equivalently, the degree of metastability of the fluid) increases338

upon increasing undercooling and decreasing pressure, i.e. starting at p?m, the pressure339

difference must be ∆ p=p−p?m<0 to crystallize water.340

The relative deviations (in percent) of the approximative, the numerical, and the lin-341

earized thermodynamic driving forces ∆g(bulk)
df,c

∣∣∣
X

, X={approx,num, lin} according to342

Eqs. (5), (6), and (7) from the exact driving force, ∆g(bulk)
df,c according to Eq. (1), are pre-343
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Table 3: Exact thermodynamic driving force of the ice–water system, ∆g(bulk)
df,c =pα−pβ

(in units of MPa) according to Eq. (1), as function of undercooling ∆T=T ?
m−T and

pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 −0.000 −0.083 −0.849 −9.944

5 5.511 5.429 4.679 −4.333

10 10.847 10.767 10.036 1.130

15 15.996 15.921 15.214 6.443

20 20.948 20.877 20.202 11.602

25 25.687 25.619 24.985 16.605

30 30.187 30.129 29.548 21.456

35 34.419 34.366 33.862 26.158

39 37.563 37.521 37.109 29.820

sented in Tables 4, 5, and 6. The relative deviation of the approximation ∆g(bulk)
df,?

∣∣∣
approx

344

from the exact value remains far below one percent throughout the considered ranges345

of undercooling and pressure difference. Also the numerical solution ∆g(bulk)
df,c

∣∣∣
num

is346

still a very good representation of the driving force throughout the considered range of347

undercooling and from zero until moderate pressure difference (0MPa≤∆ p≤10MPa).348

The maximum of the relative deviation was found to amount 7% at ∆ p=100MPa349

for ∆T=10K. The same proposition with respect to accuracy holds also for the per-350

formance of the linearized representation of the driving force given by ∆g(bulk)
df,c

∣∣∣
lin

,351

which is based on a higher degree of approximation. While the linearized form is352

still a very good approximation of the exact driving force (relative deviation <2%)353

throughout the considered range of undercooling and pressure differences in the in-354

terval 0MPa≤∆ p≤10MPa, the relative deviation increases to a maximum of 50% at355

∆ p=100MPa (for ∆T=10K), which originates from the linearization applied in the356

derivation of the driving force. At these conditions, however, the nucleation rate is357

already very small.358

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


Table 4: Relative deviation of the approximative thermodynamic driving force,

∆g(bulk)
df,c

∣∣∣
approx

according to Eq. (5), from the exact driving force, ∆g(bulk)
df,c according to

Eq. (1), i.e.
[

∆g(bulk)
df,c

∣∣∣
approx

−∆g(bulk)
df,c

]
/∆g(bulk)

df,c in percent, as function of undercool-

ing ∆T=T ?
m−T and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 − − − −

5 −0.029 −0.028 −0.026 −

10 −0.062 −0.062 −0.054 −0.005

15 −0.087 −0.095 −0.083 −0.031

20 −0.115 −0.119 −0.116 −0.064

25 −0.143 −0.141 −0.138 −0.085

30 −0.164 −0.172 −0.165 −0.115

35 −0.195 −0.191 −0.182 −0.133

39 −0.206 −0.202 −0.207 −0.151

4.2 Temperature and pressure dependence of the ice–water surface tension359

For purposes of comparison of different expressions for the temperature and pressure
dependence of the surface tension, σαβ , we take the expression proposed by Jeffery
and Austin (1997, Eq. (8) therein) as the reference surface tension, which is based
on the Turnbull formula (Turnbull, 1950) for σαβ , proposed for application to several
metals and metalloids. By addition of a correction term, Jeffery and Austin (1997,
Eq. (8) therein) re-fitted the Turnbull expression to experimental data of homogeneous
water-to-ice nucleation rates from chamber experiments at p=0.1MPa in combination
with CNT application:

σαβ (T, p) = κT ∆ ĤM(T ) [ρ̂α(T, p)]2/3
(

Mw

NA

)1/3

︸ ︷︷ ︸
Turnbull

+δσαβ ,

δσαβ = −κσ T , κT = 0.32 , κσ = 9·10−5 Jm−2 K−1 .

(14)
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Table 5: Relative deviation of the numerically determined thermodynamic driv-

ing force on the base of the Gibbs fundamental equation, ∆g(bulk)
df,c

∣∣∣
num

accord-

ing to Eq. (6), from the exact driving force, ∆g(bulk)
df,c according to Eq. (1), i.e.[

∆g(bulk)
df,c

∣∣∣
num
−∆g(bulk)

df,c

]
/∆g(bulk)

df,c in percent, as function of undercooling ∆T=T ?
m−T

and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 − − − −

5 −0.068 −0.080 −0.199 −

10 −0.141 −0.153 −0.260 −7.063

15 −0.205 −0.225 −0.325 −2.331

20 −0.272 −0.288 −0.394 −1.937

25 −0.338 −0.348 −0.453 −1.814

30 −0.398 −0.417 −0.516 −1.777

35 −0.466 −0.474 −0.570 −1.764

39 −0.509 −0.516 −0.624 −1.766

Here, ∆ ĤM(T ) and ρ̂α(T, p) denote the previously introduced mass-specific melting360

enthalpy and mass density of ice, Mw is the molar mass of water, and NA the Avo-361

gadro constant. The excess value δσαβ was introduced as an empirical correction362

term, which depends only on temperature (see Appendix C for discussion)3. The363

3The parameter setting of κT and κσ in the original paper of Jeffery and Austin (1997) is based on

the use of the EoS of water developed by Jeffery (1996) in combination with a special formulation of the

kinetic prefactor Jkin. In contrast to this, in the present evaluation of Eq. (14) the thermophysical parameters

∆ ĤM(T ) and ρ̂α (T, p) were taken from TEOS-10. One can safely expect that the differences in the behavior

of σαβ (T, p) between Eq. (14) and the expressions drived below are primarily caused by differences in the

physical foundation of the respective expressions but not by differences in the employed EoS for water.
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Table 6: Relative deviation of the analytically determined thermodynamic driving

force on the base of the linearized Gibbs fundamental equation, ∆g(bulk)
df,c

∣∣∣
lin

accord-

ing to Eq. (7), from the exact driving force, ∆g(bulk)
df,c according to Eq. (1), i.e.[

∆g(bulk)
df,c

∣∣∣
lin
−∆g(bulk)

df,c

]
/∆g(bulk)

df,c in percent, as function of undercooling ∆T=T ?
m−T

and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 − − − −

5 −0.084 −0.119 −0.504 −

10 −0.117 −0.157 −0.530 −49.992

15 −0.079 −0.132 −0.534 −11.294

20 0.033 −0.023 −0.484 −7.888

25 0.242 0.183 −0.348 −6.774

30 0.587 0.506 −0.118 −6.342

35 1.111 1.025 0.263 −6.211

39 1.758 1.649 0.710 −6.254

ratio σαβ (T, p)/σαβ ,m according to Eq. (14) is presented as function of ∆T and ∆ p364

in Table 7. The surface tension remarkably decreases with decreasing temperature365

(increasing undercooling) and decreasing pressure (or, equivalently, with increasing366

degree of metastability of the fluid). One should keep in mind, however, that the pa-367

rameters in Eq. (14) were adjusted to data at atmospheric pressure. Therefore, the data368

at ∆ p>0 represent, strictly speaking, extrapolations. The relative deviations of the ra-369

tio σαβ (T, p)/σαβ ,m according to Eqs. (8) and (9) (Schmelzer et al., 2016a, Eqs. (30)370

& (32) therein) from the reference ratio given by Eq. (14) (Jeffery and Austin, 1997,371

Eq. (8) therein) are presented in Tables 8 and 9, respectively. Both equations show372

qualitatively the same dependencies on temperature and pressure as the Jeffery–Austin373

expression, but the absolute values are in both cases considerably smaller beginning at374

moderate undercooling (e.g. maximum deviation of −34% for Eq. (8) at ∆T=39K375

and ∆ p=0). Equations (8) and (9) behave quite similar, i.e. the linearization of Eq. (8)376
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Table 7: Ratio σαβ (T, p)/σαβ ,m according to Eq. (14) (Jeffery and Austin, 1997,

Eq. (8) therein) as function of undercooling ∆T=T ?
m−T and pressure difference

∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 1.000 1.000 1.001 1.008

5 0.975 0.975 0.975 0.982

10 0.946 0.946 0.946 0.953

15 0.917 0.917 0.917 0.923

20 0.890 0.890 0.890 0.896

25 0.868 0.868 0.868 0.874

30 0.854 0.854 0.854 0.859

35 0.851 0.851 0.852 0.857

39 0.861 0.862 0.862 0.867

does not cause a substantial loss of information in comparison to the nonlinear function377

for σαβ (T, p) given by Eq. (8).378

Table 10 shows the temperature and pressure coefficients, ∂σαβ/∂T and ∂σαβ/∂ p ,
derived for the linearized form of σαβ (T, p) (Eq. (9)) as function of ∆T and ∆ p:

∂σαβ

∂T
=

σαβ

T

[
1+ γT,m

σαβ ,m

σαβ

(
T
T ?

m

)2
]
,

∂σαβ

∂ p
=−χp,m

σαβ ,m

p?m

(
T
T ?

m

)
. (15)

Here, σαβ ,m=31.2·10−3 Jm−2 was determined from Eq. (14). In accordance with the379

temperature and pressure dependencies presented in Tables 7, 8, and 9 both coefficients380

are positive definite, i.e., ∂σαβ/∂T>0 and ∂σαβ/∂ p>0. A positive temperature co-381

efficient of the surface tension has been reported, e.g. for mercury, tin, and sodium382

by Skripov and Faizullin (2006, Eqs. (3.84), (3.85) & Figs. 3.29, 3.30 therein), for383

the Lennard–Jones system (a prototype model for the interactions of neutral nonpolar384

molecules) by Laird and Davidchack (2005, Table 2 therein), Bai and Li (2006, Fig.385

12 therein), and Baidakov (2012, Figs. 1, 2 & Eq. (3) therein)4, and for water by386

4Baidakov (2012) reanalyzed and readjusted the scaling law proposed by Skripov and Faizullin (2006,
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Table 8: Relative deviation (in percent) of the ratio σαβ (T, p)/σαβ ,m according to Eq.

(8) (Schmelzer et al., 2016a, Eq. (30) therein) from the reference ratio given by Eq.

(14) (Jeffery and Austin, 1997, Eq. (8) therein) as function of undercooling ∆T=T ?
m−T

and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 0.000 0.012 0.104 −0.112

5 −2.551 −2.531 −2.367 −2.134

10 −4.923 −4.892 −4.638 −3.866

15 −7.477 −7.432 −7.061 −5.619

20 −10.520 −10.456 −9.928 −7.629

25 −14.399 −14.309 −13.561 −10.134

30 −19.547 −19.418 −18.349 −13.386

35 −26.502 −26.314 −24.768 −17.632

39 −34.191 −33.802 −31.440 −21.883

McDonald (1953), Wood and Walton (1970), Bartell (1995, Fig. 6 therein), Gránásy387

(1995, Fig. 4 therein), Gránásy (1999, Fig. 7 therein), Jeffery and Austin (1997), and388

Tanaka and Kimura (2019). The positive temperature coefficient of the surface ten-389

sion is argued to originate from the entropy loss in the liquid due to the ordering near390

the crystal–melt interface (e.g., Gránásy 19955, Gránásy 1999, Bai and Li 2006, see391

reference therein to Spaepen).392

According to Section 4.1, the driving force of nucleation as a measure of the degree393

of metastability of the fluid was found to increase upon decreasing temperature and394

decreasing pressure. The surface tension of the ice–water system responds to increas-395

ing metastability in such a way that the freezing probability increases to remove the396

metastability and to adjust the system back to equilibrium. Hence, the decrease of397

Eqs. (3.84) & (3.85) therein) to bring the scaling-law predictions in agreement with his MD simulations.
5See Appendix C for Granasy’s application of the Ewing model of crystal–melt interface energy to the

ice–water system.
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Table 9: Relative deviation (in percent) of the ratio σαβ (T, p)/σαβ ,m according to Eq.

(9) (Schmelzer et al., 2016a, Eq. (32) therein) from the reference ratio given by Eq.

(14) (Jeffery and Austin, 1997, Eq. (8) therein) as function of undercooling ∆T=T ?
m−T

and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0 0.000 0.012 0.125 1.258

5 −2.478 −2.465 −2.348 −1.170

10 −4.615 −4.601 −4.479 −3.251

15 −6.736 −6.722 −6.595 −5.314

20 −9.099 −9.084 −8.952 −7.622

25 −11.969 −11.954 −11.817 −10.445

30 −15.642 −15.626 −15.487 −14.086

35 −20.417 −20.402 −20.261 −18.853

39 −25.202 −25.186 −25.047 −23.657

the surface tension with decreasing temperature and pressure is in agreement with the398

principle of le Chatelier–Braun (Landau and Lifschitz, 1979, pp. 61–64 therein): vari-399

ations of external parameters are expected to counteract the initial perturbation to bring400

the system back to equilibrium. The positive definiteness of ∂σαβ/∂ p is caused by401

the parameter χp,m=−2·10−5<0 according to Eq. (9) and Table 2, which, in turn, is402

caused by ∆αp,m=αp,β (T ?
m , p?m)−αp,α(T ?

m , p?m)<0 (Table 2), i.e. by the higher thermal403

expansion coefficient of ice as compared to water. Molecular-theoretical arguments for404

the described pressure dependence will be given below.405

An analysis of a large sample of empirical, theoretical, and simulated σαβ (T ) cor-
relations performed by Ickes et al. (2017, Figs. 2 & 3, Table 3 therein) revealed a
large scatter of both the surface tension (σαβ (273.15K)=(10−44) · 10−3 Jm−2 and
σαβ (220K)=(6.8−26.7) · 10−3 Jm−2) and its temperature coefficient (∂σαβ/∂T =

(0.1−0.25)·10−3 Jm−2 K−1). The temperature coefficient presented in Table 10 ex-
hibits a weak decrease upon increasing undercooling with values located at the lower
end of the range reported by Ickes et al. (2017). The experimental data of Bartell and
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Table 10: Temperature and pressure coefficients of the surface tension, ∂σαβ/∂T and

∂σαβ/∂ p according to Eq. (15), as functions of undercooling ∆T=T ?
m−T and pressure

difference ∆ p=p−p?m.

(∂σαβ/∂T )/(10−4 Jm−2 K−1) (∂σαβ/∂ p)/(10−2 Å)

at p = pM(T ) ∆ p/MPa

∆T/K 0 1 10 100

0 3.133 3.133 3.134 3.144 3.238 6.354

5 2.93 2.872 2.873 2.881 2.97 6.238

10 2.731 2.631 2.632 2.64 2.722 6.122

15 2.541 2.409 2.409 2.417 2.494 6.005

20 2.361 2.204 2.205 2.212 2.284 5.889

25 2.191 2.016 2.017 2.024 2.091 5.773

30 2.032 1.844 1.845 1.851 1.914 5.657

35 1.884 1.686 1.686 1.692 1.751 5.540

39 1.773 1.568 1.569 1.574 1.630 5.447

Huang (1994, Fig. 8 therein) and the simulation data of Espinosa et al. (2014, Fig.
4 & Table 2 therein) and Espinosa et al. (2016, Fig. 1 (d) therein) fit also well into
the ranges of σαβ (T ) and ∂σαβ/∂T reported by Ickes et al. (2017). In their freezing
experiments on homogeneous water-to-ice nucleation Huang and Bartell (1995, Eq.
(3) therein) employed the following temperature dependence of the ice–water surface
tension:

σαβ (T )
σαβ (T0)

=

(
T
T0

)n

, n≈ 0.3 . (16)

Here, T0 serves as a reference temperature. Based on experimental nucleation data at406

≈242K and 200K, Bartell (1995, Figs. 5 & 6 therein) and Huang and Bartell (1995,407

Figs. 7 & 8 therein) reported the exponent to be in the range n=0.3−0.46. Reana-408

lyzing the temperature dependence in Eq. (14) in the form given by Eq. (16), one409

6According to Bartell (1995, Fig. 6 & references therein), the values n=0.3−0.4 derived from his ex-

perimental approach refer to cubic ice. Extrapolation of the surface tension from the undercooled regime to

23

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


obtains n=1.63−2.85 (depending on temperature and pressure), and performing the410

same analysis for Eq. (9), one arrives at n=1.82−2.73. Hence, the power n of the411

temperature dependence of the expressions analyzed in the present study is consider-412

ably larger than that used by Huang and Bartell (1995). Based on CNT and using MD413

simulations of a Lennard–Jones system to setup the nucleation scenario, Bai and Li414

(2006, Fig. 12 therein) derived a best-fit linear dependence of the solid–liquid surface415

tension on temperature, i.e. n=1, with a positive temperature coefficient. The tendency416

of the temperature dependence of the surface tension was reported to be in good agree-417

ment with, among others, the nucleation data of water published by Wood and Walton418

(1970).419

Evaluating laboratory data on homogeneous freezing within the framework of CNT,420

Tanaka and Kimura (2019, Eq. (13) therein) adopted a linear dependence of the surface421

tension on temperature corresponding to n=1, which is in between the comparative422

power values from the literature and the present analysis.423

Unlike the temperature dependence of the surface tension, there are only scarce data424

on its pressure dependence. The simulation data of Espinosa et al. (2016, Fig. 1 (d)425

therein) revealed a positive pressure coefficient of the surface tension (∂σαβ/∂ p ≈426

0.5Å in the range ∆T=(0−50)K). The positive definiteness of the pressure coeffi-427

cient results in a nucleation rate depression upon increasing pressure, which is utilized428

in cryopreservation of biological samples, food, and organs to avoid water freezing429

and cell damage by application of high pressures (Espinosa et al., 2016, Fig. 1 (d)430

therein). The pressure coefficient of the surface tension presented in Table 10 amounts431

∂σαβ/∂ p≈0.06Å, which is in qualitative agreement with the simulation data of Es-432

pinosa et al. (2016, Fig. 1 (d) therein), even if their value is one order of magnitude433

larger. However, in view of the completely different approaches underlying the present434

study and those of Espinosa et al. the agreement is good. Espinosa et al. (2016) em-435

phasized that “the dependence of σ with pressure is totally unknown experimentally. In436

fact, there is not even a consensus for the experimental value of σ at ambient pressure437

(there are reported values ranging from 25 to 35mJm−2 [. . . ])”. With reference to the438

literature Espinosa et al. (2016) speculated that ∂σαβ/∂ p>0 originates from pressure-439

induced breakage of hydrogen bonds in the liquid phase. The diffusion coefficient of440

water increases with pressure. By hydrogen-bond breaking, the liquid is argued to de-441

crease its structural resemblance to ice and, as the consequence, the surface tension442

between water and ice increases. We should add, however, that already Jeffery and443

Austin (1997, Fig. 6 therein), giving reference to experimental data from Huang and444

Bartell (1995) for very small droplets (diameter 3nm), presented graphs of the nucle-445

ation rate as function of temperature at isobars p=(0.1,55)MPa, which also reveal a446

T=273.15K according to σαβ ∝ T n yields σαβ (273K)≈24mJm−2, which is by ≈9mJm−2 lower than the

value derived from equilibrium contact angles between water and two crystals of hexagonal ice sharing a

grain boundary. Bartell noted that 75Å molecular clusters, cooled down to 200K (cubic ice) by evaporation,

manage to avoid the extreme anomalies proposed to occur in bulk water in the vicinity of 226K if nucleation

could be avoided. According to Huang and Bartell (1995, p. 3927, see references therein to Turnbull and

Spaepen) the exponent n is expected to be positive rather than negative. The authors argued, that the free

energy of the interface should increase as temperature rises as the interfacial entropy tends to be negative,

because a liquid in contact with crystal is forced into a structure more ordered than that of the bulk.
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significant decrease of the nucleation rate with increasing pressure. Also the empirical447

parameterization of the homogeneous nucleation rate of water proposed by Koop et al.448

(2000) predicts a nucleation-rate depression upon increasing pressure (see also Ford449

2001, Fig. 2 therein).450

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

230 240 250 260 270 280
Datenreihen1 Datenreihen2 Datenreihen3

Figure 1: Ratio σαβ (T, p)/σαβ ,m as function of temperature T/K along the melting

pressure line p=pm(T ). Graph 1: Eq. (14) according to Jeffery and Austin (1997, Eq.

(8) therein)). Graph 2: Eq. (8) according to Schmelzer et al. (2016a, Eq. (30) therein)).

Graph 3: Eq. (9) according to Schmelzer et al. (2016a, Eq. (32) therein)).

Figure 1 displays the ratio σαβ (T, p)/σαβ ,m as function of temperature T along the451

melting pressure line p=pm(T ) for Eq. (14) according to Jeffery and Austin (1997,452

Eq. (8) therein)), Eq. (8) according to Schmelzer et al. (2016a, Eq. (30) therein)), and453

Eq. (9) according to Schmelzer et al. (2016a, Eq. (32) therein)). Both, Eqs. (14) and454

(8) exhibit the existence of a minimum, which is lost in the linearized form.455

The TEOS-10 based limiting values of the Tolman length scale according to Eqs. (11)456

and (12), respectively, were found to be very close to each other: δ
(T )
∞

∣∣∣
p=p?m

=2.8Å457

and δ
(p)
∞

∣∣∣
T=T ?

m
=0.76Å.458

Based on the experimentally determined positive temperature coefficient of the surface459

tension, ∂σαβ/∂T>0, and previous X-ray diffraction studies indicating an increasingly460

ice-like structure of liquid water upon increasing supercooling, McDonald (1953, Table461

2 & reference therein to Dorsch and Boyd) concluded: “As the structure of the two462
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phases grow increasingly more similar, it should follow that the surface free energy of463

the interface between the two phases should decrease towards the zero value that it464

must exhibit in the limit of complete isomorphism” (see also Ickes et al. 2017).465

Zeroing the surface tension (but also the thermodynamic driving force) in the T−p
plane could be expected by approaching – if it exists – a spinodal of undercooled water.
The latter is defined by a line (Ts, ps) at which water loses its thermodynamic stability.
Based on thermodynamic arguments, the spinodal is defined by zero values of the iso-
dynamic stability coefficients (e.g., Skripov and Baidakov 1972, Skripov 1974; Kluge
and Neugebauer 1994; Baidakov 1995; Skripov and Faizullin 2006) (for notions and
derivation see Appendix B.1): (

∂T

∂ Ŝβ

)
p

=
T

ĉp,β
= 0 , (17)

−

(
∂ p

∂V̂β

)
T

=
1

V̂β κT,β
= 0 . (18)

According to Eqs. (17) and (18), the spinodal of undercooled water is approached by
ĉp,β → ∞ and κT,β → ∞. At the spinodal, the ice–water surface tension, σαβ (T, p)
according to Eq. (8), is expected to vanish, as can be deduced from the limiting bevior
of the isobaric temperature coefficient of the surface tension:(

∂σαβ

∂T

)
p
=

σαβ

T
+T

σαβ ,m

Tm∆ Ŝm

(
ĉp,β − ĉp,α

)
. (19)

According to Feistel and Wagner (2005c, Fig. 1 therein) (see also Giauque and Stout
1936; Feistel and Hagen 1998, 1999; Feistel and Wagner 2005a,b, 2006, and IAPWS
R10-06 2009), the mass-specific heat capacity of ice, ĉp,α , at atmospheric pressure is a
monotonous function of temperature with ∂ ĉp,α/∂T>0 and

lim
T→0

ĉp,α

T 3 = 0.0091Jkg−1 K−4 .

If a spinodal temperature, Ts, exists with

lim
T→Ts

ĉp,β = ∞ ,

one could expect

lim
T→Ts

(
∂σαβ

∂T

)
p
= ∞  lim

T→Ts
σαβ = 0 .

In a pioneering paper, Skripov and Baidakov (1972) provided evidence for the absence466

of a spinodal in one-component melt crystallization (see review of selected findings on467

spinodal decomposition in undercooled liquids in Appendix B.7). This study stimu-468

lated intensive laboratory and theoretical investigations, and computer simulations on469

the limits of metastability of undercooled liquids. However, despite enormeous re-470

search over many decades there is still much controversy on the existence of a spinodal471

in undercooled liquids (see Appendix B.7)7. Here, we base our consideration on pre-472

vious studies on the temperature dependence of the isobaric heat capacity, including a473

7Our review disclosed a tendency in the bulk of studies, which supports the proposition of Skripov and

Baidakov (1972) also for water.
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van der Waals model, recent computer simulations, and a state-of-the-art EoS for un-474

dercooled water. To gain a qualitative picture of the isobaric heat capacity, Gránásy475

(1999, Fig. 2c therein) adopted a modified van der Waals model proposed by Poole476

et al. (1994), yielding a maximum difference of the isobaric heat capacity between477

water and ice of ∆ ĉp≈ĉp,β−ĉp,α=5.56kJkg−1 K−1 occuring at T=232K. From their478

MD simulations Moore and Molinero (2011, Fig. 1a & references therein) deduced479

a maximum isobaric heat capacity of ĉp,β≈5.56kJkg−1 K−1 at the liquid transforma-480

tion temperature TL≈202K (defined by the maximum change in density), which is also481

the maximum change in tetrahedrality and fraction of four-coordinated molecules8.482

In accordance with this, the extrapolation of the new EoS of undercooled water pro-483

posed by Holten et al. (2012, Fig. 14 therein) into the deeply undercooled range yields484

a maximum of the isobaric heat capacity of ĉp,β≈7.5kJkg−1 K−1 at T≈228K. The485

findings of Moore and Molinero (2011) and Holten et al. (2012) suggest that the tem-486

perature coefficient of the surface tension remains finite at TL. From Cahn–Hilliard-487

type density functional calculations for homogeneous ice nucleation in undercooled488

water Gránásy (1999, Fig. 7a therein) predicted a monotonous behavior of the ice–489

water surface tension in the temperature interval 160K≤T≤270K with a finite value490

of σαβ≈(10−15)mJm−2 at T=160K. Hence, there is no resilient empiricism for the491

accessibility of complete ice–water isomorphism.492

4.3 Critical cluster size493

Knowing the thermodynamic driving force for nucleation and the surface tension, the494

radius of the critical cluster, Rα , is obtained from Eq. (1). Table 11 contains the values495

of Rα determined using the exact form of the driving force, ∆g(bulk)
df,c =pα−pβ (Eq. (1))496

together with σαβ (T, p)∼=σαβ ,m[T ∆ Ŝ(T, p)]/[Tm∆ Ŝm] according to Eq. (8), and Table497

12 shows the corresponding radii determined using the linearized forms of the driving498

force, ∆g(bulk)
df,c (T, p)

∣∣∣
lin

(Eq. (7)) and the surface tension, σαβ (T, p) according to Eq.499

(9). The critical radius decreases upon decreasing temperature and pressure. For the500

considered range of ∆T and ∆ p≤10MPa the radii determined from the different pa-501

rameter combinations agree quite well, suggesting that the linearization of the driving502

force and the surface tension captures the temperature and pressure dependencies still503

very well in this range.504

4.4 Homogeneous water-to-ice nucleation rate505

To determine the sensitivity of the homogeneous water-to-ice nucleation rate against
different formulations of σαβ (k) (index k=1, . . . ,3 corresponding to Eqs. (14), (8),

and (9)) and of ∆g(bulk)
df,c (l) (index l=1, . . . ,4 corresponding to Eqs. (1), (5), (6), (7))

we employ Eq. (1) for J with the kinetic prefactor Jkin taken from Jeffery and Austin
(1997, Eq. (1) therein) (see also Hagen et al. 1981, Eq. (1) therein; for derivation of

8Moore and Molinero (2011, see references therein) noted that TL in their simulations is≈15K above the

singular temperature of the power law, Ts, derived from a fit of predicted ĉp,β values using the mW water

model of Molinero and Moore (2009), and ≈25K below the Ts≈225K estimated from the experimental

values of the heat capacity of water (Speedy and Angell, 1976; Tombari et al., 1999).
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Table 11: Critical radius, Rα=2σαβ/∆g(bulk)
df,c (in units of nm) according to Eq. (1),

using the exact form of the driving force, ∆g(bulk)
df,c =pα−pβ according to Eq. (1), and

the surface tension, σαβ (T, p)∼=σαβ ,m[T ∆ Ŝ(T, p)]/[Tm∆ Ŝm] according to Eq. (8), as

function of undercooling ∆T=T ?
m−T and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0.0 − − − −

5 10.771 10.936 12.720 −

10 5.181 5.221 5.620 50.643

15 3.313 3.331 3.502 8.451

20 2.375 2.385 2.481 4.458

25 1.807 1.814 1.877 2.955

30 1.422 1.427 1.475 2.168

35 1.136 1.141 1.183 1.686

39 0.943 0.950 0.995 1.419

Jkin see e.g. Pruppacher and Klett (2004) and Hellmuth et al. (2013)):

J(k, l) = Jkin(k)exp

(
−∆G(cluster)

c (k, l)
kBT

)
,

∆G(cluster)
c (k, l) =

1
3

Aα(k, l)σαβ (k) ,

Aα(k, l) = 4π [Rα(k, l)]
2 , Rα(k, l) =

2σαβ (k)

∆g(bulk)
df,c (l)

.

Jkin(k) = 2Nc

(
ρ̂β

ρ̂α

)(
kBT

h

)√
σαβ (k)

kBT
exp
[
−∆Gact

kBT

]
,

k = 1, . . .3 , l = 1, . . . ,4 .

(20)

The kinetic prefactor represents the diffusive molecular flux across the solid–liquid
interface. In Eq. (20), Nc=5.85·1018 m−2 is the number of monomers of water in
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Table 12: Critical radius, Rα=2σαβ/∆g(bulk)
df,c (in units of nm) according to Eq. (1),

using the linearized forms of the driving force, ∆g(bulk)
df,c (T, p)

∣∣∣
lin

according to Eq. (7),

and of the surface tension, σ(T, p) according to Eq. (9), as function of undercooling

∆T=T ?
m−T and pressure difference ∆ p=p−p?m.

∆ p/MPa

∆T/K 0 1 10 100

0.0 − − − −

5 10.788 10.956 12.787 −

10 5.204 5.245 5.659 101.918

15 3.342 3.361 3.538 9.558

20 2.412 2.422 2.520 4.840

25 1.854 1.860 1.922 3.158

30 1.482 1.487 1.529 2.296

35 1.217 1.220 1.251 1.771

39 1.054 1.056 1.080 1.480

contact with unit area of the ice surface, kB is the Boltzmann constant, and h the Planck
constant. The quantity ∆Gact(T, p) denotes the molecular ice–water activation energy.
The expression for ∆Gact(T, p) used here is based on an empirical Vogel–Fulcher–
Tammann (VFT) equation for the self-diffusivity of water (see Jeffery and Austin 1997,
Eq. (15) & discussion in Section 5 therein, as well as Appendix D):

∆Gact(T, p) = kBT
[

B(p)
T −T?(p)

− ln
(

D?(p)
D0(p)

)]
. (21)

The pressure-dependent self-diffusivity parameters B(p), T?(p), D?(p), and D0(p) at506

isobars p=(0.1,10,50,100,150,200)MPa are taken from Jeffery and Austin (1997,507

Table 2 therein)9.508

9Table 2 in Jeffery and Austin (1997), containing the parameters for the self-diffusivity D according

to their Eqs. (11) and (15), is subject of two cumbersome mistakes in the unit annotation. The correct
unit assignment in column 2 and 5 of Table 2 must read D?/0× 108/m2 s−1, and in column 3 the correct
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Table 13: Indexing of the nucleation rate J(k, l) for three different formulations of the

surface tension σαβ (k) (k=1, . . . ,3) and four different formulations for the thermo-

dynamic driving force ∆g(bulk)
df,c (l) (l=1, . . . ,4). The number in each table cell is the

number of the graph in Figs. 1–5.

σαβ (k) ∆g(bulk)
df,c (l)

l = 1 l = 2 l = 3 l = 4

Eq. (1) (5) (6) (7)

k = 1 Eq. (14) 1 2 3 4

k = 2 Eq. (8) 5 6 7 8

k = 3 Eq. (9) 9 10 11 12

annotation is B/K (see e.g., Prielmeier et al. 1988, Table 3 therein; Ludwig 2001, Fig. 3a therein; Hernández

de la Peña and Kusalik 2006, Table II therein). For details see Appendix D.
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Figure 2: Nucleation rate log10[J/(cm−3s−1)] vs temperature T/K for iso-

bar p=0.1MPa. The graph numbers correspond to the pairwise combinations{
σαβ (k),∆g(bulk)

df,c (l)
}

described in Table 13.
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Figure 3: As Fig. 2 for isobar p=10MPa.

31

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


-60

-50

-40

-30

-20

-10

0

10

20

30

233 238 243 248

p = 50 MPa

Series1 Series2 Series3 Series4 Series5 Series6

Series7 Series8 Series9 Series10 Series11 Series12

Figure 4: As Fig. 2 for isobar p=50MPa.
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Figure 5: As Fig. 2 for isobar p=100MPa.
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Figure 6: As Fig. 2 for isobar p=150MPa.

Figures 2–6 display the nucleation rate log10[J/(cm−3s−1)] vs. temperature T at iso-509

bars p=(0.1,10,50,100,150)MPa. The graph numbers correspond to the pairwise510

combinations
{

σαβ (k),∆g(bulk)
df,? (l)

}
described in Table 13. A common feature exhib-511

ited in all figures is a strong increase of the nucleation rate upon decreasing temper-512

ature (or increasing undercooling) and decreasing pressure. At atmospheric pressure513

(Fig. 2) the 12 graphs can be gathered into three groups (series 1−4, 5−8, 9−12) con-514

trolled by σαβ (k) (k=1, . . . ,3), i.e. the variation in ∆g(bulk)
df,c (l) (l=1, . . . ,4) does not515

significantly contribute to the variation in J(k, l). As the temperature coefficient of the516

surface tension (determining the slope of the curve) according to Jeffery and Austin517

(1997) is lower than those for the surface-tension expressions proposed by Schmelzer518

et al. (2016a), the surface tension of Jeffery and Austin (1997) is larger at lower tem-519

peratures, leading to the lowest nucleation rate in Fig. 2 (series 1−4). The differences520

in the nucleation rates between the surface tensions of Jeffery and Austin (1997) and521

Schmelzer et al. (2016a) are much larger than those between Eq. (8) and Eq. (9) pro-522

posed by Schmelzer et al. (2016a). This grouping behavior is pronounced at low and523

moderate pressure (p=(0.1,10)MPa), but starts to diminish at pressures above, i.e. the524

variation in the nucleation rate becomes more and more controlled by variations in the525

thermodynamic driving force, which can be seen from the increasing differences be-526

tween the temperature dependencies of J within each of the three groups representing527

the considered formulations for σαβ (T, p) (Fig. 6, p=150Pa).528

4.5 Kauzmann temperature and Kauzmann pressure of water529

According to Eq. (13), a positive definiteness of the Kauzmann temperature requires530

the fulfillment of the inequality γT,m>1. For the ice–water system one has γT,m≈1.74531

and TK=116K corresponding to TK/T ?
m≈0.42.532
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For comparison, Schmelzer et al. (2018, Table 1 therein) reported a ratio of TK/T ?
m ≈533

0.26 for the glass-forming melt of 2Na2O ·1CaO ·2SiO2. The Kauzmann temperature534

is well below the “no-man’s land” in the water-phase diagram, enclosed between the535

glass transition (or vitrification) temperature of water, Tg=136K, and the temperature536

of homogeneous nucleation, TH≈232K (Moore and Molinero, 2011) (see Appendices537

B.2, B.4 & B.5).538

Correspondingly, according to Eq. (13) the positive definiteness of the Kauzmann pres-539

sure requires the fulfillment of the inequality γp,m>0. For the ice–water system, how-540

ever, one has γp,m≈−4.7·10−4 originating from ∆V̂m = V̂β (T ?
m , p?m)− V̂α(T ?

m , p?m) < 0,541

i.e. at the melting point the mass density of water is higher than that of ice. As a542

consequence, the Kauzmann pressure attains a negative value of pK=−212MPa (un-543

dercooled liquid under tension). As the pressure has to be decreased in order to initiate544

crystallization of water, a maximum of the driving force is reconcilable with negative545

pressure. According to Nada et al. (2004, p. 298 therein), the MD simulations of Mat-546

sumoto et al. (2002) of ice nucleation and growth in deeply undercooled water revealed547

nucleation only at an extraordinary low negative pressure, but did not predict ice nu-548

cleation at atmospheric pressure. However, we cannot ruled out that such prediction is549

affected by uncertainties of current water models (e.g., Ludwig 2001; Nada et al. 2004;550

Vega and Abascal 2005; Vega et al. 2006; Hernández de la Peña and Kusalik 2006;551

Moore and Molinero 2011; Espinosa et al. 2014). In any case, the predicted Kauz-552

mann pressure is already below the extrapolated spinodal pressure of water according553

to the IAPWS-95 formulation (Wagner and Pruß, 2002, Fig. 7.54 therein) (see also554

discussion on the spinodal of water in Appendix B).555

In principle, the Kauzmann temperature and pressure could be determined also directly556

without any approximations by searching for the temperature and pressure at which557

the equality of the mass-specific entropies and volumes of the both macrophases is558

fulfilled. This would require an EoS of water, which is valid down to these values of559

temperature and pressure. The application of TEOS-10, however, is restricted to tem-560

peratures equal or higher than the homogenous freezing temperature and to positively561

definite pressures.562

5 Summary and conclusion563

Employing the advanced seawater standard TEOS-10, we applied recently developed564

expressions for the thermodynamic driving force of crystallization and the crystal–565

melt surface tension to the ice–water system. It was shown that the thermodynamic566

driving force can be completely determined from thermodynamic properties provided567

by TEOS-10 for undercooled water and ice. As reference value for the driving force the568

pressure difference between the ice cluster and the undercooled water was determined.569

Several approximations of the driving force were evaluated.570

The driving force approximation based on linearization of the chemical potentials was571

demonstrated to deviate by not more than 0.5% from the exact solution in the ranges of572

temperature and pressure differences 0K≤∆T≤39K and 0MPa≤∆ p≤100MPa. The573

determination of the driving force by numerical integration of the Gibbs fundamental574

equation was found to deviate by not more than 0.7% from the exact solution in the575

ranges 0K≤∆T≤39K and 0MPa≤∆ p≤10MPa. At the ∆ p = 100MPa isobar, the576

maximum relative deviation exceeded 7% at ∆T=10K. Finally, the determination of577

the driving force by analytical integration of the linearized Gibbs fundamental equation578

was found to deviate by not more than 1.8% from the exact solution in the ranges579
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0K≤∆T≤39K and 0MPa≤∆ p≤10MPa, but at ∆ p=100MPa the maximum deviation580

exceeded 50% at ∆T=10K. Fortunately, the high-pressure regions with enhanced581

error correspond to states with extremely low nucleation rates.582

Provided the surface tension at the melting point is given from experiments (serving583

as an empirical closure parameter), the pressure and temperature dependencies of the584

surface tension are fully determined from water and ice entropies given by TEOS-585

10. The linearization of the surface tension was shown to recover the theoretical586

scaling law in the ranges of temperature and pressure differences 0K≤∆T≤35K and587

0MPa≤∆ p≤100MPa with a relative deviation of ≤6%.588

Our TEOS-10 based predictions of the nucleation rate revealed pressure-induced decel-589

eration of ice nucleation, which is in qualitative agreement with laboratory experiments590

and computer simulations. By a special choice of the kinetic prefactor the sensitivity of591

the nucleation rate against different expressions for the thermodynamic driving force592

and the surface tensions was analyzed. At atmospheric pressure the variance of the593

nucleation rate was mainly controlled by the variance in the surface tension. With in-594

creasing pressure difference ∆ p the variance in the nucleation rate was increasingly595

controlled by the variance in the thermodynamic driving force. The nucleation rate596

determination is subject to a closure problem, requiring the availability of the surface597

tension at the melting point and the activation energy. In the case of water, all other598

thermodynamic quantities are available from TEOS-10. However, owing to the large599

uncertainties in the activation energy and the melting-point surface tension (as reported600

in the literature) homogeneous freezing of undercooled water cannot be considered “a601

work done”.602

The temperature and pressure dependencies of the ice–water surface tension follow603

the le Chatelier–Braun principle, in that the surface tension decreases upon increasing604

degree of metastability, which favors water freezing and in this way readjustment of605

the metastable system back to a stable state. The increase of the surface tension with606

increasing pressure can be explained by the higher thermal expansion coefficient of607

ice in comparison to water at the melting point. Finally, the calculated values of the608

Kauzmann temperature and pressure, corresponding to the maxima of the driving force609

to nucleation, are fully reconcilable with the temperature and pressure dependencies of610

the driving force and with laboratory findings and computer simulations on the tem-611

perature and pressure dependencies of the nucleation rate. The reason for the negative612

value of the Kauzmann pressure is the higher mass density of water in comparison to613

that of ice at the melting point.614
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A APPENDIX: Crystallization thermodynamics620

A.1 Work of cluster formation621

According to Gibbs (1877a) and Gibbs (1877b) (see also Gibbs (1961), Rusanov (1978),
Ulbricht et al. (1988), Schmelzer et al. (2005), and Schmelzer et al. (2006)) a real het-
erogeneous system consisting of two homogeneous coexisting macrophases (subscripts
α and β ), separated by an interfacial region, can be idealised by replacing the inter-
facial region with a mathematical surface (subscript σ ). The internal energy U , the
entropy S and the mole or particle numbers of the different components, n j, j=1, . . . ,k
of the whole system read (Schmelzer et al., 2005, Eq. (11.1) therein):

U =Uα +Uβ +Uσ , S = Sα +Sβ +Sσ , n j = n jα +n jβ +n jσ . (A.1)

The superficial quantities obey Gibbs’ fundamental equation (Schmelzer et al., 2005,
Eq. (11.2) therein):

dUσ = Tσ dSσ +
k

∑
j=1

µ jσ dn jσ +σαβ dAα . (A.2)

Here, Aα denotes the surface or interfacial area, σαβ is the interfacial tension, and
Tσ and µ jσ are the temperature and chemical potential of the interface, respectively. In
Eq. (A.2), energy contributions originating from changes in the curvature of the surface
element were neglected. The integral of Eq. (A.2) reads (Schmelzer et al., 2005, Eq.
(11.4) therein):

Uσ = Tσ Sσ +σαβ Aα +
k

∑
j=1

µ jσ n jσ . (A.3)

Derivation of Eq. (A.3) and comparison with Eq. (A.2) yields the Gibbs adsorption
equation with neglect of curvature effects (Schmelzer et al., 2005, Eq. (11.5) therein):

Sσ dTσ +Aα dσαβ +
k

∑
j=1

n jσ dµ jσ = 0 . (A.4)

With consideration of U=G−pV+T S and G=∑ j n jµ j one has (Schmelzer et al., 2005,
Eq. (11.6) therein):

Uα = Tα Sα − pαVα +
k

∑
j=1

n jα µ jα ,

Uβ = Tβ Sβ − pβVβ +
k

∑
j=1

n jβ µ jβ ,

Uσ = Tσ Sσ +σαβ Aα +
k

∑
j=1

n jσ µ jσ

 U = Uα +Uβ +Uσ

= Tα Sα − pαVα +
k

∑
j=1

n jα µ jα +Tβ Sβ − pβVβ +
k

∑
j=1

n jβ µ jβ

+Tσ Sσ +σαβ Aα +
k

∑
j=1

n jσ µ jσ .

(A.5)

36

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


By virtue of the Gibbs fundamental equations for the coexisting macrophases and the
interface,

dUα = Tα dSα − pα dVα +
k

∑
j=1

µ jα dn jα ,

dUβ = Tβ dSβ − pβ dVβ +
k

∑
j=1

µ jβ dn jβ ,

dUσ = Tσ dSσ +
k

∑
j=1

µ jσ dn jσ +σαβ dAα ,

(A.6)

one arrives at the Gibbs fundamental equation of the heterogeneous system (Schmelzer
et al., 2005, Eq. (11.7) therein):

dU = dUα +dUβ +dUσ

= Tα dSα − pα dVα +
k

∑
j=1

µ jα dn jα +Tβ dSβ − pβ dVβ +
k

∑
j=1

µ jβ dn jβ

+Tσ dSσ +σαβ dAα +
k

∑
j=1

µ jσ dn jσ .

(A.7)

Assuming the heterogeneous system being isolated, Eq. (A.7) is constraint by mass,
volume, and entropy conservation (Schmelzer et al., 2005, Eq. (11.8) therein):

n j = n jα +n jβ +n jσ = const. ,

V = Vα +Vβ = const. ,

S = Sα +Sβ +Sσ = const.

(A.8)

With these constraints the general thermodynamic equilibrium condition reads (Schmelzer
et al., 2005, Eq. (11.9) therein):

(dU)S,V,{n} = (Tα −Tσ )dSα +(Tβ −Tσ )dSβ − (pα − pβ )dVα +σαβ dAα

+
k

∑
j=1

(µ jα −µ jσ )dn jα +
k

∑
j=1

(µ jβ −µ jσ )dn jβ = 0 .

(A.9)
The thermodynamic equilibrium requires the fulfillment of thermal, mechanical, and
chemical equilibria between the coexisting macrophases (Schmelzer et al., 2005, Eqs.
(11.10)–(11.12) therein):

Tα = Tβ = Tσ , (A.10)

pα − pβ = σαβ

dAα

dVα

, (A.11)

µ jα(Tα , pα ,{xiα}) = µ jβ (Tβ , pβ ,{xiβ}) = µ jσ , j = 1,2, . . . ,k . (A.12)

The work of cluster formation is given by the difference in the internal energy, ∆U ,
between the final state with the heterogeneous system, Uhet (given by Eq. (A.5), and the
initial state with the homogeneous system, Uhom (Schmelzer et al., 2005, Eq. (11.14)
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therein):

∆U (cluster) = Uhet−Uhom

= Tα Sα − pαVα +
k

∑
j=1

n jα µ jα +Tβ Sβ − pβVβ +
k

∑
j=1

n jβ µ jβ

+Tσ Sσ +σαβ Aα +
k

∑
j=1

n jσ µ jσ −

(
T S− pV +

k

∑
j=1

n jµ j

)
.

(A.13)
Assuming that the characteristic size of the embryonic phase α is much smaller than
the characteristic size of the maternal phase β (microscopic approximation), one can
safely adopt the following constraints:

T = Tβ = const. , p = pβ = const. , µ j = µ jβ . (A.14)

With consideration of Eqs. (A.8) and (A.14) the work of cluster formation reads
(Schmelzer et al., 2005, Eq. (11.15) therein):

∆U (cluster) = (Tα −Tβ )Sα +(Tσ −Tβ )Sσ +(pβ − pα)Vα +σαβ Aα

+
k

∑
j=1

n jα(µ jα −µ jβ )+
k

∑
j=1

n jσ (µ jσ −µ jβ ) .
(A.15)

Consideration of the isolation constraint, Eq. (A.8), the thermodynamic equilibrium
conditions, Eqs. (A.10)–(A.12), the microscopicity of the cluster, Eq. (A.14), and the
sphericity of the cluster,

Vα =
A3/2

α

6
√

π
,

the work of formation of the critical cluster (subscript c) reads (Schmelzer et al., 2005,
Eq. (11.18) therein):

∆U (cluster)
c = (pβ − pα)Vα +σαβ Aα = σαβ

(
Aα −Vα

dAα

dVα

)
=

1
3

σαβ Aα =
16π

3

σ3
αβ

(pα − pβ )2 .

(A.16)

From the definition U=G−pV+T S one has ∆U=∆G−∆(pV )+∆(T S), which yields622

with consideration of the constraints of mass, volume, and entropy conservation (Eq.623

(A.8), ∆V=0, ∆S=0), and of microscopicity (Eq. (A.14), ∆T=0, ∆ p=0), the relations624

∆U (cluster)=∆G(cluster) (Eq. (A.15)) and ∆U (cluster)
c =∆G(cluster)

c (Eq. (A.16)).625

A.2 Work of bulk phase formation (thermodynamic driving force)626

Employing the closure assumption Tσ=Tβ and µ jσ=µ jβ , the change of the Gibbs free
energy of cluster formation, ∆G(cluster), is given by Eq. (A.15) (Schmelzer and Abyzov,
2016b, Eqs. (3) & (4) therein):

∆G(cluster) = (Tα −Tβ )Sα +(pβ − pα)Vα +
k

∑
j=1

n jα(µ jα −µ jβ )︸ ︷︷ ︸
= ∆G(bulk)

+σαβ Aα . (A.17)
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The quantity ∆G(bulk) denotes the change of the Gibbs free energy of bulk phase for-
mation (i.e. without the work σαβ Aα required to form the interface between the bulk
phases). The bulk contributions to the Gibbs free energy change per unit volume of the
crystal phase read (Schmelzer and Abyzov, 2016b, Eq. (5) therein):

∆g(bulk) = (Tα −Tβ )sα +(pβ − pα)+
k

∑
j=1

ρ jα(µ jα −µ jβ ) ,

∆g(bulk) =
∆G(bulk)

Vα

, sα =
Sα

Vα

, ρ jα =
n jα

Vα

.

(A.18)

Here, ∆g(bulk), sα , and ρ jα denote changes in the volumetric Gibbs free energy of bulk627

phase formation, in the volumetric entropy of the embryonic phase, and in the number628

or mole density of component j in the embryonic phase, respectively.629

(a) Exact form of the thermodynamic driving force of nucleation
With consideration of the conditions of thermodynamic equilibrium, Eqs. (A.10),
(A.11), and (A.12), one obtains from Eq. (A.18) the change in the volumetric Gibbs
free energy required for the formation of the critical cluster (subscript c), ∆g(bulk)

c
(Schmelzer and Abyzov, 2016b, Eq. (11) therein):

∆g(bulk)
c =−∆g(bulk)

df,c =−
2σαβ

Rα

=−(pα − pβ )  Rα =
2σαβ

∆g(bulk)
df,c

. (A.19)

Here, the quantity ∆g(bulk)
df,c =pα−pβ is called thermodynamic driving force of bulk

phase transformation. With Eq. (A.19) the Gibbs free energy change for critical cluster
formation, Eq. (A.16), reads (Schmelzer and Abyzov, 2016b, Eq. (12) therein):

∆G(cluster)
c =

16π

3

σ3
αβ(

∆g(bulk)
df,c

)2 . (A.20)

(b) Linearized form of the thermodynamic driving force of nucleation
In a first-order approximation the third term on the right-hand side of Eq. (A.18) can
be linearized by Taylor expansion and by means of the Maxwell relations (Schmelzer
and Abyzov, 2016b, Eqs. (16) & (17) therein):

µ jα(pα ,Tα ,{xiα})≈ µ jα(pβ ,Tβ ,{xiα})

+

(
∂ µ jα(pβ ,Tβ ,{xiα})

∂ pβ

)
Tβ ,{xiα}︸ ︷︷ ︸{

=

(
∂Vα(pβ ,Tβ ,{niα})

∂n jα

)
pβ ,Tβ ,{niα,i 6= j}

}
(pα − pβ )

+

(
∂ µ jα(pβ ,Tβ ,{niα})

∂Tβ

)
Tβ ,{niα}︸ ︷︷ ︸{

=−
(

∂Sα(pβ ,Tβ ,{niα})
∂n jα

)
pβ ,Tβ ,{niα,i 6= j}

}
(Tα −Tβ ) .

(A.21)
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Substraction of µ jβ (pβ ,Tβ ,{xiβ}) from both sides of Eq. (A.21), multiplication of Eq.
(A.21) by n jα , and summation over all components delivers:

k

∑
j=1

n jα
[
µ jα(pα ,Tα ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
≈

k

∑
j=1

n jα
[
µ jα(pβ ,Tβ ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
+(pα − pβ )

k

∑
j=1

n jα

(
∂Vα(pβ ,Tβ ,{niα})

∂n jα

)
pβ ,Tβ ,{niα,i6= j}︸ ︷︷ ︸

Vα

−(Tα −Tβ )
k

∑
j=1

n jα

(
∂Sα(pβ ,Tβ ,{niα})

∂n jα

)
Tβ ,{niα,i6= j}︸ ︷︷ ︸

Sα

.

(A.22)

In the derivation of Eq. (A.22) use was made of the special feature of the volume,
V=V (p,T,n1,n2, . . . ,nk) and the entropy, S=S(p,T,n1,n2, ...,nk) to be extensive func-
tions of the particle numbers, i.e. V and S are homogeneous functions of first order in
the variables n j, f= f (n1,n2, . . . ,nk) with the following property:

f (ξ n1,ξ n2, . . . ,ξ nk) = ξ f (n1,n2, . . . ,nk)

 
∂ f (ξ n1,ξ n2, . . . ,ξ nk)

∂ξ
=

k

∑
j=1

(
∂ f (ξ n1,ξ n2, . . . ,ξ nk)

∂n j

)
ni,i 6= j

n j

= f (n1,n2, . . . ,nk) .

(A.23)

Dividing Eq. (A.22) by Vα one arrives at (Schmelzer and Abyzov, 2016b, Eq. (18) &
(19) therein):

k

∑
j=1

ρ jα
[
µ jα(pα ,Tα ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
≈

k

∑
j=1

ρ jα
[
µ jα(pβ ,Tβ ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
+(pα − pβ )− (Tα −Tβ )sα .

(A.24)

Inserting Eq. (A.24) into Eq. (A.18) yields:

∆g(bulk) ≈
k

∑
j=1

ρ jα
[
µ jα(pβ ,Tβ ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
. (A.25)

Evaluating Eq. (A.24) at the thermodynamic equilibrium conditions, one obtains
k

∑
j=1

ρ jα
[
µ jα(pβ ,Tβ ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
≈−(pα − pβ ) ,

i.e. Eq. (A.18) approximates the Gibbs free energy change per unit volume for critical
cluster formation (Schmelzer and Abyzov, 2016b, Eq. (20) therein):

∆g(bulk)
c =−∆g(bulk)

df,c ≈
k

∑
j=1

ρ jα
[
µ jα(pβ ,Tβ ,{xiα})−µ jβ (pβ ,Tβ ,{xiβ})

]
. (A.26)
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For a heterogeneous one-component system the thermodynamic driving force, Eqs.
(A.19) and (A.26), reduces to:

∆g(bulk)
df,c (T, p) = pα − pβ

≈ ρα(p,T )
[
µβ (p,T )−µα(p,T )

]
= ρ̂α(p,T )

[
µ̂β (p,T )− µ̂α(p,T )

]
.

(A.27)

Here, ρ̂α denotes the mass density of phase α , and µ̂α and µ̂β are the mass-specific630

chemical potentials of the coexisting macrophases.631

(c) Thermodynamic driving force from Gibbs’ fundamental equation
Alternatively to Eq. (A.27), ∆g(bulk)

df,c (T, p) can be determined from the governing equa-
tion for the total differential of the Gibbs free energy, G, of a homogeneous, single-
component system of n molecules, entropy S and volume V , applied to the macrophases
α and β (Gutzow and Schmelzer, 2013, Eq. (2.53) therein):

dGα = −Sα dT +Vα dp ,

dGβ = −Sβ dT +Vβ dp ,

 d∆g(bulk)
df,c (T, p) =

d(Gβ −Gα)

Vα

=−
(

Sβ −Sα

Vα

)
dT +

(
Vβ −Vα

Vα

)
dp .

(A.28)
If macrophase α is identified with a crystal formed from its melt (macrophase β ), the
thermodynamic driving force is obtained by integrating Eq. (A.28) from some partic-
ular α−β equilibrium state (T ?

m , p?m) (subscript m) to an actual non-equilibrium state
(T, p). The reference equilibrium state is set to p?m=105 Pa and T ?

m=273.15K. The su-
perscript ? is used to distinguish the chosen reference state from any other equilibrium
state along the melting line (Tm, pm) with Tm(p) denoting the melting temperature and
pm(T ) the melting pressure, respectively. Assuming that the system is first transferred
in a reversible isobaric process at p=p?m from T ?

m to T , and then subsequently trans-
ferred in an isothermal process at T=const. from p?m to p, i.e., via the path (T ?

m , p?m)
→ (T, p?m) → (T, p), the integral of Eq. (A.28) reads (Schmelzer et al., 2016a, Eqs.
(4)–(9) therein):

∆g(bulk)
df,c (T, p) =−

T∫
T ?

m

∆s(T, p?m)dT +

p∫
p?m

∆v(T, p)dp .

∆s(T, p) =
Sβ (T, p)−Sα(T, p)

Vα(T, p)
=

Ŝβ (T, p)− Ŝα(T, p)

V̂α(T, p)
=

∆ Ŝ(T, p)

V̂α(T, p)
,

∆v(T, p) =
Vβ (T, p)−Vα(T, p)

Vα(T, p)
=

V̂β (T, p)−V̂α(T, p)

V̂α(T, p)
=

∆V̂ (T, p)

V̂α(T, p)
.

(A.29)

Here, Ŝα,β and V̂α,β denote the specific entropies and volumes of the respective macro-632

phases. However, as the Gibbs free energy is a thermodynamic potential, the difference633

in the specific Gibbs free energy does not depend on the particular way to transfer the634

system from its equilibrium state (T ?
m , p?m) to any non-equilibrium state (T, p).635

(d) Linearized form of the thermodynamic driving force, Eq. (A.29)
In the vicinity of the reference equilibrium state (T ?

m , p?m) the specific entropy can be
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linearized for weak to moderate undercooling by means of a Taylor expansion:

Ŝ(T, p?m)∼= Ŝ(T ?
m , p?m)+

(
∂ Ŝ(T, p)

∂T

)
T ?

m ,p?m

(T −T ?
m) .

Considering the specific isobaric heat capacity,

ĉp = T

(
∂ Ŝ
∂T

)
p

, (A.30)

the specific entropy reads:

Ŝ(T, p?m)∼= Ŝ(T ?
m , p?m)− ĉp(T ?

m , p?m)
(

∆T
T ?

m

)
. (A.31)

The sign on the right-hand side of Eq. (A.31) was chosen to ensure positive definiteness
of the undercooling ∆T=T ?

m−T>0. Therewith, ∆ Ŝ(T, p) assumes the following form:

∆ Ŝ(T, p) = Ŝβ (T, p)− Ŝα(T, p)

∼= Ŝβ (T
?

m , p?m)− Ŝα(T ?
m , p?m)︸ ︷︷ ︸

= ∆ Ŝm

−
[
ĉp,β (T

?
m , p?m)− ĉp,α(T ?

m , p?m)
]︸ ︷︷ ︸

= ∆ ĉp,m

∆T
T ?

m
. (A.32)

Taking the into account the Clausius–Clapeyron relation for the specific melting en-
thalpy,

∆ ĤM,m = ∆ ĤM(T ?
m , p?m) = T ?

m∆ Ŝm , (A.33)

one arrives at:

∆ Ŝ(T, p?m)∼=
∆ ĤM,m

T ?
m
−∆ ĉp,m

(
∆T
T ?

m

)
. (A.34)

Analogously, the linearization of the specific volume by Taylor expansion delivers:

V̂ (T, p)∼= V̂ (T ?
m , p?m)+

(
∂V̂ (T, p)

∂ p

)
T ?

m ,p?m

∆ p .

Here, the quantity ∆ p=p−p?m denotes the pressure difference with respect to the cho-
sen reference pressure p?m. This pressure difference corresponds to an overpressure for
p>p?m, and to an underpressure for p<p?m. Considering the isothermal compressibility,

κT =− 1

V̂

(
∂V̂
∂ p

)
T

, (A.35)

one obtains:

V̂ (T, p)∼= V̂ (T ?
m , p?m)

[
1−κT (T ?

m , p?m)p?m

(
∆ p
p?m

)]
. (A.36)

Therewith, the linearized form of ∆s(T, p?m) in Eq. (A.29) reads:

∆s(T, p?m) =
∆ Ŝ(T, p?m)

V̂α(T, p?m)
∼=

∆ ĤM,m

V̂α(T ?
m , p?m)T ?

m
−

∆ ĉp,m

V̂α(T ?
m , p?m)

(
∆T
T ?

m

)
. (A.37)
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Analogously, the linearized form of ∆v(T, p) in Eq. (A.29) assumes the following
form:

∆v(T, p) =
V̂β (T, p)

V̂α(T, p)
−1∼=

V̂β (T ?
m , p?m)

V̂α(T ?
m , p?m)

(
1−κT,β (T ?

m , p?m)∆ p
1−κT,α(T ?

m , p?m)∆ p

)
−1

≈
V̂β (T ?

m , p?m)

V̂α(T ?
m , p?m)

[
1−
(

κT,β (T
?

m , p?m)−κT,α(T ?
m , p?m)

)
︸ ︷︷ ︸

= ∆κT,m

∆ p
]
−1 .

(A.38)
Inserting ∆s(T, p?m) from Eq. (A.37) into Eq. (A.29) yields the temperature dependence
of the thermodynamic driving force (Schmelzer et al., 2016a, Eq. (13) therein):

∆g(bulk)
df,c (T, p)

∣∣∣∣
p=const.

≈
∆ ĤM,m

V̂α(T ?
m , p?m)︸ ︷︷ ︸

= ∆hm

∆T
T ?

m

[
1−

∆ ĉp,m

∆ Ŝm︸ ︷︷ ︸
= γT,m

∆T
2T ?

m

]
. (A.39)

Here, the quantity ∆hm denotes the volumetric melting enthalpy. For small devia-
tions from equilibrium, the thermodynamic driving force as a function of undercooling
reduces to the Tammann–Meissner–Rie equation (Schmelzer et al., 2016a, Eq. (14)
therein):

∆g(bulk)
df,c (T, p)

∣∣∣∣
p=const.

≈ ∆hm
∆T
T ?

m
. (A.40)

Analogously, inserting ∆v(T, p) from Eq. (A.38) into Eq. (A.29) yields the pressure
dependence of the thermodynamic driving force (Schmelzer et al., 2016a, Eq. (18)
therein)10:

∆g(bulk)
df,c (T, p)

∣∣∣∣
T=const.

≈ ∆vm∆ p

[
1−

p?m∆κT,m

ε∆vm︸ ︷︷ ︸
= γp,m

∆ p
2p?m

]
,

ε =
V̂α(T ?

m , p?m)

V̂β (T ?
m , p?m)

.

(A.41)

Here, ∆vm=∆v(T ?
m , p?m) with ∆v(T, p) defined by Eq. (A.29). For small deviations

from equilibrium, the thermodynamic driving force as a function of the pressure differ-
ence ∆ p reduces to the following equation (Schmelzer et al., 2016a):

∆g(bulk)
df,c (T, p)

∣∣∣∣
T=const.

≈ p?m∆vm
∆ p
p?m

. (A.42)

10The expression γp,m=γp(T ?
m , p?m) in Eq. (A.41) slightly differs from Schmelzer et al. (2016a, Eqs. (18)–

(20) therein). The latter is based on the approximation −∂∆v(T, p)/∂ p≈κT,β −κT,α originating from the

assumption V̂α≈V̂β (i.e., ε≈1).
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By virtue of Eqs. (A.39) and (A.41) the linearized form of the thermodynamic driving
force of nucleation reads:

∆g(bulk)
df,c (T, p) = +∆g(bulk)

df,c (T, p)
∣∣∣∣

p=const.
∆g(bulk)

df,c (T, p)
∣∣∣∣
T=const.

≈ ∆hm
∆T
T ?

m

[
1− γT,m

∆T
2T ?

m

]
+∆vm∆ p

[
1− γp,m

∆ p
2p?m

]
.

(A.43)

A.3 Temperature and pressure dependence of the surface tension636

According to Schmelzer and Abyzov (2016a), Schmelzer et al. (2016a), and Schmelzer
et al. (2018), the dependence of the surface tension of critical crystallites on tempera-
ture and pressure can be expressed for small deviations from equilibrium as

σαβ (T, p)
σαβ ,m

∼=
T ∆S(T, p)

Tm∆Sm
=

T ∆ Ŝ(T, p)

Tm∆ Ŝm
, (A.44)

with ∆ Ŝ(T, p) defined in Eq. (A.29), ∆ Ŝm in Eq. (A.32), and σαβ ,m=σαβ (T ?
m , p?m).

Linearization of the specific entropy, Ŝ(T, p), by Taylor expansion in the vicinity of the
reference equilibrium state (T ?

m , p?m) yields (Schmelzer et al., 2018, Eq. (31) therein):

Ŝ(T, p)∼= Ŝ(T ?
m , p?m)+

(
∂ Ŝ
∂T

)
T ?

m ,p?m

(T −T ?
m)+

(
∂ Ŝ
∂ p

)
T ?

m ,p?m

(p− p?m) . (A.45)

Considering the Maxwell relation(
∂ Ŝ(T, p)

∂ p

)
T

=−

(
∂V̂
∂T

)
p

,

the definition of the specific isobaric heat capacity, Eq. (A.30), and the definition of
the isobaric thermal expansion coefficient,

αp =
1

V̂

(
∂V̂
∂T

)
p

, (A.46)

one arrives at the following approximation of the specific entropy with ∆T=T ?
m−T and

∆ p=p−p?m:

Ŝ(T, p)∼= Ŝ(T ?
m , p?m)− ĉp(T ?

m , p?m)
(

∆T
T ?

m

)
−αp(T ?

m , p?m)V̂ (T ?
m , p?m)∆ p .
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Therewith ∆ Ŝ(T, p) defined in Eq. (A.32) assumes the following form:

∆ Ŝ(T, p)

∆ Ŝm

∼= 1−
∆ ĉp,m

∆ Ŝm︸ ︷︷ ︸
= γT,m

(
∆T
T ?

m

)

− p?m∆V̂ (T ?
m , p?m)

∆ Ŝm

[
V̂β (T ?

m , p?m)αp,β (T ?
m , p?m)−V̂α(T ?

m , p?m)αp,α(T ?
m , p?m)

∆V̂ (T ?
m , p?m)

]
︸ ︷︷ ︸

= 〈∆αp,m〉V︸ ︷︷ ︸
= χp,m

(
∆ p
p?m

)

∼= 1− γT,m

(
∆T
T ?

m

)
−χp,m

(
∆ p
p?m

)
.

(A.47)
Assuming V̂α≈V̂β and considering ∆sm=∆s(T ?

m , p?m) with ∆s(T, p) defined in Eq. (A.29),
the parameter χp,m simplifies to

χp,m ≈
p?m∆αp,m

∆sm
, ∆αp,m = αp,β (T

?
m , p?m)−αp,α(T ?

m , p?m) . (A.48)

Inserting Eq. (A.47) into Eq. (A.44) yields a linearized expression for σαβ (T, p)
(Schmelzer et al., 2016a, Eq. (32) therein):

σαβ (T, p)
σαβ ,m

∼=
T
T ?

m

(
1− γT,m

∆T
T ?

m
−χp,m

∆ p
p?m

)
. (A.49)

The reconciliation of CNT predictions on crystallization with experimental data re-
quires the removal of the widely adopted planar-equilibrium representation of the sur-
face tension, the so-called capillarity approximation, in favor of consideration of the
curvature or size dependence of the surface tension. Such procedure was already per-
formed by J. W. Gibbs (Gibbs, 1877a) and elaborated by a variety of authors, in particu-
lar by Tolman (1949). However, as argued by Schmelzer et al. (2019b, Eq. (3) therein),
the approximation suggested by Tolman is valid only for small deviations from thermo-
dynamic equilibrium. In the more general case, the dependence of the surface tension
can be expressed as a truncated Taylor expansion in the following form (for the details,
see Schmelzer et al. 2019b, Eqs. (33), (34) & references therein):

σαβ (Rα)=
σαβ ,∞

1+
2δ (Rα)

Rα

, δ (Rα)= δ∞

(
1+

l2
∞

2δ∞Rα

+ . . .

)
, σαβ ,∞ =σαβ ,m .

(A.50)
Here, δ (Rα) denotes the Tolman parameter. At low degree of metastability the cur-
vature of the critical embryo is small and the Tolman parameter approaches its planar
equilibrium value, δ=δ∞. At this and with consideration of Eq. (A.19), σαβ (Rα) in
Eq. (A.50) can be rearranged to yield δ∞ (Schmelzer et al., 2019a, Eq. (68) therein):

δ∞ = lim
Rα→∞

δ (Rα) = lim
Rα→∞

Rα

2

(
σαβ ,m

σαβ

−1
)

= lim
Rα→∞

Rα σαβ ,m

2σαβ

(
1−

σαβ

σαβ ,m

)
= lim

Rα→∞

σαβ ,m

∆g(bulk)
df,c

(
1−

σαβ

σαβ ,m

)
.

(A.51)
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For the case of constant pressure, p=p?m, and weak undercooling we insert Eq. (A.39)
together with Eq. (A.49) into Eq. (A.51), which results in the following expression at
the limit T→T ?

m (Schmelzer et al., 2019a, Eq. (69) therein):

δ
(T )
∞

∣∣∣∣
p=p?m

=
σαβ ,m

∆hm

1− T
Tm

(
1− γT,m

∆T
Tm

)
∆T
Tm

(
1− γT,m

∆T
2Tm

)
≈

σαβ ,m

∆hm

[
∆T
Tm

(
1+ γT,m

∆T
2Tm

)][
1− T

Tm

(
1− γT,m

∆T
Tm

)]
≈

σαβ ,m

∆hm

(
1+ γT,m

∆T
2Tm

)(
1+ γT,m

T
Tm

)
≈

σαβ ,m

∆hm
(1+ γT,m) .

(A.52)

Analogously, at constant temperature, T=T ?
m , one obtains with Eq. (A.41) the follow-

ing expression at the limit p→p?m (Schmelzer et al., 2019a, Eq. (70) therein):

δ
(p)
∞

∣∣∣∣
T=T ?

m

≈ σαβ ,m
χp,m

p?m∆vm
. (A.53)

A.4 Kauzmann temperature and Kauzmann pressure of water637

The Kauzmann temperature, TK , is defined by the condition ∆ Ŝ(TK , p?m)=Ŝβ (TK , p?m)−638

Ŝα(TK , p?m)=0. Provided Ŝβ (T, p?m)>Ŝα(T, p?m), the first integral on the right-hand side639

of Eq. (A.29) is a negative definite quantity, i.e. its disappearance at T=TK leads to a640

maximum of the driving force ∆g(bulk)
df,c (T, p) (Kauzmann 1948, Schmelzer et al. 2018,641

Schmelzer and Tropin 2018 Schmelzer et al. 2016b, Schmelzer and Abyzov 2016b).642

In analogy to the Kauzmann temperature, Schmelzer and Abyzov (2016b) and Schmelzer643

et al. (2016a) introduced the concept of Kauzmann pressure, pK , defined by ∆V̂ (T ?
m , pK)644

=V̂β (T ?
m , pK)− V̂α(T ?

m , pK)=0. Provided V̂β (T ?
m , pK)<V̂α(T ?

m , pK), the second integral645

on the right-hand side of Eq. (A.29) is also a negative definite quantity, i.e. its disap-646

pearance at p=pK leads to a maximum of the driving force ∆g(bulk)
df,c (T, p).647

As a consequence, the Kauzmann temperature is obtained from the solution of the
equation

∂∆g(bulk)
df,c (T, p?m)

∂T

∣∣∣∣∣∣
T=TK

= 0 .

Taking the linearized form of ∆g(bulk)
df,c (T, p?m) according to Eq. (A.39), the Kauzmann

temperature reads (Schmelzer et al., 2016a, Eq. (24) therein):

TK = T ?
m

[
γT,m−1

γT,m

]
, (A.54)

Evaluating ∆g(bulk)
df,c (T, p?m) at T=TK delivers the maximum of the thermodynamic driv-

ing force (provided it exists) (Schmelzer et al., 2016a, Eq. (25) therein):

∆g(bulk)
df,c (TK , p?m)∼=

∆hm

2γT,m
. (A.55)
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Analogously, the Kauzmann pressure is obtained from the solution of the equation

∂∆g(bulk)
df,? (T ?

m , p)

∂ p

∣∣∣∣∣∣
p=pK

= 0 .

Taking the linearized form of ∆g(bulk)
df,c (T ?

m , p) according to Eq. (A.41), the Kauzmann
pressure reads (Schmelzer et al., 2016a, Eq. (26) therein):

pK = p?m

[
γp,m +1

γp,m

]
, (A.56)

Evaluating ∆g(bulk)
df,c (T ?

m , p) at p=pK delivers the maximum of the thermodynamic driv-
ing force (provided it exists) (Schmelzer et al., 2016a, Eq. (27) therein):

∆g(bulk)
df,c (T ?

m , pK)∼=
p?m∆vm

2γp,m
. (A.57)

B APPENDIX: Behavior of water below the temperature of homo-648

geneous freezing649

B.1 Thermodynamic stability, binodal, and spinodal650

B.1.1 Conditions of the binodal651

The binodal represents the line of thermodynamic equilibrium between two phases
α and β of a homogeneous single-component system (Skripov, 1974, p. 4 therein).
This line is defined by the equality of the chemical potentials at the same values of
temperature T and pressure p in both phases α and β . For the two-phase equilibrium
one has (Skripov and Faizullin, 2006, Eq. (1.1) therein):

µ̂α(T, p) = µ̂β (T, p) . (B.1)

Here, µ̂α and µ̂β denote the mass-specific chemical potentials of the coexisting macro-652

phases. From Eq. (B.1) follows the equality of the total differentials of µ̂α and µ̂β :653

dµ̂α(T, p) = dµ̂β (T, p) ,

dµ̂α(T, p) =

(
∂ µ̂α

∂T

)
p︸ ︷︷ ︸

=−Ŝα(T, p)

dT +

(
∂ µ̂α

∂ p

)
T︸ ︷︷ ︸

= V̂α(T, p)

dp

dµ̂β (T, p) =

(
∂ µ̂β

∂T

)
p︸ ︷︷ ︸

=−Ŝβ (T, p)

dT +

(
∂ µ̂β

∂ p

)
T︸ ︷︷ ︸

= V̂β (T, p)

dp .

(B.2)

In Eq. (B.2) Maxwells relations for the mass-specific entropies and mass-specific
volumes, Ŝα,β (T, p) and Ŝα,β (T, p), were used. From Eq. (B.2) one arrives at the
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Clausius–Clapeyron equation, which defines the T−p line of the stable coexistence of
the adjacent macrophases (Skripov and Faizullin, 2006, Eq. (1.2) therein):

dp
dT

=
Ŝβ (T, p)− Ŝα(T, p)

V̂β (T, p)−V̂α(T, p)
=

∆ Ŝβα(T, p)

∆V̂βα(T, p)
. (B.3)

B.1.2 Conditions of the spinodal654

The transfer of the system from a stable state into a metastable state entails as loss
of stability of the respective phases (Skripov and Faizullin, 2006, p. 4 therein). The
degree of metastability can be determined within framework of equilibrium thermody-
namics. A single-component system, undergoing irreversible processes, will exceed its
thermodynamic equilibrium when the mass-specific internal energy, Û(Ŝ,V̂ ), attains
its minimum (e.g., Skripov and Baidakov 1972; Skripov 1974, pp. 6–10; Kluge and
Neugebauer 1994, pp. 122–124; Baidakov 1995, pp. 9–15; Skripov and Faizullin 2006,
pp. 6–9):

(δÛ)Ŝ,V̂ = 0 , (δ 2Û)Ŝ,V̂ > 0 , (B.4)

(δ 2Û)Ŝ,V̂ =

(
∂ 2Û

∂ Ŝ 2

)
V̂

(δ Ŝ )2 +

(
∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ

δ Ŝ δV̂

+

(
∂ 2Û

∂V̂ 2

)
Ŝ

(δV̂ )2 > 0 .

(B.5)

Thermodynamic stability of the system requires positive definiteness of the determi-
nant, composed of the coefficients of the real-valued quadratic form Eq. (B.5):

D =

∣∣∣∣∣ D11 D12

D21 D22

∣∣∣∣∣= D11D22−D12D21

=

∣∣∣∣∣∣∣∣∣∣∣

(
∂ 2Û

∂ Ŝ 2

)
V̂

(
∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ(

∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ

(
∂ 2Û

∂V̂ 2

)
Ŝ

∣∣∣∣∣∣∣∣∣∣∣
=

(
∂ 2Û

∂ Ŝ 2

)
V̂

(
∂ 2Û

∂V̂ 2

)
Ŝ

−

[(
∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ

]2

> 0 .

(B.6)

The spinodal represents the boundary of the thermodynamic phase stability with re-
spect to continuous changes of the thermodynamic state. This boundary is defined by
the condition D=0. In order to express the partial derivatives D11, D12=D21, and D22 in
terms of thermodynamic observables, we employ the Maxwell equations together with
the representation of the thermodynamic quantities in terms of the potential Û(Ŝ,V̂ )
(Kluge and Neugebauer, 1994, Chapters 4 & 6 therein):(

∂Û

∂ Ŝ

)
V̂

= T , ĉv = T

(
∂ Ŝ
∂T

)
V̂

 D11 =

(
∂ 2Û

∂ Ŝ 2

)
V̂

=

(
∂T

∂ Ŝ

)
V̂
=

T
ĉv

> 0 ,

(B.7)
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(
∂U

∂V̂

)
Ŝ

= −p , κs =−
1

V̂

(
∂V̂
∂ p

)
Ŝ

 D22 =

(
∂ 2Û

∂V̂ 2

)
Ŝ

=−
(

∂ p

∂V̂

)
Ŝ
=

1

V̂ κs
> 0 ,

(B.8)

D12 = D21 =

(
∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ

=

(
∂T

∂V̂

)
Ŝ
. (B.9)

The quantity ĉv in D11 denotes the mass-specific isochoric heat capacity, and κs ap-655

pearing in D22 denotes the adiabatic compressibility. The derivatives D11 and D22 are656

called the adiabatic stability coefficients (Skripov and Faizullin, 2006, p. 5, see refer-657

ences therein).658

The positive definiteness of the adiabatic stability coefficients, D11>0 and D22>0, is659

a necessary but not sufficient condition for the stability of the considered phase, be-660

cause a constraint on D12=D21 is still required. For a necessary and sufficient stability661

criterion, Skripov and Faizullin (2006, p. 5, Eqs. (1.7), (1.8) & reference therein662

to Semenchenko) cited two final equations relating the isodynamic partial derivatives,663

(∂T/∂ Ŝ )p and (∂ p/∂V̂ )T , to the stability determinant D.664

In order to derive the first isodynamic partial derivative, (∂T/∂ Ŝ )p (Skripov and
Faizullin, 2006, Eq. (1.7) therein), we employ the following relations for the spe-
cific isobaric heat capacity, ĉp (e.g., Kluge and Neugebauer 1994, Eqs. (4.16) & (6.15)
therein; Skripov and Faizullin 2006, Eq. (1.7) therein):

ĉp = T

(
∂ Ŝ
∂T

)
p

=

(
∂Û

∂ Ŝ

)
V̂

(
∂ 2Û

∂ Ŝ 2

)
V̂(

∂ 2Û

∂V̂ 2

)
Ŝ

(
∂ 2Û

∂ Ŝ 2

)
V̂

−

[(
∂

∂V̂

(
∂Û

∂ Ŝ

)
V̂

)
Ŝ

]2

= −T
D

(
∂ p̂

∂V̂

)
Ŝ

 

(
∂T

∂ Ŝ

)
p

= − D(
∂ p̂

∂V̂

)
Ŝ

=
T
ĉp

> 0 .

(B.10)

In order to deterive the second isodynamic partial derivative, (∂ p/∂V̂ )T (Skripov
and Faizullin, 2006, Eq. (1.8) therein), we employ Eq. (B.10), the relations between
the specific isobaric and isochoric heat capacities (Kluge and Neugebauer, 1994, Eqs.
(4.16) & (4.23) therein), and the rule for partial differentiation of the thermal EoS in
implicit form f (p,T,V̂ )=0 (Kluge and Neugebauer, 1994, Section 10.1.1 therein):

ĉp− ĉv = T

(
∂V̂
∂T

)
p

(
∂ p
∂T

)
V̂
= T

(
∂ Ŝ
∂T

)
p

−T

(
∂ Ŝ
∂T

)
V̂

, (B.11)

(
∂V̂
∂T

)
p

(
∂T
∂ p

)
V̂

(
∂ p

∂V̂

)
T
=−1 . (B.12)
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Solving Eq. (B.12) for (∂V̂/∂T )p and inserting it into Eq. (B.11) with consideration
of isodynamical derivative (∂T/∂ Ŝ )p according to Eq. (B.10), and D from Eq. (B.6),

D =−
(

∂T

∂ Ŝ

)
V̂

(
∂ p

∂V̂

)
Ŝ
−
(

∂T

∂V̂

)2

Ŝ
,

yields: (
∂V̂
∂ p

)
T

= − 1
D

(
∂ Ŝ
∂T

)
V̂

(
∂T
∂ p

)2

V̂

(
∂T

∂V̂

)2

Ŝ

 −
(

∂ p

∂V̂

)
T

=
D(

∂T

∂ Ŝ

)
V̂

×

{(
∂T

∂ Ŝ

)
V̂

(
∂ p
∂T

)
V̂

(
∂V̂
∂T

)
Ŝ︸ ︷︷ ︸

= A

}2

By virtue of the Maxwell relation the auxiliary quantity A becomes minus unity,

A =

(
∂T

∂ Ŝ

)
V̂

(
∂ p
∂T

)
V̂

(
∂V̂
∂T

)
Ŝ

=

(
∂ p

∂ Ŝ

)
V̂

(
∂V̂
∂T

)
Ŝ

=−
(

∂T

∂V̂

)
Ŝ

(
∂V̂
∂T

)
Ŝ

=−1 .

Considering A2=1 and the definition of the isothermal compressibility,

κT =− 1

V̂

(
∂V̂
∂ p

)
T

,

the isodynamic partial derivative (∂ p/∂V̂ )T assumes the form of the stability criterion
presented in Skripov and Faizullin (2006, Eq. (1.8) therein):

−
(

∂ p

∂V̂

)
T
=

D(
∂T

∂ Ŝ

)
V̂

=
1

V̂ κT
> 0 or

(
∂ p
∂ ρ̂

)
T
=

1
ρ̂κT

> 0 . (B.13)

The stability conditions D>0, D11>0, and D22>0 according to Eqs. (B.6), (B.7), and665

(B.8), are thus reduced to the positive definiteness of the isodynamic partial derivatives666

Eqs. (B.10) and (B.13), which are called isodynamic stability coefficients. Zero values667

of the derivatives given by Eqs. (B.10) and (B.13) correspond to the spinodal of the sys-668

tem. The conditions Eqs. (B.10) and (B.13) allow the estimation of the thermodynamic669

stability of the system and the distance to the spinodal in terms of thermodynamic ob-670

servables (Skripov and Faizullin, 2006, p. 5 therein). According to Gibbs (1877b,671

1961) (see also Skripov 1974), the binodal represents the limit of absolute stability,672

and the spinodal the limit of significant instability. The region between the binodal and673

the spinodal is the region of metastable states in quasistatic transitions.674

Skripov (1974, pp. 211–213 therein) proposed a further chacteristic of the spinodal,
the derivation of which commenses with the Maxwell relations,(

∂Û

∂ Ŝ

)
V̂

= T ,

(
∂Û

∂V̂

)
Ŝ

=−p ,
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implying T=T (Ŝ,V̂ ) and p=p(Ŝ,V̂ ). The increments in temperature and pressure
along the isochore read (Skripov, 1974, Eq. (9.6) therein):

(dT )V̂ =

(
∂T

∂ Ŝ

)
V̂︸ ︷︷ ︸

Eq. (B.7)

dŜ = D11dŜ ,

(dp)V̂ =

(
∂ p

∂ Ŝ

)
V̂︸ ︷︷ ︸

Maxwell rel.

dŜ =−
(

∂T

∂V̂

)
Ŝ︸ ︷︷ ︸

Eq. (B.9)

dŜ =−D12dŜ

 

(
∂ p
∂T

)
V̂

= −D12

D11
.

(B.14)

Analogously, for the adiabatic curve one obtains (Skripov, 1974, Eq. (9.7) therein):

(dT )Ŝ =

(
∂T

∂V̂

)
Ŝ︸ ︷︷ ︸

Eq. (B.9)

dV̂ = D12dV̂ ,

(dp)Ŝ =

(
∂ p

∂V̂

)
Ŝ︸ ︷︷ ︸

Eq. (B.8)

dV̂ =−D22dV̂

 

(
∂ p
∂T

)
Ŝ

= −D22

D12
.

(B.15)

On the spinodal,

D = D11D22−D2
12 = 0  

D12

D11
=

D22

D12
,

the right-hand sides of Eqs. (B.14) and (B.15) are equal, i.e. the isochore and the
adiabatic curve on the (p,T ) plane have a common tangent, and the following equality
holds: (

∂ p
∂T

)
V̂
=

(
∂ p
∂T

)
Ŝ
. (B.16)

Assuming p=p(T,V̂ ), the pressure differential reads:

dp =

(
∂ p
∂T

)
V̂

dT +

(
∂ p

∂V̂

)
T

dV̂ . (B.17)

Taking the increments dT and dV̂ at the spinodal, one arrives at (Skripov, 1974, Eq.
(9.8) therein): (

dp
dT

)
sp
=

(
∂ p
∂T

)
V̂
+

(
∂ p

∂V̂

)
T

(
dV̂
dT

)
sp

. (B.18)

According to Eq. (B.13), at the spinodal one has
(

∂ p/∂V̂
)

T
=0 while

(
dV̂/dT

)
sp

remains finite. Therewith and by virtue of Eq. (B.16) Skripov (1974, Eq. (9.9) therein)
arrived at the following equality:(

dp
dT

)
sp
=

(
∂ p
∂T

)
V̂
=

(
∂ p
∂T

)
Ŝ
. (B.19)
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According to Eq. (B.19), the spinodal is the envelop of a family of isochores and675

isentropics (Skripov, 1974, p. 211 therein).676

Bartell and Wu (2007, see references therein) explained the main difference between677

nucleation/growth of nuclei in a metastable fluid and spinodal decomposition in an678

unstable fluid as follows. According to the authors, nucleation is a result of structural679

fluctuations in a maternal phase, which lead to the formation of embryos of the new680

phase. After having been materialized most of these embryos will disappear again681

and fall back to the maternal phase, but a few embryos can exceed a critical size. By682

adding monomers or n-mers these critical embryos can freely grow further. In spinodal683

decomposition the fluid is stable against thermal fluctuations of large wave numbers684

but unstable against those of short wave numbers, i.e. of fluctuations of large extent,685

over many molecules. Hence, spinodal decomposition is characterized by exponential686

amplification of initially small amplitude differences in density over large distances687

with time to large amplitude density differences. In contrast to this, small-spatial scale688

differences will not be amplified. Thus, small density differences of relatively large689

regions are thought to rapidly grow (rather than the physical size of the region) until690

the regions attained the density of the new phase (see also Debenedetti et al. 1991).691

B.1.3 On the role of fluctuations of thermodynamic observables692

The mechanism of instability to occur in a liquid is the unbounded growth of density
fluctuations (e.g., Debenedetti et al. 1991; Debenedetti and Stanley 2003). The deter-
mination of the mean squares of the fluctuation of thermodynamic properties can be
found in Landau and Lifschitz (1979, pp. 321–327 therein). Ibidem, the probability w
for a fluctuation to occur is proportial to exp(St/kB), where St denotes the total entropy
of a closed system. As argued by Landau and Lifschitz (1979), with the same right
one can employ the ansatz w ∝ exp(∆St/kB) with ∆St denoting the change in entropy
caused by fluctuations. The latter is given by ∆St=−Wmin/T , where Wmin is the min-
imum work required to generate the fluctuations, which yields (Landau and Lifschitz,
1979, Eq. (112.1) therein):

w ∝ exp
(
−Wmin

kBT

)
, Wmin = ∆U−T ∆S+ p∆V . (B.20)

Here, ∆U , ∆S, and ∆V denote the changes of the internal energy, entropy, and volume
due to fluctuations at the given mean (equilibrium) values of temperature and pressure.
Therewith, the fluctuation probability reads (Landau and Lifschitz, 1979, Eq. (112.2)
therein):

w ∝ exp
(
−∆U−T ∆S+ p∆V

kBT

)
. (B.21)

Expanding U(S,V ) into a Taylor series until terms of second order, one obtains (Landau
and Lifschitz, 1979, §22 therein):

∆U =

(
∂U
∂S

)
V︸ ︷︷ ︸

= T

∆S+
(

∂U
∂V

)
S︸ ︷︷ ︸

=−p

∆V +
1
2

[(
∂ 2U
∂S2

)
V
(∆S)2

+2
(

∂

∂S

(
∂U
∂V

)
S

)
V

∆S∆V +

(
∂ 2U
∂V 2

)
S
(∆V )2

]
.
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Rearrangement of this equation delivers:

∆U−T ∆S+ p∆V =
1
2

[(
∂ 2U
∂S2

)
V
(∆S)2 +2

(
∂

∂S

(
∂U
∂V

)
S

)
V

∆S∆V

+

(
∂ 2U
∂V 2

)
S
(∆V )2

]
.

(B.22)

Employing the approximations(
∂ 2U
∂S2

)
V
(∆S)2 ≈ ∆S ∆

(
∂U
∂S

)
V
= ∆S∆T ,(

∂ 2U
∂V 2

)
S
(∆V )2 ≈ ∆V ∆

(
∂U
∂V

)
S
=−∆V ∆ p ,

2
(

∂

∂S

(
∂U
∂V

)
S

)
V

∆S∆V �
(

∂ 2U
∂S2

)
V
(∆S)2 +

(
∂ 2U
∂V 2

)
S
(∆V )2 ,

one arrives at:
∆U−T ∆S+ p∆V ≈ 1

2
(∆S∆T −∆ p∆V ) . (B.23)

Inserting Eq. (B.23) into Eq. (B.21) yields (Landau and Lifschitz, 1979, Eq. (112.3)
therein):

w ∝ exp
(

∆ p∆V −∆S∆T
2kBT

)
. (B.24)

In order to establish relations between the fluctuations of a thermodynamic observable
and its mean value, now we want to express the four independent quantities ∆ p, ∆V ,
∆S, and ∆T in Eq. (B.24) in terms of basic thermodynamic observables. Employing
the pairs of dependencies ∆ p(T,V ), ∆S(T,V ) and ∆V (p,S), ∆T (p,S) one can write
by virtue of the Maxwell relations:

∆ p(T,V ) =

(
∂ p
∂T

)
V

∆T +

(
∂ p
∂V

)
T

∆V ,

∆S(T,V ) =

(
∂S
∂T

)
V

∆T +

(
∂S
∂V

)
T

∆V =
cv

T
∆T +

(
∂ p
∂T

)
V

∆V ,

∆V (p,S) =

(
∂V
∂ p

)
S

∆ p+
(

∂V
∂S

)
p

∆S =

(
∂V
∂ p

)
S

∆ p+
(

∂T
∂ p

)
s
∆S ,

∆T (p,S) =

(
∂T
∂ p

)
S

∆ p+
(

∂T
∂S

)
p

∆S =

(
∂T
∂ p

)
S

∆ p+
T
cp

∆S .

(B.25)

Inserting pairwise the obtained dependencies ∆ p(T,V ), ∆S(T,V ) and ∆V (p,S), ∆T (p,S)
into Eq. (B.24) one obtains the following expressions for the fluctuation probability
(Landau and Lifschitz, 1979, Eqs. (112.4) & (112.8) therein):

w ∝ exp
[
− cv

2kBT 2 (∆T )2 +
1

2kBT

(
∂ p
∂V

)
T
(∆V )2

]
,

w ∝ exp
[

1
2kBT

(
∂V
∂ p

)
S
(∆ p)2− 1

2kBcp
(∆S)2

]
.

(B.26)
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The probability density f (x,y) of a bivariate Gaussian distribution for the quantities
X and Y with mean values µX , µY , variances σ2

X=〈(x−µX )
2〉, σ2

Y=〈(y−µY )
2〉, and

corrrelation coefficient ρ(x,y), reads:

f (x,y) =
1

2πσX σX
√

1−ρ2
exp

{
− 1

2(1−ρ2)

[
(x−µX )

2

σ2
X

+
(x−µY )

2

σ2
Y

−2ρ
(x−µX )(y−µY )

σX σY

]}
.

(B.27)
Assuming thermodynamic fluctuations following a Gaussian distribution with ∆X =
X−µX , ∆Y=Y−µY , and ρ=0, we find by comparison of Eqs. (B.26) with (B.27)
for the parameter pairs (X ,Y )=(T,V ) and (X ,Y )=(p,S) the following equivalences
(Landau and Lifschitz, 1979, Eqs. (112.6), (112.7), (112.10) & (112.11) therein):

− (∆T )2

2〈(∆T )2〉
=− cv

2kBT
(∆T )2  〈(∆T )2〉= kBT 2

cv
,

− (∆V )2

2〈(∆V )2〉
=

1
2kBT

(
∂ p
∂V

)
T
(∆V )2  〈(∆V )2〉= kBTV κT ,

− (∆ p)2

2〈(∆ p)2〉
=

1
2kBT

(
∂V
∂ p

)
S
(∆ p)2  〈(∆ p)2〉=−kBT

(
∂ p
∂V

)
S
,

− (∆S)2

2〈(∆S)2〉
=− 1

2kBcp
(∆S)2  〈(∆S)2〉= kBcp .

(B.28)

From Eq. (B.26) follows (Landau and Lifschitz, 1979, Eqs. (112.5) & (112.9) therein):

〈∆T ∆V 〉= 0 , 〈∆S∆ p〉= 0 . (B.29)

Hence the fluctuations of temperature and volume, as well as those of pressure and
entropy are statistically independent. From Eq. (B.28) follows that the mean squares
of the additive thermodynamic quantities volume and entropy are proportional to the
spatial dimension of that part of the body which is affected by such fluctuations (Lan-
dau and Lifschitz, 1979, p. 326 therein). By virtue of the increments in Eq. (B.25),
the averaging constraints given by Eq. (B.29), the fluctuation relations given by Eq.
(B.28), and Eq. (A.46) for the definition of αp, one can further derive the following
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relations:

〈∆T ∆ p〉 =

〈[(
∂ p
∂T

)
V

∆T +

(
∂ p
∂V

)
T

∆V
]

∆T
〉

=

(
∂ p
∂T

)
V

〈
(∆T )2〉= kBT 2

cv

(
∂ p
∂T

)
V
,

〈∆V ∆ p〉 =

〈[(
∂V
∂ p

)
S

∆ p+
(

∂V
∂S

)
p

∆S

]
∆ p

〉

=

(
∂V
∂ p

)
S

〈
(∆ p)2〉=−kBT

(
∂V
∂ p

)
S

(
∂ p
∂V

)
S
=−kBT ,

〈∆S∆V 〉 =

〈[
cv

T
∆T +

(
∂ p
∂T

)
V

∆V
]

∆V
〉

=

(
∂S
∂V

)
T

〈
(∆V )2〉=−kBT

(
∂ p
∂T

)
V

(
∂V
∂ p

)
T

= kBT
(

∂V
∂T

)
p
= kBTV αp ,

〈∆S∆T 〉 =

〈[
cv

T
∆T +

(
∂ p
∂T

)
V

∆V
]

∆

〉
=

cv

T

〈
(∆T )2〉= kBT .

(B.30)

According to Eq. (B.28), the isochoric heat capacity is a measure of temperature693

fluctuations (T being the mean value of the fluctuating temperature), the isothermal694

compressibility is a measure of volume fluctuations (V being the mean value of the695

fluctuating volume for a fixed number of molecules), and the isobaric heat capacity is696

proportional to the entropy fluctuations experienced by N molecules at fixed pressure.697

Furthermore, according to Eq. (B.30), the isobaric thermal expansion coefficient re-698

flects the correlations between entropy and volume fluctuations (V being the mean699

value of the fluctuating volume for a fixed number of molecules) (cited from Debenedetti700

2003, p. R1673 therein). While in most liquids, volume and entropy fluctuations be-701

come smaller as the temperature decreases, in water volume and entropy fluctuations702

increase upon increasing undercooling. In other words, while in most liquids entropy703

and volume fluctuations are positively correlated, in water at T<277K volume and704

entropy fluctuations are anticorrelated (Debenedetti, 2003, p. R1674 therein). The705

anticorrelation between entropy and volume originates from the formation of an open706

hydrogen bonded network at temperatures below the temperature of the density maxi-707

mum. Upon undercooling the orientational entropy decreases, while the liquid volume708

increases. While in solid water the molecular network is permanent and long-ranged,709

in liquid water it is transient and short-ranged. Hence, the reason for the negative-710

ness of the isobaric thermal expansion coefficient of water is the formation of a low-711

entropic/high-volumetric molecular network (ibidem).712

B.2 Existence forms of water in dependence on temperature713

Owing to its exclusive reliance on reproduceable observables of liquid water, the appli-714

cation of the seawater standard TEOS-10 for water is restricted to temperatures above715

the temperature of homogeneous freezing. Despite the paramount work that has been716

done in the past, many questions regarding the physical nature of deeply undercooled717

water and glassy states, on the existence of a spinodal, whether freezing can occur718
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by spinodal decomposition etc. are still under discussion (e.g., Skripov and Baidakov719

1972; Speedy and Angell 1976; Abraham 1979; Speedy 1982a,b, 1987; Debenedetti720

et al. 1991; Debenedetti 2003; Debenedetti and Stanley 2003; Baidakov and Protsenko721

2005; Bartell 2007; Bartell and Wu 2007; Baidakov 2012; Moore and Molinero 2011;722

Holten et al. 2012, 2014; Stanley et al. 2013).723

Depending on temperature, water at atmospheric pressure can occur in different aggre-724

gation states and possess different degrees of stability (see Tab. B.1; Debenedetti et al.725

1991, Fig. 3 therein; Debenedetti 2003, Fig. 5 therein).726

Table B.1: Existence forms of water in dependence on temperature (Debenedetti et al.

1991, Fig. 3 therein; Debenedetti 2003, Fig. 5 therein).

Temperature Characterization

TSH = 553K Kinetic transition: superheating limit, homogeneous nucleation

of the vapor

Tb < T < TSH Metastable superheated liquid water

Tb = 373K Thermodynamic equilibrium transition: boiling point of water

Tm ≤ T ≤ Tb Stable liquid water

Tm = 273K Thermodynamic equilibrium transition: melting/freezing point

of water

TH < T < Tm Metastable undercooled liquid water

TH = 231K Kinetic transition: undercooling limit, homogeneous nucleation

of the crystal

Tx < T < TH Crystallization to hexagonal ice (Ih)

Tx = 150K Kinetic transition: crystallization to cubic ice (Ic)

Tg < T < Tx Presumably highly viscous water

Tg = 136K (or Tg = 165K ?) Kinetic transition: glass transition

T < Tg Glassy state

The temperature of crystallization of water can be decreased by purification of water727

from freezing catalyzers, e.g. subdividing the sample into small droplets. Purified728

droplets can be easily undercooled down to a temperature, at which the water-to-ice729

56

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


nucleation rate becomes so large that the characteristic lifetime of an unfrozen droplet730

becomes vanishingly small. This condition defines the temperature of homogeneous731

freezing, which depends on pressure and represents the experimentally attainable limit732

of undercooling (Debenedetti, 2003, p. R1675 & Fig. 6 therein).733

Because of the challenge to enter the temperature interval Tg<T<TH by experiments734

(either by undercooling liquid water or by heating glassy water), this region is called735

“no man’s land” (Debenedetti and Stanley, 2003). The limits of metastability (su-736

perheating, undercooling) are kinetically determined and must not be considered as737

absolute limits, but can be bypassed by the type of experimental setup. In context with738

the notion “no man’s land” Debenedetti and Stanley (2003, p. R1677 therein) remem-739

bered, that TH is a kinetic but not a thermodynamic constraint, posing just a practical740

limit of experimental accessibility as function of cooling rate and observation time.741

The observation of glassy water by rapid cooling reveals the possibility of cooling wa-742

ter faster than it crystallizes. In this way, homogeneous freezing can be bypassed. The743

experimental challenge is the realization of very short observation times (ibidem).744

Metastable states can be observed and described in terms of equilibrium thermodynam-
ics provided the following constraint is fulfilled (e.g. Debenedetti and Stanley 2003;
Skripov and Faizullin 2006, Eq. (1.3) therein):

{ti}� texp < τ . (B.31)

Here, ti is the characteristic time of relaxation of the system under consideration with745

respect to the i-th state parameter (temperature, pressure, etc.), texp is the characteristic746

time of the experiment (the time required to transfer the system into the metastable state747

and to carry out the subsequent experimental observations), and τ is the mean waiting748

time for the formation of a nucleus of a more stable phase (or induction time of nucle-749

ation). The inequality on the left-hand side of Eq. (B.31) ensures quasi-stasis of the750

thermodynamic properties of the metastable phase, allowing the application of equi-751

librium thermodynamics. The inequality on the right-hand side of Eq. (B.31) ensures752

that the system can be smoothly transferred into a metastable state without exhibition753

of specific behavior in its properties at the point of equilibrium phase transformation, if754

the system remains homogeneous (cited from Skripov and Faizullin 2006, p. 4 therein).755

B.3 Water anomalies756

Table B.2 shows the contrasting behavior between typical liquids and water. In typical757

liquids, density and entropy fluctuations decrease upon decreasing temperature, while758

in water density and entropy fluctuations increase with decreasing temperature. In other759

terms, in most liquids volume and entropy fluctuations are positively correlated, but760

for water at T<277K volume and entropy fluctuations are anticorrelated (c.f. Section761

B.1.3). This anticorrelation already appears for stable liquid water but increases upon762

undercooling (Debenedetti and Stanley, 2003, Fig. 1 therein).763
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Table B.2: Temperature dependence of isothermal compressibility κT , isobaric heat

capacity cp, and thermal expansion coefficient αp for a typical liquid and water

(Debenedetti and Stanley, 2003, Fig. 1 therein).

Typical liquid Water

∂κT/∂T > 0 ∂κT/∂T < 0 at T < 319K

∂cp/∂T > 0 ∂cp/∂T < 0 at T < 308K

αp > 0 αp < 0 at T < 277K

According to Debenedetti and Stanley (2003, see references therein), the microscopic764

explanation for 〈∆S∆V 〉<0 is the tetrahedrality of water manifested in the tetrahedral765

symmetry of the local order around each water molecule. Tetrahedrality is caused by766

hydrogen bonds, having a strength of ≈20kJmol−1 which is considerably stronger767

than regular dispersion interactions (≈1kJmol−1), but significantly weaker than cova-768

lent bonds (≈400kJmol−1) (Debenedetti, 2003, p. R1671 therein). The molar heat of769

fusion of ice Ih at atmospheric pressure amounts ∆ H̃M≈6.01kJmol−1, which is consid-770

erably lower than the strength of hydrogen bonds, i.e. the majority of hydrogen bonds771

remain unbroken upon melting, and in liquid water close to the melting point and even772

more in undercooled water local tetrahedral symmetry continues to exist, although this773

order is transient and short-ranged (Debenedetti, 2003, p. R1671 therein).774

Upon cooling, the closest neighbors of a water molecule begin to order and will grad-775

ually arrange into the local four-coordinated geometry, which is appropriate for the776

structure of the water molecules posessing two lone pairs of electrons (Debenedetti777

and Stanley, 2003). As mentioned above, a key role in such coordination is played by778

hydrogen bonds, defined as a noncovalent interaction between an electropositive hydro-779

gen atom on one molecule and an electronegative oxygen atom on another molecule,780

which favors local tetrahedral symmetry in water.781

Tetrahedrality in ordinary ice manifests themselves by four nearest neighbors around782

each water molecule, which acts as a hydrogen donor to two of the neighbors and as a783

hydrogen acceptor from the other two neighbors. These nearest neighbors are located784

near the vertices of a regular tetrahedron surrounding the central oxygon. The H−O−H785

bond angle of an isolated water moelcules is very close to the tetrahedral angle. While786

ice constitutes a permanent tetrahedral network, which is held together by hydrogen787

bonds, liquid water forms only a local and transient tetrahedral network. Regions788

exhibting a local tetrahedral order have a larger specific volume than non-tetrahedral789

regions, possessing a local close-packed order. Because of cp=T (∂S/∂T )p>0, the en-790

tropy decreases upon undercooling. Lowering the temperature leads to an increase in791

tretrahedrality, which is necessarily accompanied by an increase of the local specific792

volume. In this way, entropy and volume can become anticorrelated, and the expansion793

coefficient can become negative, αp<0. The same behavior shows silica, exhibiting lo-794

cal tetrahedrality symmetry but not having hydrogen bonds. MD simulations reveal that795
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tetrahedrality is a necessary but not sufficient condition for the formation of transient796

clusters of water molecules. The connectivity of water molecules within the clusters797

is established by hydrogen bonds. The mean volume of a molecule in such clusters is798

larger than that of the bulk (cited from Debenedetti and Stanley 2003).799

B.4 Hypotheses on the structure of undercooled water800

There are two viable hypothesis of the structure of undercooled water (e.g. Debenedetti801

and Stanley 2003; Malila and Laaksonen 2008). The first is the “thermodynamic con-802

tinuity” or “singularity-free” hypothesis, according to which thermodynamic proper-803

ties of water evolve smoothly from those of normal liquid water to that of amorphous804

ice/glassy water (no coexistence of different water phases at equilibrium). The second805

is the “liquid–liquid phase transition” or “liquid–liquid critical point” hypothesis. Both806

hypotheses will be briefly discussed below.807

B.4.1 Rationale of thermodynamic-continuity hypothesis808

According to the thermodynamic-continuity hypothesis, the experimentally observed
increase in the water response functions upon undercooling is considered to originate
from density anomalies (Debenedetti, 2003, p. R1707 therein). The relevant thermo-
dynamic relations are derived below (Debenedetti, 2003, p. R1707, Eqs. (1), (2) &
(17) therein). Pressure p, isothermal compressibility κT (Eq. (A.35)), isobaric ex-
pansion coefficient αp (Eq. (A.46)), and isochoric pressure coefficient βV (Kluge and
Neugebauer, 1994, Eq. (10.3) therein),

βV =
1
p

(
∂ p
∂T

)
V
, (B.32)

are related via the following equation (Kluge and Neugebauer, 1994, Eq. (10.5)
therein):

pβV κT = αp . (B.33)

Therewith, the partial derivative of κT with respect to temperature at constant pressure
reads: (

∂κT

∂T

)
p

=

[
∂

∂T

(
αp

pβV

)]
p

=
κT

αp

(
∂αp

∂T

)
p
− κT

βV

(
∂βV

∂T

)
p
,

(
∂αp

∂T

)
p

= − 1

V̂ 2

(
∂V̂
∂T

)2

p

+
1

V̂

(
∂ 2V̂
∂T 2

)
p

,

κT

αp
= −

(
∂V̂
∂ p

)
T

(
∂T

∂V̂

)
p
=

(
∂T
∂ p

)
V̂
,

κT

βV
= − p

V̂

(
∂V̂/∂ p

)
T

(∂ p/∂T )V̂
=

p

V̂

(
∂V̂/∂T

)
p

(∂ p/∂T )2
V̂

.

(B.34)

Along the locus of the “temperature of maximum density” (TMD) in the p−T plane,
defined as the line αp=0, one has

(
∂V̂/∂T

)
p,TMD

≡0, resulting by virtue of Eq. (B.34)
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in the first of the sought-after thermodynamic relations (Debenedetti, 2003, p. R1707,
Eq. (1) therein): (

∂κT

∂T

)
p,TMD

=
1

V̂

(
∂ 2V̂
∂T 2

)
p,TMD

(
∂T
∂ p

)
V̂ ,TMD

. (B.35)

The subscripts ’p’ and ’p,TMD’ denote a directional derivative along the TMD and a809

derivative evaluated at constant pressure at the TMD, respectively.810

The second of the sought-after relations is obtained from partial differentiation of the
thermal compressibility κT (Eq. (A.35)) and the isobaric expansion coefficient αp (Eq.
(A.46)), respectively, with consideration of the interchangeability of the order of partial
differentiation, which results in the following identity (Debenedetti, 2003, p. R1707,
Eq. (2) therein): (

∂κT

∂T

)
p
=−

(
∂αp

∂ p

)
T
. (B.36)

Finally, the derivation of the third of the sought-after relations can be found in Kluge
and Neugebauer (1994, Eq. (4.20) therein) (see also Debenedetti 2003, p. R1707, Eq.
(17) therein): (

∂ ĉp

∂ p

)
T
=−T

(
∂ 2V̂
∂T 2

)
p

, (B.37)

Because of
(

∂ 2V̂/∂T 2
)

p
>0, corresponding to a minimum in specific volume (or811 (

∂ 2ρ̂/∂T 2
)

p<0 corresponding to a maximum in mass density) at the TMD locus and812

(∂ p/∂T )V̂ ,TMD<0 at p>0, Eqs. (B.35), (B.36), and (B.37) imply the following conse-813

quences (Debenedetti, 2003, p. R1707, Eq. (17) & references therein):814

• (∂κT/∂T )p,TMD<0, i.e. the isothermal compressibility of liquid water increases815

upon isobaric cooling.816

• (∂αp/∂ p)T >0, i.e. the thermal expansion coefficient increases upon isothermal817

compression and decreases becomes upon isothermal decompression. A further818

implication of Eq. (B.36) is the coincidence of the locus of extrema of κT with819

respect to temperature along isobars with the locus of extrema of αp with respect820

to pressure along isotherms.821

• (∂ ĉp/∂ p)T <0, i.e. the isobaric heat capacity decreases upon isothermal com-822

pression.823

According to the singularity-free hypothesis, the observed increase of the response824

function upon undercooling can be solely explained by the density anomalies in form of825

a negative slope of the TMD locus, i.e. (∂ p/∂T )V̂ ,TMD<0, whereat the response func-826

tions remain always finite (i.e. there is no singularity) (Debenedetti, 2003, p. R1707 &827

references therein).828

For a comprehensive review of molecular-modelling attempts which support the sigula-829

rity-free hypothesis the reader is referred to the comprehensive review of Debenedetti830

(2003, Section 7.3 therein). The author emphasized that none of the discussed theoret-831

ical models is realistic and accurate enough to have predictive value. The calculations832

performed by use of these models “are of value not because they constitute accurate833

predictions (which they do not), but because they show a thermodynamically consistent834
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interpretation of the phase behavior of metastable water. Identifying which of these835

scenarios applies to water is the task of experiments” (Debenedetti, 2003, p. R1710836

therein).837

B.4.2 Rationale of liquid–liquid phase transition hypothesis838

According to the liquid–liquid phase transition hypothesis, at T<TH there exists an839

equilibrium line along which low-density liquid water (LDL) and high-density liquid840

water (HDL) can coexist (see Fig. 7). This equilibrium line terminates at a second crit-841

ical point C′, which determines the highest temperature of the LDL–HDL coexistence842

and which falls between the temperature of homogeneous freezing, TH , and the temper-843

ature of crystallization of cubic ice, Tx. At T>TC′ LDL and HDL are indistinguishable.844

The liquid–liquid coexistence line extends into the range T<Tx, where it describes the845

coexistence of vitreous forms of water, namely low-density amorphous ice (LDA) and846

high-density amorphous ice (HDA). The crossing of the liquid–liquid equilibrium line847

is hypothesized to perform by a first-order phase transition (Debenedetti and Stanley,848

2003).849

Figure 7: Liquid–liquid phase transition hypothesis. Redrawn from Gránásy (1999,

Fig. 1 therein) and Debenedetti and Stanley (2003, Fig. 5 therein).

A common feature of both hypotheses (i.e., the singularity-free and the liquid–liquid850

phase transition hypotheses) is that the character of the liquid (or the amorphous)851

phase changes upon undercooling at sufficiently high pressure by transformation from a852

dense, high-entropy phase to a less dense, low-entropy (more ordered) phase (Debenedetti853

and Stanley, 2003). The hypothesized second critical point C′ and the accompanying854

“critical fluctuations” can explain the strong increase of compressibility, specific heat855
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and thermal expansion coefficient upon approaching this point (Debenedetti and Stan-856

ley, 2003). The location of the second critical point C′ at T<TH has been deduced from857

theoretical considerations and computer simulations (for details see Debenedetti 2003,858

Section 7.2 therein).859

The exothermic character of the HDA→LDA transformation implies that LDA has860

a lower entropy (corresponding to higher degree of structural order) than HDA. Set-861

ting α=LDA and β=HDA, considering Ŝα<Ŝβ and V̂α>V̂β , one obtains by virtue of862

the Clausius–Clapeyron equation, Eq. (B.3), dp/dT<0 along the phase equilibrium863

line. As a consequence, the point C′ is expected to occur at the low-pressure, high-864

temperature end of the LDA–HDA equilibrium locus (Debenedetti and Stanley, 2003).865

The hypothesized LDL–HDL transition line is proposed to be very closely located to866

the homogeneous nucleation locus of water, making the experimental verification a867

very difficult endeavor (Debenedetti and Stanley, 2003).868

The reason for the anomalous behavior of undercooled water are microscopic fluctu-869

ations between dense, disordered, high-energy local configurations and comparatively870

more ordered, low-energy, open configurations, whereat the hypotheses on singularity-871

free condition and liquid–liquid phase transition differ only in the predicted magni-872

tude of these fluctuations (Debenedetti and Stanley, 2003). Computer simulations of873

equidensite surfaces around a central water molecule at T=268K reveal the existence874

of pronounced density lobes corresponding to the first shell of approximately tetrahe-875

drally bonded molecules, and a second shell in antiphase with the first shell. Upon876

increasing the pressure to enable the transition from LDH to HDL water, the second877

shell was demonstrated to collapse, which is the primary signature of the structural878

transformation associated with an increase of density (Debenedetti and Stanley, 2003,879

see references therein).880

B.5 Glassy water881

Glassy water is supposed to be the most common form of water in the universe, occur-882

ring as a frost on interstellar dust, constituting the bulk of matter in comets, and play-883

ing role in planetary activity (Debenedetti and Stanley, 2003, see references therein).884

The glass transition temperature, Tg, is the temperature below which the viscosity be-885

comes so high and the molecular motion so slow that on the experimental time scale886

the molecules cannot equilibrate to the lowest energy state of the liquid, and nucleation887

and/or growth is inhibited (Debenedetti, 1996; Debenedetti and Stillinger, 2001; Zo-888

brist et al., 2008; Moore and Molinero, 2011). At T<Tg the substance is a glass, i.e. a889

non-crystalline amorphous, nonequilibrium state that behaves mechanically like a solid890

(Debenedetti and Stillinger, 2001; Zobrist et al., 2008). According to Souda (2006, see891

references therein), the self-diffusion of water sets in at Tg=136K, and the fluidity of892

water evolves after some aging time in dependence on temperature. As a consequence,893

water fluidity occurs at T≈165K>Tg. Hence, Souda stated glass-transition of water894

to occur in two stages: undercooled liquid water emerges by glass–liquid transition895

from low-density amorphous ice (LDA) to low-density liquid (LDL) at Tg=136K, and896

then the water properties change drastically by liquid–liquid transition from LDL to897

high-density liquid (HDL) plus LDL water at around T≈165K. While the LDL water898

has ordered hydrogen bonds, the second undercooled liquid phase HDL which appears899

at T>165K should have disordered weak hydrogen bonds. For details on the multi-900

ple distinct glassy states (polyamorphism), on the routes of formation of LDA, HDA,901

and very HDA (VHDA) amorphous ice, on the temperature and pressure conditions902
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for reversible transformation between LDA and HDA, and on glass transition of LDA,903

respectively, the reader is referred to Debenedetti and Stanley (2003, Fig. 4 therein)904

and Debenedetti (2003, Section 6 therein).905

B.6 Speedy’s stability-limit conjecture906

From the nonlinear increase of the isothermal compressibility κT of water upon cooling907

down to −26 ◦C, Speedy and Angell (1976) extrapolated the existence of a thermody-908

namic singularity at ϑs=−45 ◦C, where κT diverges11.909

Speedy (1982a) argued that the free energy surface terminates at the line (Ts, ps) of the910

stability limit, denoting the spinodal. From extrapolation of experimental data the au-911

thor suggested a continous temperature–pressure line which starts at the critical point912

and bounds the metastable superheated, stretched, and undercooled states12. The ex-913

istence of such line is the rationale of the so-called stability-limit conjecture. Fur-914

thermore, from the shape of the (Ts, ps) line thermodynamic anomalies of water (e.g.,915

existence of the density maximum, heat capacity divergence of undercooled water) has916

been deduced.917

Later, Speedy (1982b) studied previously evaluated measurements of the thermal ex-918

pansion coefficient, the heat capacity, and isothermal compressibility of superheated919

and undercooled water which revealed consistency with the stability-limit conjecture,920

i.e. that such a limit is being approached.921

Finally, Speedy (1987) argued that one implication of the stability-limit conjecture is922

the divergence of structural relaxation processes upon approaching the stability limit:923

“It that is so, then the rapidly quenched liquid sample would become structurally ar-924

rested in a state which corresponds to that of liquid water near ϑs(1atm)=−45 ◦C and925

11Speedy and Angell (1976) employed a capillary technique for small samples of undercooled water to

measure the isothermal compressibility κT down to −26◦C. The authors found an accelerating increase

of κT at the lower temperatures following the proportionality κT ∝(T−Ts)/Ts with ϑs=−45◦C denoting the

temperature of a thermodynamic singularity. The authors argued, “that the thermodynamic and certain other

properties of water at lower temperatures may be decomposed into a normal component and an anomalous

component which diverges at ϑs=−45◦C.” Such behavior “is supported by analysis of numerous other ther-

modynamic and relaxation data which extend into the supercooled regime. The anomalous characteristics

are shown to originate primarily in the sensitivity of the volume to temperature changes, suggesting a ge-

ometrical basis for the cooperative behavior.” The supposed singularity was suggested to be linked “with

the cooperative formation of an open hydrogen-bonded network, but the near coincidence of ϑs with the

experimental homogeneous nucleation temperature suggests, as an alternative, that ϑs may correspond to

the limit of mechanical stability for the supercooled liquid phase.”
12While the existence of a spinodal for metastable superheated and stretched liquids is undisputed, the

existence of a spinodal for undercooled water is subject of controverse discussions. For example, according

to Skripov and Baidakov (1972) there is no liquid spinodal below the melting line. For details see discussion

in Appendix B.7.
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may be quite different from the amorphous solid sample prepared by vapor deposi-926

tion.” By evaluating measurements of the heat capacity for water down to −37 ◦C, the927

isothermal compressibility down to −26 ◦C, and the density down to −34 ◦C, as well928

as measurements of the electrical conductivity of dilute electrolyte solutions, proton929

conductance, and the spin-lattice relaxation time, Speedy (1987) bolstered his central930

postulate “that water behaves as though there exists a line Ts(p) at which the isother-931

mal compressibility κT diverges. Ts(p) is called the stability-limit temperature. There932

is some doubt as to the meaning of thermodynamic properties near Ts(p) but they can933

be taken to be defined by thermodynamically self-consistent extrapolations from nearby934

regions where they are well-defined. It is assumed that thermodynamic arguments are935

applicable near Ts.”936

Speedy (1987, Eq. (3) & Figs. 1–3 therein) fitted a general ansatz for the temperature937

dependence to the selected experimental data of heat capacity, isothermal compressibil-938

ity, and mass density of undercooled water. This ansatz is based on a decomposition939

of the temperature dependence into a most strongly diverging term and a background940

term. From the extrapolated behavior of his fitting functions the author concluded (i)941

that there is no inconsistency between the evaluated measurements and extrapolations942

of the properties of bulk water above 0◦C, and (ii) that the measurements are consistent943

with tha stability-limit conjecture and with the locus ϑs(p)/◦C=−46−0.025p/bar de-944

termined independently from transport data. To support the stability-limit conjecture,945

Speedy (1987) referred furthermore to the closeness of the densities of water and ice at946

−46 ◦C, to the closeness of the densities of amorphous solid waters prepared by vapor947

deposition at 77K, or by decompressing a higher density form at 117K and ice at those948

temperatures. The author concluded “that when liquid water is cooled fast enough to949

bypass crystallization, structural arrest occurs close to ϑs so the structure and density950

of the vitreous solid is that of water at ϑs.”951

Based on experiments in the temperature interval−14.27≤ϑ/◦C≤1.66 Henderson and952

Speedy (1987, Table I & Eq. (1) therein) proposed a polynomial for the melting pres-953

sure as function of temperature which does not fulfill the constraint d2 pm/dT 2 → ∞,954

which follows as a consequence of the stability-limit conjecture. The expression Tm(p)955

would need to contain a term like (p−ps)
3/2 whose second derivative diverges as956

p→ps.957

B.7 Review of selected findings on spinodal decomposition in undercooled liq-958

uids959

B.7.1 Determination of the spinodal from the EoS960

The spinodal can be determined from the EoS, e.g. given in the form

Z(p,T,Ṽ ) =
pṼ

RuT
, (B.38)

with Z denoting the compressibility factor and Ṽ the previously introduced molar vol-
ume of the fluid. The spinodal condition (subscript ’s’) results in the following implicit
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equation:(
∂ p

∂Ṽ

)
T

∣∣∣∣
s
=

ps

Zs

(
∂Z
∂ p

)
T

∣∣∣∣
s
− ps

Ṽs
= 0  f (ps,Ts,Ṽs) =

Ṽs

Zs

(
∂Z

∂Ṽ

)
T

∣∣∣∣
s
−1 = 0 .

(B.39)
Here, the subscript ’s’ denotes the spinodal value. As the critical point (pc,Tc,Ṽc) is
part of the spinodal, it can be used to eliminate one degree of freedom in the equation
f (ps,Ts,Ṽs)=0. With knowledge of the parameters of the critical point, the solution
of Eq. (B.39) delivers the spinodal isochore, the spinodal isotherm, and the spinodal
isobar:

ps = ps(Ts,Ṽc) , ps = ps(Tc,Ṽs) , Ṽs = Ṽs(pc,Ts) . (B.40)

In these equations the quantities ps, Ts, and Ṽs serve opotionally as dependent or inde-961

pendent variables, and pc, Tc, and Ṽc as constant parameters.962

B.7.2 Findings for non-water fluids963

Reanalyzing EoS measurements of compressed solid and liquid argon performed by964

van Witzenburg and Stryland (1968) and Crawford and Daniels (1969), Skripov and965

Baidakov (1972, Figs. 2 & 3 therein) derived the isochores p=p(T,Ṽ=const.), the966

melting line, the liquid–vapor binodal, and the vapor and liquid spinodals. The liquid967

spinodal isochore, ps=ps(Ts,Ṽc), was found to have a positive slope, (∂ p/∂T )s>0.968

Extrapolation to the zero-temperature limit of the spinodal curve yields the upper969

value for the tensile strength of the liquid. Upon isobaric undercooling at tempera-970

tures 115K≤T<Tm(p) and pressures p>−80MPa no enveloping ps(Ts) curve could971

be found that satisfies the spinodal condition Eq. (B.19) (and the existence of a spin-972

odal branch with (∂ p/∂T )s<0). The authors concluded that in undercooled liquids973

the spinodal – if it exists – is experimentally not accessible. This shows that the liq-974

uid structure retains its internal stability upon undercooling into metastable regions in975

which the crystal phase is already stable. According to the authors, the absence of a976

spinodal in undercooled liquids is obviously linked to the impossibility to form a crys-977

tal (regular) structure upon compression of nonregularly packed molecules. However,978

the authors added that they were unable to recomment any meaningful method to ex-979

trapolate the isochores deeply enough into the metastable range at which a spinodal980

could become visible. Analyzing the same system, Skripov and Faizullin (2006, Figs.981

3.9, 3.10 & 3.15 therein) found that the liquid spinodal converges with the melting line982

upon increasing tensile stress applied to the coexisting liquid and crystalline phases983

(limiting pressure p=−211.4MPa at T=0K).984

From MD simulations of the Lennard–Jones system Baidakov and Protsenko (2005,985

Fig. 1a therein) derived the melting curve, the boiling curve, the liquid and crystal986

spinodals under tension, and lines of attainable liquid undercooling and crystal super-987

heating. The melting line at negative pressure (i.e. liquid under tension) was found988

to meet the spinodal of the stretched liquid at a certain point A (see Fig. 8). The ex-989

tension of the melting line beyond point A tends toward a limiting pressure (tension),990

p?0=p?m(0), when the temperature decreases to zero. This melting-pressure limit p?m(0)991

was found to be very close to the limiting liquid-spinodal pressure p?s (0) for T→0.992

The lines of attainable liquid undercooling and crystal superheating were defined by993

the nucleation rate J=(V τ)−1 with V being the volume of the metastable phase and τ994

the mean time of expectation of the first viable nucleus (induction time). With decreas-995

ing temperature the boundary of the attainable superheat for a crystal approaches the996
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spinodal. The MD simulations revealed that in the limit T→0 the metastable extension997

of the melting line does not reach the isotherm T=0, but ends on the spinodal of a998

stretched liquid at a nonzero temperature. The study confirms the findings of Skripov999

and Baidakov (1972), according to which it is impossible to acces a liquid spinodal1000

upon isobaric cooling at temperatures T≤Tm(p), i.e. the spinodal does not exhibit “re-1001

entrance” in curve progression in the p−T plane at temperatures below the melting line1002

(in the undercooled region).1003

Figure 8: Isochores p=p(T,ρ) in dimensionless units for a Lennard–Jones fluid. Leg-

ende: BTA = liquid–crystal binodal (melting curve); CT = liquid–vapor binodal (boil-

ing curve); CAD = spinodal of a streched liquid; ML = spinodal of a strechted crystal;

EF line of attainable liquid undercooling; GL line of attainable crystal superheating;

C = critical point; T = triple point; A = intersection point of melting line and spinodal;

The dashed line represents the extension of the melting line beyond point A. Symbols

represent data from different sources. Taken from Baidakov and Protsenko (2005, Fig.

2a therein).

The same conclusion follows from Baidakov et al. (2007, Fig. 1 therein) and Skripov1004

and Faizullin (2006, Figs. 3.9, 3.10 & 3.15 therein) (see Fig. 9, left panel).1005

Figure 9 (right panel) shows for argon the dependence of the elasticity,
(

∂ p/∂V̂
)

T
, as1006

function of pressure. The pressure, at which the condition
(

∂ p/∂V̂
)

T
=0 is fulfilled,1007
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defines the spinodal pressure ps=ps(Ts). At temperatures T<150.9K, the spinodal1008

pressure becomes negative (point of intersection of the quasi-linear graph of the elas-1009

ticity with the abscissa). The lower the temperature, the larger is the tensile strength1010

for spinodal decomposition.1011

Figure 9: Left panel: Phase diagram of argon including regions of crystal–liquid co-

existence under tensile stress: BAE = melting line; AC = boiling line (liquid–vapor

equilibrium coexistence curve); CD = liquid spinodal; FG = crystal spinodal; aa′ =

tangent to the spinodal curve (CD) at p=−30MPa and T=100K (corresponding to the

isochore of the liquid with specific volume of V̂=0.855·10−3 m3 kg−1). Right panel:

Dependence of the elasticity of crystalline (curves 1–3) and liquid (curves 4–6) argon

on pressure at different temperatures: (1) 1K; (2) 50K; (3) 80K; (4) 90K; (5) 100K;

(6) 150K. Taken from Skripov and Faizullin (2006, Figs. 3.14 & 3.15 therein).

From MD simulations of selenium hexafluoride (SeF6) Bartell and Wu (2007) con-1012

cluded that spinodal decomposition is not encountered at degrees of undercooling down1013

to T/Tm=0.32. For all sizes of nuclei, the SeF6 clusters were found to follow the1014

Becker–Döring kinetics and first-order kinetics of nucleation once the transient period1015

was over. The derived steady-state nucleation rate was shown to continue to increase1016

and the critical time lag of nuclation to continue to decrease as T/Tm was lowered to1017

0.32. Bartell and Wu (2007, p. 174507-6 therein) saw strong evidence that, if the1018

spinodal existed for their system, the authors were not close to it. For liquids that read-1019

ily form glasses (“strong” liquids) they found it doubtful that a spinodal would occur1020

before the glas transition is reached. Unlike this, for “fragile” liquids like argon and1021
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selenium hexafloride the situation was argued to be less clear, and there are doubts that1022

spinodal decomposition occurs at degrees of undercooling as moderate at T/Tm=0.6.1023

Bartell and Wu (2007, p. 174507-5 therein) closed their analysis with the following1024

statement: “This is consistent with the work of Skripov, who has carried out some of1025

the most careful studies of freezing in the last quarter of a century. He has claimed that1026

there is no spinodal in freezing (Skripov, 1998).”1027

B.7.3 Findings for water1028

In normal liquids (e.g. argon), the liquid spinodal has a positive slope in the p−T phase1029

diagram (c.f. Figs. 8 & 9 (left panel)), and the zero-temperature limit of the spinodal1030

curve delivers the upper bound for the tensile strength of the liquid (c.f. Fig. 9, right1031

panel).1032

Unlike this, according to Speedy (1982a) the phase diagram of water comprises a1033

continuous spinodal curve, which bounds both the superheated and undercooled re-1034

gions. Speedy’s stability-limit conjecture predicts that the spinodal of liquid water1035

re-entrances towards positive pressures (“re-entrance” of spinodal), and can be ap-1036

proached upon isobaric undercooling (see Fig. 10). Such re-entrance is reconcilable1037

with the experimentally observed increase in the compressibility and heat capacity of1038

water upon increasing undercooling, because the spinodal is a locus of diverging den-1039

sity and entropy fluctuations (see Debenedetti 2003, see p. R1696 therein and Appen-1040

dices B.1.2 & B.1.3). Thermodynamic consistency requires a change of the sign of1041

the spinodal slope (dp/dT )s when crossing the line along which the thermal expansion1042

coefficient becomes zero (Debenedetti, 2003, see p. R1696 and references therein). In1043

Fig. 10 this crossing line is displayed as the curve f ae (corresponding to the isochore1044

of the density maximum at which αp=0). At the spinodal point e the liquid attains1045

its maximum tensile strength. After having passed the TMD line f ae (temperature of1046

maximum density) towards T<T (e), the spinodal curve re-entrances its path, i.e. its1047

slope becomes (dp/dT )s<0. Between the TMD line f ae and the liquid spinodal f e,1048

the thermal expansion coefficient of water is negative. This can be seen from the lo-1049

cus of the isochores g and h for which the molar volumes obey the inequality Ṽg<Ṽh,1050

i.e. upon isobaric undercooling the volume increases. Upon isochoric cooling along1051

the isochore g the pressure increases, and the isochore converges to the spinodal, i.e.1052

becoming tangent to that part of the spinodal with a negative slope. Unlike this, upon1053

isochoric cooling along the isochore h the pressure decreases, and the isochore becomes1054

tangent to that part of the spinodal with a positive slope. As the spinodal is an evel-1055

ope of isochores according to Eq. (B.19), the change of the sign of the spinodal slope1056

upon crossing the TMD line is compelling. The TMD line f ae connects the pressure1057

minima of the isochores, i.e. slope of isochores must vanish along it, (∂ p/∂T )V̂=0.1058

Starting at any point on the spinodal f e, the density will increase upon isobaric heating,1059

reaching its maximum at the TMD line f ae and decreasing thereafter. According to the1060

stability-limit conjecture, the TMD locus of water causes the re-entrance of the liquid1061

spinodal to positive pressures, provided that a continuous line exists which bounds su-1062

perheated, stretched, and undercooled states (Debenedetti, 2003, see p. R1697 therein).1063

A re-entrancing liquid water spinodal is also predicted by the water standard IAPWS-1064

95 and previous water EoS formulations (Wagner and Pruß 2002, see Fig. 7.54 and1065

references therein, IAPWS R6-95 2016).1066

Debenedetti (2003, see p. R1698 therein), however, questioned the validity of the1067

stability-limit conjecture. According to the author, a re-entrancing spinodal e f must1068
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Figure 10: Schematic representation of Speedy’s stability-limit conjecture. Legende:

st = sublimation curve; tc = boiling curve; tm = melting curve; g,h = isochores

(ρg > ρh); t = triple point; c = critical point; f ae = locus of the density maximum;

ce f = spinodal bounding superheated, undercooled, and simultaneous superheated–

undercooled states. Redrawn from Debenedetti (2003, Fig. 21 therein).

intersect the metastable continuation of the vapor–liquid equilibrium curve. Any point1069

along a phase coexistence locus in the p−T diagram corresponds to two different den-1070

sities (e.g., saturated liquid and vapor along the boiling curve tc). The spinodal ce f is1071

a locus of liquid-state points. Debenedetti argued, that for this reason the intersection1072

of the re-entrancing branch e f of the liquid spinodal with the metastable extension of1073

the boiling curve must correspond to the same liquid state. This, however, can only1074

happen if the spinodal and the binodal coincide, implying that the intersection point1075

between the re-entrancing spinodal and the metastable extension of the boiling curve1076

is a critical point. Therefore, if the superheated liquid spinodal re-entrances its path to1077

positive pressures, the vapor–liquid coexistence locus must have both upper and lower1078

critical points, whereat the former is the normal vapor–liquid critical point. Although1079

there are no experimental proofs for the existence of a metastable lower critical point1080

for the vapor–liquid transition, the author did not rule out that such a point exists. For1081

further discussion the reader is also referred to Holten et al. (2012, Section F & Fig. 81082

therein), who shared Debenedetti’s proposition.1083

Poole et al. (1993) performed MD simulations of deeply undercooled water under ten-1084

sion in order to verify the hypothesized minimum in the liquid-spinodal pressure ps(T )1085

according to Speedy’s stability-limit conjecture. The authors demonstrated that for1086
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their employed water models ps(T ) does not exhibit re-entrance to positive pressures1087

in the p−T phase diagram (see Figure 11). Under sufficiently high tensions (neg-1088

ative pressure), the TMD was simulated to re-entrance towards lower temperatures,1089

thereby not intersecting the spinodal, which displays a monotonous behavior with pos-1090

itive slope, (dp/dT )s>0.1091

Figure 11: Phase diagram of water from MD simulations. Legende: solid lines (with

symbols) = isochores; dotted-dashed line = TMD locus; dottet line (with •) = liquid

spinodal. Symbols for isochores (ρ̂=const.): × = 1.1gcm−3; + = 1.05gcm−3; O =

1gcm−3; 4 = 0.95gcm−3; � = 0.9gcm−3; � = 0.85gcm−3; ◦ = 0.8gcm−3. Taken

from Poole et al. (1993, Fig. 3b therein).

Bartell and Huang (1994) cooled water below the temperatur Ts=226K, at which the1092

existence of some sort of instability or critical phenomenon of undercooled water, such1093

as singular behavior of heat capacity, thermal expansivity, compressibility etc. is hy-1094

pothesized to occur. The employed method was evaporative cooling of large molecular1095

clusters produced by condensation of water vapor in supersonic flow through a minia-1096

ture Laval nozzle. The vapor with an initial temperatur near ϑ=100 ◦C was seeded1097

into neon carrier gas. In this way liquid water clusters with diameter up to 7.4nm con-1098

taining 6600 molecules were generated, which were observed to freeze to crystals of1099

somewhat disordered cubic ice in the vinicity of T=200K. Electron diffraction pat-1100

terns revealed that the clusters remain liquid until after cooling substantially below the1101

temperature of homogeneous freezing, TH , and below Ts. The liquid rather then glassy-1102

solid nature of the clusters is supported by the observed extremely rapid transformation1103

into cubic ice once the nucleation rate (upon increasing undercooling) reaches a suffi-1104

ciently high value for freezing to occur on the time scale of microseconds during the1105
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experiments. When the liquid temperature rises to a characteristic value of a glass the1106

modelled nucleation rate droped far below the observed one (hence, glass formation1107

could be excluded). As a further argument in favor of the liquid nature of the clusters1108

the authors stated, that the glassy solid produced by chilling liquid microdrops on very1109

cold surfaces has been proven to melt to the liquid at temperatures well below those1110

encountered in their own study before it freezes (also to cubic ice). The rapid freezing1111

of clusters (in a few microseconds) upon cooling down to T=200K does not corrobo-1112

rate the postulated viscosity divergence at Ts. This is also supported by the undisturbed1113

passage of the observed clusters through the anomalous region near Ts. Hypothesiz-1114

ing that the singularity at Ts exists, and the physical properties obeying scaling laws1115

characteristic of true critical points, due to their smallness, however, the investigated1116

water clusters are not expected to encounter serious instabilities during their cooling:1117

“Any critical fluctuations of density responsible for anomalies in compressibility, heat1118

capacity, and other properties of the fluid would be frustrated by the small dimen-1119

sions and short time scales of experiments. Accordingly, the thermodynamic properties1120

should presumably more or less follow those of Angell’s ‘normal component’ of water”1121

(Bartell and Huang, 1994, p. 7456 therein). One might object that small dimensions1122

may impose limitations on any large density fluctuations possibly encountered near1123

Ts, and that surface-structure induced perturbations may disturb the molecular orga-1124

nization toward the interior, which together might question the explanatory power of1125

experiments on molecular clusters to resolve the problem of the water anomaly at the1126

singularity Ts. However, the experiments performed by Bartell and Hu do not corrobate1127

such anomaly.1128

A study supporting the existence of a spinodal in undercooled water was published by1129

Gránásy (1999). On the base of density functional calculations Gránásy (1999) pre-1130

dicted a spinodal point in deeply undercooled water (LDL) at Ts≈146K, where LDL1131

becomes unstable with respect to crystalline ice. Depending on an adjustable parameter1132

h (height of the square-shaped peak of the specific heat in units of Jmol−1 K−1) em-1133

ployed to parameterize the temperature dependence of ∆ ĉp≈ĉp,β−ĉp,α in the deeply1134

undercooled range (T≤TH), the spinodal temperature was predicted to vary in the range1135

Ts=(158−185)K (Gránásy, 1999, Fig. 2c therein).1136

B.7.4 Molecular-scale conditions for spinodal collapse1137

Debenedetti et al. (1991) explained the mechanical stability of a liquid on the base of
the virial theorem, which imposes severe constraints on the type of molecular interac-
tions. Considering a fluid whose molecules interact via pairwise additive central forces,
the EoS is given by (Debenedetti et al., 1991, Eqs. (4) & (5) therein):

p = ρ

(
kBT +

Ψ

6

)
. (B.41)

Here, ρ=1/V denotes the number density of the liquid, and Ψ (in units of J) the virial:

Ψ = N〈~ri j~fi j〉 . (B.42)

The quantity N is the total number of molecules in the system,~ri j=~ri−~r j is the distance
between interacting molecules i and j and ~fi j is the interaction force on molecule i due
to j. The angle brackets denote thermodynamic averaging. The partial derivative of p
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Figure 12: Dependence of the attractive (a), repulsive (r), and total normalized virial,

Ψ/(NεLJ), as function of density, ρ , for a Lennard–Jones potential below the Boyle

temperature. Taken from Debenedetti et al. (1991, Fig. 1 therein).

with respect to ρ at constant temperature reads:(
∂ p
∂ρ

)
T
=

p
ρ
+

ρ

6

(
∂Ψ

∂ρ

)
T
. (B.43)

For the fluid being stable or metastable, the isothermal compressibility κT must obey
the inequality given by Eq. (B.13) satisfied for 0<κT<∞, which requires the fulfillment
of the following constraint (Debenedetti et al., 1991, Eq. (7) therein):(

∂Ψ

∂ρ

)
N,T

>−6p
ρ2 . (B.44)

The spinodal defined by κT→∞ requires:(
∂Ψ

∂ρ

)
N,T

=−6p
ρ2 . (B.45)

Debenedetti et al. (1991) draw the following conclusions: (i) loss of stability at p>01138

requires (∂Ψ/∂ρ)N,T <0, i.e. the virial decreases upon isothermal compression; (ii)1139

loss of stability at p<0 (liquid under tension) requires (∂Ψ/∂ρ)N,T >0, i. e. the virial1140

increases upon isothermal compression.1141

Figure 12 shows the dependence of the attractive, repulsive, and total normalized virial,1142

Ψ/(NεLJ), as function of density, ρ , below the Boyle temperature for a Lennard–1143

Jones potential with the size parameter σLJ and the energy parameter εLJ, calculated1144

by Debenedetti et al. (1991, Eq. (12) therein)13. The superposition of the attractive1145

13The repulsive term describes a short-range interaction originating from overlapping of electron orbitals,

and the attractive term describes a long-range interaction originating from van der Waals forces.
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Figure 13: A core-softened interaction potential Φ (left panel) and the corresponding

interaction force f=−∂Φ/∂ r (right panel). Core-softened potentials possess a repul-

sive shoulder in the range r1<r<r2, e.g., as a finite but constant barrier, or as linear

decrease in repulsive energy with distance (Debenedetti, 2003, p. R11706 therein).

Figure taken from Debenedetti et al. (1991, Fig. 4 therein).

and repulsive potentials results in a minimum of the virial at the density ρ?. For ρ<ρ?
1146

one has (∂Ψ/∂ρ)N,T <0, i.e. a spinodal can exist if p>0 (case (i)). For ρ>ρ? one has1147

(∂Ψ/∂ρ)N,T >0, i.e. a spinodal can exist if p<0 (case (ii)).1148

For a fluid with a pair potential consisting only of a repulsive part Debenedetti et al.1149

(1991, Eqs. (8)–(11) therein) demonstrated that only the case (∂Ψ/∂ρ)N,T >0 and1150

p>0 can exist, i.e. the stability inequality for such a fluid is never violated and a liquid1151

spinodal cannot exist.1152

In view of the constraints imposed on the type of molecular interaction for spinodal
decomposition to occur, Debenedetti et al. (1991) asked for the type of interaction
potential that is consistent with loss of stability upon undercooling. The authors showed
that a liquid with a “core-softened” potential can become mechanically unstable at
high density (low temperature). Core softening denotes a type of molecular interaction
potential Φ with inflection points within the repulsive core, r1<r<r2 (see Fig. 13). The
criterion for core-softening is the following condition for the product r f of interaction
distance r and interaction force f=−∂Φ/∂ r (Debenedetti et al., 1991, Eqs. (14) &
(15) therein):

d(r f )
dr

> 0 for r1 < r < r2 ,

 f + r
d f
dr

> 0 or
dΦ

dr
+ r

d2Φ

dr2 < 0 ,

d2Φ

dr2 > 0 for r < r1 and r2 < r .

(B.46)

The positiveness of the second derivative of Φ corresponds to the convexity (or positive1153
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curvature) of the function Φ(r) of the repulsive core outside the core-softened region.1154

According to Debenedetti et al. (1991), the contribution to the total virial due to a pair1155

of molecules interacting via a core-softened potential does not increase monotonically1156

as the separation decreases below r′ (potential minimum). For this reason the total1157

virial does not increase monotonically with density upon compression. In this way, at1158

high density the stability inequality (Eq. (B.44)) can be violated.1159

The partial derivative of p with respect to T at constant density (or volume) reads
(Debenedetti et al., 1991, Eq. (16) therein) :(

∂ p
∂T

)
ρ

= ρ

[
kB +

1
6

(
∂Ψ

∂T

)
ρ

]
. (B.47)

Equation (B.47) can be rewritten by virtue of Eq. (B.33):

ρ

[
kB +

1
6

(
∂Ψ

∂T

)
ρ

]
= pβV =

αp

κT
. (B.48)

With the restriction sign(αp)=sign(βV ), for a stable or metastable fluid (with 0<κT<∞

according to Eq. (B.13)), the condition αp>0 is fulfilled as long as the following in-
equality holds (Debenedetti et al., 1991, Eq. (17) therein):(

∂Ψ

∂T

)
ρ

>−6kB . (B.49)

As argued by Debenedetti et al. (1991), upon heating a given number of molecules1160

inside a rigid container, new contributions to the virial can only arise from interpene-1161

tration of repulsive cores by pairs of energetic molecules. For a potential function with1162

positive curvature in its repulsive core (i.e. without core softening), these new inter-1163

penetration contributions “must necessarily lead to an increase in the virial because1164

at the point of closest approach between two molecules during a given collision the1165

pairwise virial is larger than for all greater separations” (Debenedetti et al., 1991).1166

As a consequence, the inequality Eq. (B.49) is fulfilled for fluids, which interact via1167

pair potentials the repulsive cores of which have only positive curvature.1168

For αp<014 from Eq. (B.48) follows:(
∂Ψ

∂T

)
ρ

<−6kB . (B.50)

Debenedetti et al. (1991) concluded that a necessary condition for a fluid to attain αp<01169

is a negative isochoric rate of change of the virial with respect to temperature for some1170

condition of temperature and pressure. Core softening is expectable to fulfill this con-1171

dition “because at the point of closest approach between two molecules during a given1172

collision the pairwise virial is not necessarily larger than for all greater separations”1173

(because of the condition ∂ (r f )/∂ r>0, ibidem). Therefrom the authors concluded that1174

a core-softened fluid can have a negative thermal expansion coefficient and can become1175

mechanically unstable at high density.1176

Core softening has been deduced from experimental structure factor data for effective1177

pair potentials of several liquid metals, e.g. Al, Ba, Bi, Ca, Cs, Ga, In, K, Mg, Na,1178

14A process in which materials contract upon heating is also called NTE process (for “negative thermal

expansion”, Miller et al. 2009).
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Pb, Rb, Sb, Sn, Sr, Tl, Zn (Debenedetti et al., 1991, see references therein). The1179

liquid metals Bi, Ga, Sn were reported to expand upon freezing, i.e. αp<0. Also1180

water displays a negative thermal expansivity below 4 ◦C, the temperature of the density1181

maximum.1182

In their study Debenedetti et al. (1991) further demonstrated that the competition be-1183

tween nearest-neighbor attraction and next-nearest-neighbor repulsion is enough to1184

cause density anomalies and to enable the loss of stability upon undercooling. The un-1185

derlying mechanism is as in the case of water “the competition between open structures1186

which can melt into denser, high-energy, close-packed configurations through the input1187

of thermal mechanical energy” (Debenedetti et al., 1991). Summing up, the authors1188

demonstrated that spinodal collapse is possible only for liquids capable of contracting1189

when heated isobarically, i.e. for αp<0. On microscopic scales such collapse proceeds1190

via the formation of open structures which are stabilized by repulsion, and which can1191

be imploded into denser arrangements through import of thermal or mechanical energy.1192

Both negative thermal expansivity and loss of stability at high density can be explained1193

within the framework of core softening.1194

C APPENDIX: Ewing model of crystal–melt interfacial energy1195

Gránásy (1995, Eq. (3), Table 1 & Fig. 4 therein) calculated the dimensionless ratio
χσ (T ) = σαβ (T )/σαβ ,m, which appeared to be a monotonous function with a positive
temperature coefficient, dχσ/dT>0, in the interval 235K≤T≤273K:

χσ (T ) =−3.928+3.220 ·10−2
(

T
K

)
−5.190 ·10−5

(
T
K

)2

. (C.1)

This expression is based on the use of a model of the crystal–melt interface proposed by1196

Ewing (1971), which explicitly considers the radial distribution function (RDF) for a1197

system of non-attracting hard spheres. The RDF information in the crystal–melt inter-1198

face model was derived from X-ray structure factors for heavy water in the temperature1199

range 262K≤T≤313K, measured by Bosio et al. (1983).1200

In his original paper, Ewing (1971) applied his model to liquid gold. The total free
energy of the interface, σαβ , is the sum of the contributions of the crystal, σ

(α)
αβ

, and

the melt, σ
(β )
αβ

:

σαβ = σ
(α)
αβ

+σ
(β )
αβ

.

The contribution of the crystal was calculated for an atomically smooth, (111) surface
plane. An atom at such a crystal plane has nine nearest neighbors, and an atom in the
interior of the crystal has 12 nearest neighbors. Employing arguments of plausibility,
the author assumed that three quarters (9/12) of the bonding of a surface atom is crystal
bonding, and one quarter (3/12) is surface bonding. Consequently, the contribution of
the crystal surface to the interfacial free energy amounts one quarter of the molar heat
of fusion, ∆ H̃M(T ) (in units of Jmol−1):

σ
(α)
αβ

=
ns∆ H̃M

4NA
.

Here, ns denotes the area number density of atoms in the surface plane (in units of1201

m−2). For hexagonal water ice this consideration must be adjusted correspondigly.1202

75

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://doi.org/10.20944/preprints201909.0164.v1


The contribution of the melt is given by the following expression:

σ
(β )
αβ

= −TmSβ

αβ
,

S(β )
αβ

= −NkB

1∫
0

W (Y ) lnW (Y )dY .

Here, S(β )
αβ

denotes the interfacial entropy of the melt (in units of Jm−2 K−1), N is the
number of particles per unit area of the interface (in units of m−2),

N =
NA

Ṽβ

b ,

with NA being the Avogadro constant, Ṽβ denoting the molar volume of the melt, and b1203

the characteristic thickness of the interface, deriveable as the cut-off distance from the1204

RDF. The function W (Y )≡η(Y )/η0(Y ) is the normalized RDF, with η(Y ) being the1205

distribution function of non-attracting hard-sphere particles obeying uniformity and1206

randomness in two Cartesian directions but non-uniformity in the third (the y direc-1207

tion), and η0 corresponds to the hard-sphere distribution satisfying uniformity and ran-1208

domness in all three space directions. The independent variable is the dimensionless1209

distance Y=y/b. Hence, according to the Ewing model, σαβ is uniquely defined if b,1210

Ṽβ , ns, and the RDF W (Y ) are known. For a uniform distribution one has W (Y )=1 and1211

S(β )
αβ

=0; for a non-uniform distribution the integral is positive, S(β )
αβ

<0, and σ
(β )
αβ

>0.1212

In his application of the Ewing model to undercooled water, Gránásy (1995, Eq. (3)
therein) employed the following modification together with the RDF information based
on measurements of X-ray structure factors for heavy water in the temperature range
262K≤T≤313K by Bosio et al. (1983):

σ
(α)
αβ

=
α0∆ H̃M(T )

2N1/3
A Ṽ 2/3

α

, σ
(β )
αβ

=−T S(β )
αβ

, S(β )
αβ

=−Ru

Ṽα

∞∫
0

g(z) lng(z)dz . (C.2)

Here, α0 is an empirical parameter, Ṽα is the molar volume of the crystal phase, and1213

g(z) the pair correlation function describing the distribution of molecules normal to1214

the crystal surface with the spatial coordinate z normal to the crystal–liquid inter-1215

face and z=0 at the dividing surface. For the hexagonal ice Ih (corresponding to the1216

wurtzite crystal system) and the cubic ice Ic (diamond) 111 planes Gránásy (1995)1217

used α0=0.289.1218

Comparison of Eq. (C.2) with Eq. (14) proposed by Jeffery and Austin (1997, Eq.1219

(8) therein), reveals formal equivalence of both formulations by setting α/2=κT . The1220

empirical excess interface energy in Eq. (14), δσαβ=−κσ T , can be formally identi-1221

fied with the term σ
(β )
αβ

in the Ewing model, which describes the contribution to the1222

total interface energy originating from structural ordering of undercooled water upon1223

approaching the interface. However, while δσαβ<0 tends to decrease the surface ten-1224

sion, the term σ
(β )
αβ

>0 tends to increase it. Further studies are required to resolve this1225

apparent contradiction and to reconcile both approaches.1226
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D APPENDIX: Ice–water activation energy1227

According to Jeffery and Austin (1997, Section 5 therein), the molar ice–water activa-
tion energy, ∆ G̃act(T, p,), appearing in the kinetic prefactor in Eq. (20), is – next to the
ice–water surface tension – the second closure parameter for CNT application to homo-
geneous freezing of water. The authors employed the following relation between the
self-diffusivity of water, D(T, p), and the molar activation energy, ∆ G̃act(T, p) (Jeffery
and Austin, 1997, see Eq. (11) & reference to Glasstone therein):

D(T, p)=D0(p)exp

(
−∆ G̃act(T, p)

RuT

)
 G̃act(T, p)=−RuT ln

D(T, p)
D0(p)

. (D.1)

Here, the parameter D0(p) is approximately independent of temperature and denotes
the self-diffusivity of water at G̃act=0. Jeffery and Austin estimated D and D0 sepa-
rately from different datasets. The data for self-diffusivity D(T, p) were taken from
Prielmeier et al. (1988, Eq. (3) & Table 3 therein), who fitted an empirical Vogel–
Tamann–Fulcher equation to experimental data on water in the temperature and pres-
sure ranges 204K≤T≤333K and 0.1MPa≤p≤400MPa:

D(T, p) = D?(p)exp
(
− B(p)

T −T?(p)

)
. (D.2)

Here, T? represents the ideal glass-transition temperature, at which self-diffusion ceases,1228

i.e. D(p,T?)=0. Consistency requires, that T? must be related to the Kauzmann tem-1229

perature, where the configurational entropy of the amorphous and crystalline phases1230

would match (Prielmeier et al., 1988, p. 1114 therein). The parameters in Eq. (D.2)1231

are presented in Table D.1. Note, that the order of magnitude of D? in column 2 and1232

the unit of B in column 3 of Jeffery and Austin (1997, Table 2 therein) are wrong.1233

In order to estimate D0, Jeffery and Austin (1997) used a separate dataset of self-
diffusivity measurements conducted by Harris and Woolf (1980) in the temperature
and pressure ranges 277K≤T≤333K and 0.1MPa≤p≤300MPa. Harris and Woolf
(1980, Eq. (1) & Table 3 therein) derived the following parameterization for D(p,T ):

ln
(

D(T, p)
10−9 m2 s−1

)
= A0

+
3

∑
i=1

{
+
( p

0.1MPa

)i
[

A2i−1 +A2i

(
103 K

T

)i
]
+Ci

(
103 K

T

)i
}

.

(D.3)

The parameters appearing in Eq. (D.3) are presented in Table D.2.1234

Assuming that ∆ G̃act(T, p) at constant pressure is nearly independent of temperature1235

in the considered temperature range, Jeffery and Austin (1997) fitted the first relation1236

in Eq. (D.1) to the D(T, p) data of Harris and Woolf (1980). The fit returned both D01237

and the average activation energy ∆ G̃act(p).1238

We have checked the values of D0 and ∆ G̃act(p) derived by Jeffery and Austin (1997)1239

by comparison with the predictions from Eq. (D.3), and identified in this way a mistake1240

in the order of magnitude of D0 presented in Jeffery and Austin (1997, Table 2 therein).1241

Therefore, the correct values are listed here in Table D.3.1242

Finally, inserting D(T, p) from Eq. (D.2) into Eq. (D.1) yields the expression for the
activation energy proposed by Jeffery and Austin (1997, Eq. (15) therein):

∆ G̃act(T, p) = RuT
[

B(p)
T −T?(p)

− ln
(

D?(p)
D0(p)

)]
. (D.4)
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Table D.1: Best fit parameters for the description of the isobaric temperature depen-

dence of D(T, p) in H2O according to Eq. (D.2). The data in the pressure range

p=(0.1−200)MPa were employed by Jeffery and Austin (1997, Table 2 therein). Ex-

ample: D?(0.1MPa)=4.14·10−8 m2 s−1. Taken from Prielmeier et al. (1988, Table 3

therein).

p/MPa
D?×108

m2 s−1 B/K T?/K

0.1 4.14 347 177

10 6.46 455 161

50 8.90 563 143

100 10.1 622 133

150 11.2 668 126

200 8.93 614 131

250 7.24 564 137

300 5.78 514 142.5

350 3.41 423 152

400 3.24 410 154.5

We have recalculated the isobars ∆ G̃act(T, p=const.) vs. T presented in Jeffery and1243

Austin (1997, Fig. 4 therein) and found them correct. The plot reveals an increase1244

in the activation energy upon increasing undercooling (corresponding to a kinetical-1245

lycontrolled nucleation rate depression), and a decrease in the activation energy upon1246

increasing pressure (kinetically controlled nucleation rate enhancement). As the values1247

of both D?(p) and D0(p) were subject to the same wrong unit prefactor in Jeffery and1248

Austin (1997, Table 2 therein), the errors (typo) cancel out in the ratio D?(p)/D0(p),1249

which enters the activation energy expression, Eq. (D.4).1250
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Table D.2: Best fit parameters for the description of the pressure and temperature de-

pendence of D in H2O according to Eq. (D.3). Taken from Harris and Woolf (1980,

Table 3 therein).

Ai Value Ci Value

A0 = 3.425150

A1 = −0.627500 ·10−3 C1 = 0.623898

A2 = 0.202474 ·10−3 C2 = −0.416757

A3 = 0.114172 ·10−6 C3 = 0

A4 = −0.447466 ·10−7

A5 = 0.450105 ·10−11

A6 = 0

Table D.3: Best fit parameters in Eq. (D.1) for the description of the isobaric temper-

ature dependence of D in H2O according to Harris and Woolf (1980, Eq. (1) & Table

1 therein). Example: D0(0.1MPa)=349·10−8 m2 s−1. Corrected version of Jeffery and

Austin (1997, Table 2 therein).

p/MPa
D0×108

m2 s−1
∆ G̃act(p)
kJmol−1

0.1 349 18.2

10 328 18.0

50 263 17.5

100 210 16.9

150 175 16.5

200 157 16.3
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Benz, S., Megahed, K., Möhler, O., Saathoff, H., Wagner, R., and Schurath, U.: T -1305

dependent rate measurements of homogeneous ice nucleation in cloud droplets using1306

a large atmospheric simulation chamber, J. Photochem. Photobiol. A: Chemistry,1307

176, 208–217, doi:10.1016/j.jphotochem.2005.08.026, 2005.1308

Bhat, S. N., Sharma, A., and Bhat, S. V.: Vitrification and Glass Transition1309

of Water: Insights from Spin Probe ESR, Phys. Rev. Lett., 95, 235 702, doi:1310

10.1103/PhysRevLett.95.235702, https://link.aps.org/doi/10.1103/1311

PhysRevLett.95.235702, 2005.1312

Bosio, L., Chen, S. H., and Teixeira, J.: Isochoric temperature differential of the x-1313

ray structure factor and structural rearrangements in low-temperature heavy wa-1314

ter, Phys. Rev. A, 27, 1468, https://doi.org/10.1103/PhysRevA.27.1315

1468, 1983.1316

Butorin, G. T. and Skripov, V. P.: Crystallization of supercooled water, Kristallografiya,1317

1, 1972.1318

Crawford, R. K. and Daniels, W. B.: Equation-of-State Measurements in Compressed1319

Argon, J. Chem. Phys., 50, 3171–3183, doi:10.1063/1.1671538, https://doi.1320

org/10.1063/1.1671538, 1969.1321

Debenedetti, P. G.: Metastable Liquids: Concepts and Principles, Princeton University1322

Press, Princeton, New Jersey, 1996.1323

Debenedetti, P. G.: Supercooled and glassy water, Journal of Physics: Condensed Mat-1324

ter, 15, R1669–R1726, doi:10.1088/0953-8984/15/45/r01, https://doi.org/1325

10.1088%2F0953-8984%2F15%2F45%2Fr01, 2003.1326

Debenedetti, P. G. and Stanley, H. E.: Supercooled and glassy water, Physics Today,1327

pp. 40–46, http://www.physicstoday.org, 2003.1328

Debenedetti, P. G. and Stillinger, F. H.: Supercooled liquids and the glass transition,1329

Nature, 410, 259–267, 2001.1330

Debenedetti, P. G., Raghavan, V. S., and Borick, S. S.: Spinodal curve of some super-1331

cooled liquids, J. Phys. Chem., 95, 4540–4551, doi:10.1021/j100164a066, 1991.1332

81

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2019                   doi:10.20944/preprints201909.0164.v1

https://link.aps.org/doi/10.1103/PhysRevLett.95.235702
https://link.aps.org/doi/10.1103/PhysRevLett.95.235702
https://link.aps.org/doi/10.1103/PhysRevLett.95.235702
https://doi.org/10.1103/PhysRevA.27.1468
https://doi.org/10.1103/PhysRevA.27.1468
https://doi.org/10.1103/PhysRevA.27.1468
https://doi.org/10.1063/1.1671538
https://doi.org/10.1063/1.1671538
https://doi.org/10.1063/1.1671538
https://doi.org/10.1088%2F0953-8984%2F15%2F45%2Fr01
https://doi.org/10.1088%2F0953-8984%2F15%2F45%2Fr01
https://doi.org/10.1088%2F0953-8984%2F15%2F45%2Fr01
http://www.physicstoday.org
https://doi.org/10.20944/preprints201909.0164.v1


Espinosa, J. R., Sanz, E., Valeriani, C., and Vega, C.: Homogeneous ice nucleation1333

evaluated for several water models, J. Chem. Phys., 141, 180 529, doi:10.1063/1.1334

4897524, 2014.1335

Espinosa, J. R., Zaragoza, A., Rosales-Pelaez, P., Navarro, C., Valeriani, C., Vega, C.,1336

and Sanz, E.: Interfacial free energy as the key to the pressure-induced decelera-1337

tion of ice nucleation, Phys. Rev. Lett., 117, 135 702, doi:10.1103/PhysRevLett.117.1338

135702, 2016.1339

Ewing, R. H.: The free energy of the crystal–melt interface from the radial distribution1340

function, J. Crystal Growth, 11, 221–224, 1971.1341

Feistel, R.: A new extended Gibbs thermodynamic potential of seawater, Progress in1342

Oceanography, 58, 43–114, doi:10.1016/S0079-6611(03)00088-0, 2003.1343

Feistel, R.: A Gibbs function for seawater thermodynamics for−6 to 80 ◦C and salinity1344

up to 120gkg−1, Deep-Sea Research I, 55, 1639–1671, doi:10.1016/j.dsr.2008.07.1345

004, 2008.1346

Feistel, R.: Revised Release on the Equation of State 2006 for H2O Ice Ih, Tech. rep.,1347

The International Association for the Properties of Water and Steam, Doorwerth,1348

The Netherlands, September 2009, www.iapws.org, releases, 2009.1349

Feistel, R.: TEOS-10: A new international oceanographic standard for sea-1350

water, ice, fluid water and humid air, Int. J. Thermophys., 33, 1335–1351

1351, doi:10.1007/s10765-010-0901-y, http://www.springerlink.com/1352

content/p4834412420n5j61/, 2012.1353

Feistel, R.: Thermodynamic properties of seawater, ice and humid air: TEOS-10,1354

before and beyond, Ocean Sci., 14, 471–502, https://doi.org/10.5194/1355

os-14-471-2018, 2018.1356

Feistel, R. and Hagen, E.: On the Gibbs thermodynamic potential of seawater, Progr.1357

Oceanogr., 36, 249–327, 1995.1358

Feistel, R. and Hagen, E.: A Gibbs thermodynamic potential of sea ice, Cold Reg. Sci.1359

Technol., 28, 83–142, 1998.1360

Feistel, R. and Hagen, E.: Corrigendum to “A Gibbs thermodynamic potential of sea1361

ice”, Cold Reg. Sci. Technol., 29, 173–176, 1999.1362

Feistel, R. and Wagner, W.: A Comprehensive Gibbs Potential of Ice, in: Water, Steam,1363

and Aqueous Solutions for Electric Power, edited by Nakahara, M., Matubayasi, N.,1364

Ueno, M., Yasuoka, K., and Watanabe, K., pp. 751–756, MARUZEN Co., Ltd.,1365

2005a.1366

Feistel, R. and Wagner, W.: A Comprehensive Gibbs Potential of Ice Ih, in: Nucleation1367

Theory and Applications, edited by Schmelzer, J. W. P., Röpke, G., and Priezzhev,1368
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