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Abstract—Purpose: Localization and mapping with LiDAR 
data is a fundamental building block for autonomous vehicles. 
Though LiDAR point clouds can often encode the scene depth 
more accurate and steadier compared with visual information, 
laser-based Simultaneous Localization And Mapping (SLAM) 
remains challenging as the data is usually sparse, density variable 
and less discriminative. The purpose of this paper is to propose 
an accurate and reliable laser-based SLAM solution.

Design/methodology/approach: The method starts with con-
structing voxel grids based on the 3D input point cloud. 
These voxels are then classified into three types to indicate 
different physical objects according to the spatial distribution of 
the points contained in each voxel. During the mapping 
process, a global environment model with Partition of Unity 
(POU) implicit surface is maintained and the voxles are 
merged into the model from stage to stage, which is 
implemented by Levenberg-Marquardt algorithm.

Findings: We find a  laser-based S LAM method. The method 
uses POU implicit surface representation to build the model and 
is evaluated on the KITTI odometry benchmark without loop 
closure. Experimental results indicate that the method achieves 
accuracy comparable to the state-of-the-art methods.

Originality/value: We propose a novel, low-drift SLAM method 
that falls into a scan-to-model matching paradigm. The method, 
which operates on point clouds obtained from Velodyne HDL64, 
is of value to researchers developing SLAM systems for au-
tonomous vehicles.

Keywords—Simultaneous Localization And Mapping; voxel 
grids; scan-to-model; Partition of Unity

I. INTRODUCTION

Reliable localization of autonomous vehicles is an attractive
research topic since it is a basic requirement for navigation
and other tasks [1,2,3,4,5]. Fully autonomous vehicles should
reliably locate themselves, ideally by using only their own
sensors on board without relying on external information
sources such as GPS. In scenarios where such external infor-
mation is absolutely unavailable, Simultaneous Localization
And Mapping (SLAM) can always be an alternative option.

SLAM has been intensively studied during the past few
decades and various solutions based on different sensors have
been proposed for both indoor and outdoor environments.
In outdoor scenes, the advantage of LiDAR with respect to
cameras is that the noise associated with each measurement
is independent of the distance itself and usually more robust
to the illumination variation. Therefore, laser-based SLAM is
becoming one of the mainstream solutions in outdoor scenes.
Most laser-based SLAM methods tend to extract stable fea-
tures such as planes and edges from points, and then do SLAM

in a ‘feature space’. They are therefore categorized as feature-
based SLAM, whose performance is mainly determined by
two factors. The first factor is the way features are designed. Ji
Zhang et.al [6,7] propose a planar and edge feature designing
method based on curvature. Michael Bosse et.al [8] incorporate
shape information which is calculated from geometric statistics
of the point cloud into the Iterative Closest Point (ICP)
correspondence step. The second factor is the scan matching
method. Scan-to-scan and scan-to-model matching are the
two main scan matching frameworks in SLAM. Sen Wang
et.al [9] propose a scan-to-scan odometry trajectory estimation
method by using convolutional neural networks to process
LiDAR point clouds. KinectFusion [10] implements scan-to-
model matching by using an implicit surface as model. The
state-of-the-art laser-based SLAM method, Lidar Odometry
And Mapping (LOAM) [6] extracts distinct features corre-
sponding to physical surfaces and corners. To enable on-line
implementation, LOAM switches between scan-to-scan at 10
Hz and scan-to-model operation at 1 Hz update frequency.
Although LOAM has achieved good performance, there are
still challenges in outdoor applications using 3D laser sensors,
i.e., (1) inherent point matching error since the sparsity of
the point clouds, which means that there are always existing
errors when we directly use the sparse point cloud to fit the
surface of environment. Furthermore, it is nearly impossible to
obtain rigid point correspondences between scans; (2) it is hard
to fix the matching parameter since the density variation of
the point clouds. During the feature-based matching process,
it is required to extract enough context information of one
3D point to make it discriminative, while the scope of the
dominating context is greatly affected by the point density.
In this paper, to tackle the above challenges, we introduce
POU implicit surface representation to regress the environment
surface with sparsity points, which can effectively encode the
detailed geometrical information. We discretize the point cloud
into 3D voxels. These voxels are classified into planar and
edge feature voxels according to the geometrical character of
the points contained in the voxel. Finally, we build a feature
voxel map for further scan-to-model matching, during which
the POU implicit surface representation is proposed to adapt
to the voxel map. The key contributions of our work are as
follows:

(1) We propose a novel feature voxel map which stores
voxels with salient planar or edge features.

(2) We propose a scan-to-model matching framework using
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POU implicit surface representation.
The rest of this paper is organized as follows. In Sect. II, we

discuss related work and conclude how our work is different
from the state of the art. The feature extraction algorithm
is presented with details in Sect. III, and the scan-to-model
matching algorithm is given in Sect. IV. Experimental results
are shown in Sect. V. Finally, Sects. VI concludes the paper.

II. RELATED WORK

SLAM with cameras and LiDAR has attracted wide atten-
tion both from robotic and computer vision communities. We
acknowledge the large body of work in this field, but concen-
trate here only on approaches based on LiDAR. Since feature
extraction, laser-based mapping and scan-matching framework
are the three most important steps for laser-based SLAM, we
therefore look into related work on these three aspects and
provide general ideas on how they work as following.

Feature extraction: LOAM focuses on edge and planar
features in the LiDAR sweep and keep them in a map for
edge-line and plane-planar surface matching. Tixiao Shan et.al
[11] also use edges and planar features to solve different
components of the 6-DOF transformation across consecutive
scans. While these works extract features based on curvature,
there is still difference like the method from [11] is ground-
optimized, as it leverages the presence of a ground plane in
its segmentation and optimization steps. Using point cloud
obtained from a high resolution and high density Zoller-
Fröhlich Z+F laser, J Lalonde and Yungeun Choe et.al [12,13]
exploit point cloud geometrical statistics to classify the natural
terrain into scatter-ness, linearity, and surface-ness. Using
point cloud from a SICK LMS291 laser range sensor, Michael
Bosse et.al [8] implement scan-matching based on point cloud
geometrical statistics features. They use ICP to align voxel
centroids, which can reduce the number of points for scan
matching as well as the size of the map. Different from [8], we
consider the geometric features of the points more subtly and
implement scan matching with original points, which would
not lead to information loss.

Laser-based mapping: SLAM systems often build and
maintain environment map like feature map [6,7,11,14,15],
dense map [16,17], subsampled clouds [18,19] and Normal
Distributions Transform (NDT) based map [20,21]. In laser-
based SLAM systems, feature map is usually a structural
collection of surfaces and corners that are extracted from
original point clouds. In this paper, we build a feature map,
which can be distinguished from literature methods in the way
that we maintain more types of features in the form of voxels.

Scan matching framework: Recently, some laser-based
SLAM systems use scan-to-model matching framework and
have achieved state-of-the-art performance on KITTI odometry
benchmark. Jens Behley et.al [16] propose a dense approach
to laser-based SLAM that operates on point clouds obtained
from Velodyne HDL-64. They construct a surfel-based map
and use a point-to-plane ICP [22,23] to estimate the pose
transformation of the vehicle. Our method essentially belongs
to scan-to-model matching framework. The distinction is that
we build a feature voxel map and use POU implicit surface

representation to adapt to the scan-to-model matching process
based on feature voxel map.

Partition of unity approach: The POU approach has been
widely used in surface reconstruction. Ireneusz Tobor et.al
[24] show how to reconstruct multi-scale implicit surfaces
with attributes, given discrete point sets with attributes. Tung-
Ying Lee et.al [25] propose a new 3D non-rigid registration
algorithm to register two multi-level partition of unity implicit
surfaces with a variational formulation.

III. FEATURE EXTRACTION

Similar to [26], the scan-to-model matching is triggered
when there are salient geometrical features in local regions.
So, it is important to find these regions first. In contrast to
3D object classification [27,28] and place recognition [29,30],
which use complex point cloud descriptor to segment and
classify objects, we use a simpler shape parameterization
because our task focuses on incremental transformation for
which we have a stronger prior on the relative poses.

A. Computing Shape Parameters

A local region that is occupied by the input point cloud
is repeated divided until the number of points fall into each
voxel is equal to the threshold Np. The threshold Np is related
to the horizontal and vertical resolution of Lidar point cloud.
In the process of feature extracting, the densities of features
in corresponding voxels vary. We consider the density while
searching for the correspondences of the features. The lower
the density of the features, the lower the probability of finding
enough correspondences within a certain radius is. Our exper-
iment results are achieved when Np is set to 25. Each voxel
contains points that fall into it and voxel centroid. The points
that fall into voxel are defined as {Xi} =

{
(xi, yi, zi)

T
}

. The
first and second-order moments µ, S describe the parameters
for spatial distribution of the points {Xi}:

µ =
1

N

n∑
i=1

Xi (1)

S =
1

N

n∑
i=1

(Xi − µ) (Xi − µ)T (2)

Inspired by [8], the matrix S is decomposed into principal
components ordered by increasing eigenvalues. −→e0 ,−→e1 ,−→e2 are
eigenvectors corresponding to the eigenvalues λ0, λ1, λ2 re-
spectively, where λ0 ≥ λ1 ≥ λ2. In the case that the structure
of points in a voxel is a linear structure, the principal direction
will be the tangent at the curve, with λ0 � λ1 ≈ λ2. In the
case that the structure of points in a voxel is a solid surface,
the principal direction is aligned with the surface normal with
λ0 ≈ λ1 � λ2. The two saliency features, named linear
feature and surface feature, are linear combinations of the
eigenvalues. Figure 2 illustrates the two features used. The
quantity:

c =
λ0 − λ1

λ0 + λ1 + λ2
(3)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 September 2019                   doi:10.20944/preprints201909.0105.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 4147; doi:10.3390/app9194147

https://doi.org/10.20944/preprints201909.0105.v1
https://doi.org/10.3390/app9194147


3

is the linear feature of the points in voxel which ranges from
0 to 1. Similarly the quantity:

p =
λ1 − λ2

λ0 + λ1 + λ2
(4)

is the surface feature of the points in voxel which ranges from
0 to 0.5.

Fig. 1. Illustration of the surface feature and linear feature.

B. Voxel Sampling Strategy

Essentially, the voxel based scan matching process is to
construct the associations between voxels. It is believed that
voxels with high quantity of linearity or planarity tend to be
more stable than others. So for each input point cloud, we
classify its 3d grids according to the proposed quantities into
three types: edge voxel, planar voxel and others. Furthermore,
it should be noticed that the ground points usually contain
more planar features and non-ground points usually contain
both planar and edge features. With this bears in mind, we
first divide the whole point cloud into ground and non-ground
segments using the method proposed in [31]. Figure 3(a) is
an example of the ground segmentation result. Then, for non-
ground points, we extract planar and edge features, while only
planar features are extracted for ground points.

In each scan which is now represented as the voxel cen-
troids, we sort the voxels based on their linearity values c and
surface-ness values p and get two sorted lists. Two thresholds
cth and pth are then employed to distinguish different types
of features. We call the voxels with c larger than cth edge
features, and the voxels with p larger than pth planar features.
Then nFe

edge features with the maximum c are selected from
each scan. Non-ground and ground planar features with the
maximum p are also selected, and the numbers of the two
types of features are nFp and nFgp , respectively. Edge and
planar features extracted from all the scans are denoted as Fe,
Fp and Fgp thereafter. Visualization examples of these features
are given in Figure 3(b)-(d).

IV. SCAN-TO-MODEL MATCHING WITH POU IMPLICIT
SURFACE REPRESENTATION

Once the currant laser scan is transformed into a set of
stable voxels, we implement scan-to-model matching process.
In our method, the map consists of the last n located feature
sets Fe, Fp and Fgp. Let

Mk =
{{
Mk

e

}
,
{
Mk

p

}
,
{
Mk

gp

}}
(5)

be the map that contains planar features and edge features
at time k. To better fit the observed surface with these points

and adapt to the feature voxel map, we take the POU implicit
surface representation to construct the model.

A. Finding Feature Point Correspondence

In the curret scan, each point is labeled according to the
type of its corresponding voxel. During the matching process,
we construct the correspondences between voxels in the map
and the current feature points with the guidance of labels and
Euclidean distance. Since such correspondences generating
mechanism narrows down the potential candidates for corre-
spondences, it can help to improve the matching accuracy and
efficiency. The detailed correspondence construction process
is given below.

For each current edge point in feature set Fe, we search for
ne voxels of

Mk
e =

{
F k−n
e , . . . , F k−2

e , F k−1
e

}
(6)

inside a sphere space whose radius is re. For each corre-
sponding voxel, we find an edge line as the correspondence
of the current edge point. After finding all the correspondence
edge lines, we can get the projection points Se of the current
edge point on the corresponded edge lines. Then we use linear
quantity c to determine whether Se can be represented as an
edge line. If Se can be represented as an edge line, it is then
regarded as the correspondence of the current edge point. After
the edge feature correspondences are obtained, we compute the
distance from an edge feature point to its correspondence. The
procedure of finding an edge line and the distance computation
can be found in [6].

For each current planar point in feature sets Fp and Fgp,
we respectively find np and ngp voxels of

Mk
p =

{
F k−n
p , . . . , F k−2

p , F k−1
p

}
(7)

and
Mk

gp =
{
F k−n
gp , . . . , F k−2

gp , F k−1
gp

}
(8)

inside a sphere space whose radius is rp as the corresponding
voxels. Then, we use the corresponding voxels to construct the
POU implicit surface representation of the model, and compute
the distance from a planar feature point to its implicit surface
representation of the model. The detail of building the POU
implicit surface representation and compute the distance from
a planar feature point to its implicit surface representation of
the model will be discussed below.

B. POU Implicit Surface Representation For Planar Features

1) POU Approach: The basic idea of the POU approach
is to break the data domain into several pieces, approximate
the data in each subdomain separately, and then blend the
local solutions together using smooth, local weights that sum
up to one everywhere in the domain. More specifically, we
assign a specific planar patch as the correspondence of a planar
feature point in each correspondence voxel. The procedure of
finding the specific points to form planar patches Pc can be
found in [7]. We can calculate distances d between the planar
feature point and the corresponding planar patches Pc. Then,
we project planar feature point x on the surface of planar
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(a) (b)

(c) (d)

Fig. 2. (a) is the result of ground segmentation. In (a), the red points are labeled as ground points and the green points are labeled as non-ground points.
(b)(c)(d) are the ground planar features, non-ground edge features and non-ground planar features.

patches defined by ps: psi = x−dini, where ni is the normal
of the closest point to x in each planar patch and is a good
approximation of the surface normal at the projected point psi .
Each planar patch can be regarded as a subdomain. Then, we
use the weight function to blend the subdomains together.

2) POU Implicit Surface Representation: The implicit sur-
face is defined as the set of zeros of a function I(x), which also
behaves as a distance function from x to the implicit surface.
In this work, we use the POU implicit surface representation.

Similar to the POU implicit surface framework in [32], we
define the POU implicit function IM

k

(x) as an approximate
distance of planar feature point x ∈ R3 at time k to the POU
implicit surface defined by the map Mk:

IM
k

(x) =

∑
si∈Pc

Wsi(x)(x− psi) · −→n si∑
sj∈Pc

Wsj (x)
(9)

where psi is the projected points on the corresponding planar
patch si, −→n si is the normal at point psi . For approximation,
we use the quadratic B-spline b(t) to generate weight functions
for planar patches.

Wsi(x) = b(
3 |x− csi |

2Rsi

) (10)

where csi is the geometric center of planar patch si and Rsi =
max
x∈si
‖x− csi‖ is a spherical support radius of the planar patch

si. The function is proportional to the distance between x and
csi and inversely proportional to Rsi . It means that the closer
csi to the x, the higher weight will be allocated. And the
more scattered the points which form the planar patch are, the
higher the weight. In addition to computing the distance from
the feature point to the model surface, the surface normal at the
projected point of the feature point x should also be computed.

In this work, we use the normal of the closest point psclosest to
x as the approximation of the surface normal at the projected
point. Compared with the method using only one plane to
represent a surface (could be cylinder or sphere etc.), we adopt
multiple local planes with various planarities to represent a
surface which can achieve higher accuracy and more accurate
distances from feature points to their correspondences.

Fig. 3. Illustration of POU implicit surface. The Figure shows the POU
implicit surface representation. Two cells, A and B, are associated with their
support radius RA and RB , respectively. The value of a point x in the slashed
region can be evaluated by IM

k
(x) =

WA(x)QA+WB(x)QB
WA(x)+WB(x)

; WA(x) =

b( 3d1
2RA

); WB(x) = b( 3d2
2RB

), where d1 and d2 are the distances from the
point x to the centers of the cell A and B, respectively.

3) Motion Estimation: With distances from feature points
to their correspondences in hand, we assign a bisquare weight 
[7] for each feature point. The rules are twofold. In gen-
eral, when the distance between the feature point and its
correspondence is below a certain threshold, the weight is
assigned inversely proportional to the distance. However, when
the distance is greater than the threshold, the feature point
is regarded as an outlier. We proceed to recover the LiDAR
motion by minimizing the overall distances.
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Algorithm 1 POU-SLAM Scan To Model Matching frame-
work
Input: Current Scan, Model
Output: Calculate Lidar Pose Transform T Between Current

Scan And Model
1. Feature Extraction
<Extract non ground features F k

p , ground
features F k

gp and edge features F k
e based

on shape parameters in each voxel >
2. Scan-To-Model Matching With POU Implicit Surface
Representation
<Calculate lidar pose transform T
by minimizing the distances between
features and POU implicit surface>
for a number of iterations do

for each non ground planar feature in
F k
p do

Find an POU implicit surface as the
correspondence, then compute point to
implicit surface distance based on (9)
and stack the equation to (12)

for each ground planar feature in F k
gp do

Find an POU implicit surface as the
correspondence, then compute point to
implicit surface distance based on (9)
and stack the equation to (12)

for each edge feature in F k
e do

Find an edge line as the
correspondence, then compute point to
line distance and stack the equation to
(12)

Compute a bisquare weight for each
row of (12)

Update T for a nonlinear iteration
based on Levenberg Marquardt method

if the nonlinear optimization converges
then

Break;

First, the following equation is used to project feature point
x to the map, namely x̃,

x̃ = Rx+ τ (11)

in which, R and τ are the rotation matrix and translation vector
corresponding to the pose transform T between current scan
and the map. By combining the distances and weights from
feature points to their correspondences and equation (11), we
derive a geometric relationship between feature points and the
corresponding model,

f(x, T ) = d (12)

where each row of f corresponds to a feature point, and d
contains the corresponding distances. Finally, we obtain the
LiDAR motion with the Levenberg-Marquardt method [33].
We do scan matching between the current scan with the last
n scans, and the final result is obtained by aggregating the

successfully matched nm scans. Literally, by matching the 
current scan with the historical n scans, the error propagation 
problem can be suppressed. As for blunder, we limit the 
scale of the relative transformation between the current scan 
and the model. When the blunder occurs, we will abandon 
the result of the current scan and subsequent scan-matching 
implementation would be slightly affected. After computing 
the transformation between the scan and model, we add feature 
voxels corresponding to current scan to the map and remove 
the feature voxels corresponding to the oldest scan to always 
keep n scans for scan matching.

V. EXPERIMENTAL EVALUATION

A. Tests On The Public Dataset KITTI

We evaluate our method on the KITTI odometry benchmark
[34], where we use point clouds from a vertical Velodyne
HDL-64E S2 mounted on the roof of a car, with a recording
rate of 10Hz. The dataset is composed of a wide variety of
environments (urban city, rural road, highways, roads with
a lot of vegetation, low or high traffic, etc.). The LiDAR
measurements are de-skewed with an external odometry, so
we do not apply ego-motion algorithm to this dataset. Table
I shows the results of our method for all sequences in detail.
The relative error is evaluated by the development kit provided
with the KITTI benchmark. The data sequences are split into
subsequences of 100, 200,. . . ,800 frames. The error es of each
subsequence is computed as:

es =
‖Es, Cs‖2

ls
(13)

where Es is the expected position (from ground truth) and Cs

is the estimated position of the LiDAR where the last frame
of subsequence was taken with respect to the initial position
(within given subsequence). The difference is divided by the
length ls of the followed trajectory. The final error value is
the average of errors es across all the subsequences of all the
lengths.

We include here for comparison the reported results of
LOAM, a laser-based odometry approach that switches be-
tween scan-to-scan and scan-to-model framework, and the re-
ported results of SUMA [16] a laser-based odometry approach
using scan-to-model framework. We can see that the proposed
method yields results generally on par with the state-of-the-
art in laser-based odometry and often achieves better results
in terms of translational error. Overall, we achieve an average
translational error of 0.61% compared to 0.84% translsational
error of LOAM on KITTI odometry benchmark. We can see
that the proposed method yields results generally on par with
the state-of-the-art in laser-based odometry and often achieves
better results in terms of translational error.

B. Discussion Of The Parameter And Performance

In our experiment, we define the thresholds cth and pth 
based on the KITTI Odometry sequence 01. Laser scans 
contained in this dataset are collected from a highway, the 
scenario where there is only very few distinct structural 
features could be used for scan matching. To extract as
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Sample results using the KITTI odometry benchmark. The datasets are chosen from three types of environments: highway, country and urban from left
to right, corresponding to sequences 01, 03, and 07. In (a)–(c), we compare estimated trajectories of the vehicle to the GPS/INS ground truth. The mapping
results are shown in (d)-(f). An image is shown from each dataset to illustrate the environment, in (g)-(i).

more as possible features to accomplish the SLAM task, the 
thresholds should be set to a fairly low level. It is because 
the smaller the thresholds, features on spheres or cylinders 
are more likely to be extracted. These sphere and cylinder 
features themselves are not planar, and if represented by planes 
directly can bring about errors that would further reduce the 
accuracy of the downstream algorithms. In this paper, we 
however blend each planar patch extracted with the weighted 
function under the implicit surface representation mechanism. 
This explains why we achieve obvious improvement on this 
sequence. Therefore, if the thresholds can perform well on 
such structural feature lacking scenarios, they should be easily 
transferred to and work in scenarios with richer structural 
features. For more structured environment such as urban case, 
the thresholds can be further increased to compromise between 
the feature richness and the planarity, which promises an 
accuracy improvement to the whole SLAM algorithm. Table 
IV shows the influence of cth to the result. When cth is set 
too large, we can not extract enough features and the result 
gets worse. Figure 5 shows the variation of the number of

non-ground features in different frames on sequence 01 when 
cth is set to 0.85. The average number of non-ground features 
is about 7200. The quantity c as shown in (3) of ground 
features are generally large and we do not discuss it here. 
Parameters ne, np and ngp are set to 3 for the KITTI odometry 
benchmark. Table III shows the influence of parameter np. We 
compare our POU model to the plane model which is fitted 
as in LOAM. The result of our model is better than plane 
model and the result reaches the best when np is set to 3. 
When np is set too large, the correspondences are far away 
from the current scan features and do not contribute to local 
surface reconstruction. The parameter n is set to 40 for the 
KITTI odometry benchmark. Table II shows the the influence 
of parameter n.

C. Discussion Of The Processing Time

The operating platform in our experiment is Intel i7-
7820@3.60 GHz with 16 GB RAM. Our method is evaluated 
by processing KTTI datasets rather than being deployed in an
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autonomous vehicle. With regarding to real time implemen-
tation, which heavily depends on the hardware configuration, 
we cannot assert if our method is real time or not. However, 
we can still provide some of the parameters so people can 
know the runtime performance of our method. First, we split 
the point cloud into voxels which contain certain numbers of 
points and calculate the linear-ness values and surface-ness 
value for these voxels. It takes 0.5s. Second, we do scan 
matching for each feature. The time cost is depending on 
the number of features. For KITTI Odometry sequence 01, 
the runtime is about 1.5s. Taking both the above factors into 
consideration, our SLAM runs at 2s per scan with one thread. 
For comparison, LOAM runs at 1s per scan on the same KITTI 
dataset. The reason is that compared to LOAM which extract 
two-dimensional curvature features, we construct voxel grids 
and extract features according to the spatial distribution of the 
points contained in each voxel. This results in better accuracy 
(refer to Table I) with a slight sacrifice of efficiency.

TABLE I
RESULTS ON KITTI ODOMETRY BENCHMARK

Sequence Environment LOAM SUMA Our SLAM

0 Urban 0.78% 0.7% 0.64%
1 Highway 1.43% 1.7% 0.90%
2 Urban+Country 0.92% 1.2% 0.74%
3 Country 0.86% 0.7% 0.59%
4 Country 0.71% 0.4% 0.49%
5 Urban 0.57% 0.4% 0.43%
6 Urban 0.65% 0.5% 0.36%
7 Urban 0.63% 0.7% 0.35%
8 Urban+Country 1.12% 1.2% 0.84%
9 Urban+Country 0.77% 0.6% 0.53%
10 Urban+Country 0.79% 0.7% 0.83%

TABLE II
IMPORTANCE OF THE PARAMETER n

Parameter n Drift on KITTI training dataset

n=1 1.34%
n=5 0.98%

n=10 0.92%
n=40 0.90%

TABLE III
COMPARE POU MODEL TO PLANE MODEL

Parameter np Plane Model POU Model

n=3 0.93% 0.90%
n=4 0.94% 0.92%
n=5 0.94% 0.92%

TABLE IV
THE INFLUENCE OF cth TO THE RESULT

Parameter cth Drift on KITTI training dataset

cth=0.95 1.03%
cth=0.90 0.92%
cth=0.85 0.90%
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Fig. 5. Variation Of the Number of Non-ground features In Different Frames
On Sequence 01

VI. CONCLUSION

We present a new 3D LiDAR SLAM method that is com-
posed of a new feature voxel map and a new scan-to-model
matching framework. We build a novel feature voxel map
with voxels including salient shape characteristics. In order
to adapt to the proposed map, we implement scan-to-model
matching using POU implicit surface representation to blend
the correspondence voxels in map together. As experimental
results illustrate, the proposed method yields accurate results
that are on par with the state-of-the-art. Future work will
proceed in two directions. From the research perspective,
a specific and efficient octree will be designed to get 3D
grid. Meanwhile, we will deploy the method to fulfil real
time application with the aid of multiple threads or GPU to
accelerate data processing.
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