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 12 

Abstract: Current models in design of urban water management systems and their 13 

corresponding infrastructure using centralized designs have commonly failed from the 14 

perspective of cost effectiveness and inability to adapt to the future changes. These 15 

challenges are driving cities towards using decentralized systems. While there is great 16 

consensus on the benefits of decentralization; currently no methods exist which guide 17 

decision-makers to define the optimal boundaries of decentralized water systems. A new 18 

clustering methodology and tool to decentralize water supply systems (WSS) into small 19 

and adaptable units is presented. The tool includes two major components: (i) 20 

minimization of the distance from source to consumer by assigning demand to the closest 21 

water source, and (ii) maximization of the intra-cluster homogeneity by defining the 22 
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cluster boundaries such that the variation in population density, land use, socio-economic 23 

level, and topography within the cluster is minimized. The methodology and tool are 24 

applied to Arua Town in Uganda. Four random cluster scenarios and a centralized system 25 

were created and compared with the optimal clustered WSS.  It was observed that the 26 

operational cost of the four cluster scenarios is up to 13.9 % higher than the optimal, and 27 

the centralized system is 26.6% higher than the optimal clustered WSS, consequently 28 

verifying the efficacy of the proposed method to determine an optimal cluster boundary 29 

for WSS. In addition, optimal homogeneous clusters improve efficiency by encouraging 30 

reuse of wastewater and stormwater within a cluster and by minimizing leakage through 31 

reduced pressure variations. 32 

 33 

Keywords: decentralized water systems; cluster approach; intra-cluster homogeneity; 34 

Water Supply Systems (WSS); Urban Water Systems (UWS) 35 
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1. Introduction 40 

 41 

Human well-being and improvement are governed by the availability of water and 42 

energy [1]. These resources are either becoming less abundant relative to demand or are 43 

running the risk of critical scarcity in many places with recent crises occurring in Cape 44 

Town, South Africa and Chennai, India [2, 3]. Despite long- and short-term shortages, the 45 

conventional approach of designing centralized urban utility systems has been driven by 46 

19th century technological principles, applied during a time when resources were 47 

abundant,  demand was relatively small, and growth in urban areas was rapid [4]. This 48 

approach has led to a highly complex, interconnected, and dysfunctional systems that are 49 

a hindrance to efficient and sustainable resource management, particularly where growth 50 

patterns were uncontrolled and chaotic. With increasing global change pressures 51 

including population increases and climate change, there are increasing concerns about 52 

whether conventional centralized water systems will be able to manage scarcer and less 53 

reliable water resources in a cost efficient manner [5, 6]. These systems also require a 54 

huge management effort and small changes in one part of the system can cause change 55 

propagation through the whole system. For example, the rationing of water in areas with 56 

a scarce water supply is a complex problem. The problem is even greater in the case of 57 

large systems and when network distribution system pressure variation is high, and the 58 

treated water supply is intermittent. This can cause unacceptable variations in the 59 
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distribution system pressure with some cities having negative pressure during parts of 60 

high demand days (e.g., Jeddah, Saudi Arabia). 61 

The conventional approach of design of infrastructure systems has been based on 62 

deterministic assumptions about the future despite the reality that such conditions are 63 

unknown. Urban systems face a range of future dynamic global change pressures such as 64 

population growth and urbanization, changes in socio-economic conditions, and technological 65 

developments. The current models of urban resource management and their corresponding 66 

complex infrastructure have already failed or are on the verge of collapse from the perspective 67 

of cost effectiveness, performance, and inability to adapt to the future change requirements, 68 

and loss of water-supply sources [7]. For example, the long-term planning of a large centralized 69 

water system under conditions of uncertain spatial growth of population may lead to 70 

consequences such as unnecessary investment, leading to system performance problems or 71 

other issues.  72 

In order to cope with these challenges, various researchers have proposed decentralization 73 

of urban water systems. Decentralized water systems are small sub-systems (clusters) that have 74 

a large degree of autonomy within the overall system. According to Bieker et al. [8], future 75 

urban water systems are likely to be more decentralized than conventional systems because 76 

added water reuse systems require reducing the distance between water users and treatment 77 

locations. In addition, decentralization minimizes energy demand and infrastructure costs and 78 

maximizes the potential for recovery of heat energy if water is used close to where it is 79 

generated [8-12].  80 
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Besides efficient use and reuse of scarce and less reliable resources, there are additional 81 

reasons that support the shift from conventional centralized water systems to decentralized 82 

clustered water systems. Clustered systems could be adapted to future changes with low effort 83 

and without affecting the performance of the entire system [13, 14]. Their modular diversity 84 

exponentially increases the number of possible configurations that can be achieved for urban 85 

water systems from a given set of inputs. Decentralized/clustered water systems can be 86 

implemented in an incremental fashion, which reduces investment costs and makes the 87 

transition easier to manage [15-17]. In addition, decentralized water systems allow a staged 88 

development that traces the urban growth trajectory more closely and can be implemented 89 

more quickly than a conventional approach (as the planning and implementation process is 90 

easier to manage). According to Wang et al. [16], the gradual stepwise development of 91 

decentralized systems enables the expansion of urban water systems that follows the spatial 92 

growth, and hence, embeds flexibility to water systems. In addition, clustered systems provide 93 

a better capacity to reduce the risk associated with water-system contamination through 94 

biological or chemical ingression as well as malicious attacks with chemical, biological and/or 95 

radiological agents. This is because decentralized units are small and independent units where 96 

the effect associated with water contamination and malicious attacks will be contained within a 97 

cluster. However, in case of centralized urban water-supply systems any contaminant 98 

ingression and malicious attack could propagate to the whole systems. Internal peak demand 99 

storage of potable water, in the form of aquifer storage and recovery systems, can be 100 

integrated into decentralized systems wherein the injection and recovery wells can be placed 101 
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near ground storage tanks or pumping stations within the localized distribution and not only 102 

near the water treatment plants [18]. 103 

While there is great consensus on the benefits of decentralized water systems, one of 104 

the challenges for cities to move to a decentralized resource management is the lack of clear 105 

understanding on what clustered water systems should look like. To the best of our knowledge, 106 

no methods exist which guide planners in how to cluster/decentralize urban water systems. 107 

Thus, this paper presents a clustering methodology/tool that allows for better clustering of 108 

urban water systems into small and adaptable units. The clustering/decentralization approach 109 

proposed is based on two major optimization principles: minimization of the distance from 110 

source to consumer by assigning demand to the closest source and maximization of the 111 

homogeneity within the cluster by reducing the variation in population density, land use, socio-112 

economic level, and topography. The efficacy of the developed clustering methodology/tool is 113 

also demonstrated in a real case study of Arua, Uganda. 114 

 115 

2. Methods 116 

 117 

2.1. Proposed Water Supply System Clustering Method 118 

  119 

The proposed clustering methodology for water supply systems (WSS) is based on two 120 

major principles: (i) minimization of the distance from source to consumer, and (ii) 121 

maximization of the homogeneity within the cluster. In order to define an optimal cluster 122 

boundary that minimizes source-demand distance and maximizes the homogeneity within the 123 
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cluster, various parameters such as the location of water sources (surface water and ground 124 

water), topography (Digital elevation-DEM), spatial and temporal distribution of population, 125 

land use characteristics, and the socio-economic status of the area are considered [19]. These 126 

parameters are used to define source-demand distance, intra-cluster demand, and topographic 127 

homogeneity of the study area [20]. 128 

 129 

2.2. Source-Demand Distance 130 

  131 

The sources-demand location plays an important role in reducing the transport distance of 132 

water and associated investment cost. Assigning demand to the nearest source location 133 

reduces the effort to collect and distribute water to the users. This reduces the cost of the pipe 134 

network (due to reduced pipe size/length) required and the energy needed for pumping long 135 

distances. Minimizing the transportation distance also increases the compactness of pipe and 136 

sewer networks, thereby maximizing resource conservation and minimizing losses (i.e. leakage) 137 

[21]. In addition, it improves the potential to reuse and recycle wastewater to the proximity 138 

within the cluster.  139 

 140 

2.3. Intra-cluster Demand and Topographic Homogeneity 141 

 142 

Understanding the water consumption and topography characteristics is extremely 143 

important for optimization of investment, operation costs and maximization of resource 144 

efficiency. Traditionally, analyses were performed for large regions which involved a variety of 145 
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topography, land uses, and associated demand characteristics. However, with the advent of 146 

clustering, study of the behavior of smaller areas has become necessary to allow for the 147 

creation of uniformity within the clusters. The population distribution, land use and socio-148 

economic parameters are aggregated into a spatio-temporal demand distribution of the area. 149 

Intra-cluster demand homogeneity is used as one of the parameters to minimize the effort 150 

required to move water and wastewater. Intra-cluster homogeneity is the measure of the 151 

similarities or dissimilarities between parcels of the same cluster. Clustering of large and small 152 

demand areas together involves huge variations in consumption which can cause larger 153 

pressure fluctuations than areas with similar demand distribution. This causes additional efforts 154 

to supply and manage water and wastewater in the area. For example, areas with urban 155 

agriculture have different demand patterns than industrial or residential areas. Thus, 156 

maximizing the similarities by clustering residential and agricultural areas separately will 157 

improve the required efforts as compared to if they were clustered together. The clustering of 158 

different land uses into unique clusters will ensure multiple uses of water by cascading it from 159 

higher to lower-quality needs and through reclamation treatments for a return to the supply 160 

side of the other cluster. Water used by residential clusters can be re-used by industrial or 161 

agricultural clusters. Demand based clustering also improves the ability to implement relevant 162 

technology (i.e. water treatment and wastewater reuse recycling schemes) within a 163 

homogeneous cluster. This also allows better control of small and homogeneous cluster units.  164 

Topography is the other major factor which affects the flow of water and wastewater. Areas 165 

with similar topographic characteristics (minimum differential relief) reduces cost associated 166 

with infrastructure and pumping of water and wastewater in the area. However, large 167 
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variations in topography increases the effort required to collect and supply water, discharge 168 

wastewater, and develop reuse systems. For example, water supply systems in areas with large 169 

topographic variations cause large pressure fluctuations and require a large amount of energy 170 

for pumping, as well as a large system capacity to satisfy the required level of service. Thus, 171 

partitioning the urban area based on improved intra-cluster topographic homogeneity will 172 

reduce the costs associated with water system investment and operation (energy). It allows for 173 

improved resource efficiency by encouraging reuse and recycling of wastewater within the 174 

cluster and by minimizing leakage (distribution system water loss) through reduced pressure 175 

variations.  176 

The methodology uses two major steps for clustering water-supply systems (WSS); 177 

minimization of source-demand distance and maximization of intra-cluster homogeneity. The 178 

details of the proposed steps are shown in Figure 1. The starting point of the proposed method 179 

to cluster WSS is to consider all the input parameters of the study areas. This involves the 180 

location of water sources (surface water, groundwater, and stormwater collection points), 181 

topography, spatio-temporal population growth and associated demand, land use 182 

characteristics and socio-economic status. Thus, the proposed clustering method minimizes the 183 

source-demand distance by assigning demand to the source. The Euclidean norm minimization 184 

approach is used to minimize source-demand distance. This method also maximizes the 185 

homogeneity within the cluster so that source-demand distance, topography, and demand 186 

variations are minimized. A K-means algorithm is applied to maximize intra-cluster 187 

homogeneity [20].   188 

 189 
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 190 

Figure 1. The proposed method for clustering WSS. 191 

 192 

2.4. Minimization of Source-Demand Distance 193 

 194 

The first part of the proposed clustering method involves prior grouping of spatially 195 

distributed available water sources, such as surface and groundwater sources, stormwater, and 196 

greywater. This method involves grouping water sources and determining their group center 197 

such that the effort required for collection is minimized. Then each demand parcel is assigned 198 

to one source group center such that the distance between source and demand parcel (grid 199 

cell) is minimized. Grid parcels are square cells characterized by attributes of spatial location (X 200 

and Y coordinates), elevation, and demand. The source-demand distance for each parcel 201 

depends on the specified source center locations. Euclidean norm minimization is used to 202 

optimize the source-demand distance for all clusters. The formulation is done as a demand 203 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2019                   doi:10.20944/preprints201909.0145.v1

Peer-reviewed version available at Water 2020, 12, 185; doi:10.3390/w12010185

https://doi.org/10.20944/preprints201909.0145.v1
https://doi.org/10.3390/w12010185


11 

 

assignment problem where each parcel is assigned to the nearest source. Then parcel 204 

membership is determined from the minimization process.  205 

The determination of the optimal number of source centers is not the focus of this paper. 206 

The number of clusters for the area can be determined from the required size of a cluster. 207 

According to Bieker et al. [8], the size of a cluster must be guided by the principle “as small as 208 

possible, as big as necessary” to achieve the ecological, economic, and social interest. BMBF 209 

[22] compared different scales for areas which range from 10,000 up to more than 200,000 210 

people and proposed a recommended size ranging from 50,000 to 100,000 people as a suitable 211 

scale for an integrated decentralized system for fast growing urban areas. Bieker et al. [8] 212 

argued that this scale offers huge opportunity in recovering heat from wastewater streams as 213 

the transport distance is short. The size of a cluster could be used to pre-determine an initial 214 

number of clusters or source groups and could be changed during the process of clustering. For 215 

example, considering an area with 8 water sources and 121 demand parcels (each representing 216 

a 100 m by 100 m area), the pictorial representation of the demand parcel assignment to the 217 

nearest source center is shown in Figure 2. 218 

 219 
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 220 

Figure 2. Assignment of parcels to the source center (X, and Y are location parameters, Z is 221 

elevation above sea level (asl), Qd is parcel demand, Qs and Qg are capacity of local water 222 

sources and group source respectively). 223 

 224 

2.5. Identification of Source Centers: Water Source Clustering 225 

 226 

Once the groups of sources are identified, a simple source center calculation is carried out 227 

to determine the centroid of the sources within the same group. Taking a similar approach as in 228 

determining a mass center, the source center is calculated using Eq. (1).  229 

 230 

 𝐷𝑐 =
∑ 𝐷𝑖 ∗ 𝑄𝑖

𝑆
𝑠=1

∑ 𝑄𝑖
𝑆
𝑠=1

 (1) 

 231 

Where Dc is source center, Qi and Di are the supply capacity of the source and the distance from 232 

reference water source. 233 

Water sources ‘S’ 
(this involves local sources) 

collection points) 

Source centers ‘G’ 
(minimized distance, 

considering source capacity) 

Demand assignment 
(based on minimizing 

Euclidean norm) 

Parcel attribute: (X, Y, Z, Qd) Attribute: (X, Y, Z, Qg) Attribute: (X, Y, Z, Qs) 

S1 

S2 
S3 

S4 

S5 

S6 
S7 

S8 

G1 

G3 

G2 
Demand 
parcels 
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 234 

2.6 Assignment of Demand Parcel to the Nearest Source  235 

 236 

Source allocation is a demand assignment problem where demand parcels are assigned to 237 

the nearest source center. The method employs a minimization of the sum of Euclidean norms 238 

within the cluster. Some researchers have proposed minimizing the sum of Euclidean distance 239 

for shortest-path optimization [23]. The theories and algorithms for minimizing Euclidean 240 

distance can be applied to many optimization problems. In this study, the sum of Euclidean 241 

norms is used to determine the membership of parcels based on the shortest distance to the 242 

water source centers. The same membership is given to the parcels that are assigned to the 243 

same source center. This increases the compactness [21] and reduces the cost of pipe networks 244 

and the energy needed for pumping long distances. Compacted networks with closer proximity 245 

also increase resource efficiency by reducing leakage that would be higher in large centralized 246 

systems. Given a set of parcels (representing the study area) with dimension vector P = {P1, 247 

P2,…,Pn}, 𝑃 ∈ ℝ𝑁 Euclidean norm defines, ‖𝑃‖ = (𝑃 ∗ 𝑃)
1

2 , 𝑖𝑓 𝑁 = 1 𝑡ℎ𝑒𝑛 ‖𝑃‖ = |𝑃|, the 248 

absolute value of P.  ‖𝑃‖  is the Euclidean norm of P that is used to measure the distance 249 

between points [24]. For example, suppose 𝑃 = (𝑋, 𝑌) ∈ ℝ2 and the source centers are 250 

defined by 𝐶 = (𝑋1, 𝑌1) ∈ ℝ2. Then the shortest distance from the source to the parcel is 251 

determined using Eq. (2). 252 

 253 

 𝑚𝑖𝑛  ‖𝑃‖ = √(𝑋1 − 𝑋)2 + (𝑌1 − 𝑌)2 (2) 

 254 
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Given the Euclidean norm of each parcel (from each source center), distance minimization is 255 

performed using Eq. (3). Then each parcel will have membership (to the source center) based 256 

on the minimization of Euclidean norms. The membership defines grouping of similar parcels 257 

which are assigned to the same source center. The Euclidean norm minimization algorithm is 258 

shown in Figure 3. 259 

 min  𝑑(𝑃,   𝑃𝑐) = ∑‖𝑃‖

𝐶

𝐾=1

= ∑ √  ∑(𝑃𝑗 − 𝑃𝑗
𝑐)

2
𝑛

𝑗=1

𝐶

𝑘=1

 (3) 

 260 

Where 𝑑(𝑃,   𝑃𝑐) is the Euclidean norm from the source centers, ‖𝑃‖𝑚𝑖𝑛 is the minimum 261 

Euclidian norm of each parcel from source centers,  𝑃 is an attribute which is described by 262 

parameters where the variation needs to be minimized (i.e location and elevation parameters). 263 

The movement of water is based on an absolute distance which depends on the link (pipe) 264 

layout and pressure distribution; this requires hydraulic simulation of the whole network. 265 

However, to simplify the clustering process, in this study the minimization of the Euclidean 266 

norm is employed by using the relative distance based on the coordinate of demand parcels 267 

and supply centers. Once the parcels are assigned to the source center by the minimizing 268 

Euclidean norm principle, the membership values are used in the maximization of cluster 269 

homogeneity. 270 

 271 
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  272 

Figure 3. Basic minimizing Euclidean norm algorithm 273 

 274 

2.7. Maximization Intra-cluster Homogeneity and Connectivity  275 

 276 

Traditionally, the design of WSS has been performed for large spatial extent areas which 277 

involve a variety of topography, population distribution, land use, socio-economic, and 278 

associated demands. However, with the advent of decentralization, the study of the behavior of 279 

smaller areas has become a necessity so as to allow for uniformity within the clusters. In this 280 

section, clustering involving the maximization of intra-cluster homogeneity and connectivity 281 

analysis is used. Intra-cluster homogeneity is used to measure the similarity or dissimilarity 282 

between parcels of the same cluster. Maximization of intra-cluster homogeneity allows 283 

clustering the parcels so that parcel attributes within a cluster are closely related to one 284 

another [20]. Three major parameters are considered in the clustering process. These are 285 

membership (determined by Euclidean norm minimization), topography (elevation of the 286 

parcels), and spatio-temporal demand distribution (determined from the population 287 

Minimizing Euclidean norm algorithm 

(1) For the given C source centers, the Euclidean norm of a parcel is 
determined with respect to their parameter P = {P1, P2,…, Pn}, 
yielding the distances d(p, pc). 

(2) Given the set of Euclidean norms {d1, d2,….dc} for each parcel, the 
total cluster Euclidean norm is minimized by assigning a parcel to 
the nearest source center. 

(3) Steps i and ii are repeated until all parcels are assigned to the 
closest source center (then a membership will be assigned to each 
parcel based on the source center to which they belong). 
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distribution, land use, and socio-economic parameters). The clustering process involves the 288 

grouping of similar parcels. An inter-cluster homogeneity is used as a measure of similarity 289 

between parcels and a K-means optimization technique is employed to maximize intra-cluster 290 

homogeneity by minimizing the total cluster variance with respect to the mean value. In 291 

addition, a connectivity analysis is proposed to ensure the linkage of parcels within clusters. The 292 

details of the proposed steps are discussed in the subsections. 293 

 294 

2.8. K-means for Clustering WSS 295 

 296 

 “K-means clustering is a method of cluster analysis which aims to partition n observations 297 

into K clusters in which each observation belongs to the cluster with the nearest mean.” [25]. It 298 

is an evolutionary algorithm that minimizes the proximity to the mean of the cluster [25]. The 299 

name K-means comes from its method of operation in which it assigns observation on K clusters 300 

based on the observation proximity to the mean of the cluster. The squared Euclidean norm is 301 

used as a measure of homogeneity. A K-means algorithm is a commonly employed method that 302 

converges to a local optimum value for clustering. It is very popular because it is 303 

computationally fast and memory efficient. A K-means algorithm is used herein to cluster the 304 

WSS based on the principle of minimizing the dissimilarity of the three parameters: source-305 

demand distance, topography, and demand within the cluster. Unlike topography and demand, 306 

the distance parameter is dependent on the source centers; thus, distance related membership 307 

value (discussed earlier) is used to identify to which source center each parcel is assigned.  308 
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Given a set of parcels p representing the study area {X1, X2,…, Xp}, where each parcel 309 

has n-dimensions (i.e. topography, elevation),  K-means clustering aims to partition the parcels 310 

(p) into K clusters (K≤p) within an assigned data-set S {S1, S2,…,Sk}. For the given cluster 311 

assignment A that involves K groups, the total cluster variance is minimized through 312 

minimization of the sum of the squares of Euclidean norm for all clusters using Eq. (4).  313 

 314 

 
𝐴 = arg  min    

𝑆
∑   ∑ ‖𝑋𝑗 − 𝜇𝑖‖

2

𝑋𝑗∈𝑆𝑖

𝐾

𝑖=1

 (4) 

 

 

𝜇𝑖 =
1

𝑁𝑖
∑ 𝑋𝑗

𝑋𝑗∈𝑆𝑖

 
(5) 

 315 

Where A is cluster assignment, K is the number of clusters, Ni is the number data-set assigned 316 

to Si, µi is mean of parcels in cluster Si and is calculated using Eq. (5) [26].   317 

A K-means algorithm achieves optimal clustering assigning parcels so that the difference 318 

between parameters of the parcels and their centroids are as small as possible. Maximizing 319 

intra-cluster homogeneity for WSS involves several steps (as shown in Figure 1). Firstly, the 320 

optimizer selects initial cluster centroids (means) randomly. Secondly, an initial cluster 321 

boundary is defined by assigning demand parcels to the initial cluster centroids. Thirdly, the K-322 

means optimization evaluates the difference between parameters of the parcels and their 323 

centroids (this is used as a measure of homogeneity). Fourthly, the optimization uses the 324 

homogeneity as a termination criterion. It uses an iteration based evolutionary optimization 325 
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which involves the assignment of parcels to the closest mean and calculating a new mean until 326 

the assignment no longer changes (means no improvement in homogeneity). Thus, the 327 

simulation stops. Otherwise the above steps repeat until there is no change in parcel 328 

assignment between subsequent simulations. Figure 4 shows the basic K-means algorithm used 329 

in clustering WSS. 330 

 331 

  332 

Figure 4. Basic K-means Algorithm 333 

 334 

Though the K-means algorithm maximizes the similarity within a cluster, it has some 335 

shortcomings. One of the limitations is that it does not consider the geospatial relative location 336 

of different neighboring parcels. The specific problem of clustering water systems requires the 337 

ability to handle not only the spatial extent, but also the geographic component with respect to 338 

neighboring parcels (i.e. the need to have the same membership parcels in the same spatial 339 

location). To avoid the possibility of detaching parcels of the same cluster in different spatial 340 

locations, intra-cluster parcel connectivity is used. 341 

 342 

Basic K-means Algorithm 

(1) Initialization of K means {µ1, µ2,…,µk} where each mean is defined 
by d-dimension vector (n-parameters) 

(2) Given an initial set of K means, the algorithm assigns parcels to 
the closest mean so that the total variance is minimized with 
respect to the mean 

(3) Calculate a new mean to be the centroid of the cluster 

(4) Repeat steps (1) and (3) until the assignments do not change  
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2.9. Intra-cluster Parcels Connectivity 343 

 344 

Intra-cluster parcel connectivity, defined as the linkage of a parcel within a cluster, is used 345 

to check whether a parcel of one cluster is located in another cluster. Given the membership of 346 

parcel “P” defined as P(m,n) and neighbor parcels as P(n±1,m±1), if parcel P(m,n) of one cluster 347 

neighbors two or more parcels from another cluster, and has only one neighbor from its own 348 

cluster, the evaluation of the minimum Euclidean norm of the parcel P(m,n) is performed with 349 

respect to the neighboring cluster centroid and is re-assigned to the closest one. In addition, 350 

the periphery parcels, which do not have many neighbors, are merged to the nearest cluster 351 

group in case they belong to another cluster. This connectivity analysis alone does not 352 

guarantee the existence of cluster members in another spatial location. One can use the 353 

smallest recommended size of cluster and/or the smallest demand that a cluster should supply 354 

to decide on merging isolated parcels to the neighboring cluster. An isolated parcel group will 355 

be kept as an independent cluster if the demand it supplies is greater than the required 356 

minimum size/demand within the cluster. However, a parcel group that does not satisfy the 357 

mentioned condition will be merged to the neighbor cluster. The decision of which cluster to 358 

combine is made by evaluating the minimum Euclidean norm value with respect to the centroid 359 

of neighboring clusters.  360 

 361 

  362 
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3. Results of Cluster Analysis Application to Arua, Uganda 363 

 364 

3.1 General Description of the Area 365 

 366 

The developed clustering methodology was applied to a real case study in Arua, Uganda. 367 

Arua is located in the Northern Region of Uganda and lies between latitude 20o 30' N and 30o 368 

50' N and longitude 30o 030' E and 31o 030' E (Figure 5). The Aura municipality is one of the 369 

fastest growing municipalities in the country. According to the statistical abstracts of the 370 

Uganda Bureau of Statistics [27], the population of the Arua municipality was 59,400 in 2011, 371 

with the population around the periphery of the municipality reported to be 49,893. With an 372 

annual growth rate of 3.4%, the total population in 2032 is estimated to be 220,887. The 373 

predicted spatial extent of Arua in 2032 is shown in Figure 6. 374 
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 375 

Figure 5. Geographic location of Arua, Uganda  376 
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 377 

Figure 6. Predicted spatial extent of Arua in year 2032 378 

 379 

The town of Arua is experiencing a critical shortage of water because it depends on only a 380 

small river (Enyau River) for its supply [28]. With population growth and increasing wealth it is 381 

predicted that the water demand will likewise rise to 17,217 m3/d in the year 2032, which 382 
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would worsen the water shortage. This predicted future demand takes into consideration the 383 

different population density and socio-economic status of each of the parish areas. 384 

The current approach to water management in Arua is based on a conventional centralized 385 

approach where water is collected upstream, used, and discharged downstream and does not 386 

encourage the use of local sources such as groundwater, stormwater harvesting, or wastewater 387 

reuse and recycling. It has become obvious that the current practices of urban water 388 

management are not sustainable to meet the future challenges in Arua. However, the rapid 389 

urban growth in emerging areas coupled with the fact that those emerging areas do not have 390 

mature infrastructure and urban planning for the area has not yet occurred means that there 391 

are real opportunities to implement a clustered urban water system management system in 392 

Arua.  393 

 394 

3.2. Application of the Proposed Clustering Method and Results 395 

 396 

One of the major initiatives of the Arua municipality is to degazette (repurpose) the forest 397 

area (called Barifa) in a 5-year time period and incorporate it into the central business district of 398 

the town. Since the forest area has a predefined boundary, the clustering processes in this 399 

study can isolate this area and consider it to be a pre-clustered unit. Additionally, prior to the 400 

clustering process, a decoupling of the existing central WSS from the emerging areas was 401 

performed by identifying the existing municipality boundary (Figure 6). Then the proposed WSS 402 

clustering technique which minimizes the source-demand distance and maximizes intra-cluster 403 

homogeneity was applied.  404 
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 405 

3.3. Source-Demand Distance minimization 406 

 407 

In this case study, 10 groundwater sources and 4 potential surface-water abstraction 408 

locations were identified (Figure 7). Once the capacity and locations of available sources were 409 

identified, the water sources were merged into groups such that the distance between grouped 410 

sources was minimized. The study area was discretized into small parcels of the size 150 m by 411 

150 m. The available water-source abstraction locations of the area were aggregated into seven 412 

groups. The decision to propose a number of groups might depend on the size of the area, the 413 

size of clusters required, the numbers of water source locations available, etc. Different 414 

researchers have highlighted the need for case-by-case analysis to determine the population 415 

number that should be supplied by a single source to determine the smaller cluster size [8, 22]. 416 

However, the determination of the number of groups required is not the focus of this paper. 417 

Thus, the minimum cluster size with a population of 10,000 was used in decentralizing the 418 

emerging area as suggested by Webster [5] to determine the number of source centers for 419 

grouping. The evaluation of the distance between sources was preformed using Eq. (2). The 420 

output of source-group identification process is shown in Figure 7(a) and (b). Once the groups 421 

were identified the X, Y coordinate and supply capacity Qs were used to calculate source-422 

centers. The source and source-center information is summarized in Table 1.  423 

 424 
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 425 

Figure 7. (a) Available water sources and their groups; (b) Water-source centers (based on 426 

minimized Euclidean distance) 427 

 428 

Table 1. Source groups and location of source centers 429 

Source 

Group 

Source 

no. 

Water source-

center location 

X (m) Y (m) 

1 

1 

1992 6772 2 

16 

2 

3 

5461 4650 4 

5 

(a) (b) 

S1 

S2 

S3 

S4 
S5 

S7 

S8 
S6 

Current source 

(S9) 

1 

3 4 
5 

6 7 

9 

8 

10 

11 
12 

13 

14 

15 

16 

 

  

  

  

  

  

River Enyau 

2 

  

Barifa 

forest 

Arua 

municipality 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2019                   doi:10.20944/preprints201909.0145.v1

Peer-reviewed version available at Water 2020, 12, 185; doi:10.3390/w12010185

https://doi.org/10.20944/preprints201909.0145.v1
https://doi.org/10.3390/w12010185


26 

 

3 
6 

6181 3600 
7 

4 9 6150 600 

5 
10 

3110 510 
13 

6 

11 

2062 3108 12 

14 

7 15 1650 4950 

Forest (8) 8 5400 2850 

Municipality 

(9)  
2400 3150 

 430 

Once a source center was identified, the discretized square parcels (150 m by 150 m) were 431 

assigned to the source centers. Each parcel has a location, topography, and demand attribute. 432 

This stage used the location attribute (X, Y) coordinate of parcels and the centroid of the 433 

available sources as inputs to minimize the source-demand location for each parcel. This case 434 

study treats the forest areas (planned development) and the central municipality boundary as 435 

an independent unit clusters wherein the boundary and inbounded sources are pre-identified 436 

prior to the clustering process. Eq. (2) is applied to each parcel of the emerging areas to 437 

determine the Euclidean norm from the 7 source centers in the emerging area.  Given the 438 

Euclidean norm of each parcel (from the 7 source centers), the distance minimization was 439 
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performed using Eq. (3). Then, each parcel was assigned a membership value. Figure 8(a, b) 440 

shows the output of parcels assigned to the nearest source and the membership respectively 441 

using Euclidian norm minimization. The membership defines groupings of similar parcels which 442 

are apportioned to the same source center.  443 

 444 

 445 

Figure 8. Maps showing parcel assignment (Minimized Euclidean norm) (a) and parcel 446 

membership-M based on source-demand distance (b) 447 

 448 

The above clustering shown in Figure 8 is purely based on distance and does not include 449 

demand and topographic parameters. The next stage incorporates these parameters in addition 450 

to a membership value using intra-cluster homogeneity maximization. 451 

 452 

(a) (b) 

3110.6325882960.6618272810.6941872660.7301952510.7705042360.8159362210.8675312060.9266351910.9950161761.0750431611.1699681461.2843741311.4249421161.6017971011.831058862.140039712.5789804563.2514179414.4098409266.8686431125.308535872.01101022
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3.4. Maximizing Homogeneity and Connectivity Analysis 453 

 454 

Homogeneity maximization was applied to determine the final cluster boundaries for the 455 

study area. The distance-based membership value (determined in the distance minimization 456 

stage), topographic, and demand information were used as input parameters. The study area 457 

topography ranges from 1,160 m to 1,240 m asl, and the determination of demand was 458 

performed using the population, socio-economic status, and land use information. The input 459 

elevation and demand information are plotted for the case study area and shown in Figure 9(a, 460 

b).  461 

 462 

Figure 9. Maps showing elevation in m (asl) in the study area (a) and parcel water demand in 463 

m3/d (b) 464 

 465 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11681204 1198 1192 1186 1180 11741240 1234 1228 1222 1216 1210
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1240        1228         1216          1204           1192              

1180             1168 

Elevation in m Parcel demand in m3/d  
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Given the input parameters, a K-means algorithm was applied to maximize the intra-cluster 466 

homogeneity. Multiple runs of the K-means simulation were performed to avoid the problem 467 

associated with initialization, and the algorithm showed similar clusters. The final output of the 468 

clusters is shown in Figure 10(a).  469 

 470 

 471 

Figure 10. Maps showing (a) initial K-means clusters and (b) and clusters after merging isolated 472 

parcels 473 

 474 

As shown in Figure 10(a), the same members could be in different spatial locations (see 475 

circled areas). To incorporate the spatial component of cluster location, intra-cluster parcel 476 

connectivity was applied. The parcel connectivity involves refining the boundary and merging 477 

parcels of one cluster which are located in a different cluster. First, simple parcel connectivity 478 

was done by considering the membership of each parcel. In this case study, parcels circled in 479 

red in Figure 10(a) are merged to their neighbors as shown in Figure 10(b). Secondly, if there is 480 

(a) (b) 
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a parcel group which is in another cluster, the size was used to decide whether to keep the 481 

group as a new independent cluster or to merge it with the nearest cluster. A group merging 482 

was performed if a cluster/group was too small. Groups with a size less than 20% of the 483 

maximum cluster size were distributed to the neighboring cluster to avoid large variation in 484 

cluster size. However, a recommended cluster size and/or the smallest demand that a cluster 485 

should supply were used to decide whether to merge isolated parcels. Figure 11(a) shows the 486 

final cluster boundaries after isolated neighboring parcels were re-distributed, and the final 487 

cluster boundary for the case study area is shown in Figure 11(b). 488 

 489 

 490 

Figure 11. Maps showing clusters after re-distributing small groups (a) and WSS cluster 491 

boundaries with source centers (green circles) (b) 492 

 493 

The developed clustering method offers an adequate solution to the decentralization 494 

paradigm through clusters that allow for improving the movement of water and wastewater in 495 

(a) 
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the area. It divides urban area into clusters to allow for the provision of flexible, modular 496 

decentralized WSS. 497 

 498 

4. Discussion 499 

 500 

4.1. Performance Analysis 501 

 502 

The proposed WSS clusters accomplishes two principles: (i) minimization of the distance 503 

from source to consumer, and (ii) maximization of the intra-cluster homogeneity. Testing to 504 

ascertain if these principles favorably impact cost is necessary to verify that the clustering 505 

method indeed produces an optimized WSS. Cost efficiency can be measured in a variety of 506 

ways, however, in this research a parcel-based power usage analysis was utilized. Several WSS 507 

are required for a suitable analysis; by assuming the same relative size and number of clusters, 508 

random WSS scenarios can be designed. By choosing four randomly clustered WSSs, a power 509 

footprint analysis can be conducted on each scenario and compared to the power footprint of 510 

the proposed optimized WSS clusters. 511 

 512 

4.2. Method for Power Usage Analysis  513 

 514 

Four decentralized WSS scenarios were considered when calculating power usage for each 515 

cluster. This was necessary to create an acceptable sample size for the analysis. To generate 516 

randomly assigned clusters, the cluster boundaries for each scenario were rotated 517 
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approximately 10° counter-clockwise from the previous scenario. This includes scenario-1 518 

through Scenario-4. In addition, a typical centralized WSS was used as a benchmark for 519 

comparison. Since the design of WDS is not the focus of this paper, a parcel-based power 520 

footprint calculation was used for comparison between the scenarios. The power requirements 521 

of the four decentralized WSS boundaries were compared with the proposed decentralized 522 

WSS. Operational cost can be visualized by analysis of the power requirements for the various 523 

scenarios. Cost is directly proportional to power, therefore the cluster which demands the least 524 

power will be most cost efficient. The power provided by a pump is determined using Eq. (6).  525 

 𝑃 =  𝜌𝑔𝑄ℎ𝑝 
(6) 

 ℎ𝑝 = ℎ𝑣 + ℎ𝑓 + ℎ𝐸  
(7) 

Where P is the power to supply the fluid, ρ is the density of the fluid in kg/m3, g is the 526 

gravitational acceleration in m/s2, Q is the flow rate in m3/s, and hp is the total head in meters. 527 

The total head is the summation of the velocity head (ℎ𝑣), friction head (ℎ𝑓), and elevation 528 

head (ℎ𝐸) are found in Eq. (7). The velocity head was calculated using  
𝑉2

2𝑔
.  Over large distances, 529 

the friction loss of the fluid flowing through the pipes must be calculated. In 2015, Hunter 530 

Industries published the article Friction Loss Tables [29], which includes standard PSI loss for 531 

various types and sizes of piping. The article also contains Eq. (8), the Hazen-Williams formula 532 

used for pipe head loss calculations. 533 

 534 

 𝐻𝑓 = [0.2083 (
100

𝐶
)

1.852

(
𝑄1.852

𝑑4.866
)] × 0.433 (8) 
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 535 

Where 𝐻𝑓 is the friction loss (PSI) per 30.48 m (100 ft), C is the coefficient of retardation of pipe 536 

material, Q is the flow volume (GPM), and d is the inside diameter of pipe in imperial units. For 537 

example, assuming the water will be supplied by a 2.54 cm (1 in) schedule 80 pipe, the 538 

coefficient of retardation would be 150 with an inner diameter of 2.43 cm (0.957 in). The 539 

friction loss can be converted into a friction head ℎ𝑓 using Eq. (9). The calculation then has to be 540 

converted into metric units. 541 

 542 

 ℎ𝑓 = [
𝐻𝑓 × 122

𝛾
] /100′ × 𝐷  (9) 

 543 

In this equation, 𝛾 is the imperial unit weight of the fluid and D is the distance from the 544 

source center to the parcel. In some cases, the source center elevation is greater than the 545 

parcel being supplied with water, causing the elevation head to be negative. When this arises, 546 

the summation of the heads will most likely be negative; it is assumed that the power cannot 547 

be negative. This ensures only positive power requirements are considered for the total cluster. 548 

The last calculation is converting the power requirements to a yearly operational cost. The 549 

following formula can be used to estimate the cost. 550 

 551 

 𝐶𝑜𝑠𝑡 = 𝑅
𝑃(𝐶)

1000
× 8760 (10) 

 552 
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Where the cost is in USD per year, P is the power in Watts, R is the current conversion factor for 553 

Ugandan Shilling (UGX) to USD, C is the current price per kWh for Uganda in shs/kWh. This 554 

calculation was completed for each scenario in the power usage scenario analysis.  555 

 556 

4.3. Power Usage- Scenario Analysis  557 

 558 

The design of water distribution network and optimization of capital cost is not the focus of 559 

this paper. Thus, to conduct a comparative analysis on the case study in Arua, a few 560 

assumptions had to be made and used for each scenario in a similar manner. Every cluster 561 

scenario of the WSS considered to have similar 15.24 cm (6-inch) schedule 80 distribution main 562 

with a length halfway to the farthest distance from the source center to the cluster boundary. 563 

In addition, a 2.54 cm (1-inch) schedule 80 pipe is to be used for all distribution from the main 564 

to customer networks, having a coefficient of retardation of 150 and an inner diameter of 2.43 565 

cm (0.957 in) (used in Eq. (8)). This assumption is made so that each random WSS scenario is 566 

compared with optimized cluster using parcel-based energy usage. A few characteristics will 567 

change for each parcel of different scenarios, such as length, elevation and flow rate; the 568 

length, elevation and flow rate are taken from Figures 9(a, b). The same assumptions are 569 

applied to the centralized WSS scenario where the source center is located at the existing water 570 

source C9. 571 

When performing the power usage analysis, all equations and concepts discussed in the 572 

methodology section were applied to each parcel within the enclosed area, excluding parcels in 573 

the existing municipality, forest area and outside the predicted town extent (Figure 6). This was 574 
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done for each of the five scenarios to produce an adequate sample for the power usage 575 

analysis. Table 2 shows the power requirements of each cluster within every scenario, the total 576 

power required by each scenario, the additional power usage each scenario has compared to 577 

the proposed WSS, and the operational cost per year for each scenario was claculated. It is also 578 

important to note that this is a comparative analysis as opposed to an absolute O&M cost 579 

estimate of an optimal WDS. The total and excess power usage from Table 2 is represented in 580 

Figure 12 with two separate axes. 581 

The yearly operational cost for each scenario was estimated using Eq. (10). To use this 582 

equation, the current conversion rate for UGX to USD and the price per kWh must be known; as 583 

of November 2018, the conversion rate was $0.00027 USD/UGX (retrieved from Google 584 

Finance) and the price was $0.185247 USD/kWh [30]. Table 2 contains the total cost of the 585 

proposed WSS and randomly clustered scenarios. 586 

 587 

Table 2. Power requirements of each cluster, total power and operational cost per year for 588 

every WSS scenario 589 

 590 

 

Proposed 

Cluster 

WSS 

Scenario 1 

Cluster 

 Scenario 2 

Cluster 

 Scenario 3 

Cluster 

Scenario 4 

Cluster 

Centralized 

WSS 

Cluster 

Number 

Power Per 

Cluster(W) 

Power Per 

Cluster(W) 

Power Per 

Cluster(W) 

Power Per 

Cluster(W) 

Power Per 

Cluster(W) 

Power for 

Centralized 

(W) 
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1 852.14 804.53 739.50 934.16 956.58 

18463.78 

2 2967.08 3497.88 3990.10 4420.44 4742.18 

3 1154.50 971.45 820.32 868.80 941.99 

4 4597.13 4296.83 4435.66 4472.43 2986.95 

5 460.32 398.16 366.06 526.45 587.94 

6 4545.88 5074.51 5183.64 5124.28 5089.55 

7 2.46 2.38 101.09 256.46 636.46 

Total Power 14579.51 15045.74 15636.38 16603.01 15941.65 18463.78 

Additional 

Power Usage 
0.00 466.23 1056.87 2023.50 1362.14 3884.27 

US$ Per Year $23,659 $24,416 $25,374 $26,943 $25,870 $29,962 

 591 

  592 

 593 
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Figure 12. The bar graph represents the total power requirements per cluster. The line graph 594 

represents the excess power of the WSS scenarios compared to the proposed WSS 595 

 596 

The data shown in Table 2 evidently confirms that the proposed decentralized WSS requires 597 

less power and therefore money to operate. Figure 12 illustrates the proposed WSS scenario 598 

has the lowest power consumption compared to the conventional centralized WSS and the 599 

randomly generated clustered WSS. It was also observed that the operational cost of the 600 

random cluster scenarios is 3.2% to 13.9 % higher and centralized system is 26.6% higher than 601 

the optimal clustered WSS, consequently verifying the efficacy of the proposed method to 602 

determine an optimal cluster boundary for WSS. 603 

 604 

5. Conclusions 605 

 606 

Currently no method exists which guides planners and engineers on how to cluster Water 607 

Supply Systems (WSS). To address this need, a new optimization model that supports the 608 

development of clustered (decentralized) water systems has been developed and applied to a 609 

real case study in Arua, Uganda. The developed clustering methodology is based on two major 610 

principles: the minimization of the distance from source to consumer by assigning demand to 611 

the closest source center, and the maximization of the homogeneity within a cluster. Euclidean 612 

norm minimization was used to optimize the source-demand distance for all parcels to 613 

minimize the transportation distance and corresponding infrastructure requirements. Intra-614 

cluster homogeneity was used to measure the similarity or dissimilarity between parcels of the 615 
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same cluster. Maximization of intra-cluster homogeneity allows clustering the parcels so that 616 

parcel attributes within a cluster are closely related to one another. Three major parameters 617 

considered in the clustering process, include membership (determined from Euclidean norm 618 

minimization), topography (elevation of the parcels), and spatio-temporal demand distribution 619 

(determined from the population distribution, land use, and socio-economic parameters). A K-620 

means optimization technique were applied to maximize intra-cluster homogeneity to reduce 621 

the costs associated with water system investment and operation (energy and leakage) and to 622 

improve resource efficiency (recycling). The efficacy of the developed clustering method was 623 

tested in a real case study of Arua, Uganda. The WSS in Arua was divided into nine clusters, 624 

thereby reducing the effort required to move water and wastewater, as well as developing 625 

systems that offer opportunity to adapt to future changes. The case study demonstrated that it 626 

is possible to apply the developed methodology to delineate clusters based on minimizing 627 

distance between source and use and maximizing the intra-cluster homogeneity. An analysis 628 

using calculated power requirements showed that the clustered approach did provide lower 629 

cost and more efficiency. 630 
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