

1 Article

2

Food-Drug Interaction Between the Adlay Bran Oil 3 and Drugs in Rats

4 **Hsien-Tsung Yao^{1*}, Jia-Hsuan Lin¹, Yun-Ta Liu¹, Mei-Ling Li¹, Wenchang Chiang²**5 ¹ Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan;
6 chlin@leesclinic.org (J.-H. L); hhh12324@msn.com (Y.-T. L); u104059001@cmu.edu.tw (M.-L. L).7 ² Graduate Institute of Food Science and Technology, Center for Food and Biomolecules, College of
8 Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan;
9 chiang@ntu.edu.tw (W.C.).

10 * Correspondence: htyao@mail.cmu.edu.tw; Tel.: +886-4-22053366 ext. 7526; Fax: +886-4-22062891

11 **Abstract:** Adlay (*Coix lachryma-jobi* L. var. *ma-yuen* Stapf) contains various phytonutrients for
12 treating many diseases in Asia. To investigate whether orally administered of adlay bran oil (ABO)
13 can cause drug interactions, the effects of ABO on the pharmacokinetics of five cytochrome P450
14 (CYP) probe drugs were evaluated. Rats were given a single oral dose (2.5 mL/kg BW) of ABO 1 h
15 before administration of a drug cocktail either orally or intravenously, and blood was collected at
16 various time points. A single oral dose of ABO administration did not affect the pharmacokinetics
17 of five probe drugs when given as a drug cocktail intravenously. However, ABO increased plasma
18 theophylline, dextromethorphan, and diltiazem when co-administered an oral drug cocktail. After
19 7-days of feeding with an ABO-containing diet, plasma concentrations of theophylline and
20 chlorzoxazone were increased after oral administration of drug cocktail. The major CYP enzyme
21 activities in liver and intestinal were not affected by ABO treatment. Results from this study indicate
22 that a single oral dose or short-term administration of ABO may increase plasma drug
23 concentrations when ABO is given concomitantly with drugs. ABO is likely to enhance intestinal
24 drug absorption. Therefore, caution is needed to avoid food-drug interactions between ABO and
25 co-administered drugs.26 **Keywords:** adlay; adlay bran oil; cytochrome P450; food-drug interactions; rats
2728

1. Introduction

29 Cytochrome P450 (CYP) enzymes are major phase I monooxygenases that catalyze the oxidative
30 metabolism of various drugs, toxic chemicals, and many endogenous substrates. About 90% of
31 human drug oxidation is attributed to six main CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4
32 [1]. The method of administering a specific probe drug and then measuring the plasma kinetics of the
33 probe has been widely used to estimate CYP isozyme activity *in vivo* [2]. CYP metabolic activity can
34 be assessed before or during pharmacotherapy to adjust individual drug doses. For convenience, to
35 reduce costs, and to accelerate our understanding of various CYP activities *in vivo*, a “cocktail”
36 approach has been used as a screening tool for potential food/herb-drug interactions [3-6]. Recently,
37 food/herb-drug interactions have become an important issue in health care. Induction or inhibition
38 of CYP activities by phytochemicals, especially phenolic acid and flavonoids, present in functional
39 foods and herbal medicines can change the pharmacological activities and toxicities of drugs [7,8].
40 Grapefruit juice-drug interactions are a well-known example of a food-drug interaction that can
41 significantly increase the oral bioavailability of various medications. The likely mechanism of this
42 increase is the inhibition of CYP enzymes, especially CYP3A4 in the liver and small intestine [9-11].
43 Naringin, an abundant flavonoid in grapefruit juice, is regarded as a potent CYP inhibitor and can
44 inhibit metabolism of some drugs, mainly those catalyzed by CYP3A4 (e.g., midazolam, triazolam,
45 terfenadine, cyclosporin) [1].

46 Adlay seed is a popular traditional medicinal food or traditional Chinese medicine in Asia. The
47 adlay seed consists of four parts from outside to inside: the hull, testa, bran, and endosperm. Many
48 parts of the adlay seed have been demonstrated to lower inflammation, hyperlipidemia, immune
49 disorders, diabetes, hypertension, and hyperuricemic and neoplastic diseases [13-18]. The bran part
50 of adlay contains abundant neutral oil (approximately 25% of the dry weight), which is mainly
51 present in the form of triglyceride (>90%) [19,20]. Adlay bran ethanolic extract or adlay bran oil (ABO)
52 contains various phytonutrients, including phytosterols, flavonoids (e.g. nobiletin, tangeritin, rutin,
53 and quercetin) and phenolic acids [21]. Studies have shown that ABO may have pharmacological
54 effects in the prevention and treatment of many diseases [13]. For example, ABO supplementation in
55 the diet (10%) for 4 weeks can reduce hyperlipidemia in normal and type 2 diabetic rats [18,20]. In
56 addition, ABO can lower inflammation by lowering lipopolysaccharide-stimulated interleukin 6 (IL-
57 6) and tumor necrosis factor- α (TNF- α) secretions in RAW264.7 cells and murine peritoneal
58 macrophages [22]. A human study demonstrated that ABO can lower the risk for severe acute
59 radiation dermatitis in patients with breast cancer undergoing radiotherapy [23].

60 In our previous study, we showed that ABO inhibited various CYP-catalyzed enzyme reactions
61 in both rat and human liver microsomes *in vitro* and reduced CYP1A1, 1A2, 2C, 2D, 2E1, and 3A
62 activities and protein expressions in rat liver after 4 weeks of feeding with ABO [21]. However,
63 whether ABO can affect plasma drug concentration when administered concomitantly with a drug
64 remains unknown. In this study, rats were given a single oral dose of ABO or consecutive feeding
65 with an ABO-containing diet for 7-days, and then administration of drug cocktail to investigate the
66 possible food-drug interaction between the adlay bran oil and five cytochrome P450 probe drugs,
67 theophylline (CYP1A2), diclofenac (CYP2C), dextromethorphan (CYP2C), chlorzoxazone (CYP2E1),
68 and diltiazem (CYP3A), in rats [24,25].

69 2. Materials and Methods

70 2.1. Chemicals and reagents

71 Theophylline, diclofenac sodium salt, dextromethorphan hydrobromide, chlorzoxazone, (+)-cis-
72 diltiazem hydrochloride, NADPH, and heparin were obtained from Sigma-Aldrich (St. Louis, MO,
73 USA). Methoxyresorufin, resorufin, p-nitrophenol, 4-nitrocatechol, and testosterone were obtained
74 from Sigma-Aldrich (St. Louis, MO, USA). Dextrophan, 4-hydroxydiclofenac, 6-
75 hydroxychlorzoxazone, and 6- β -hydroxytestosterone were purchased from Ultrafine Chemicals
76 (Manchester, UK). All other chemicals and reagents were of analytical grade and were obtained
77 commercially.

78 2.2. Preparation of adlay bran oil

79 Adlay seeds were purchased from local farmers who planted Taichung Shuenu no. 4 (TCS4) of
80 *Coix lachryma-jobi* L. var. *ma-yuen* Stapf in Taichung, Taiwan. Adlay bran was separated from
81 dehulled adlay, blended into a powder, and screened through a 20-mesh sieve. Adlay bran powder
82 was extracted with ethanol (1:6; w/v) and concentrated under reduced pressure by use of a rotary
83 vacuum evaporator to obtain ABO, which was provided by Dr. Wenchang Chiang, National Taiwan
84 University. In general, each gram of ABO was derived from 10 g of adlay bran powder. The
85 phytonutrients in ABO included β -sitosterol (1700 μ g/g), campesterol (970 μ g/g), stigmasterol (443
86 μ g/g), total phenols (3583 μ g/g), 4-hydroxybenzoic acid (167.3 μ g/g), nobiletin (54.6 μ g/g), tangeritin
87 (44.5 μ g/g), rutin (41.2 μ g/g), quercetin (26.4 μ g/g), and other phenolic acids such as ferulic acid (27.5
88 μ g/g) and vanillic acid (22.2 μ g/g) [21]. ABO contained a considerable amount of neutral oil was
89 present in the form of triglyceride (>90%; w/w) as described above. Compositions of the fatty acids
90 in ABO were 18.0% palmitic acid (C_{16:0}), 48.1% oleic acid (C_{18:1}), and 32.4% linoleic acid (C_{18:2}) [21].
91 ABO was stored at -20°C until further use.

92 2.3. Animals and treatment

93 Experiment I: To investigate whether a single oral dose of ABO could affect the plasma drug
94 levels when administered of the drug cocktail intravenously (through the rat tail vein) or orally (via
95 an intragastric tube). The drug cocktail consisted of five *in vivo* specific CYP probe drugs, including
96 theophylline, diclofenac, dextromethorphan, chlorzoxazone, and diltiazem for the evaluation of
97 CYP1A2, 2C, 2D, 2E1, and 3A isozyme activity, respectively [24,25]. Male Sprague-Dawley (SD) rats,
98 weighing about 300 g each (8–10 weeks old) and cannulated (PE-50) in the jugular vein, were obtained
99 from BioLASCO, Ilan, Taiwan. The five drugs were freshly prepared and then administered to two
100 groups of 6 rats via intravenously (IV) or oral administration (PO) at a dose volume of 5 mL/kg body
101 weight (BW), which contained theophylline (1 mg/kg BW for IV administration; 10 mg/kg BW for PO
102 administration), diclofenac (10 mg/kg BW for IV administration; 20 mg/kg BW for PO
103 administration), dextromethorphan (5 mg/kg BW for IV administration; 25 mg/kg BW for PO
104 administration), chlorzoxazone (1 mg/kg BW for IV administration; 5 mg/kg BW for PO
105 administration), and diltiazem (5 mg/kg BW for IV administration; 40 mg/kg BW for PO
106 administration), in formulation of 5% DMSO/8% cremophore/87% H₂O. In the pilot study, a single
107 drug or the drug cocktail was administered intravenously or orally, and blood was collected at
108 various time points for all five probe drugs. The results showed little influence on area under the
109 plasma drug concentration curve (AUC) values for most probe drugs between the single drug and
110 the drug cocktail administration. These results suggested that administrated of the drug cocktail may
111 cause less metabolic interactions.

112 Because some food-drug interactions involving CYP inhibitions in the gastrointestinal tract were
113 observed when the drug was taken together with foods or juices within 2 h [26]. In this study, rats
114 were orally administered 2.5 mL/kg BW soybean oil (control oil, equivalent to 24.3 g/60 kg adult) or
115 ABO 1 h before given the drug cocktail. The volume of dosing solution administered was adjusted
116 according to the body weight recorded before dose administration. At 0 (prior to dosing), 2, 5, 15, and
117 30 min and at 1, 2, 4, 6, 8, and 12 h after dosing, blood samples (~200 μ L) were collected from each
118 animal via the jugular-vein cannula (no blood collection for 2 and 5 min for PO administration of
119 drug cocktail). The same volume of normal saline was administered to the rats via the jugular vein
120 to compensate for the blood loss. After collected all of blood samples, the animals were sacrificed by
121 exsanguination via the abdominal aorta while under carbon dioxide (70:30; CO₂/O₂) anesthesia.
122 Heparin was used as the anticoagulant. Plasma was separated from the blood by centrifugation
123 (3,000 \times g for 20 min at 4°C) and the concentrations of the five drugs in plasma were simultaneously
124 determined by high-performance liquid chromatography/mass spectrometer (HPLC/MS). This study
125 was approved (No: 102-55-N) by the Institutional Animal Care and Use Committee (IACUC) of China
126 Medical University, Taiwan. The animals were maintained in accordance with the guidelines for the
127 care and use of laboratory animals [27].

128 2.4 Sample preparation

129 Plasma (50 μ L) was mixed with 100 μ L of acetonitrile. The mixture was vortexed for 30 s and
130 then centrifuged at 21,000 \times g for 20 min. An aliquot (40 μ L) of the supernatant was used for
131 HPLC/MS. To prepare the samples of the calibration curve, the blank plasma (50 μ L) containing
132 various concentrations of theophylline (100–15000 ng/mL), diclofenac (50–15000 ng/mL),
133 dextromethorphan (2.67–2000 ng/mL), chlorzoxazone (2.5–1500 ng/mL), or diltiazem (1.67–1000
134 ng/mL) was mixed with 100 μ L of acetonitrile.

135 2.5. HPLC/MS analysis

136 The HPLC/MS system consisted of an Agilent 1100 Series LC System and single quadrupole
137 mass spectrometer (Palo Alto, CA, USA). The column used to analyze the probe drugs was a Zorbax
138 Eclipse XDB-C8 (5 μ m, 150 \times 3.0 mm i.d., Agilent). The mobile phase consisted of Solvent A
139 (acetonitrile + 0.5% formic acid) and Solvent B (10 mM ammonia acetate + 0.5% formic acid). The flow
140 rate was 0.5 mL/min. The gradient system used to separate the five drugs was as follows: 90% B (0–1
141 min), 90% B to 10% B (1–12 min), 10% B (12–15 min), and 10% B to 90% B (15–15.5 min). Total running

142 time was 22 min. Injection volume was 40 μ L. The positive selected ion monitoring (SIM) mode was
143 used before 10.5 min; after that, the negative SIM mode was used. The retention times of the five
144 drugs were as follows: theophylline, 5.0 min; dextromethorphan, 9.6 min; diltiazem, 9.8 min;
145 chlorzoxazone, 11.2 min; diclofenac, 14.3 min. Ions representing the positive mode ([M-H] $^+$:
146 theophylline at m/z 181; dextromethorphan at m/z 272.4; diltiazem at m/z 415.5) or negative mode ([M-
147 H] $^-$: diclofenac at m/z 295; chlorzoxazone at m/z 168) were selected and the peak areas were measured.
148 Plasma samples that had concentrations above the upper limit of quantitation were diluted
149 proportionally with control plasma before extraction with acetonitrile. The concentrations of the five
150 drugs in rat plasma were determined with the calibration curves of authentic standard.

151 Experiment II: To investigate whether short-term feeding with ABO affected the
152 pharmacokinetics of the five CYP probe drugs and CYP activities in the liver and small intestine,
153 male SD rats were fed a control diet or an ABO-containing diet for 7 days. Animals were fed an
154 experimental diet containing 20% casein, 20% dietary oil (10% soybean oil+10% olive oil for control
155 group or 20% ABO for ABO group), 1% vitamin mixture, 4% mineral mixture, 0.2% choline chloride,
156 5% cellulose, and 49.8% corn starch. Compositions of fatty acids in lipid extracted from the control
157 diet were 11.8% palmitic acid ($C_{16:0}$), 46.8% oleic acid ($C_{18:1}$), and 35.6% linoleic acid ($C_{18:2}$). The
158 corresponding values in the ABO diet were 17.9% palmitic acid ($C_{16:0}$), 48.1% oleic acid ($C_{18:1}$), and
159 32.4% linoleic acid ($C_{18:2}$). The vitamin and mineral mixtures (AIN 93) were purchased from ICN
160 Biochemicals (Costa Mesa, CA, USA). The rats were housed in individual cages in a room kept at a
161 temperature of $23 \pm 1^\circ\text{C}$ and relative humidity of $60 \pm 5\%$ with a 12-h light and dark cycle. After seven
162 days of ABO feeding, rats were fasted overnight and the same oral dose of the drug cocktail was
163 administered to two groups of six rats. Blood samples ($\sim 200 \mu\text{L}$) were collected from each animal via
164 the rat tail vein at 15 and 30 min and 1, 2, 4, 8, and 12 h. Then, rats were sacrificed and the plasma
165 was collected as described above. Plasma drug concentration was determined by HPLC/MS as
166 described above. The duodenum portion of the intestine was collected and incubated with ice-cold
167 PBS buffer containing protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 $\mu\text{g}/\text{mL}$ leupeptin,
168 10 $\mu\text{g}/\text{mL}$ pepstatin A, and 2.5 $\mu\text{g}/\text{mL}$ aprotinin) for at least 5 min and then scraped with a glass slide
169 over ice to remove the mucosa. The liver and intestinal mucosa were stored at -80°C until further
170 analysis.

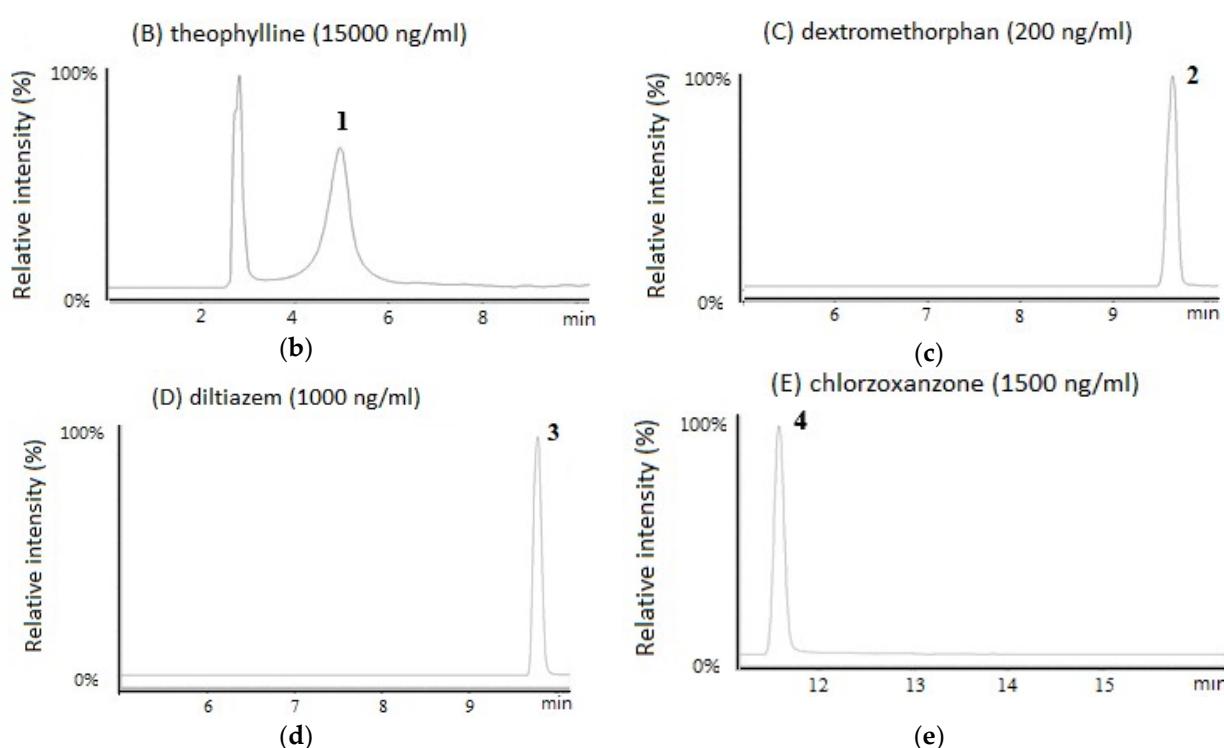
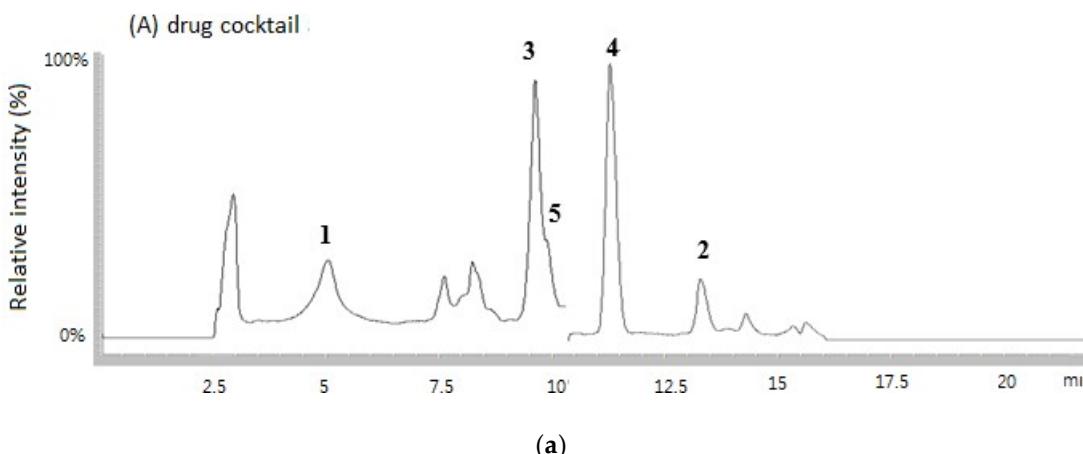
171 2.5. Microsomes preparation

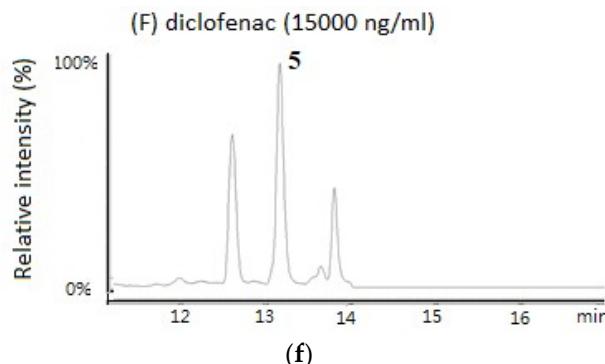
172 1 g of liver was homogenized with 4 mL of ice-cold 0.1 M phosphate buffer (pH 7.4) containing
173 1 mM EDTA. The homogenates were centrifuged at 10,000 $\times g$ for 15 min at 4°C . The supernatant was
174 then re-centrifuged at 105,000 $\times g$ for 1 h at 4°C . The resulting microsomal pellet was suspended in
175 0.25 M sucrose solution containing 1 mM EDTA and was stored at -80°C until use. The mucosa
176 removed from the duodenal portion was homogenized and the resulting homogenates were used to
177 prepare microsomes using the same method as described above.

178 2.6. CYP enzyme activity assays

179 Activities of several CYP enzymes in microsomes isolated from liver or small intestine were
180 determined as reported previously [21]. Methoxyresorufin (5 μM) was used as the probe substrate
181 for methoxyresorufin O-demethylation (CYP1A2), and diclofenac (4 μM), dextromethorphan (5 μM),
182 p-nitrophenol (50 μM), and testosterone (60 μM) were respectively used as the probe substrates for
183 diclofenac 4-hydroxylation (CYP2C), dextromethorphen O-demethylase (CYP2D), p-nitrophenol 6-
184 hydroxylation (CYP2E1), and testosterone 6 β -hydroxylation (CYP3A). Microsomal proteins (0.2
185 mg/mL) and the incubation time (15 min) were the same for all metabolic reactions. The metabolites
186 of each CYP enzyme reaction were determined by HPLC/MS methods as reported previously [28].

187 2.7. Statistical analysis

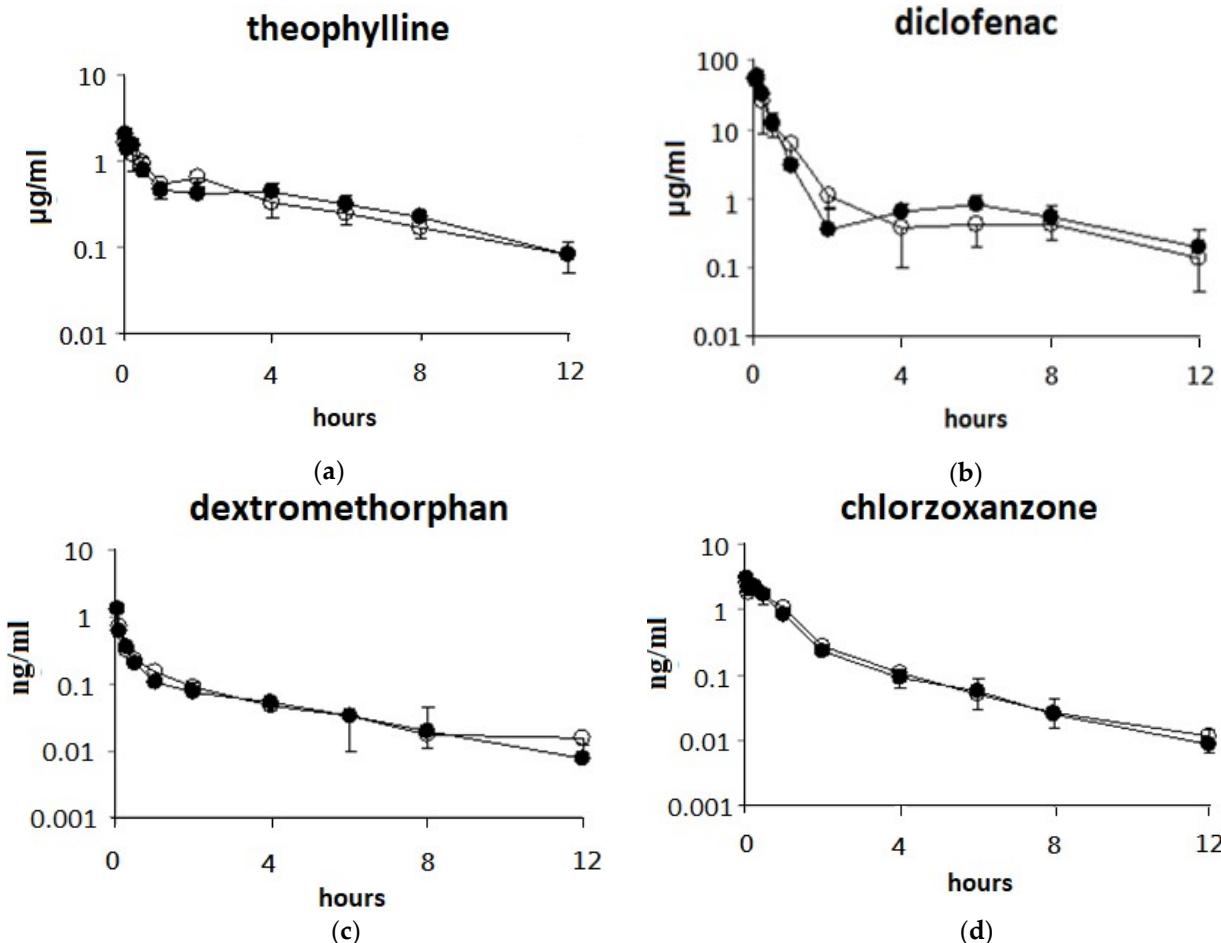


188 For pharmacokinetics study, plasma concentration data were analyzed using the standard non-
189 compartmental method with the WinNonLin software program (version 3.1, Pharsight, CA, USA).

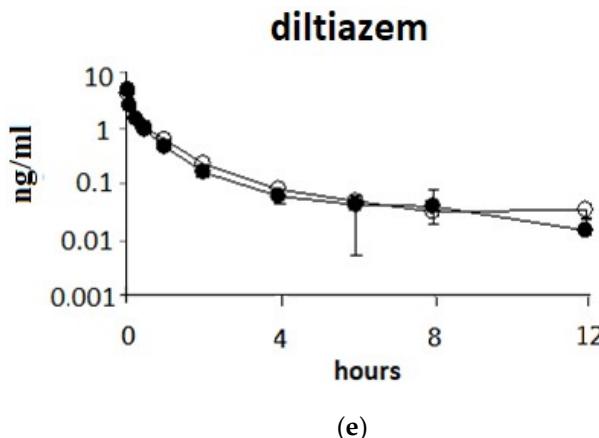

190 Statistical differences between groups in two animal studies were analyzed by using one-way
 191 ANOVA (SAS Institute, Cary, NC, USA). The differences were considered to be significant at $p < 0.05$
 192 as determined by independent-sample t tests.

193 **3. Results**

194 *3.1. HPLC/MS chromatograms of the five CYP probe drugs in rat plasma.*

195 Figure 1 shows the HPLC/MS chromatograms of the five CYP probe drugs in rat plasma. Each
 196 drug could be well separated and quantitated in rat plasma. The lowest limits of quantitation for
 197 theophylline, diclofenac, dextromethorphan, chlorzoxazone, and diltiazem in rat plasma were 2.0, 50,
 198 2.67, 2.5, and 1.67 ng/mL, respectively. The calibration curves were linear over a concentration range
 199 of 100 to 15000 ng/mL for theophylline, 50 to 15000 ng/mL for diclofenac, 2.67 to 2000 ng/mL for
 200 dextromethorphan, 2.5 to 1500 ng/mL for chlorzoxazone, and 1.67 to 1000 ng/mL for diltiazem with
 201 correlation coefficients ≥ 0.995 . The plasma concentrations of five probe drugs were analyzed by
 202 HPLC/MS that had good accuracy (greater than 90%) and precision (less than 5%) as described
 203 previously [24,29].





206 **Figure 1.** HPLC/MS (single quadrupole) selective ion monitoring chromatogram of five drugs in rat
 207 plasma (a), theophylline (b), dextromethorphan (c), diltiazem (d), chlorzoxazone (e), diclofenac (f).
 208 Peaks: 1, theophylline; 2, dextromethorphan; 3, diltiazem; 4, chlorzoxazone; 5, diclofenac. Data
 209 acquisition was via selected ion monitoring (SIM). Details are described in Materials and Method.

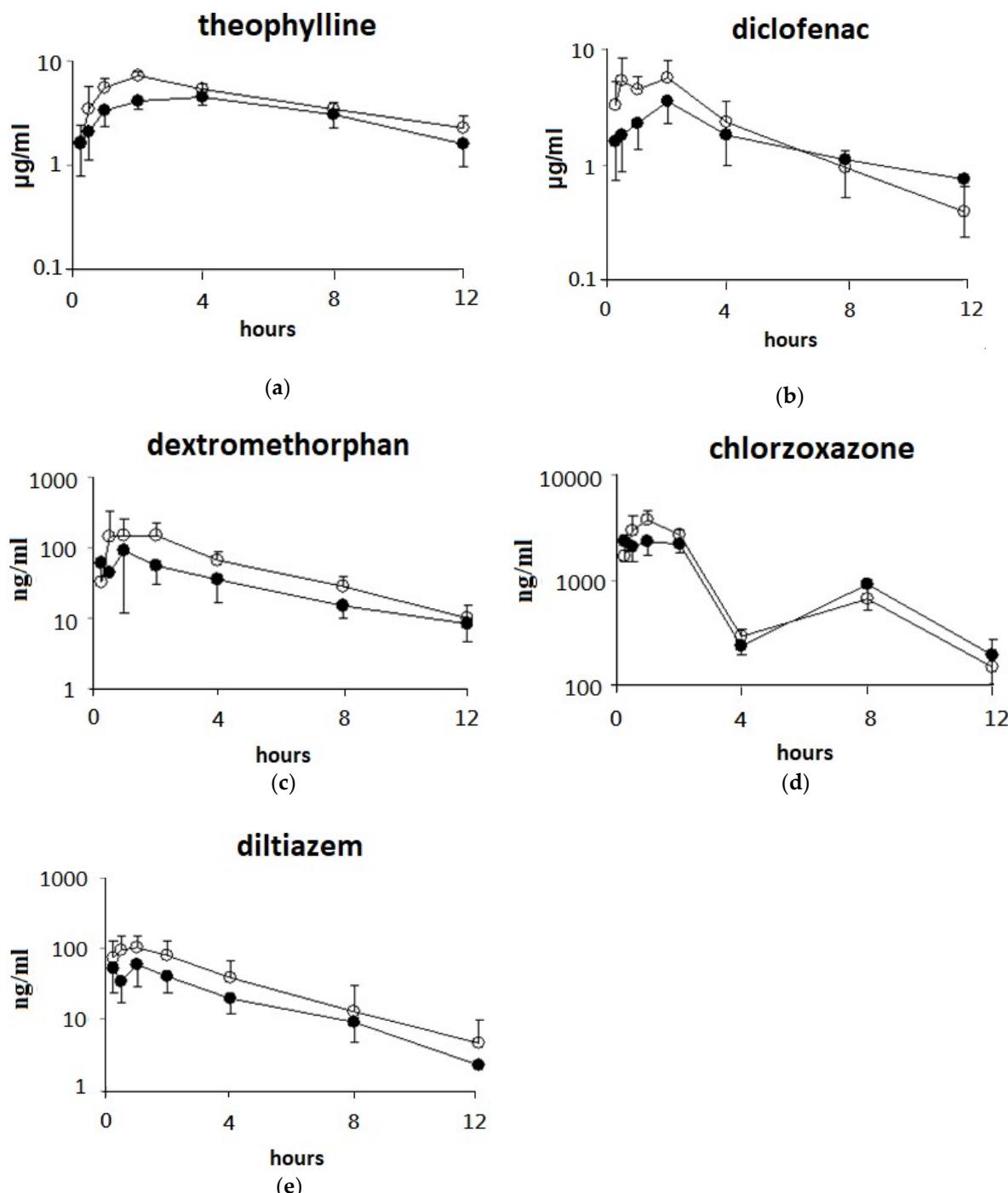
210 *3.2. Single oral dose of ABO on the pharmacokinetic parameters of the five drugs after intravenous drug
 211 cocktail administration in rats*

212 The effects of pretreatment with a single oral dose of ABO on the pharmacokinetic parameters
 213 of the five drugs after intravenous drug cocktail administration in rats are presented in Figure 2 and
 214 Table 1. The results showed little or no differences in the $AUC_{(0-12\text{ h})}$ and $t_{1/2}$ values between the control
 215 and ABO groups for all five drugs. These results indicated that a single oral dose of ABO did not
 216 change plasma drug concentration and CYP1A2, 2C, 2D, 2E1, and 3A activities in rat liver.

217 **Figure 2.** Plasma concentration-time profiles of the five drugs (IV doing) after administration of a
 218 single oral dose of ABO in rats. Drug cocktail (CYP1A2: theophylline, CYP2C: diclofenac, CYP2D:
 219 dextromethorphan, CYP2E1: chlorzoxazone, CYP3A: diltiazem) was administered intravenously at
 220 a dose of 1-10 mg/kg BW to rats 1 h after administration of control oil (soybean oil; 2.5 mL/kg BW)
 221 or ABO (2.5 mL/kg BW). Values at each time point are expressed as the mean \pm SD of six rats in each
 222 group. ●: Control group; ○: ABO group.

Table 1. Pharmacokinetic parameters of five drugs (IV dosing) after the administration of a single oral dose of ABO in rats¹

	Dose (mg/kg)	AUC (0-t) ² (μ g/mL \times h)	<i>t</i> _{1/2} (h)	Cl ³ (mL/min/kg)
Theophylline (CYP1A2)				
Control group	1	4.6 \pm 0.8	3.2 \pm 1.1	12.7 \pm 2.3
ABO group		4.5 \pm 0.7	3.7 \pm 0.6	12.5 \pm 1.7
Diclofenac (CYP2C)				
Control group	10	30.1 \pm 3.2	2.9 \pm 2.1	19.2 \pm 2.3
ABO group		28.7 \pm 6.7	2.6 \pm 2.1	20.5 \pm 5.3
Dextromethorphan (CYP2D)				
Control group	5	0.76 \pm 0.17	2.4 \pm 0.7	388.4 \pm 65.8
ABO group		0.89 \pm 0.08	4.2 \pm 3.7	318.4 \pm 27.9
Chlorzoxazone (CYP2E1)				
Control group	1	3.0 \pm 0.6	1.7 \pm 0.6	20.1 \pm 4.3
ABO group		3.0 \pm 0.7	2.4 \pm 1.0	18.1 \pm 2.9
Diltiazem (CYP3A)				
Control group	5	5.1 \pm 0.7	2.2 \pm 1.4	128.9 \pm 16.6
ABO group		4.3 \pm 1.2	1.9 \pm 0.3	115.3 \pm 13.9


¹Drug cocktail was administered intravenously at a dose of 1-10 mg/kg BW to rats 1 h after the administration of control oil or ABO. Pharmacokinetic parameters were expressed as the mean \pm SD of six rats in each group.

²AUC: area under the plasma drug concentration curve. t = 12 h.

³Cl: Clearance.

223 3.3. Single oral dose of ABO on the pharmacokinetic parameters of five drugs after oral drug cocktail
 224 administration in rats

225 The effects of a single oral dose of ABO on the pharmacokinetic parameters (AUC, T_{max} , and C_{max})
 226 of five drugs after oral drug cocktail administration in rats are presented in Figure 3 and Table 2. The
 227 AUC values of theophylline (+28.4%) and dextromethorphan (+48.7%) in rats were significantly
 228 increased ($p<0.05$) by ABO. In addition, ABO caused a little increase ($p<0.1$) in the AUC value of
 229 diltiazem (+46.7%). Higher C_{max} values of theophylline (+32.4%), chlorzoxazone (+40.9%), and
 230 diltiazem (+44.3%) were observed after a single oral dose of ABO ($p<0.05$). No significant differences
 231 in the T_{max} or $t_{1/2}$ values of the five drugs were found between the control and ABO groups. These
 232 results indicated that pretreatment of a single oral dose of ABO may increase plasma drug levels.

233 Figure 3. Plasma concentration-time profiles of five drugs (PO dosing) after administration of a single
 234 oral dose of ABO in rats. The drug cocktail was administered orally at a dose of 5-40 mg/kg BW to

235 rats 1 h after administration of 2.5 mg/kg BW of control oil or ABO. Values at each time point are
 236 expressed as the mean \pm SD of six rats in each group. ●: Control group; ○: ABO group.

Table 2. Pharmacokinetic parameters of five drugs (PO dosing) after the administration of a single oral dose of ABO in rats.¹

	Dose (mg/kg)	AUC (0-t)² (μ g/mL \times h)	T_{max}³ (h)	C_{max}⁴ (μ g/mL)	t_{1/2}⁵ (h)	F%⁶
Theophylline (CYP1A2)						
Control group	10	52.9 \pm 15.9	2.8 \pm 1.3	4.8 \pm 0.7	5.6 \pm 1.5	86.0 \pm 15.9
ABO group		73.9 \pm 17.2*	2.0 \pm 0.0	7.1 \pm 0.9*	6.5 \pm 1.9	124.8 \pm 14.7*
Diclofenac (CYP2C)						
Control group	20	22.2 \pm 7.9	1.5 \pm 0.7	4.7 \pm 2.2	4.1 \pm 1.6	29.2 \pm 8.1
ABO group		27.1 \pm 8.5	1.3 \pm 0.8	6.7 \pm 3.0	2.5 \pm 0.8	40.5 \pm 12.1
Dextromethorphan (CYP2D)						
Control group	25	0.40 \pm 0.15	1.2 \pm 0.6	0.13 \pm 0.1	3.1 \pm 0.5	10.0 \pm 2.8
ABO group		0.78 \pm 0.23*	1.5 \pm 0.6	0.22 \pm 0.2	3.1 \pm 0.8	18.6 \pm 6.8*
Chlorzoxazone (CYP2E1)						
Control group	5	12.6 \pm 2.7	1.3 \pm 0.8	2.8 \pm 0.6	4.1 \pm 1.9	76.2 \pm 11.5
ABO group		13.0 \pm 2.3	1.3 \pm 0.6	3.8 \pm 0.9*	2.7 \pm 1.1	78.1 \pm 11.3
Diltiazem (CYP3A)						
Control group	40	0.24 \pm 0.04	1.3 \pm 0.8	0.073 \pm 0.028	2.0 \pm 0.7	1.3 \pm 0.1
ABO group		0.45 \pm 0.22 [#]	1.0 \pm 0.8	0.131 \pm 0.045*	2.0 \pm 0.8	2.2 \pm 1.0

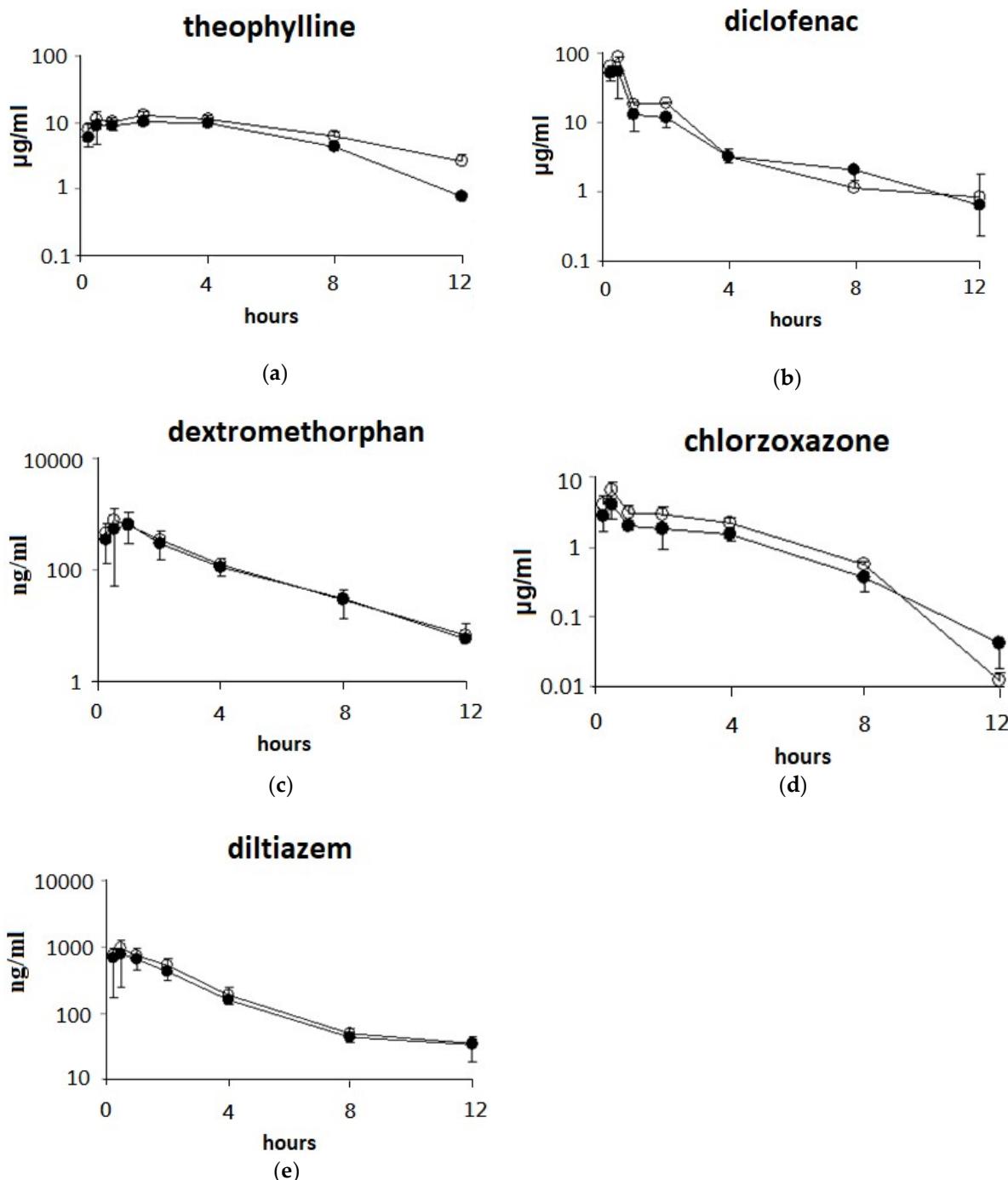
¹Drug cocktail was administered intravenously at a dose of 5-40 mg/kg BW to rats 1 h after the administration of control oil (soybean oil; 2.5 mL/kg BW) or ABO (2.5 mL/kg BW). Pharmacokinetic parameters were expressed as the mean \pm SD of six rats in each group.

²AUC: area under the plasma drug concentration curve. t = 12 h.

³T_{max}: the time at which maximum concentration is observed.

⁴C_{max}: values of maximal observed concentration.

⁵t_{1/2}: half-life, the time required for the amount of drug in the body to decrease by half.


⁶F%=(AUC_{PO(0-12h)}/PO dose) \times 100/(AUC_{IV(0-12h)}/IV dose). Oral bioavailability of the theophylline calculated by a computer fitting method was approximately or greater than 100%, suggesting that the theophylline was complete absorption [30].

*Significantly different from the control group, p<0.05.

[#] Significantly different from the control group, p<0.1.

237 3.4. Effects of 7-days of ABO feeding on the pharmacokinetic parameters of five drugs after oral drug cocktail
 238 administration in rats.

239 The effects of 7-days of ABO feeding on the pharmacokinetic parameters of five drugs after oral
 240 drug cocktail administration in rats are presented in Figure 4 and Table 3. The AUC_(0-12 h) value of
 241 theophylline in rats was significantly increased (p<0.05) by ABO. In addition, higher (p<0.05) AUC
 242 and C_{max} values of chlorzoxazone were observed after ABO treatment (p<0.05).

243 **Figure 4.** Plasma concentration-time profiles of five drugs (PO dosing) after the oral administration
 244 of soybean oil or the ABO-containing diet for 7 days in rats. The drug cocktail was administered
 245 orally at a dose of 5-40 mg/kg BW to rats. Values at each time point are expressed as the mean \pm SD
 246 of six rats in each group. ●: Control group; ○: ABO group.

247

Table 3. Pharmacokinetic parameters of five drugs (PO dosing) after feeding with the ABO-containing diet for 7 days in rats.¹

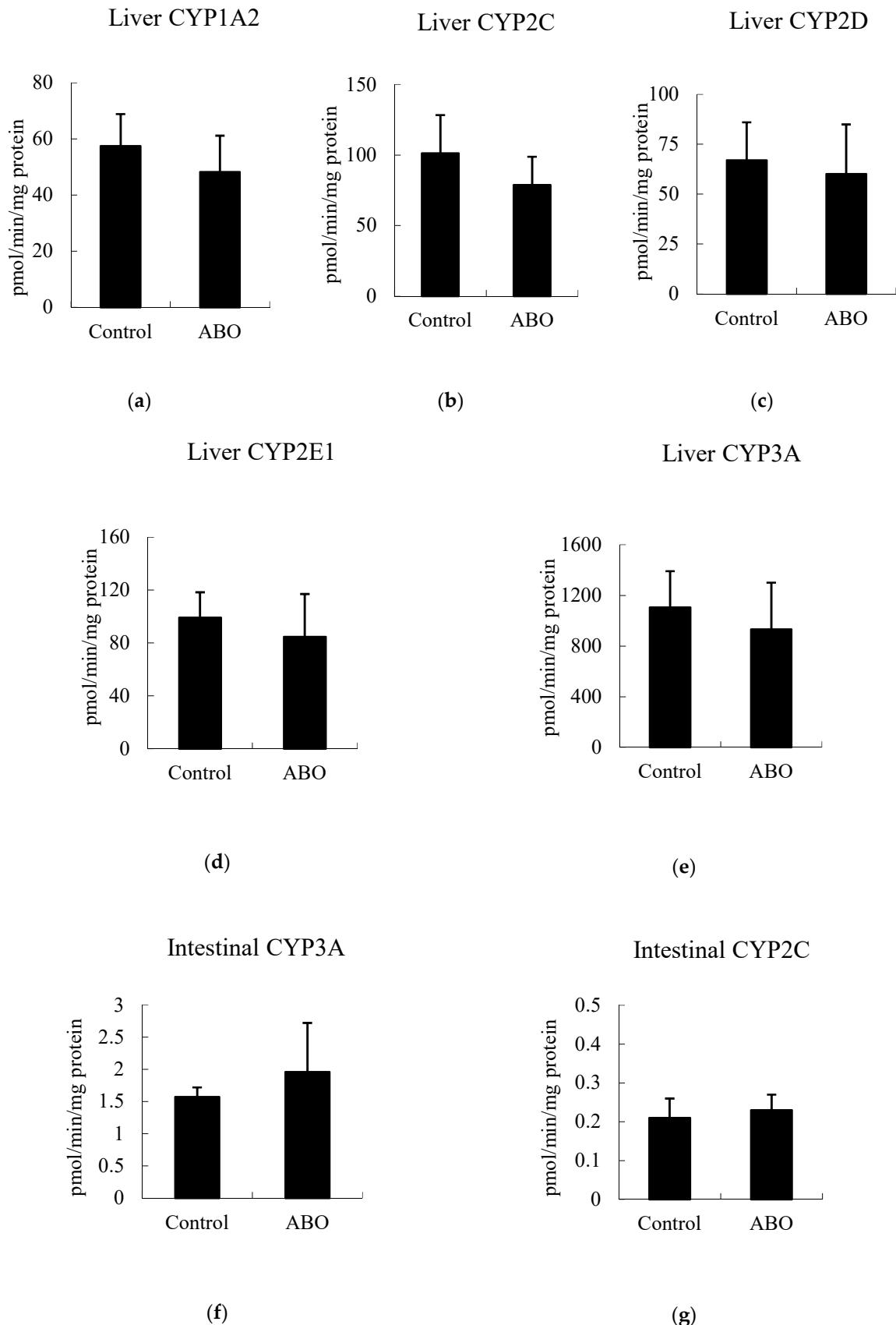
	Dose (mg/kg)	AUC (0-t)² (μ g/mL \times h)	C_{max}³ (μ g/mL)	T_{max}⁴ (h)	t_{1/2}⁵ (h)
Theophylline (CYP1A2)					
Control group	10	78.6 \pm 8.3	11.4 \pm 2.9	2.1 \pm 1.2	2.1 \pm 1.0
ABO group		114.3 \pm 15.9*	13.6 \pm 2.6	2.1 \pm 1.2	4.0 \pm 0.9*
Diclofenac (CYP2C)					
Control group	20	84.8 \pm 12.4	65.9 \pm 35.3	0.4 \pm 0.1	2.5 \pm 1.0
ABO group		106.1 \pm 28.3	87.0 \pm 31.8	0.5 \pm 0.0	1.5 \pm 0.3
Dextromethorphan (CYP2D)					
Control group	25	1.7 \pm 0.8	0.76 \pm 0.44	0.8 \pm 0.3	1.8 \pm 0.5
ABO group		1.9 \pm 1.0	0.84 \pm 0.49	0.8 \pm 0.6	1.8 \pm 0.3
Chlorzoxazone (CYP2E1)					
Control group	5	12.5 \pm 0.5	4.0 \pm 1.6	0.8 \pm 0.6	1.5 \pm 0.3
ABO group		19.2 \pm 3.7*	6.7 \pm 2.4*	0.5 \pm 0.0	1.2 \pm 0.2
Diltiazem (CYP3A)					
Control group	40	1.0 \pm 0.6	0.81 \pm 0.59	0.5 \pm 0.3	1.2 \pm 0.1
ABO group		1.4 \pm 0.9	0.94 \pm 0.74	0.8 \pm 0.7	1.3 \pm 0.3

¹Drug cocktail was administered orally at a dose of 5-40 mg/kg BW to rats after administration of control or 20% ABO diet. Plasma drug concentrations were expressed as the mean \pm SD of six rats in each group.

²AUC: area under the plasma drug concentration curve. t = 12 h.

³C_{max}: values of maximal observed concentration.

⁴T_{max}: the time at which maximum concentration is observed.


⁵t_{1/2}: elimination half-life; the time required for the amount of drug in the body to decrease by half.

*Significantly different from the control group, p<0.05.

248

249 3.5. Effects of 7-days of ABO feeding on major CYP enzyme activities in the liver and intestine in rats.

250 The hepatic activities of CYP1A2, 2C, 2D, 2E1, CYP3A and intestinal CYP 3A and CYP 2C
 251 activities were not changed after 7-days of ABO feeding (p>0.05) (Figure 5). In this study, ABO had
 252 no significant effects on food intake or body weight gain in the control and ABO groups. In addition,
 253 ABO had no significant effects on plasma aspartate aminotransferase, alanine aminotransferase,
 254 blood urea nitrogen, or creatinine, indicating that ABO caused no hepatotoxicity or renal damage
 255 (data not shown).

Figure 5. CYP enzyme activities in liver (Figure 5a-e) and intestine (Figure 5f-g) of rats after feeding with ABO-containing diet for 7 days.

257 **5. Discussion**

258 In this study, rats were given a single oral dose of ABO 1 h before intravenous or oral
259 administration of drug cocktail to estimate the hepatic activities of five CYP isozymes and possible
260 ABO-drug interactions. ABO did not significantly change the plasma exposure of the five CYP probe
261 drugs when the drug cocktail was administered intravenously. These results suggest that a single
262 oral dose of ABO may not affect CYP1A2, 2C, 2D, 2E1, and 3A activities in liver. When single oral
263 dose of ABO administration or ABO fed for 7 consecutive days, some drug concentrations (AUC) in
264 plasma were increased after oral administration of drug cocktail. These results indicated that single
265 oral dose or short-term pretreatment with ABO may increase plasma drug levels and caused food-
266 drug interactions.

267 Many flavonoids such as nobiletin, tangeritin, rutin, and quercetin in ABO have been reported
268 [21]. Recently, 20 phenolic compounds including 10 phenolic acids, 2 coumarins, 2 phenolic
269 aldehydes, and 6 flavonoids in ABO were identified [31]. Some of these phytonutrients can inhibit
270 CYP enzymes in rat and human liver microsomes [21]. However, in this study, single oral dose
271 administration of ABO to rats had no significant effect on plasma five CYP probe drug concentrations
272 (AUC) after intravenous administration of the drug cocktail (Table 1). This result suggested that oral
273 administration of ABO did not affect five CYP enzyme activities in liver. This observation can be
274 explained that most of these compounds in ABO are either the result of poor absorption or extensive
275 first-pass metabolism [32]. Indeed, in our previous study, some of these phenolic compounds in rat
276 plasma and liver were low (<1 μ M) or undetectable after 1 h of a single oral dose (2 g/kg BW) of ABO
277 administration [21]. Thus, direct inhibition of CYP in the liver by these compounds after a single oral
278 dose of ABO may be insignificant.

279 In general, food-drug interactions involving CYP inhibitions in the gastrointestinal tract were
280 observed when the drug were given together with foods or juices within 2 h [26]. C_{max} and T_{max} values
281 are important parameters for absorption phases of oral drugs [33]. In this study, pretreatment with
282 ABO for 1 h significantly increased the plasma C_{max} of theophylline, chlorzoxazone, and diltiazem
283 together with no difference in T_{max} values (1~2.8 h) for the five drugs when the drug cocktail was
284 given orally (Table 2). These results indicate that oral ABO administration may enhance intestinal
285 absorption of these drugs within the first two hours. Since a single PO dose of ABO had no effect on
286 five CYP enzyme activities in liver, the increase of plasma C_{max} and AUC values of drug
287 concentrations by ABO may have been due to its enhancement on drug absorption in small intestine.
288 Recently, many phytonutrients, such as quercetin, have been demonstrated to enhance the absorption
289 of many drugs and may act as a surfactant or CYP enzyme inhibitor in small intestine [34]. It is known
290 that intestinal CYP3A inhibition by some phytonutrients can be one of the important mechanisms for
291 increasing a large proportion of oral drug absorption [10,25,34,35]. For example, pretreatment with
292 quercetin or ginkgo biloba leaf extract has been shown to increase the C_{max} and AUC of diltiazem, a
293 typical probe of CYP 3A, by inhibiting CYP3A activity in the intestinal mucosa, resulting in an
294 increase in oral bioavailability, blood drug levels, and efficacy of diltiazem [25,36]. Therefore, in this
295 study, higher plasma C_{max} and AUC values of diltiazem after oral ABO administration may be partly
296 due to high local intestinal concentrations of these phytonutrients, which could inhibit CYP3A
297 activity [21]. In this study, however, why ABO also increased the plasma C_{max} of theophylline and
298 chlorzoxazone is unknown because these two drugs are mainly metabolized in the liver. Further
299 study is needed to clarify this observation.

300 To further investigate whether short-term exposure (7 days) of ABO can also change plasma
301 drug concentrations, rats were fed a 20% ABO-containing diet, which was approximately 6-folds of
302 the single oral dose of ABO tested. After oral administration of the drug cocktail, increased plasma
303 AUC of theophylline and chlorzoxazone was observed. However, the major CYP enzyme activities
304 in liver (CYP1A, 2C, 2D, 2E, and 3A) [1] and small intestine (CYP3A and CYP2C) [37] were not
305 affected by ABO treatment. Since there might have no ABO presented in the gastrointestinal tract due
306 to overnight fasting (see protocol in animals and treatment in experiment II), therefore, the higher

307 plasma drug concentrations after ABO feeding may not relate to its influence on CYP-mediated drug
308 metabolism in the liver or small intestine. Thus, it is likely that ABO feeding for 7 days may reduce
309 the expressions of efflux pump of membrane transporters (e.g. p-glycoprotein or multidrug
310 resistance-associated protein 2) in these tissues [35].

311 Concerning the role of exposure time of ABO administration on CYP enzyme activity in liver,
312 the effects of short-term or long-term treatment may differ. In the previous study, ABO feeding (10%
313 in the diet) for 4 weeks reduced hepatic activities of CYP1A2, 2C, 2D, 2E1, and 3A and their protein
314 expressions [21]. It is suggested that, similar to the action of other functional foods, the modulation
315 on CYP enzyme activity by ABO may differ with length of intake [38,39]. Long-term ABO treatment
316 may reduce hepatic CYP enzyme activities.

317 In conclusion, single or short-term 7-days oral administration of ABO may increase plasma drug
318 levels without altering major CYP enzyme activities in liver. Pretreatment of ABO may enhance drug
319 absorption in the small intestine. Therefore, caution is needed to avoid food-drug interactions
320 between ABO and co-administered drugs.

321

322 **Author Contributions:** Conceptualization, H.T.Y; methodology, H.T.Y; software, J.H.L. and Y.T.L; validation,
323 H.T.Y; formal analysis, J.H.L. and Y.T.L; investigation, J.H.L; resources, H.T.Y; data curation, J.H.L. and Y.T.L;
324 writing-original draft preparation, H.T.Y.; writing-review and editing, H.T.Y. and M.L.L; visualization, Y.H.Y.;
325 supervision, H.T.Y.; project administration, H.T.Y.; funding acquisition, W.C.; and H.T.Y. All authors approved
326 the final submitted version.

327 **Funding:** This research was funded by the Ministry of Science and Technology, Taiwan (NSC 102-2313-B-039-
328 007). This research was financially supported by grant-aid (CMU104-S-48) of the China Medical University,
329 Taiwan.

330 **Conflicts of Interest:** The authors have no conflicts of interest to report.

331

332 References

1. Frye, R.F. Probing the world of cytochrome P450 enzymes. *Mol Interv* 2004, 4, 157-62. [[PubMed](#)]
2. Streetman, D.S.; Bertino, J.S. Jr; Nafziger, A.N. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. *Pharmacogenetics* 2000, 10, 187-216. [[CrossRef](#)] [[PubMed](#)]
3. Lin, G.Y.; Ma, J.S.; Xu, R.A.; Hu, L.F.; Wang, Z.; Wang, X.Q. Effects of Ougan juice on P450 activities using a cocktail method. *Pharmazie* 2012, 67, 242-246. [[CrossRef](#)] [[PubMed](#)]
4. Zadayan, G.; Rokitta, D.; Klement, S.; Dienel, A.; Hoerr, R.; Gramatte, T.; Fuhr, U. Effect of Ginkgo biloba special extract EGb 761(R) on human cytochrome P450 activity: a cocktail interaction study in healthy volunteers. *Eur J Clin Pharmacol* 2012, 68, 553-560. [[CrossRef](#)] [[PubMed](#)]
5. Han, Y.L.; Li, D.; Ren, B.; Jing, G.P.; Meng, X.L.; Zhou, Z.Y.; Yu, Q.; Li, Y.; Wan, L.L.; Guo, C. Evaluation of impact of Herba Erigerontis injection, a Chinese herbal prescription, on rat hepatic cytochrome P450 enzymes by cocktail probe drugs. *J Ethnopharmacol* 2012, 139, 104-109. [[CrossRef](#)] [[PubMed](#)]
6. Jo, J.J.; Jo, J.H.; Kim, S.; Lee, J.M.; Lee, S. Development of a simultaneous LC-MS/MS method to predict in vivo drug-drug interaction in mice. *Arch Pharm Res* 2018, 41, 450-458. [[CrossRef](#)] [[PubMed](#)]
7. Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. *Food Chem Toxicol* 2010, 48, 429-435. [[CrossRef](#)] [[PubMed](#)]
8. Amadi, C.N.; Mgbahurike, A.A. Selected Food/Herb-Drug Interactions: Mechanisms and Clinical Relevance. *Am J Ther* 2018, 25, e423-433. [[CrossRef](#)] [[PubMed](#)]
9. Arayne, M.S.; Sultana, N.; Bibi, Z. Grape fruit juice-drug interactions. *Pak J Pharm Sci* 2005, 18, 45-57. [[CrossRef](#)] [[PubMed](#)]
10. Xie, F.; Ding, X.; Zhang, Q.Y. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. *Acta Pharm Sin B* 2016, 6, 374-383. [[CrossRef](#)] [[PubMed](#)]
11. Bibi, Z. Role of cytochrome P450 in drug interactions. *Nutr Metab (Lond)* 2008, 5, 27. [[CrossRef](#)] [[PubMed](#)]

357 12. Ameer, B.; Weintraub, R.A. Drug interactions with grapefruit juice. *Clin Pharmacokinet* 1997, 33, 103-
358 121. [[CrossRef](#)] [[PubMed](#)]

359 13. Kuo, C.C.; Chen, H.H.; Chiang, W. Adlay (yi yi; "soft-shelled job's tears"; the seeds of *Coix lachryma-jobi*
360 L. var. *ma-yuen* Stapf) is a Potential Cancer Chemopreventive Agent toward Multistage Carcinogenesis
361 Processes. *J Tradit Complement Med* 2012, 2, 267-275. [[CrossRef](#)] [[PubMed](#)]

362 14. Chen, H.J.; Lo, Y.C.; Chiang, W. Inhibitory effects of adlay bran (*Coix lachryma-jobi* L. var. *ma-yuen*
363 Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells. *J
364 Ethnopharmacol* 2012, 141, 119-127. [[CrossRef](#)] [[PubMed](#)]

365 15. Li, B.; Qiao, L.; Li, L.; Zhang, Y.; Li, K.; Wang, L.; Qiao, Y. A novel antihypertensive derived from adlay
366 (Coix lachryma-jobi L. var. *ma-yuen* Stapf) glutelin. *Molecules* 2017, 22, 123. [[CrossRef](#)] [[PubMed](#)]

367 16. Zhao, M.; Zhu, D.; Sun-Waterhouse, D.; Su, G.; Lin, L.; Wang, X.; Dong, Y. In vitro and in vivo studies on
368 adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and
369 xanthine oxidase inhibitory effects. *J Agric Food Chem* 2014, 62, 7771-7778. [[CrossRef](#)] [[PubMed](#)]

370 17. Chung, C.P.; Hsu, H.Y.; Huang, D.W.; Hsu, H.H.; Lin, J.T.; Shih, C.K.; Chiang, W. Ethyl acetate fraction
371 of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic
372 lesions of the colon in F344 rats through an anti-inflammatory pathway. *J Agric Food Chem* 2010, 58,
373 7616-7623. [[CrossRef](#)] [[PubMed](#)]

374 18. Tseng, Y.H.; Chang, C.W.; Chiang, W.; Hsieh, S.C. Adlay Bran Oil Suppresses Hepatic Gluconeogenesis
375 and Attenuates Hyperlipidemia in Type 2 Diabetes Rats. *J Med Food* 2019, 22, 22-28. [[CrossRef](#)]
376 [[PubMed](#)]

377 19. Huang, S.L.; Chen, Y.F.; Chiang, W. Amino acids, fatty acids and proximate composition of the seed of
378 adlay. *Food Sci* 1994, 21, 67-74.

379 20. Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of adlay oil on plasma lipids, insulin and
380 leptin in rat. *Phytomedicine* 2005, 12, 433-439. [[CrossRef](#)] [[PubMed](#)]

381 21. Yao, H.T.; Lin, J.H.; Chiang, M.T.; Chiang, W.; Luo, M.N.; Lii, C.K. Suppressive effect of the ethanolic
382 extract of adlay bran on cytochrome P-450 enzymes in rat liver and lungs. *J Agric Food Chem* 2011, 59,
383 4306-4314. [[CrossRef](#)] [[PubMed](#)]

384 22. Chen, H.J.; Chung, C.P.; Chiang, W.; Lin, Y.L. Anti-inflammatory effects and chemical study of a
385 flavonoid-enriched fraction from adlay bran. *Food Chem* 2011, 126, 1741-1748. [[CrossRef](#)] [[PubMed](#)]

386 23. Huang, C.J.; Hou, M.F.; Kan, J.Y.; Juan, C.H.; Yuan, S.S.; Luo, K.H.; Chuang, H.Y.; Hu, S.C. Prophylactic
387 Treatment with Adlay Bran Extract Reduces the Risk of Severe Acute Radiation Dermatitis: A
388 Prospective, Randomized, Double-Blind Study. *Evid Based Complement Alternat Med* 2015, 2015,
389 312072. [[CrossRef](#)] [[PubMed](#)]

390 24. Liu, L.; Miao, M.X.; Zhong, Z.Y.; Xu, P.; Chen, Y.; Liu, X.D. Chronic administration of caderofloxacin, a
391 new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats. *Acta Pharmacol Sin* 2016,
392 37, 561-570. [[CrossRef](#)] [[PubMed](#)]

393 25. Choi, J.S.; Li, X. Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin
394 to rabbits. *Int J Pharm* 2005, 297, 1-8. [[CrossRef](#)] [[PubMed](#)]

395 26. Bobroff, L.B.; Lentz, A.; Turner, R.E. Food/drug and drug/nutrient interactions: what you should know
396 about your medications. *Drugs* 2009, FCS8092, 1-10. [[CrossRef](#)]

397 27. National Research Council. *Guide for the Care and Use of Laboratory Animals*, 8th ed.; National
398 Academies Press. Washington DC, USA, 2011. [[CrossRef](#)]

399 28. Yao, H.T.; Chang, Y.W.; Lan, S.J.; Yeh, T.K. The inhibitory effect of tannic acid on cytochrome P450
400 enzymes and NADPH-CYP reductase in rat and human liver microsomes. *Food Chem Toxicol* 2008, 46,
401 645-653. [[CrossRef](#)] [[PubMed](#)]

402 29. Chang, Y.W.; Chen, W.C.; Lin, K.T.; Chang, L.; Yao, H.T.; Hsieh, H.P.; Lan, S.J.; Chen, C.T.; Chao, Y.S.;
403 Yeh, T.K. Development and validation of a liquid chromatography-tandem mass spectrometry for the
404 determination of BPR0L075, a novel antimicrotubule agent, in rat plasma: application to a
405 pharmacokinetic study. *J Chromatogr B Analys Technol Biomed Life Sci* 2007, 846, 162-168. [[CrossRef](#)]
406 [[PubMed](#)]

407 30. Nosaka, H.; Takagi, K.; Hasegawa, T.; Ogura, Y.; Mizukami, Y.; Satake, T. Pharmacokinetics of
408 theophylline in beagle dogs and asthmatic patients after multiple oral doses of sustained-release
409 theophylline tablet formulation. *Int J Clin Pharmacol Ther* 1986, 24, 528-535. [[CrossRef](#)]

410 31. Lin, L.; Yang, Q.; Zhao, K.; Zhao, M. Identification of the free phenolic profile of Adlay bran by UPLC-
411 QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. *Food Chem* 2018,
412 253, 108-118. [[CrossRef](#)] [[PubMed](#)]

413 32. Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism.
414 Toxicol in Vitro 2006, 20, 187-210. [[CrossRef](#)] [[PubMed](#)]

415 33. Grabowski, T.; Jaroszewski, J.J.; Borucka, B.; Ziolkowski, H. C (max) and t (max) verification using
416 Fibonacci sequence and absorption rate. Eur J Drug Metab Pharmacokinet 2013, 38, 131-138. [[CrossRef](#)]
417 [[PubMed](#)]

418 34. Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: an overview. Asian Pac
419 J Trop Biomed 2013, 3, 253-266. [[CrossRef](#)] [[PubMed](#)]

420 35. Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC)
421 family: an overview. Adv Drug Deliv Rev 2003, 55, 3-29. [[CrossRef](#)] [[PubMed](#)]

422 36. Ohnishi, N.; Kusuhera, M.; Yoshioka, M.; Kuroda, K.; Soga, A.; Nishikawa, F.; Koishi, T.; Nakagawa, M.;
423 Hori, S.; Matsumoto, T.; Yamashita, M.; Ohta, S.; Takara, K.; Yokoyama, T. Studies on interactions
424 between functional foods or dietary supplements and medicines. I. Effects of Ginkgo biloba leaf extract
425 on the pharmacokinetics of diltiazem in rats. Biol Pharm Bull 2003, 26, 1315-1320. [[CrossRef](#)] [[PubMed](#)]

426 37. Paine, M.F.; Hart, H.L.; Ludington, S.S.; Haining, R.L.; Rettie, A.E.; Zeldin, D.C. The human intestinal
427 cytochrome P450 "pie". Drug Metab Dispos 2006, 34, 880-886. [[CrossRef](#)] [[PubMed](#)]

428 38. Kim, J.K.; Strapazzon, N.; Gallaher, C.M.; Stoll, D.R.; Thomas, W.; Gallaher, D.D.; Trudo, S.P.
429 Comparison of short- and long-term exposure effects of cruciferous and apiaceous vegetables on
430 carcinogen metabolizing enzymes in Wistar rats. Food Chem Toxicol 2017, 108, 194-202. [[CrossRef](#)]
431 [[PubMed](#)]

432 39. Rengelshausen, J.; Banfield, M.; Riedel, K.D.; Burhenne, J.; Weiss, J.; Thomsen, T.; Walter-Sack, I.; Haefeli,
433 W.E.; Mikus, G. Opposite effects of short-term and long-term St John's wort intake on voriconazole
434 pharmacokinetics. Clin Pharmacol Ther 2005, 78, 25-33. [[CrossRef](#)] [[PubMed](#)]