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Abstract: Optical Character Recognition (OCR) on historical printings is a challenging task mainly
due to the complexity of the layout and the highly variant typography. Nevertheless, in the last
few years great progress has been made in the area of historical OCR, resulting in several powerful
open-source tools for preprocessing, layout recognition and segmentation, character recognition and
post-processing. The drawback of these tools often is their limited applicability by non-technical
users like humanist scholars and in particular the combined use of several tools in a workflow. In
this paper we present an open-source OCR software called OCR4all, which combines state-of-the-art
OCR components and continuous model training into a comprehensive workflow. A comfortable
GUI allows error corrections not only in the final output, but already in early stages to minimize
error propagations. Further on, extensive configuration capabilities are provided to set the degree of
automation of the workflow and to make adaptations to the carefully selected default parameters for
specific printings, if necessary. Experiments showed that users with minimal or no experience were
able to capture the text of even the earliest printed books with manageable effort and great quality,
achieving excellent character error rates (CERs) below 0.5%. The fully automated application on 19th

century novels showed that OCR4all can considerably outperform the commercial state-of-the-art
tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available.
The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools
for its main components by standardized interfaces like PageXML, thus aiming at continual higher
automation for historical printings.

Keywords: Optical Character Recognition, Document Analysis, Historical Printings

1. Introduction

While Optical Character Recognition (OCR) is regularly considered to be a solved problem [1],
gathering the textual content of historical printings using OCR can still be a very challenging and
cumbersome task, due to various reasons. Among the problems that need to be addressed for early
printings is the often intricate layout containing images, artistic border elements and ornaments,
marginal notes, and swash capitals at section beginnings whose positioning is often highly irregular.
The segmentation of text and non-text can currently not be done completely automatically to a high
degree of accuracy.

Also, the non-standardized typography represents a big challenge for OCR approaches. While
modern fonts can be recognized with excellent accuracy by so-called omnifont or polyfont models, that
means models pretrained on a large variety of customarily used fonts, the lack of computerized old
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fonts prevents the easy construction of such polyfont or mixed font models for old printing material
and one needs to resort to individual model training instead.

Therefore, very early printings like incunabula1 but also handwritten texts usually require
book-specific training in order to reach Character Error Rates (CERs) well below 10 or even 5% as shown
by Springmann et al. [2][3] (printings) and Fischer et al. [4] (manuscripts). For a successful supervised
training process ground truth (GT) in form of line images and their corresponding transcriptions has
to be manually prepared as training examples.

Additionally, the highly variant historical spelling, including a frequent use of abbreviations,
severely hinders automatic lexical correction, since sometimes identical words are spelled differently
not only among different books of the same period but even within the same book.

In the last few years some progress has been made in the area of historical OCR, especially
concerning the character recognition problem. On the technical side an important milestone was the
introduction of recurrent neural networks with Long Short Term Memory (LSTM) [5] trained using
a Connectionist Temporal Classification (CTC, [6]) decoder which Breuel et al. applied to the task of
OCR [7]. The LSTM approach was later extended by deep convolutional neural networks, pushing the
recognition accuracy even further [8,9].

On the methodical side several improvements have been made by the introduction of voting
ensembles, trained with a single OCR engine, whose results are suitably combined [10], and by a
pretraining approach which allows to use existing models instead of training from scratch [11].

The current paper describes our efforts to collect these recent advances into an easy to use software
environment called OCR4all that runs as a docker image on several platforms (Linux, Mac, Windows)
and enables an interested party to obtain a textual digital representation of the contents of these
printings. OCR4all covers all steps of an OCR workflow from preprocessing, document analysis
(segmentation of text and non-text regions on a page), model training, to character recognition of the
text regions. Estimates of the remaining error rates are also given. Work to include postcorrection
methods to correct these residual errors is under way. Our focus is throughout on an easy-to-use and
efficient method, employing automatic methods where feasible and resorting to manual intervention
where necessary. In the following we give a short overview over the steps of a typical OCR workflow
and how we address the challenges that arise for early printings.

1.1. Steps of a Typical OCR Workflow

The character recognition in itself only represents one subtask within an OCR workflow, which
usually consists of four main steps (see Figure 1) which often can be split up into further sub steps.
We use the term “OCR” as a separate main step within the OCR workflow as other notations like
“recognition” would be misleading since the step comprises more sub task than the text recognition
alone.

Figure 1. Main steps of a typical OCR workflow. From left to right: original image, preprocessing,
segmentation, OCR, postcorrection.

1 Books printed before 1501.
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1. Preprocessing: First of all, the input images have to be prepared for further processing. Generally,
this includes a step which simplifies the representation of the original color image by converting
it into binary and sometimes grayscale, enabling further image processing operations later on, as
well as a deskewing operation in order to get the pages into an upright position, which simplifies
the upcoming steps. Additional routines like dewarping to rectify a distorted scan or denoising
or despeckling to clean up the scan may be performed. Beforehand, it can be worthwhile to crop
the printing area in order to remove unwanted scan periphery.

2. Segmentation: Next, one or several segmentation steps have to be conducted, mostly depending
on the material at hand and the requirements of the user. After separating the text regions
from non-text areas individual text lines have to be identified and depending on the used OCR
approach split up even further into single glyphs. Optionally, non-text elements can be further
classified (images, ornaments, ...), while text regions can be broken down into more or less
fine-grained semantic classes (running text, headings, marginalia, ...), already on layout level.
Another important sub task is the determination of the reading order which defines the succession
of text elements (region and/or lines) on a page. Naturally, the option to manually correct the
results achieved during these sub tasks is highly desired, preferably via a comfortably-to-use
GUI.

3. OCR: The recognition of the segmented lines (or single glyphs) leads to a textual representation
of the printed input. Depending on the material at hand and the user requirements this can either
be performed by making use of existing models trained on a variety of fonts which somewhat
fit the type in use, so-called mixed models, and/or by training models which are specifically
geared to recognize the font it was trained on. Again, for a comfortable correction of the textual
OCR output and for producing good examples to be used for book-specific training a GUI is
mandatory.

4. Postprocessing: The raw OCR output can be further improved during a postprocessing step, for
example by incorporating dictionaries or language models. This step can be combined with the
manual correction which would usually take place after the automatic postprocessing.

As for the final output, plain text, that is the (postprocessed) OCR output, has to be considered the
minimal solution. Apart from that, almost all of the information acquired during the entire workflow
can be incorporated into the final output: region coordinates and their types, line coordinates, character
positions and information about how sure the OCR is about its predictions, and others. Several formats
which can incorporate most or all of the aforementioned information have been proposed, for example
ALTO2, hOCR [12], or PAGE [13].

Regarding the text recognition step it is worth mentioning that the models used for the recognition
can be obtained in different ways with highly varying degrees of effort based on the material at hand.
As quoted above modern fonts can usually be recognized by applying an existing standard model
which has been trained on a variety of similar fonts, for example 19th century Fraktur, due to the
comparatively high degree of homogeneity of the typography. On the contrary, (very) early prints
often require type-specific training to reach character recognition rates in the high nineties.

1.2. Challenges for the Users

To produce training data for the OCR one has to manually transcribe text lines (considering a
line-based approach), which is a highly non-trivial task when dealing with very old fonts which are
often difficult to decipher and contain numerous ligatures and abbreviations whose transcription
and/or decomposition requires knowledge about the historical language and the content of the texts.

In fact, this step and often also several other steps of the OCR workflow cannot be performed
fully automatically and require the user to interact and to invest manual work. The combination of all

2 https://www.loc.gov/standards/alto/
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steps represents a highly interdisciplinary task and therefore requires both domain expertise regarding
the content as well as technical expertise, a combination which is difficult to come by in a single person.
Since it is not possible to simplify the content related part of the problem, we have to focus on the
technical aspect. Fortunately, large parts of these steps can be covered by open-source tools such as
OCRopus, Tesseract or Calamari which have been made available as open source.

While these tools are highly functional and very powerful their usage can be quite complicated,
as they

� in most cases lack a comfortable GUI which leaves the users with the often unfamiliar command
line usage

� usually rely on different input/output formats which requires the users to invest additional
effort in order to put together an end-to-end OCR workflow

� sometimes require complicated and error prone installation and configuration procedures where,
e.g., the users have to deal with missing dependencies

� have a steep learning curve (at least for non-technical users)

These aspects are particularly problematic for inexperienced users with limited technical
background.

Unfortunately, this often includes humanities scholars as one of the main target audiences for all
tools which allow to produce machine actionable text from scans of historical printings. Making an
entire workflow available to and usable by non-technical users is a challenging task, since most tools
usually do not cover the entire workflow described above, at least not in a satisfactory manner,
but rather excel on smaller sub tasks. Combined with the shortage of (user friendly and GUI
supported) ways to manually interfere with the process and turn it into a semi-automatic approach,
this considerably reduces the applicability of existing open-source tools.

1.3. OCR4all

To deal with these issues, we present our open-source tool OCR4all34 which aims to encapsulate
a comprehensive OCR workflow into a single Docker5 application, ensuring easy installation and
platform independency. The goal is to make the capabilities of state of the art tools like OCRopus
or Calamari available within a comprehensible and applicable semi-automatic workflow to basically
any given user. This is achieved by supplying the users with a comfortable and easy to use GUI and
a modular approach, allowing for an efficient correction process in between the various workflow
steps in order to minimize the negative effects of consequential errors. Another important aspect is the
option to iteratively reduce the CER by constantly retraining the recognition models on additional
training data which has been created during the processing of a given book. During development
the primary goal was to identify a workflow and tool composition which enables the users to deal
with even the earliest printed books on their own and extract their textual content with great quality.
Due to the challenges concerning condition, layout and typography described above, this is far from a
trivial task and often requires the users to invest a substantial amount of manual effort into correcting
segmentation results and transcribing line images in order to produce training data for the book
specific models. However, in our experience, humanist scholars who are dealing with early printed
books are usually perfectly fine with investing the required effort to obtain high quality OCR results
which had been considered almost impossible to achieve on this material only a decade ago [14]. This
is especially true since the alternatives are either to manually transcribe everything or to not get to
the text at all. Naturally, we did not want to restrict the users to the processing of very early printed

3 https://www.uni-wuerzburg.de/en/zpd/ocr4all
4 https://github.com/OCR4all
5 https://www.docker.com/
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books and therefore added further functionality to ensure a fluent passage towards a fully automated
approach when dealing with later and more uniform works.

Despite our focus on user friendliness, operating OCR4all is still not an entirely trivial task (and
will not be for the foreseeable future), especially when dealing with very early prints with a complex
and irregular layout as well as a non standard typeface that makes a thorough book-specific training
indispensable. Consequently, there is an obvious need for detailed, comprehensible, and descriptive
operating instructions. To start things off we provided both, a setup guide and a comprehensive step
by step user manual together with some example data at GitHub6 and set up a mailing list7 where we
inform about latest developments and new version releases.

1.4. Outline of this Work

The paper is structured as follows: First, section 2 provides an overview over important
contributions concerning OCR relevant to our task. In section 3 we thoroughly describe OCR4all
including the overall workflow and the single sub modules. Next, we perform several experiments on
a variety of historical printings. The results are discussed in section 5 before section 6 concludes the
paper by summing up the insights and pointing out our goals for the future of OCR4all.

2. Related Work

In this section we give a comprehensive overview over OCR related tools and topics. First,
we focus exclusively on the OCR since it has to be considered the core task of the entire workflow.
Afterwards, we discuss further steps and tools which (aim to) provide an entire OCR workflow. Finally,
we introduce additional notable OCR related tools and projects.

2.1. Optical Character Recognition

After introducing the historical development in the area of OCR we briefly discuss advantages
and disadvantages of mixed models compared to book-specific training and finally highlight the
recognition capabilities of several available OCR engines.

2.1.1. Historical Development and State of the Art

Text recognition can be considered as one of the earliest computer vision tasks [15]. Therefore, we
begin our survey of related work with a short sketch of the general recognition approaches.

Glyph-based Recognition

For a long time segmenting printed texts into single glyphs which are then classified individually
was considered the go-to OCR approach. After identifying a glyph a feature extraction step takes
place before the gathered information is used to assign a character class. This approach was used by
all available OCR engines until very recently, e.g. by the open source OCR engine Tesseract8 before
version 4.0.

The main drawback of this method is the need to precisely identify every single glyph which
can be a very challenging task especially when dealing with older printings where the segmentation
step leads to either splits or merges of glyphs on a regular basis, as the glyph contours have lost their
uniform ink impression and get segmented as individual pieces, or contours of neighboring glyphs
have become fuzzy and tend to touch each other leading to segments containing several individual
glyphs that cannot subsequently be classified. Furthermore, creating training data for training a
recognition model based on real printings (as opposed to train on synthetical images from existing

6 https://github.com/OCR4all/getting_started
7 https://lists.uni-wuerzburg.de/mailman/listinfo/ocr4all
8 https://github.com/tesseract-ocr/tesseract
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computer fonts) is a cumbersome and time consuming task. Still, Kirchner et al. [16] showed that it is
basically possible to train book- or rather type-specific models with Tesseract 3 using Aletheia and
Franken+9. After manually identifying examples for each glyph class Franken+ supported the creation
of the required Tesseract 3 training format. A model trained on an incunabulum was then applied to
other books of the same print shop using the exact same type and resulted in CERs between 4 and 8%.
However, due to the high amount of manual work required to produce such a model this approach
seemed only practicable if one desires to capture a variety of works printed with the same letter types.

Line-based Recognition using LSTM Networks

In 2013 Breuel et al. introduced a segmentation free approach (no segmentation beyond the line
level) in their ground-breaking paper [7] which is capable to recognize entire text line images at once.
This is possible by utilizing recurrent neural networks with an LSTM architecture trained using the
CTC algorithm. After resizing a line image to a fixed height the image is cut into vertical stripes with
a width of one pixel. The pixel values of these stripes (usually binary or grayscale) are fed into the
neural network which produces a probability distribution over the entire glyph alphabet for each
stripe, usually by processing the input sequence two times: from left to right and from right to left
(bidirectional LSTM). Finally, the output sequence is generated by applying a CTC decoder.

The line-based OCR approach was not only shown to outperform the glyph-based approach
considerably, but also offers the advantage of a much easier GT production and training process. Lines
chosen for training can simply be transcribed as a whole since a line image and the corresponding
transcription completely suffice to serve as a training example without the need for any further
information about glyph positions or bounding boxes. Those improvements also enabled an efficient
high quality processing of even the earliest printed books as shown by Springmann et al. with CERs
from individually trained models of the order of 2% [2,3].

Line-based Recognition using CNN/LSTM-Hybrid Networks

A further refinement of the LSTM approach was introduced in 2017 by Breuel [8] who added
Convolutional Neural Networks (CNNs), which showed to be very effective in a variety of image
processing task [17], as additional layers in front of the LSTM. Each CNN performs a convolution of
the original line image using different filters whose parameters are learned during the training process
producing a feature map that highlights the most descriptive parts of the input image. After a pooling
operation the resulting images are then either passed into another CNN or vertically concatenated and
passed into the LSTM layer.

Fig. 2 shows an exemplary network architecture.
This CNN/LSTM-hybrid method has shown to be very successful in various application scenarios

and therefore also represents the current state-of-the-art of modern OCR engines like Calamari,
Tesseract (since version 4.0) and OCRopus 3.

Calamari

We chose Calamari [18] as our OCR engine since it is available under an open-source license
and previous tests have demonstrated its advantages compared to other OCR engines regarding
recognition capabilities and speed[9]. It focuses solely on the OCR training and recognition step and
does not offer any preprocessing, segmentation or postprocessing capabilities, which is why it will
not be covered in the upcoming comprehensive discussion of tools that provide a full OCR workflow.
It implements a deep CNN-LSTM network architecture and its Tensorflow backend enables GPU
support for very fast training and recognition.

9 https://emop.tamu.edu/outcomes/Franken-Plus
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Figure 2. Calamari’s default network architecture: To begin with, the input image with width W, height
H, and C color channels is passed into the first convolutional layer. Applying 40 filter operations with
a kernel size of 3� 3 results in 40 feature maps which are then reduced by a max pooling operation
with a pool size of 2� 2. The two steps are then repeated but this time 60 features are used during the
convolution. Next, the feature maps are vertically concatenated and passed into a bidirectional LSTM
with 200 hidden nodes. A dropout layer with a dropout rate of 0.5 is introduced to reduce the effect of
overfitting. Finally, for every horizontal position a fully connected layer with softmax leads to the final
output probability matrix with W

4 columns (the original width of the input image is reduced by factor
4 because of the two pooling operations) and L rows, with L representing the number of labels, which
is the alphabet size plus the blank label.

Furthermore, Calamari natively supports several techniques, resulting in higher recognition rates
which we will briefly explain in the following. First, a cross-fold training procedure with subsequent
confidence voting in order to reduce the CER on early printed books was implemented [10]. By dividing
the GT in N different folds and aligning them in a certain way, it is possible to train N strong but also
diverse models which act as voters in a newly created confidence voting scheme. Second, the so-called
pretraining functionality allows to build from an already available Calamari model instead of starting
training from scratch which not only speeds up the training process considerably but also improves
the recognition accuracy [11]. Third, data augmentation using the routines of ocrodeg10 for generating
noisy variations of training material. All three techniques, pretraining, voting, and data augmentation,
were included into Calamari [9].

Finally, Calamari provides several interfaces for more complex data representations than
image/text pairs on line level, most notably PageXML. Combined with the highly modular structure
this ensures a straight forward integration into existing and future OCR workflows.

10 https://github.com/NVlabs/ocrodeg
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2.1.2. Mixed Models

While the best results can usually only be achieved by training book-specific models the
out-of-the-box application of existing mixed models represents a baseline option that may already be
good enough and could be done automatically. However, even a fully automated approach becomes
unattractive if it cannot yield satisfactory OCR results. Consequently, the applicability of mixed models
considerably depends on two factors: the use case and the material at hand. In fact, the quality of an
OCR text directly influences the possible areas of application, for example while critical editions aim
for perfection, tasks like key word search can usually even deal with heavily flawed texts. Regarding
the to-be-processed material it is apparent that mixed models can deal best with works which are
printed in a similar type as the training material on which the models have been trained. Since the
variance between printing types started off very high in the incunabula age and decreased over the
centuries, it is clear that training wide applicable mixed models becomes the more challenging the
older the target material gets. This effect as well as a general comparison of the effectiveness of mixed
and book-specific models was investigated by Springmann et al. [2,3]) who relied on OCRopus 1 as
their OCR engine:

First, they performed experiments on a corpus consisting of twelve books printed with Antiqua
types between 1471 and 1686 with a focus (ten out of twelve) on early works produced before 1600.
After dividing the corpus into two distinct sets of six books each a mixed model was trained on both
of them. The evaluation of each model on the respective held-out books yielded an average CER of
8.3% with the individual CERs ranging from 21% to below 2%. Only two books scored a CER higher
than 10%, both of them incunabula. As expected, training book-specific models and evaluating them
on held-out data of the same book resulted in considerably better recognition results ranging from
5.3% to below 1% and an average of 2.2%.

Second, a similar experiment was conducted as part of a case study on the RIDGES corpus11

consisting of 20 German books printed between 1487 and 1870 in Fraktur. After applying the same
methodology as mentioned above the mixed models scored an impressive average CER of 5.0% with
individual results ranging from 17% to below 1%. Similar to the first case study the two oldest books
performed worst with CERs over 10%. As a matter of fact, the individually trained models again
performed considerably better, reaching an average CER of around 2.1% with the worst book still
achieving 5.4%.

In both case studies the oldest printings proved to be the most difficult ones for the mixed models
to recognize, as expected. This highlights the general difficulty of using mixed models: To yield high
quality results the types at hand have to fit (parts of) the material the model was trained on as much as
possible. While this becomes more likely when adding more works to the training set, a fit can never
be guaranteed.

2.1.3. Evaluation of OCR Engines

In the following we compare existing OCR engines and identify missing features which we later
address with our own solution based upon Calamari (recognition accuracy and speed), mixed models,
training on historical data, and the necessary tooling for a complete workflow.

Book-specific Training on Early Printed Books

A thorough comparison of a shallow LSTM (OCRopus 1) and a deep CNN/LSTM hybrid
(Calamari) is given in [9]. Three early printed books, printed between 1476 and 1505 in German
and Latin, were used as training and evaluation data. Book-specific models were trained using 60,
100, 150, 250, 500 and 1,000 training lines. The results showed, as anticipated, that the advantage of

11 http://korpling.org/ridges, see [19]
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the deep network grew with an increasing number of lines used for training, yielding an average
improvement in CER of 29% for 60 lines and 43% for 1,000 lines. As for the training and prediction
times the deep network, despite having a considerably more complex network structure and more
trainable parameters resulting in a higher number of necessary operations, outperformed the shallow
one when using four CPU threads or more. The reason for this are the pooling layers which reduce
the dimensions of the image by a factor of 4 leading to a considerably speedup during the expensive
LSTM and CTC operations. Running the training and prediction on a GPU led to a further speedup by
a factor of at least six and four, respectively.

Modern English and 19th Century Fraktur

In [18] Wick et al. compared Calamari, OCRopus 1, OCRopus 3, and Tesseract 4 on two public
datasets: First, the UW312 dataset consisting of ca. 80,000 lines (70,000 for training and 10,000 for
evaluation) from English speaking scientific publications from the late 20th century printed in Antiqua.
Second, the DTA19 dataset which is a part of the GT4HistOCR corpus13 [20] containing 39 German
novels printed in Fraktur during the 19th century.

Again, book- or rather corpus-specific training was performed with each engine using the
respective default parameters. On the UW3 dataset Calamari achieved a CER of 0.155%, considerably
outperforming OCRopus 1 (0.870%), OCRopus 3 (0.436%), and Tesseract 4 (0.397%). The inclusion of
confidence voting improved Calamari’s result by another 26% to a CER of just 0.114%.

Evaluations on the DTA19 dataset led to similar observations with Calamari reaching a CER of
0.221% (0.184% with voting) compared to the significantly higher 1.59% of OCRopus 1 and 0.907% of
OCRopus 3. On this dataset no Tesseract 4 results were reported.

Regarding speed the average time needed to train or to predict a single line of the UW3 dataset
was measured and compared. When using a GPU Calamari required 8 ms to train and 3 ms to predict
a line which proved to be considerably faster than OCRopus 3 (10 ms and 7 ms), while OCRopus 1 (850
ms and 330 ms), and Tesseract 4 (1,200 ms and 550 ms) are far behind due to their lack of GPU support.

Case Study on 19th Century Fraktur Mixed Models

A detailed comparison of our own mixed models with the historical Fraktur module of ABBYY
Finereader on different textual material has not yet been undertaken. However, a case study [21]
dealing with German 19th century Fraktur scripts from various source materials (mostly novels but
also a journal, different volumes of a newspaper as well as a dictionary) was performed. Mixed models
for Calamari and OCRopus 1 were produced by training on a very extensive corpus of German Fraktur
data from the 19th century which was completely distinct from the material of the evaluation set.

Altogether, ABBYY achieved a CER of 2.80% but got significantly outperformed by Calamari
(0.61%) and even OCRopus 1 (1.90%). This suggests that, while the available pretrained ABBYY OCR
and language models can achieve impressive results on material from the 19th century, especially on
high quality scans with a clear print image, the raw recognition capability cannot keep up with mixed
models accurately trained with existing open-source OCR engines. This gap becomes even wider
when dealing with considerably older printings, on which ABBYY usually produces highly erroneous
and therefore unusable output. This is doubtless due to the fact that the ABBYY models have not been
trained on material from these periods.

Conclusion

Based on the results presented above and our personal experience Table 1 sums up and rates the
capabilities of the most important available OCR engines in terms of historical OCR.

12 University of Washington Database III: http://www.tmbdev.net/ocrdata-split
13 https://zenodo.org/record/1344132
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Table 1. Comparison and rating of the capabilities of four modern OCR engines.

Step ABBYY OCRopus 3 Tesseract 4 Calamari

Recognition 33 33 33 333

Training 3 33 3 333

Manual Correction 333 7 7 7

As for the recognition the main criteria are accuracy and speed. Since we consider postprocessing
using dictionaries and language models to be an individual step in the workflow, we rate the raw
recognition capabilities of the engines. Due to the results presented above, the best rating goes to
Calamari.

Regarding the training, we rate the engines mainly based on their speed and effectiveness but also
take into account the user friendliness when it comes to training on real data. OCRopus 3, Tesseract 4,
and Calamari in general allow pairs of line images and their transcriptions as training input which
is very comfortable and straight forward for the user. While Calamari can deal with the image/text
pairs directly, just like OCRopus 1, OCRopus 3 requires to create a .tar file comprising the data. As for
Tesseract 4, the training of models on real historical data has been considered at least impracticable for
several years until recently a solution was discovered and made publicly available14. However, this
requires an extension to the standard training tools. While it is basically possible to train single glyphs
and consequently a book-specific model using ABBYY, this is a tedious and ineffective task which
seems to be mainly geared towards the recognition of quite specific ornament letters. This effectively
limits the recognition capability to the expensive existing historical models one has to licence from
ABBYY.

ABBYY offers a comprehensive set of support tools for the manual postcorrection including a
synoptic image/text view, markers for possible errors based on recognition confidence and dictionaries,
and a selection of possible alternatives. While OCRopus 1 at least allows to create a browser based
synoptic view, OCRopus 3, Calamari, and Tesseract 4 do not offer any form of user interaction regarding
the correction of the OCR output.

2.2. Tools Providing an OCR Workflow

Before discussing the various OCR workflow tools in detail we first give an overview of their
respective capabilities in Table 2. Regarding he OCR step we mostly incorporated the ratings from
Table 1 since, as shown above, there are several detailed comparative evaluations available which the
other steps are lacking. As Calamari represents our main OCR engine we adopted its ratings. There is
a single exception: since OCR4all offers a line-based synoptic correction view including some user
conveniences like a customizable virtual keyboard but currently lacking a dictionary or confidence
based error detector, we adjusted the rating for manual correction accordingly.

In the following, we discuss the four tools from Table 2 but also briefly introduce other workflow
tools as well as projects that deal with the OCR workflow.

2.2.1. ABBYY

At least on contemporary material the proprietary ABBYY OCR engine15 clearly defines the state
of the art for preprocessing, layout analysis, and OCR. A wide variety of documents with considerably
differing layouts can be processed by the fully automated segmentation functionality whose results
can be manually corrected, if necessary.

14 https://github.com/OCR-D/ocrd-train
15 https://www.abbyy.com
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Table 2. Comparison of existing tools providing an OCR workflow with OCR4all.

Step Sub Task ABBYY OCRopus 3 Tesseract 4 OCR4all

Preprocessing Deskewing 3 3 3 3

Binarization 3 3 3 3

Segmentation

Image/Text 3 7 3 3

Semantic Distinction 7 7 7 3

Line Segmentation 3 3 3 3

Reading Order 3 3 3 3

Manual Correction 3 7 7 3

Historical OCR
Recognition 33 33 33 333

Training 3 33 3 333

Manual Correction 333 7 7 33

Postprocessing Dictionaries 3 7 3 7

Language Modelling 3 7 3 7

open-source - 7 3 3 3

Especially regarding the character recognition ABBYY’s focus clearly lies on modern printings
since this represents their bulk business. Currently (July 2019), their products support close to 200
recognition languages offering strong language models and dictionary assistance for about a quarter
of them. Despite the focus on modern prints the repertoire also includes the recognition of historical
European documents and books printed in six languages.

Apart from its closed source and proprietary nature ABBYY’s shortcomings in the area of OCR of
(very) early printings lead to the conclusion that it does not fit the bill despite its comprehensive and
powerful preprocessing, segmentation, and recognition capabilities (on later material) as well as its
easy setup and comfortable GUI.

2.2.2. Tesseract

Just like ABBYY the open-source OCR engine Tesseract provides a full OCR workflow including
built-in routines for preprocessing like deskewing and binarisation as well as for layout analysis, but
overall it is significantly less successful than ABBYY.

Tesseract’s OCR training and recognition capability recently (version 4.0+) have improved
considerably due to the addition of a new OCR engine based on LSTM neural networks which
clearly outperformed the character based approach during project internal experiments. The old
glyph-based recognition method is still supported and mixed models trained for both recognition
approaches and a wide variety of languages and scripts are openly available at the project’s Github
repository. Similar to ABBYY and contrary to OCRopus 1/2/3 and Calamari, Tesseract supports the
use of dictionaries and language modelling. While Tesseract has its strengths in the fully automatic
out of the box processing of modern texts it falls short when it comes to historical material.

2.2.3. OCRopus

The open-source toolbox OCRopus 116 [7,22,23] comprises several Python-based tools for
document analysis and recognition. This includes highly performant algorithms for deskewing
and binarisation as well as a segmentation module which extracts text lines from a page in reading
order. While the segmentation can quite comfortably deal with modern standard layouts, that means
text-only pages with clearly separable columns, it tends to struggle with typical historical layouts with
marginalia, swash capitals, etc. When a page has already been split up into regions however, the line

16 https://github.com/tmbdev/ocropy
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segmentation usually identifies the single lines very reliably and accurately at least when working
with Latin script. This is not a trivial task since in historical printings the letters of adjacent lines can
severely overlap vertically or even touch each other.

OCRopus 1 was the first OCR engine to implement the pioneering line based approach for
character recognition introduced by Breuel et al. [7] using bidirectional LSTM networks which allowed
for considerably superior recognition capabilities compared to glyph-based approaches. Furthermore,
this method significantly simplified the process of training new models since the user just has to
provide image/text pairs on line level, which can be created by using a html-based transcription
interface in a browser.

While the general line-based recognition still defines the state of the art the shallow network
structure consisting of just a single hidden layer has to be considered outdated by now. The superiority
of deeper architectures relying on a combination of CNN and LSTM layers has been shown well
enough on different materials. Nevertheless, OCRopus 1 still proves to be a cornerstone for OCR
workflows dealing with historical printings mainly for two reasons. First, the preprocessing usually
achieves excellent results due to its robust deskewing approach as well as its adaptive thresholding
technique used for preprocessing [24] which can comfortably deal with pages even if they are in
questionable condition. Second, due to the robust line segmentation described above.

After the comparatively disregarded OCRopus 217 the third edition OCRopus 318 was released in
May 2018. It introduced a PyTorch-backend which enabled the utilization of deep network structures
and GPU support, resulting in better recognition rates and faster training and prediction. In the
comparative study mentioned earlier[9] OCRopus 3 achieved recognition results similar to Tesseract
4 while being significantly faster but was nevertheless considerably outperformed by Calamari.
Concerning the other steps in the OCR workflow like binarisation, deskewing, and segmentation
OCRopus 3 almost exclusively relies on deep learning techniques. To the best of our knowledge there
are not yet any comparisons available between the traditional methods of OCRopus 1 and the new
approach by OCRopus 3.

2.2.4. Kraken

The open-source OCR software Kraken19 (see [25] for the initial paper) is originally based on an
OCRopus 1 fork and has been significantly cleaned up as well as extended since. For example, Kraken
seems to focus on the processing of Arabic text, resulting in an optimized line segmentation procedure
which can deal with the specifics of Arabic script and a right-to-left text recognition support. The
underlying OCRopus 1 architecture was extended by a PyTorch backend enabling the training of deep
networks consisting of a combination of CNN and LSTM layers.

In a very recent (July 2019) second publication [26] the present state of the software is briefly
introduced. Apart from extensive recognition features like the support of right-to-left, bidirectional,
and vertical writing, combined script detection and multiscript recognition are addressed. Moreover, a
trainable deep learning line extractor is currently being implemented to allow dealing with the highly
variant challenges of different scripts when it comes to line segmentation. Finally, results achieved on
several publicly available data sets including historical ones are presented, mostly achieving above
98% or even 99% character accuracy. Unfortunately, neither details about the training and evaluation
procedure nor a comparison with other open-source OCR engines are provided.

Despite the application to historical data the focus of the engine seems to lie on more recent
printings. This is indicated by the fact that the results of the line segmentation are output as JSON
files simply containing the line bounding boxes as straight rectangles. As mentioned above, this can

17 https://github.com/tmbdev/ocropy2
18 https://github.com/NVlabs/ocropus3
19 https://github.com/mittagessen/kraken
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be quite problematic when working on earlier printings, especially when considering that Kraken
also got rid of OCRopus 1’s deskewing functionality. Because of these shortcomings or rather these
intended simplifications Kraken does not seem ideally suited for an application to historical printings.

2.2.5. Transkribus

A very comprehensive platform specialized on Handwritten Text Recognition (HTR) was
developed within the Transkribus project20 [27] which provides a web service to store and share
documents or perform layout analysis, recognition, and training tasks on the server. The main user
interface is available as an open-source Java desktop application which allows the user to perform
manual segmentation tasks or produce GT by transcribing lines. Unfortunately, large parts of the
software are not open-source, preventing the users from adapting or extending the code and from
running the advanced recognition tools on their own hardware. On 1st of July 2019 a fee-based
cooperative was founded that “serves as the basis for sustaining and further developing the Transkribus
platform and related services and tools”.21

The technical partner for the development of the layout analysis and training and recognition
software is the CITlab22 team at the University of Rostock whose approach performed best on the sub
task of the detection of baselines, that is the line supporting the main bodies of characters within a
text line, at a competition layout analysis for challenging medieval manuscripts at ICDAR2017 [28].
Several related publications are available (see for example [29,30] for layout analysis and [31] for HTR)
but to the best of our knowledge the exact state of the software actually incorporated in Transkribus is
not publicly known. Therefore, the best source for results seems a recently (May 2019) published talk23

which biefly sums up some evaluations: After training on close to 36,000 words corresponding to 182
pages a CER of 3.1% and a WER of 13.1% was achieved on a dataset from the 18th century written by
a single writer in German. For Latin and French medieval material from many different writers the
system scored a CER of 6.4% and a WER of 22.1% after being thoroughly trained on over half a million
words corresponding to close to 1,200 pages of GT. The application to printed text, more precisely
to newspapers from the 18th century, led to a CER of 0.81% and a WER of 3.02% was achieved after
training on 180,000 words corresponding to 345 pages.

2.2.6. DIVAServices

With DIVAServices [32] Würsch et al. presented a fully open-source framework that allows to
share and access document image analysis methods as a RESTful web service. The idea is to allow
the research community to simply provide access to newly developed methods via an unified API,
independently from the used programming language, and therefore freeing the interested users from
the burden of setting up and run a local instance after downloading the source code. DIVAServices
supports various tools of different complexity, starting from smaller modules like binarization or line
segmentation to more comprehensive tools like DIVAnnotation [33] which again can call other services
themselves.

A recent publication [34] gives the latest updates concerning the execution environment (now
using Docker just like OCR4all), the asynchronous execution of services, the output definition, and a
planned workflow system that should allow the users to create their own workflows by specifying
which modules, tools, and processes should be called in which order and with which parameters.
Furthermore, there is a focus on building an ecosystem of tools and services providing further
functionality to improve the usability of the system without being part of the core framework. This

20 https://transkribus.eu
21 https://read.transkribus.eu/coop/
22 https://www.mathematik.uni-rostock.de/forschung/projekte/CITlab
23 https://www.slideshare.net/ETH-Bibliothek/transkribus-eine-forschungsplattform-fr-die-automatisierte-

digitalisierung-erkennung-und-suche-in-historischen-dokumenten
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includes tools and services supporting experimentation, data and method management, programming
libraries, and optimization.

While DIVAServices is a promising approach it cannot be considered a real workflow tool and
is not meant to be one, yet. However, the available online collection of the document image analysis
tool DIVAServices Spotlight24 represents a very helpful option to perform exemplary tests of existing
methods on one’s projects without the need for complicated setup operations. Unfortunately, to the
best of our knowledge, not all showcased methods are available as open source.

2.2.7. OCR-D

The OCR-D project25 [35] is funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft - DFG), initially for a period from 2015 to 2020. Its main goal is to provide an
OCR workflow for historical printings starting from the 16th century. The workflow defines a number
of modules which are executed sequentially and whose development by different German research
facilities is also funded by the DFG since 2018. Since the focus lies on mass digitization the aim is to
keep the amount of manual user interaction to a minimum, ideally reducing it to zero resulting in a
fully automatic workflow. Therefore, book-specific training or any kind of manual postcorrection, be it
on layout or textual level, are currently neither envisaged nor desired. However, just as with Kraken,
the high degree of modularity makes OCR-D an interesting project whose further developments should
be closely followed. This is especially true since OCR-D also relies on PageXML and therefore has
publicly released several wrappers for tools like Tesseract 4 to fully integrate them into their workflow.
Since the project and therefore the developments of the submodules are still ongoing no evaluations of
the overall workflow have been published, yet.

Additonally to the efforts described above, OCR-D also aims to provide a GT reference corpus for
German texts printed between 1500 and 1900. A description of the necessary formats and guidelines is
given by Boenig et al. [36].

2.3. Further OCR Related Tools

In the following we will briefly introduce a selection of tools which are relevant to the OCR4all
workflow, either because they serve as an additional preparation instance, are already integrated as
submodules or represent an interesting option for future developments.

2.3.1. Scan Tailor

ScanTailor26 is an interactive open-source postprocessing tool for scanned pages which offers
a variety of tools and routines allowing to prepare scans for further processing. Among others this
includes:

� Splitting pages that have been scanned together into two single pages.
� Rotating scans that are available in landscape format into an upright position.
� Deskewing.
� Removing the scan periphery and cutting out the print space.
� Converting the images into binary.
� Several smaller preprocessing techniques like despeckling and dewarping.

Most of the steps can be performed manually or by fully automatic routines whose effectiveness
highly depends on the specific task and the material at hand. For example, while the deskewing works
very reliably, cutting out the print space produces severe errors on complicated layouts on a regular

24 http://wuersch.pillo-srv.ch
25 http://ocr-d.de/eng
26 https://scantailor.org/
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basis. Nevertheless, the majority of steps can usually be performed with limited manual interaction
and manageable human effort. Unfortunately, the development of the project appears to be dormant.

2.3.2. LAREX

For the task of region segmentation we rely on LAREX (Layout Analysis and Region EXtraction;
see [37]), which is a semi-automatic open-source tool for layout analysis on early printed books. The
primary goal of LAREX is not to fully automatically achieve a decent standardized result but to enable
the users to obtain their personal 100% result with manageable effort. This is particularly true for
the desired complexity of the segmentation, that is the degree of semantic distinction within the
result. Therefore, LAREX relies on a simple, yet effective rule-based approach which uses connected
components (CCs). Furthermore, it is very fast, easily comprehensible for basically any given user, and
allows an intuitive manual correction if necessary. To minimize the amount of required manual effort
the user can define book-specific masks which represent expectations regarding the size and position of
layout elements. The results are stored using the PageXML format to support integration into existing
OCR workflows. Evaluations showed that LAREX provides an efficient and flexible way to segment
pages of early printed books: On a case study using an early printed book with complex layout it
took a human processor with some prior experience using LAREX 2 hours and 18 minutes to segment
the entire book including a fine-grained semantic distinction of layout elements. For comparison, a
processor with extensive experience using Aletheia [38] only managed 160 page (28% of the entire
book) during the same time frame.

2.3.3. PoCoTo

In the context of historical OCR the interactive postcorrection tool PoCoTo27 represents the
state-of-the-art. The original PoCoTo introduced by Vobl et al. [39] is a system developed to support the
efficient interactive postcorrection of historical texts by offering several advanced features: Suspicious
tokens of the OCR text are identified by a special language technology which is aware of historical
language variations represented by rewrite rules like t! th (modern spelling vs. historical spelling)
and can be corrected by choosing a word from a list of generated plausible correction candidates. The
user does not have to perform this for every single word but can batch correct entire error series which
for example can consist of identically misrecognized words or words that suffer from the same OCR
error, for example the confusion of “e” and “c”. At any time it is possible to view the corresponding
words within the scanned image. Evaluations performed in three major European libraries covering
historical German, Spanish, and Dutch showed that even without the batch correction PoCoTo already
helps to efficiently correct texts. In a first settings the users were only allowed to use the GUI which
highlighted non dictionary words but could not access the batch mode. The full mode was enabled
as a second setting. While the users on average were able to correct 3.8 errors per minute in the first
setting this number almost doubled to 7.5 in the second setting. The real potential of the software
became apparent when a user took advantage of some very productive error patterns, resulting in
about 500 corrections in ten minutes.

The system is under active development which resulted in several improvements on the original
approach. In [40] Fink et al. added three major extensions: First, making the system more adaptive to
manual interventions of the user increased the precision with respect to identifying erroneous OCR
tokens. Second, the linguistic background resources were extended by new historical patterns which
leads a more successful discrimination of historical spelling from real OCR errors. Third, tokens that
could not be interpreted by the model were added to a list of conjectured errors, resulting in a better
error detection recall and precision.

27 https://github.com/cisocrgroup/PoCoTo
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A fully automated extension of PoCoTo was proposed by Englmeier et al. [41]: A-PoCoTo is
more geared towards the deployment in large-scale digitization projects, can take the OCR results of
multiple OCR engines into account, and uses sentence context for its decisions. This fully automatic
first step is extended by an interactive postcorrection (resulting in A-I-PoCoTo) as a second, optional
step in which the user can efficiently confirm, reject, or improve decisions made by the system.

Whereas the original PoCoTo client was a stand-alone Java application it has now been rewritten
as a web-based tool which together with the interactive aspect and the focus on historical texts makes
it a very interesting candidate for the integration into the OCR4all workflow.

2.3.4. Nashi

The Nashi28 [42] transcription environment was created as a platform for the digitisation of
the Arabic-Latin translations corpus29 (ALC) at the University of Würzburg. Its main focus was to
provide a group consisting of researchers and students with the opportunity to collaboratively segment,
transcribe, and comment on scans of historical and modern printed editions in Latin, Arabic, and Greek
language. Since the clear main goal is the creation of accurate citable digital editions, the web user
interface for postcorrection provides the users with means to check and, if necessary, correct the OCR
output for every single text line while also allowing to alter the coordinates of the line polygons. The
transcription workflow is based on PageXML and can be considerably supported by OCR processes
running in the background. The current ALC setup at the University of Würzburg relies on LAREX for
segmentation, Kraken for line segmentation, and Calamari for the OCR.

3. Methods

In this section we focus on the OCR4all software. After introducing the data structure we first
describe the workflow and its individual modules, including their input/output relations, in detail
before we look at the encapsulating web GUI which offers various possibilities to influence the
workflow by manual corrections or configurations.

3.1. Data Structure

Regarding our data structure, apart from different representations of page images we focus on
PageXML [13] as the main carrier of information. This allows for a modular integration of the main
submodules of OCR4all and sets up easy to fulfill requirements regarding interfaces, ensuring a
reasonably straightforward addition of new submodules or replacement of existing ones. Additionally,
defining a unified interface for all tools and modules enables the usage of a comprehensive post
processing functionality. Another positive side effect of this approach is that submodules developed
by us for OCR4all can be integrated analogously into other OCR workflows that use PageXML.

PageXML requires one XML file per page which can store a wide variety of information, most
importantly:

� A page can comprise an arbitrary number of regions whose reading order can be specified.
� Among others a region can store its enclosing polygon and type.
� There are main types like image, text, or music. Text regions can be further classified into sub

typed like running text, heading, page number, marginalia, etc.
� A region can contain an arbitrary number of text lines.
� Each line stores its enclosing polygon as well as an arbitrary number of text elements which may

contain GT, various OCR outputs, normalized texts, etc.

During the setup procedure a database containing two folders, data and models, is mounted from
the host system into the docker container. While the first one allows to directly add new input files into

28 https://github.com/andbue/nashi
29 http://arabic-latin-corpus.philosophie.uni-wuerzburg.de
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the system and provides access to the final output as well as the interim results the second one enables
the user to import external OCR models or to extract trained models, for example in order to share
them with fellow OCR4all or Calamari users. To add a new book the user simply has to create a new
project folder within the data folder including an input folder containing the scans as single images or
as one or several PDF files. During the processing of a step the resulting images and PageXML files
(see the individual modules below for a detailed description) are kept in a processing folder before the
final results can be generated as output.

3.2. OCR4all Workflow

Figure 3. The main steps of the OCR4all workflow as well as the optional image preparation and post
correction steps which are not part of the main tool (yet).

Figure 3 shows the steps of the workflow implemented in OCR4all. After acquiring the scans
and an optional preparation step, for example by using ScanTailor, the original images can be placed
into the workspace. Next, image preprocessing is applied to the scans before several steps, like region
segmentation and extraction as well as line segmentation, produce line images required as input for
character recognition or ground truth production. The output of character recognition can either
directly serve as the final result or can be corrected by the user which enables a training of more
accurate book-specific models, yielding better recognition results.

In the following we discuss a typical workflow by going through the four main steps from Figure
1 and discuss the corresponding modules in OCR4all as shown in Figure 3. Furthermore, we always
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state the input and output relation of each module by describing the actual data each module works
on, which is often produced by combining the information stored as PageXML with the preprocessed
grayscale or binary image.

3.3. Preprocessing

In the preprocessing main step the input images are prepared for further processing. Before the
two standard sub tasks binarization and deskewing take place an optional external preparation step
can be performed.

3.3.1. Image Preparation

Input: unprepared image (image containing two scanned pages, a page rotated in an invalid
orientation, ...)
Output: prepared image (single page in an upright position)

OCR4all expects the input images to be in an upright position and already segmented into single
pages which can easily be achieved by using ScanTailor. Furthermore, it is recommended to remove
excessive amounts of scan background, although this is not mandatory. Figure 4 shows an example
of a valid and an invalid input which also represents a possible input and output of ScanTailor. In
fact, ScanTailor is not a true OCR4all submodule since it cannot be integrated due to the lack of a
web-based user interface. However, we still decided to list it as a module since this step belongs to
the workflow and the input images have to be added from external sources anyway. It is possible to
deal with unprepared images like the ones described in the input completely within OCR4all but it
certainly is not the recommended course of action.

Figure 4. An example input and output of the image preparation and preprocessing steps. The image
on the left represents an undesirable input for OCR4all while the ScanTailor output in the middle
is completely sufficient. During the preprocessing step the skewed color image in the middle is
transformed into the deskewed binary image on the right.

During the preprocessing sub step the input image gets converted into a binary and (optionally)
a normalized grayscale image. Additionally, a deskewing operation can be performed. See Figure
4 for an example input and output of this step. For both steps we use the methods implemented in
the OCRopus 1 nlbin script. The binary/grayscale conversion is performed by applying an adaptive
binarisation technique proposed by Afzal et al. [24] which is able to reliably produce high quality
results even when facing difficult conditions, such as heavily degraded scans with considerable
brightness variations and bleed through. While this substep is mandatory to enable and facilitate
the upcoming image processing applications, the deskewing on page level is optional since its main
purpose is to support the line segmentation process (see below) that operates on segmented regions
which are individually deskewed beforehand anyway. Yet, depending on the degree of skewness of
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the original scans, it can be very beneficial to perform a deskewing already on page level as it can
considerably simplify the region segmentation.

3.4. Segmentation

During the segmentation main step the preprocessed images are first segmented into regions.
Then, after extracting the ones containing text the line segmentation is performed.

3.4.1. Region Segmentation

Input: preprocessed image
Output: structural information about regions (position and type) and their reading order

The general goal of this step is to identify and optionally classify regions in the scan. There are
different manifestations which considerably impact the complexity of the task and entirely depend on
the material at hand, the use case, and the individual requirements of the user. For example, when
the goal is to gather and process a book for editorial purposes it is mandatory to obtain a flawless
text and consequently a (close to) flawless segmentation result is advisable. Additionally, in these
cases it is often desired to perform a semantic classification of text regions already on layout level.
Therefore, a considerable amount of human effort has to be expended. On the contrary, the most
simplistic approach would be to only distinguish between text and non-text regions in order to obtain
a good OCR result, for example to be used in different NLP tasks which do not require flawless texts.
Naturally, this is a considerably less costly process and can even be a trivial task, depending on the
input material. For both scenarios OCR4all offers viable solutions which will be briefly explained in
the following.

Figure 5. Left: a LAREX segmentation output consisting of an image (green), running text (red),
marginalia (yellow), image caption (blue), and the page number or folio identifier (cyan), as well as the
reading order. Right: output of the Dummy Segmentation for a standard 19th century novel layout.

For complex layouts and especially when a fine grained semantic distinction is desired (see
Figure 5, left), the already introduced tool LAREX represents the mean of choice. It offers the user a
variety of automatic, assisted, and fully manual tools which allow to gather a complex page layout
with reasonable effort. It is worth mentioning, that it is also possible to load existing segmentation
results into LAREX and mostly use it as an editor by comfortably correcting the results, if necessary.
The drawback of LAREX is that, at least as of now, it expects the user to have a look at every page
and approve each result individually. Obviously, while checking each page is almost imperative
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for very complex layouts and high user expectations, it cannot be considered the preferred solution
for considerably easier or even trivial layouts. For this other end of the spectrum, OCR4all offers
the so-called Dummy Segmentation which simply considers the entire page as a single running text
segment (see Figure 5, right). While admittedly this is a highly simplified approach, our experiences
using the Dummy Segmentation have been very positive for several reasons.

For example, there is a rudimentary implicit text/non-text segmentation available as well as a
highly performant column detection functionality. Furthermore, because of the aforementioned
capabilities of the line segmentation, the Dummy Segmentation can actually be applied to an
unexpectedly wide variety of historical printings and, in fact, runs fully automatically and basically at
no cost. On the downside, this approach does not perform any kind of meaningful semantic distinction
of text parts and also cannot provide an explicit image markup.

Naturally, the user can decide on a page by page basis which segmentation approach to apply.
For example, if a book starts with a quite complicated title page and a complex register, both in
terms of layout, but apart from that consists of pages with a trivial one column layout, the user can
easily segment the first few pages using LAREX and then switch to the dummy segmentation for the
remainder of the book. Due to the well defined interfaces all preceding and subsequent steps can be
applied to all pages in the exact same manner and without any further differentiations.

3.4.2. Line Segmentation

Input: text region regions
Output: extracted text lines

Figure 6. Two example inputs and outputs of the line segmentation step.

The actual line segmentation operates on individual region images, if available, instead of the
entire page. Therefore, the text regions identified during the segmentation step need to be extracted
from the page images which is done by a region extraction sub step. We cut out the polygons stored in
the PageXML file from the corresponding binary image. By extracting the exact polygon instead of just
the bounding rectangle we ensure that even complex alignments of several regions can be processed
without any overlap of other regions. After the extraction, the region images are separately deskewed
by applying the OCRopus 1 nlbin script. Processing the regions one by one can lead to considerably
better results than the standard deskewing on page level. Especially pages from very old printings
frequently contain areas/regions which are skewed independently from each other, either because of
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inaccuracies during the printing process or due to physical degradation leading to deformed pages.
Clearly, a globally optimal skewing angle on page level cannot deal with these situations.

The line segmentation is performed by applying an adapted version of the Kraken line
segmentation script to each extracted region individually.

The output produced by the applied algorithm is considerably more complex than just the
bounding rectangle of a text line: After eliminating noise and other unwanted elements, the connected
components are assigned to their respective text lines, mostly as a whole but can also be split, if
necessary. Finally, the connected components or their respective parts are connected to a tight-fitting
polygon in order to produce an optimal line segmentation result, exclusively containing the desired
letters. To achieve this we extended the Nashi line segmentation wrapper. Analogously to the region
segmentation step the usage of exact polygons even allows to segment lines whose bounding rectangles
considerably overlap. An extreme example of the segmentation capabilities is shown on the bottom of
Figure 6. The following OCR step had no difficulty with the recognition of each separate line.

3.5. OCR

After obtaining the text lines the OCR main step can be performed including the character
recognition either by applying available mixed models or the results of a book-specific training.
Furthermore, an error analysis of produced outputs is provided which just like the training requires
GT that can be produced by manual correction which we will discuss later on.

3.5.1. Character Recognition

Input: text line images and one or several OCR models
Output: textual OCR output on line level

After segmenting the pages into lines it is now possible to perform OCR on the results. As of now,
Calamari is the only OCR engine which is integrated into OCR4all by default. However, due to the
well defined interfaces additional engines can be added and operated with manageable effort.

For the application in OCR4all we make use of Calamari’s PageXML interface which cuts out the
text lines from the corresponding binary or grayscale images according to their coordinates and passes
them into the recognizer. In general, the recognition module allows to either apply self trained book
specific models, which we will address in the next section, or to resort to so-called mixed models. These
models have been trained on a wide variety of books and typesets and, depending on the material
used, can usually provide at least a valid starting point to start off the manual GT production or even
already provide a satisfactory final result. OCR4all comes with four single standard models30 which
are automatically incorporated and made available when building the Docker image: antiqua_modern,
antiqua_historical, fraktur_19th_century, and fraktur_historical. Since voting ensembles have proven
to be very effective, we additionally provide a full set of model ensembles31 consisting of five models
for each of the four single model areas mentioned above, which can be downloaded and directly added
into OCR4all.

Calamari supports the utilization of an arbitrary number of models. If only one model is applied,
its output is directly considered as the final result and is consequently added to the corresponding line
element in the PageXML file. The application of several models automatically triggers the confidence
voting procedure where the final result is calculated from the single outputs of all the voters. Apart from
the standard textual output it is also possible to enable an additional, extended output that includes
information like the intrinsic OCR confidence values calculated by Calamari or the pixel positions of
the detected characters within the line. Parts of this data could also be stored by using PageXML but
since we want to keep as much information as possible, including detailed and comprehensive lists

30 https://github.com/Calamari-OCR/ocr4all_models
31 https://github.com/Calamari-OCR/calamari_models
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with character alternatives and their respective confidences, an additional storage format (JSON) is
required.

After transcribing lines or by correcting an existing OCR output, which we will cover in detail in
the section on manual corrections below, the model training can take place.

3.5.2. Model Training

Input: line images with corresponding GT, optionally already existing models to build upon
Output: one or several OCR models

The model training which allows to train book-specific Calamari models is not only one of the
most central modules of the entire workflow but also probably the most complex and challenging one
when it comes to enabling non-technical users to utilize all available features. The training algorithm
possesses a variety of hyper-parameters which can impact the procedure considerably and therefore
has to be treated with great care. To begin with, one crucial aspect when dealing with the training of
neural networks there is the omnipresent challenge of determining when to stop the training process
and choosing the best model, which is the one with the optimal weight configuration. To avoid
overfitting we follow the established approach of setting aside a small chunk of the training material
as a validation set which is realized by passing appropriate parameter settings into Calamari. Then,
after a certain number of training iterations the current model is applied to and evaluated on this
validation set. The model which performed best is denoted as the best model and stored for further
processing. Regarding the termination of the training we make use of the so called early stopping
provided by Calamari that basically observes the training progress and aborts as soon as no significant
improvement can be expected anymore. This procedure requires several parameters which determine
the stopping criterion and how frequently to check the current model. To guard the users from having
to deal with the underlying theoretical concept but still ensure sensible parameters, we developed a
routine that derives fitting values for all required settings from the available amount of training data
and that was incorporated into Calamari. Naturally, experienced users are free to adjust the parameters
directly at will.

Our main goal for the training module was to provide a non-technical user with the ability to
comfortably make use of all the available accuracy improving techniques:

� Cross fold training produces a voting ensemble consisting of several individual models whose
output is then combined during the prediction as explained in the recognition section. In order
to significantly improve the recognition accuracy, the models have to be both strong individually
and diverse enough with different strengths and weaknesses. Therefore, the training and
validation data has to be arranged in a certain way into different folds which is carried out
automatically by Calamari. All the user has to do is to determine the number of desired voters.

� To speed up the training and to further optimize the resulting models the Calamari training
can build from already existing models instead of starting from scratch. Naturally, this can and
should be combined with training of several models to form a voting ensemble. Consequently,
the user can choose between three training approaches: training all models from scratch, training
all models starting from the same existing models, or freely assigning arbitrary models to each
fold. All this can be done by comfortably selecting the desired models from a list displaying all
available options.

� Data augmentation is a powerful option to make the most of small amounts of training material.
The basic idea is to generate additional training examples by synthetically altering existing
line images, for example by applying scaling or warping operations, which still fit the original
textual GT. To activate this in OCR4all the user simply has to determine the extent of desired
augmentations. Since nothing compares to real data the default training allows for a two step
approach in which the models resulting from training on both real and augmented data are
further refined by training exclusively on real data.
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Iterative Training Approach

To keep the manual effort to a minimum, we introduced an iterative training approach which
is fully supported by OCR4all. The general idea is to minimize the required human workload by
increasing the computational load. Correcting an existing OCR output with a (very) good recognition
accuracy is (considerably) faster than transcribing from scratch or correcting a more erroneous result.
Consequently, we aim to quickly get to a reasonable recognition accuracy which allows for an efficient
GT production process. Therefore, we integrated an iterative training approach whose procedure is
listed in the following:

1. Transcribe a small number of lines from scratch or correct the output of a suitable mixed model,
if available.

2. Train a book specific model/voting ensemble using all available GT that has been transcribed up
to this point, including earlier iterations.

3. Apply the model/voting ensemble to further lines.
4. Correct the output.
5. Repeat steps 2-4.

For example, let’s assume that around 200 lines of GT are needed to reach a satisfactory OCR
accuracy (e.g., CER of 2% or less) for a given task and on a given book. Of course, the exact number
of lines required is never known, which is another reason to not simply transcribe 200 lines from
scratch before training the first model. Instead, we start out by recognizing a small number of lines, for
example two pages comprising 60 lines, with a somewhat suitable available mixed model, resulting
in a more or less helpful OCR output with a CER of, let’s say 8%. While the recognition quality is
not perfect, correcting this output is still faster than transcribing from scratch and it only needs to
be done for 60 lines anyways. Next, a first book-specific model is trained by using the produced GT.
The resulting model is then applied to four more page, resulting in a considerably lower CER of 3.5%.
In fact, correcting this output can be done much more efficiently than before since the error rate was
reduced dramatically by more than 50%. The resulting four pages of GT are now added to the GT
pool (now containing close to 200 lines) and used for another training process, resulting in a strong
model yielding a CER of just below 2% on previously unseen pages. Since this final model fulfills the
requirements set for this example, the iterative training process stops here. Obviously, the described
steps can easily be repeated until a higher desired accuracy is reached or even until the entire book has
been recognized and corrected.

Since the iterative training approach, especially when combined with cross fold training, can
quickly produce plenty of OCR models, a certain amount of bookkeeping is required to stay on top of
things. Therefore, OCR4all provides an intuitive automatic naming convention for the trained models.

3.5.3. Error Analysis

Input: line-based OCR predictions and the corresponding GT
Output: CER and confusion statistics

To enable an objective assessment of the recognition quality achieved by the models at hand, we
incorporated the Calamari evaluation script into OCR4all. For a given selection of pages it compares
the OCR results to the corresponding GT and calculates the CER using the Levenshtein distance.
Additionally, a confusion table (see Figure 3 for an example) displaying the most common OCR errors
and their frequency of occurrence is provided.

3.6. Result Generation

Input: GT and OCR results
Output: final output as text files

For the average OCR4all user PageXML most likely does not represent the desired output format
that is needed for further processing with other tools. Consequently, we also offer a simple textual
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Table 3. Example confusion table showing the desired output (GT), the actual output (OCR), the
absolute number of occurrences (CNT), and the corresponding percentage with respect to all errors
(PERC). Given are the five most frequent errors including substitutions (4), deletions (2,5), and insertions
(1,3).

ID GT OCR CNT PERC

1 16 6.69
2 10 4.18
3 i 10 4.18
4 e c 3 1.26
5 l 2 0.84

output where the line-based OCR results are concatenated in reading order and stored as a text file in
two variants, one for each individual page and one for the entire book. If there is GT available for a
line its OCR result is replaced by the corrected text in the final output.

Naturally, the conversion into raw text leads to the loss of all acquired additional information
obtained during the complete workflow like semantic labels and coordinates of segments and lines. To
preserve this data it is of course also possible to keep the PageXML files containing all information
acquired during the workflow. Additional output formats, for example TEI32, can easily be added.

3.7. Web GUI

One of the main goals of OCR4all is to allow anyone to perform OCR on their own on a wide
variety of historical printings and obtain high quality results with reasonable time expenditure.
Therefore, the tool has to be easily comprehensible even for users with no technical background. In fact,
this includes the ability to comfortably control the entire process via a GUI. By making all submodules
accessible from a clearly structured and unified interface it ensures that the user for the most part has
to learn only a single system. Furthermore, OCR4all equips the user with powerful tools to perform
manual corrections on the produced output after most steps of the workflow and allows for a precise
configuration not only of the workflow in total but also of the sub modules. Before we discuss these
options we briefly introduce some general aspects about the tool’s architecture.

3.7.1. General Software Design

We chose to implement the workflow as a server application accessible by a web app because this
allows a deployment as a true web app (using a web browser as a local client interacting with a remote
server) as well as using OCR4all completely locally (both browser and server are locally installed).
Because currently neither user administration nor resource management have been implemented, in
the following we only consider the local option.

To ensure an easy installation procedure and keep the problems caused by dependency
requirements of the sub modules to a minimum, we encapsulated everything in a Docker image.
Furthermore, the incorporation of Docker effectively assures platform independency as it can be
installed and run on basically all modern operating systems including Windows, Mac, and Linux.

3.7.2. Manual Corrections

Input: images and their corresponding PageXML files
Output: corrected PageXML files

32 https://tei-c.org
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As emphasized during the introduction a fully automated workflow is often not reasonable or
at least cannot be expected to yield sufficient (depending on the use case) or even perfect results
especially when dealing with early printings. Consequently, a potent, flexible, comprehensible, and
easy to use option for manual correction is a must-have for every OCR workflow tool which relies
on user intervention. In OCR4all this core task is covered by LAREX whose functionality has been
considerably extended since its original release [37] as a region segmentation tool and will be explained
in the following (see Figure 7 for an an overview of the LAREX correction tool).

Figure 7. Compressed Overview over the LAREX correction GUI with the actual page and its current
data in the middle, the page selector on the left, the three correction tabs to switch between the segments,
lines, and text correction functionality as well as several tools on the top, and the settings on the right.

LAREX works directly on PageXML files and the corresponding images. After loading a page the
information is displayed using additional layers over the image in three different views which are all
interconnected with each other.

Regions

LAREX offers a wide variety of tools and procedures to create new and edit existing regions.
Regions identified during the earlier region segmentation step can be deleted and their type or sub
type can be changed. If a region has not been captured the user can correct this by either manually
drawing a rectangle or a polygon or by selecting the connected components belonging to the region and
then activate an iterative smearing algorithm to automatically create the region outline. Additionally,
the reading order can be freely adjusted by dragging and dropping regions in an additional view.
Furthermore, it is possible to perform sophisticated polygon manipulation operations including
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deleting, adding, and moving points. Each operation can always be performed on an arbitrary number
of points at once. Combined with the progressive zooming functionality this even allows for an pixel
perfect segmentation, if desired. Figure 8 shows some example functionality.

Figure 8. Example applications of the labelling and segmentation functionality on layout level in
LAREX. Left: Semi-automatic segmentation of a complex layout (from top to bottom): (1) excerpt
from the starting situation showing four lines belonging to four different segments with three different
semantic types (see the left of Figure 9 for the bigger picture). (2) Manual selection of the CCs belonging
to the subheading. (3) Marked depiction of the selected CCs which serve as input for the iterative
smearing algorithm. (4) Output region of the smearing algorithm. (5) Adjustment of the region type;
adjacent the remaining regions which have been automatically detected (remaining lines). Right:
correction of a line polygon which wrongfully includes part of a swash capital by moving two points.

Lines

The second view focuses on text lines. From an editing point of view lines are treated exactly
like regions and therefore allow the same comprehensive set of operations with minor adaptions, for
example that newly created lines are assigned to the active regions and not to the page and the reading
order functionality is available relative to a selected region.

Text

The text view (see Figure 9) is divided into two further sub views. In the first one the page image is
still presented to the user with all text lines color-coded indicating the availability of corresponding GT.
When selecting a text line an input field is displayed directly below the line, showing the corresponding
OCR or GT if available. Like the rest of the visualization the displayed textline is zoomable and can be
moved horizontally or resized separately to obtain a perfect alignment with the line image since this
cannot always be achieved automatically due to the narrow and often irregular typesetting. The user
can then produce or edit GT by simply typing into the input field or by selecting characters from a
customizable virtual keyboard which allows to define a set of non-standard characters, for example
ligatures, which cannot be found on regular keyboards but can easily be inserted this way by a single
mouse click. The content and structure of the virtual keyboard can be customized directly in the web
GUI and existing setups can be exported and imported. Keyboard shortcuts allow to temporarily fade
out the input field so the users can get contextual information from the subsequent line if desired and
they may quickly cycle through the lines in reading order.

While this view is a suitable solution for users that aim for a perfect text and consequently have
to take a thorough look at each line anyway, it is not optimal for use cases where users just want to
quickly scan the pages and lines for obvious mistakes. For this use case we introduced a second sub
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Figure 9. Two text correction views in LAREX: page based view with virtual keyboard where a selection
of lines can be corrected (left and center) and the corresponding line based view (right).

view which optimizes the correction process by providing a synoptic view where an editable text field
is placed directly under each line image. If there is already GT available for a line the corresponding
text field is colored in green and the GT text is displayed. Analogously, if there is no GT but an OCR
result available, it is shown in the text field. Otherwise, the transcription has to be performed from
scratch. When a line is selected by clicking into the corresponding text field it is marked as active and
can again comfortably be edited by typing regularly or via the virtual keyboard. When a line gets
deselected, for example by activating the next line, its current content is automatically saved as GT.

Since all pairs are ordered one below the other in reading order it is possible to display the
line image and the corresponding transcription for all lines at once allowing the user to get a quick
overview. Despite the completely different arrangement of the lines the interconnection with the other
views still exists. So if the users noticed a line which suffers from a serious segmentation fault they can
simply switch to the line-based view, quickly identify the line since it is still marked as active, perform
the necessary correction, and switch back to the text correction view to continue from where they left
off.

Practical Integration into the Workflow

In theory manual correction phases can of course be introduced at basically any step during the
workflow. While it is clear that ensuring optimal results after each processing step minimizes the
chance for and the effect of consequential errors, a comprehensive manual inspection and correction
after each step is neither required nor sensible. For example, checking and correcting thousands of
text lines one by one after the line segmentation step may well increase the achievable OCR accuracy
during the subsequent recognition step. However, a much more efficient solution is to subject a few
representative pages to a quick visual check and if any systematic errors are recognized, one may
use the comprehensive set of parameters to optimize the output on a global level. In our experience
with the currently available setup manual correction should only be applied directly after the region
segmentation, which takes place in LAREX anyway if not performed fully automatically, or at the very
end when all information including line coordinates and OCR results is available.

3.7.3. Configurations

To be able to deal with the wide variety of printings and the distinct challenges proposed by them,
as well as to satisfy the individual needs of each user, OCR4all offers plenty of ways to influence not
only the workflow in itself but also the parameters of the single sub modules. All configurations are
entirely accessible from the web GUI in an intuitive way and do not require any kind of knowledge
regarding the usage of the command line.
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Process Flow

Most of the steps and modules introduced above give the user the chance to manually check the
results and apply corrections, if necessary. However, there are certainly plenty of use cases where
this is neither desired nor necessary, for example when dealing with relatively simple layouts. In
order to enable the user to minimize the degree of manual intervention, we introduced the process
flow functionality which allows to configure and execute several modules at once. For example,
when dealing with a typical 19th century Fraktur novel as shown on the right in Figure 5, it may
well be sufficient to fully automatically run the preprocessing, region segmentation (dummy), region
extraction, line segmentation, and recognition (standard 19th century Fraktur model) steps, to obtain a
high quality OCR result. Analogously, when a segmentation using LAREX is needed, which requires
user intervention, the subsequent steps can still be run at once and fully automatically.

Parameters

The open-source OCR tools we utilize in our workflow often allow influencing the results by
passing parameters, usually via command line options. Optimizing the usage of these tools represented
one of the main challenges during the implementation of OCR4all. On the one hand, it is imperative
not to overwhelm inexperienced users by confronting them with a plethora of confusing options,
settings, and parameters. On the other hand, it is equally vital to provide more experienced users to
adapt selected settings in order to optimize the results. As a solution, our web GUI provides interfaces
to set almost all parameters of the OCRopus 1 and Calamari submodules. Furthermore, we carefully
split the available options for each submodule into general and advanced settings. Apart from the
number of threads used for execution which are by default set to the available maximum, the general
settings usually only contain one or two parameters whose default settings normally completely suffice
for the average user. The advanced settings comprise all remaining parameters and allow experienced
users to maintain full control.

4. Evaluations

To evaluate the effectiveness and usability of OCR4all we performed several experiments on
various books using different evaluation settings which we will discuss in the following. After
introducing the data we focus on evaluating the main area of application of OCR4all, namely the
precise text recognition of early printed books. Then, we take a closer look at the effects of the iterative
training approach. Afterwards, we experiment with a reduced degree of manual intervention by the
user by first evaluating a less costly but also less precise segmentation approach and then evaluate a
fully automatic process on newer works.

The main goals of our experiments are to evaluate the

� manual effort required to capture a book using a precise segmentation and aiming for a very low
error rate (<1% CER) dependent on the complexity of the material and the experience of the user

� speed up when incorporating the iterative training approach
� potential speed up when considerably lowering the requirements regarding segmentation,

especially considering the fine-grained semantic distinction of layout elements
� performance of OCR4all when applied to newer works with simpler layouts

For reasons of clarity we will provide a table for each experiment and only briefly sum up the
main results in this section while shifting the in-detail discussion to section 5.

4.1. Data

In this section we briefly introduce the books we used for our experiments comprising a variety
of early printed books and 19th century Fraktur novels.

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2019                   doi:10.20944/preprints201909.0101.v1

https://doi.org/10.20944/preprints201909.0101.v1


29 of 51

4.1.1. Early Printed Books

Due to the focus of OCR4all on early printed books a large portion of our evaluation corpus
consists of books printed before 1600 which are listed in Table 4 and can be further subdivided into
three groups.

Table 4. Books of the early modern age used for our experiments including their Full Title and the
Languages used within them. The Identifier encodes the group (Camerarius, Narrenschiff, Practical
course) and the year of publication.

Identifier Full Title Languages

N1494 Das Narrenschiff German
N1498 La nef des folz du monde French
N1499 La grant nef des folz du monde French
N1506 Nauis stultifera Latin
N1549 Der Narren Spiegel German

C1532a Astrologica Latin, Greek
C1532b Ioachimi Camerarii Norica sive de ostentis libri duo Latin, Greek
C1533 De theriacis et mithrateis commentariolus Latin, Greek
C1535 Erratum Latin, Greek
C1541 Elementa rhetoricae Latin, Greek
C1552 Historia synodi nicenae Latin, Greek
C1554 Versus senarii de analogiis Latin, Greek

C1557
Libellus alter, epistolas complectens Eobani et aliorum
quorundam doctissimorum virorum Latin, Greek

C1558 De eorum qui cometae appellantur Latin, Greek
C1561 Tertius libellus epistolarum H. Eobani Hessi Latin, Greek
C1563 Dialogus de vita decente aetatem puerilem Latin, Greek
C1566a De Philippi Melanchthonis ortu, totius vitae curriculo et morte Latin, Greek

C1566b
Historiae Iesu Christi Filii Dei Nati In Terra Matre
Sanctiss. sempervirgine Maria summatim relata expositio Latin, Greek

C1568 Libellus novus epistolas et alia quaedam monumenta doctorum Latin, Greek
C1583 Epistolarum familiarum libri VI Latin, Greek

C1594
Decuriae XXI symmikton problematon
seu variarum et diversarum quaestionum de natura, moribus, sermone Latin, Greek

C1598 De rebus turcicis commentarii Latin, Greek

P1474 Das abenteürlich buch beweyset vns von einer frawen genandt Melusina German
P1484 Histori von herren Tristrant German
P1509 Fortunatus Eyne hystorye German

The first group consists of editions of the Narrenschiff (ship of fools), the second most popular
book after the bible in the early modern period, and was digitized as part of an effort to support the
Narragonien digital project33 at the University of Würzburg. Despite their similar content these books
are very different from an OCR point of view since their layout varies considerably and they were
printed in different print shops using different typefaces and languages (Latin, German, French and
Dutch). In the second group we deal with printings related to the influential early modern universal
scholar Joachim Camerarius the Elder whose numerous works have been identified and collected
during the Opera Camerarii project34 at the University of Würzburg. These works, which are now
intended to be captured by OCR, are mostly written in Latin but frequently contain embedded parts
of Greek, mostly scientific technical terms regarding the treated topics like astrology, medicine, and
many more. A special feature of these books is that they often contain Greek sections directly within
the Latin text. We focus on the OCR of the Latin parts and just ensure to mark Greek text for later

33 http://kallimachos.de/kallimachos/index.php/Narragonien
34 http://wp.camerarius.de/
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processing. While this might seem counter-intuitive at first, OCR engines have been shown to be able
to learn abstract representations of different scripts [43] or even different but very similar fonts [44].

Finally, the third group consists of various early modern printings. Figure 10 shows representative
example images of some of the used books as well as some desired segmentations. For reasons of
clarity we refrained from depicting the reading order.

Figure 10. Example images of early printed books. Top (from left to right): C1566, C1541, C1563, C1563
segmented. Middle: P1484, P1509, N1506, N1506 segmented. Bottom: N1549, N1494, N1499, N1499
segmented.

4.1.2. 19th Century German Novels printed in Fraktur

The second part of our evaluation corpus consists of 19th century German novels (with one
exception from the late 18th century) which are currently collected and OCRed by the Chair for Literary
Computing and German Literary History of the University of Würzburg.
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Most of the books were scanned in 300 dpi and were provided by the Bayerische Staatsbibliothek35.
The overall quality of the material varies considerably as shown in Figure 11. This task requires a
completely different OCR approach for various reasons: The resulting corpus is intended to be used
for experiments with quantitative approaches which are usually quite robust with respect to OCR
errors. Furthermore, from an OCR point of view, the material is considerably less complex compared
to the early printed books we discussed before, due to its rather trivial layout, more standardized
typography, and its superior state of preservation. The corpus is very extensive, currently comprising
around 1,800 novels, and aiming to OCR all novels of this period (probably 10,000 to 15,000).

These aspects make it neither necessary nor feasible to invest an extensive amount of manual
work. A highly automated workflow is intended instead.

Figure 11. Example images of the german novel corpus. From left to right: F1870, F1781, F1818 (page
in decent condition), F1818 (page in bad condition), F1803.

Table 5. German Fraktur novels used for our experiments given by their Authors and their Titles. The
Identifier encodes the group (Fraktur) and the year of publication

.

Identifier Author Title

F1781 Friedel, Johann Eleonore
F1803 von La Roche, Sophie Liebe-Hütten
F1810 Fouqué, Friedrich de la Motte Der Held des Nordens
F1818 Lafontaine, August Heinrich Julius Reinhold
F1826 Pichler, Caroline Frauenwürde
F1848 Hahn-Hahn, Ida Levin
F1851 Müller, Otto Georg Volker
F1865 Hiltl, Georg Gefahrvolle Wege
F1869 von Hillern, Wilhelmine Der Arzt der Seele
F1870 Hiltl, Georg Die Bank des Verderbens

4.2. Precise Segmentation and Trained OCR of Early Printed Books

In this first evaluation we will examine the performance of OCR4all on the task which represents
its main area of focus: the OCR of early printed books with the aspiration to obtain a (close to) perfect
result, both regarding segmentation and OCR, even if this means a substantial amount of manual work
for the user.

35 https://www.bsb-muenchen.de/
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4.2.1. General Processing Approach

Each book is always processed by a single user with the exception of 1494 which was cut in half
and assigned to two users for independent processing. Clear guidelines for the segmentation of any
book had been specified beforehand. The most important ones can be seen in the following:

� The entire book is segmented by the user and the required time is recorded.
� A fine-grained semantic classification of layout elements level is required, including the

distinction of images, running text, headings, page numbers, marginalia, signature marks,
catchwords, and swash capitals.

� After segmenting down to line level the GT production and iterative training approach starts.
For evaluation purposes only the transcription of whole pages was viable.

� To get notable improvements during the iterative training approach the amount of added GT
should rise considerably during each step. The suggested approach was to start out with two to
four pages, then add three to five pages during the next iteration and so on.

� Ideally, representative pages with respect to their state of preservation, print quality, and used
fonts should be selected for training and evaluation. Especially for the Camerarius project the
font aspect is particularly important, since many books comprise large sections printed in italics
while the bulk of the text is printed in an upright font.
� Since most of the books are meant to be transcribed in full later on in their respective projects, a

very comprehensive training was performed in most cases with the iterative training process
stopping only when a CER of 1% or below was reached.

4.2.2. Overall Time Expenditure and OCR Accuracy

In this first experiment we evaluate the two main criteria for a workflow with considerable
human interaction: the time that had to be invested both for obtaining a sufficient result regarding
segmentation and OCR as well as the achieved OCR accuracy. These criteria are heavily influenced
by several factors which have to be taken into consideration. First, the experience of the user: An
experienced user can be expected to be more efficient, both during the segmentation and the GT
production phase. In our experiments we differentiated between two groups of users: On the one hand,
there were several first time users with no experience with OCR4all and no or next to no experience
with other OCR related tools and processes. On the other hand, we had users with a solid general OCR
background and an extensive history of using OCR4all, LAREX, and various transcription tools. In
the following we assign the labels 1 and 2 to the users of the respective groups, with a higher number
indicating a more experienced user. To distinguish the individual users from each group we assign
additional labels (A, B, ...). With the exception of one experienced user (digital humanities) all users
are classical humanities scholars. Before starting to work on their respective books on their own, all
participants were introduced to the tool by one of the experienced users.

Second, challenges due to the book: Different books can vary considerably, mainly regarding
the number of pages, the complexity of the layout but also the print or scan quality and overall state
of preservation. Since the books utilized during our experiments did not show large discrepancies
concerning the latter criteria we just provide the number of pages and distinct semantic layout classes.
Table 6 sums up the results.

Results

For the less experienced users an average segmentation expense of slightly more than one
minute per page was recorded with considerable variations among different users. Fortunately, more
experienced users can speed up the process considerably, resulting in about 36 seconds per page on
average again with considerable variations depending on the layout complexity of the book. Regarding
the time expenditure required for correcting OCR results for GT production the vast majority of users
invest less than ten seconds per line on average. Both user groups achieved almost identical CERs
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Table 6. Results of the precise segmentation and trained OCR of early printed books. The Books are
grouped by the experience of the processing Users, first the unexperienced (1), then the experienced
ones (2). Regarding the Segmentation we provide the number of pages (#P) and semantic region types
(#R) that had to be distinguished as well as the time required for the entire book (tSeg.) and per page
(tSeg./P) on average. For the OCR we indicate the maximum number of GT lines #L which was used to
train the final OCR model along with the achieved CER. Furthermore, the time required to correct all
lines required to train the final model and one line on average is shown (tCorr.). Finally, some Key Figures
are derived to ensure comparability of the works. The overall manual time expenditure is calculated
for the entire book (tAll) by adding up the overall time required for segmentation and OCR and for
an average single page (tAll/P) by dividing by the number of pages. For both user groups averaged
values of all books (Mean) and the corresponding standard deviation (StdDev.) are provided if sensible.

Book User Segmentation OCR Key Figures
Short Exp. #P #R tSeg. tSeg./P #L CER tCorr. tCorr./L tAll tAll/P

[min] [min] [%] [min] [s] [min] [min]

C1532a 1A 55 7 90 1.6 829 0.47 280 20 370 6.7
C1532b 1A 130 7 110 0.8 611 0.73 146 14 256 2.0
C1533 1A 57 5 82 1.4 806 0.20 129 10 211 3.7
C1535 1A 96 7 104 1.1 723 0.39 176 15 280 2.9
C1552 1A 180 6 110 0.6 384 0.20 44 7 154 0.9
C1554 1B 81 6 66 0.8 487 0.36 76 9 142 1.8
C1557 1B 168 5 194 1.2 1,342 0.34 187 8 381 2.3
C1558 1A 94 8 139 1.5 751 0.25 183 15 322 3.4
C1561 1B 344 5 275 0.8 395 0.40 48 7 323 0.9
C1563 1C 158 5 140 0.9 1,175 0.60 95 5 235 1.5
C1566 1D 471 7 370 0.8 596 0.61 48 5 418 0.9
C1568 1B 342 5 223 0.7 406 0.24 36 5 259 0.8
N1494 1E 156 7 210 1.3 2,302 0.69 315 8 525 3.4
N1494 1F 157 7 360 2.3 969 0.82 97 6 457 2.9
N1549 1G 328 7 210 0.6 2,824 0.45 155 3 365 1.1
P1474 1H 198 4 29 0.1 700 0.90 230 20 259 1.3
P1509 1I 218 5 390 1.8 1,501 0.42 310 12 700 3.2

Mean 190 6.1 1.1 988 0.47 10 2.3
StdDev. 0.5 0.22 5.2 1.5

C1541 2B 439 8 345 0.8 847 0.92 82 6 447 1.0
C1566 2A 240 7 80 0.3 599 0.57 45 4 118 0.5
C1583 2A 606 7 200 0.3 1,647 1.00 123 5 323 0.5
C1594 2A 420 8 200 0.5 352 0.50 26 4 226 0.5
C1598 2B 344 8 245 0.7 256 0.45 28 7 273 0.8
N1498 2A 161 6 130 0.8 622 0.30 22 2 152 0.9
N1499 2A 166 7 105 0.6 632 0.12 110 10 215 1.3
N1506 2A 215 8 180 0.8 3,161 0.20 - - - -
P1484 2B 372 3 65 0.2 226 0.34 22 6 80 0.2

Mean 329 6.9 0.6 927 0.49 5.5 0.7
StdDev. 0.2 0.30 2.4 0.4

(0.47% and 0.49%) by utilizing a very similar amount of GT (988 and 927 lines). These results enable
us to compare the time expenditure of the users on a more general level by taking the achieved OCR
quality out of the equation. Calculating the time required to process a book, both segmenting it and
creating enough GT to obtain an average CER of below 0.5% resulted in just 0.7 minutes per page
for the experienced users. Compared to the 2.3 minutes achieved by the unexperienced users this
represents a speedup of more than factor 3.
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Interpretation

The times accounted for segmentation clearly show that performing a precise and fine-grained
semantic segmentation of early printed books, even when using a comfortable and versatile tool like
LAREX, can still amount to several hours of work for a single book. On top comes the time to generate
ground truth (either from scratch or by correcting an OCR result) and to train an OCR model. Our
experiments show that the total processing time from beginning (image processing, page segmentation)
to end (OCR text with less than 0.5% on average) is less than a day for books containing a few hundred
pages.

While this is still a far cry from an expectation of “press a button, wait a few seconds, receive the
results”, a meaningful comparison would be to look at the current practice of manual transcription
as a baseline. This is usually done either by a person sitting in front of two displays, one of which
shows the page image of a book and the other a word processor. The scholar alternately looks at the
image, tries to decipher its text and enters it into the word processor on the other display. The process
is cumbersome, error prone (hence the practice of double keyboarding with two teams entering the
same texts which will later be compared to spot transcription errors), and very time consuming. The
transcription of a whole book of several hundred pages can easily consume a few weeks. We did not
thoroughly evaluate the manual transcription from scratch but to get a rough impression the users
2A and 2B transcribed a small number of pages from their respective books (C1541, P1484, and 1499).
Extrapolating the effort for the entire book led to an overall time expenditure of 44 hours for C1541, 47
hours for P1484, and 130 hours for N1499. Our method therefore reduces the working time from a few
weeks to a day, plus the additional effort to weed out the remaining OCR errors.

Next, the results indicate a high fluctuation of efficiency even within the two user groups,
especially among the unexperienced users. Out of the eight books which took longer than one
minute per page, four were processed by the same user (1A). The results of N1494 are especially
eye-catching since the segmentation took the second user (1F) over 75% longer than the first one (1E)
despite both of them working on almost identical material.

Extremely complex layouts like the ones of N1498, N1499, and especially N1506 can be very
challenging and not trivial to process even for very experienced users. Having said that, in our
experience these three examples are about as complex as it gets for early printed books, especially
combined with our very strict and detailed segmentation guidelines. Almost on the other end of the
spectrum are books like P1484 where most pages are almost trivial to segment and therefore only
require a minimal amount of time (around 10 seconds when processed by an experienced user).

Regarding the OCR correction it is noteworthy that four out of six books which required more
than ten seconds per line were processed by a single user, the same that also achieved most of the slow
segmentation results (1A). Since there are no obvious reasons for this effect regarding the material we
assume that some users simply require more time during the correction process maybe because they
are too frightened to miss something. This is also reflected by the general correction strategy of the
two groups. While the experienced users tend to simply scan the results by hopping between the line
image and the OCR result on a word to word basis, the unexperienced users often first read the entire
text in the line image and the OCR result separately, before performing a third check where smaller
junks of the line are compared. It is worth mentioning that cross checks of the produced GT showed
no noteworthy effects regarding the quality of the transcriptions among different users.

Not only because of the fact that it was the most experienced user (2A) who achieved the worst
OCR results of all books, we have no reason to believe that the user has a noteworthy influence on
the OCR accuracy. Most importantly, the reachable CER depends on the book and the contained
typography as well as the amount of GT used for training. The obtained results underline this
assumption almost perfectly.

While the discussed key figures are very helpful to obtain an overall impression of the amount of
manual effort required to process early printed books with OCR4all, further experiments are required
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to get a deeper understanding of the effects of the iterative training approach and the influence of
segmentation guidelines.

4.2.3. Evaluating the Iterative Training Approach

The manual correction effort not only scales with the number of lines that have to be corrected
but also with their recognition quality. To be able to thoroughly evaluate the effects and benefits of
the iterative training many different values and results were recorded. Since their evaluation and
interpretation is a quite complex task we first introduce them and describe them in detail in Figure 12
before we list the results of selected works in Table 7.

Figure 12. Schematic representation of the iterative training approach and its evaluation. As an
example we used book C1541 processed by an experienced user. For comparison we refer to the first
line of Table 7. To begin with, the user selects a few pages (here 3 pages comprising 88 lines) and
applies a suitable Mixed Model to it. After investing 18 minutes to correct the results a first evaluation
shows that the Mixed Model achieved a CER of 4.80% on the first batch of lines. Next, the produced GT
can be used to train a first book-specific model (Model 1) which required 16 minutes, using the initial
Mixed Model as a starting point. Model 1 is then applied to the next batch (5 pages / 146 lines). After
correcting the erroneous results (23 minutes, 2.52% CER) a second book-specific model is trained (Model
2, 42 minutes) using all available GT (8 pages / 234 lines) and again building from the initial Mixed
Model. This process is repeated until a satisfactory CER is reached or the entire book is transcribed.
For evaluation purposes a separate Eval dataset can be utilized which was not part of any training
set. By applying the Mixed Model and the models produced during each iteration to this dataset and
evaluating the results we can compare the models objectively.

Results

There are several interesting things to be taken away from the results summarized in Table 7.
First of all, it is shown that the iterative training approach yields a significant speedup regarding the
correction time. On average the manual effort is almost cut in half (average speedup factor 1.9, last
column) with the experienced users benefitting considerably more compared to the unexperienced
ones (factor 2.3 and 1.3).

Another eye-catching abnormality are the discrepancies between the performances of the same
models on the new and the eval data. While some deviations had to be expected and can be considered
negligible others seem to be too substantial to be disregarded as variance. For example, when
processing C1557 achieves a good CER of 2% on the new data but at the same time struggles severely
with the eval data (10% CER). An explanation is given in the next section.
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Table 7. Evaluation of the iterative training approach. For each Book processed by a User we provide
all values and results necessary to reconstruct and evaluate the progress of the GT production and
training. In the New Data column the number of the newly added pages (#P) and the corresponding
number of lines (#L) is listed, as well as the time required to produce the transcription. Furthermore,
the CER is given which is calculated from the OCR result achieved by the model from the previous
iteration and the newly created GT. For comparison, the CER achieved on the separate and constant
evaluation set (Eval) is recorded. All Data shows the number of available GT pages and lines at this
point which then serve as training data for the new model which is used for the next iteration. In the
Correction columns we compare the actual required correction time when applying the iterative training
approach (ITA) with the projected time when only using the output of the mixed model (MM) to get to
the point where the final (and in case of MM the first) model is trained. The speed up factor (SU) is
calculated for each book for the two user groups separately and for both groups combined.

Book User It. New Data Eval All Data Correction
Short Exp. #P #L tCorr. tCorr. CER CER #P #L ITA MM SU

[min] [s/L] [%] [%] [min] [min]

C1541 2B 1 3 88 18 12 4.80 5.51 3 88
2 5 146 23 9.5 2.52 3.09 8 234
3 20 613 41 4.0 0.90 1.29 28 847
4 - - - - - 0.92 - - 82 169 2.1

P1484 2B 1 5 110 14 7.6 3.53 3.95 5 110
2 6 116 8 4.1 0.89 1.48 11 226
3 - - - - - 0.34 - - 22 29 1.3

N1499 2A 1 2 105 65 37 25.22 23.59 2 105
2 3 138 20 8.7 0.54 2.23 5 243
3 5 389 25 3.9 1.24 1.63 10 632
4 - - - - - 0.20 - - 110 474 3.6

Mean(2): 2.3

C1557 2B 1 4 104 16 9.2 2.00 10.00 4 104
2 11 307 70 14 6.06 8.64 15 411
3 15 407 56 8.3 1.60 1.17 30 818
4 20 524 45 5.2 0.26 0.65 50 1,342
5 - - - - - 0.34 - - 187 206 1.1

C1558 1A 1 4 125 38 18 15.31 16.86 4 125
2 8 251 60 14 1.28 0.65 12 376
3 12 375 85 14 0.58 0.34 24 751
4 - - - - - 0.25 - - 183 225 1.2

C1566 1D 1 5 122 15 7.4 3.85 4.27 5 122
2 6 126 18 8.6 3.15 1.45 11 248
3 12 348 15 2.6 0.22 0.99 23 596
4 - - - - - 0.61 - - 48 74 1.5

Mean(1): 1.3

Mean: 1.9

Interpretations

Admittedly, the projection of the speedup achieved by the iterative training approach is quite
rough since the factor depends a lot on the pages the mixed model was applied to, which is also shown
by the high fluctuations among the speedup factors. Moreover, in a real-world application scenario
there has to be some kind of training and testing during the correction phase in order to know when to
stop as the results from Table 6 have shown that the number of lines needed to reach a certain CER
varies considerably. Figure 13 depicts this problem and graphically explains the gain obtained by the
iterative training approach.
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Figure 13. Left: Analysis of the iterative training approach using C1541. The goal is to reach point P
which represents the (unkown) number of lines necessary to reach a CER of below 1%. In theory, the
red curve describes the unknown relation between GT lines used for training and the achieved CER
and therefore represents the theoretical ideal iterative training approach that produces and applies a
new OCR model after the transcription of a single new line of GT. The real route chosen by user 2B is
shown by the blue stair case function. Green depicts a single training approach using the same final
number of line of GT as user 2B (C + C0) and the perfect but unknown number of lines (C).
Right: This time the tcorr-coordinate shows the manual effort necessary to correct a single (which
highly depends on the CER). The time saved by the iterative training approach (in case of user 2B and
theoretically ideal) is represented by the green area minus the blue area. In this case this represents a
reduction of the manual effort by 51% which equates to a speedup of 2.1.

Determining the ideal training route is no trivial task and depends on several factors. To begin
with, the user has to estimate how many lines are necessary to reach the desired CER. Due to the
variety of the material this is very challenging, even for experienced users, resulting in over and
under estimations of the required amount. The smaller the chosen steps are the more accurate the
convergence to the optimal value P (Figure 13) becomes. One (theoretical) approach is training a model
each time a new line of GT is added (red curve, left), however this is not sensible. The other end of the
spectrum is represented by correcting the output of the mixed model until the presumably required
number of GT lines is reached (green), which discards the gain of correcting lines with an improving
CER (area ratio on the right). Consequently, the optimal or rather a sufficient real world solution has
to lie somewhere in between these two extremes. The available hardware plays an important role as
it directly influences the training duration. For example, most training processes can be completed
within a couple of minutes when using several GPUs, allowing the user to continue the transcription
almost instantly. When no GPU support is available a training can take several hours, requiring the
user to perform different tasks.

Despite the complexity of optimizing the iterative training approach, its general benefits are clear
and the results confirm the expectations. This speedup is due to the fact that the average correction
time per line clearly correlates with the quality (CER) of the underlying OCR result. The only exception
can be seen in the iterations 1 and 2 of book C1566 where it took the user even a little longer to correct
a line, despite starting from a somewhat better recognition result. Naturally, comparisons like this
are only viable for a single user and within the same book. Since a visual inspection of the concerned
pages did not lead to new insights it stands to reason that human factors like tiredness, form on the
day, etc. play a non-negligible role. Furthermore, it is worth mentioning that the correction time will
not decrease linearly since the user will always require a certain amount of time for grasping the line
image and reading the OCR text even with a theoretical CER of 0.0%.
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In case of C1557 the reason for the striking difference between the CER on the new and the eval
data is that most of the Camerarius books incorporate a frequent change of two completely different
Antiqua fonts: upright and italics. Of course, other books make use of different fonts as well but mostly
in less frequent layout parts like headings while in case of Camerarius they are used for the main text
and therefore often fill entire pages. So when the ratio of pages/lines printed in upright and in italics
varies considerably between the new and the eval data, this of course also effects the obtainable CER.
In the case of C1557 the new data in the first iteration did not contain any italics lines so the mixed
model which was mainly trained on Antiqua upright performed quite well. On the contrary, the eval
data had a significant portion of italics lines the default model could not handle. After creating some
GT of italics lines during the first iteration, which is indicated by the relatively high CER (6%), the
newly trained model can deal with both fonts, resulting in a considerably better CER on the eval set.
To counter this problem we trained a new mixed model, after several Camerarius books had been
processed, which was not only to deal considerably better with the upright/italics problem but also
with the Greek characters.

N1499 is another interesting case. First, despite printed in a rather normal looking Bastarda
font and being among the best books in the corpus in terms of image quality, the CER obtained from
applying a mixed model is by far the worst that occurred during our experiments, yielding a CER of
around 25%. Naturally, this also explains the unusually high time expenditure necessary for correction
we mentioned during the discussion of Table 6, since the correction of an OCR result flawed to that
degree is a very cumbersome task and barely faster than transcribing the line from scratch, if at all.
Second, while the recognition quality on the new data in the second iteration is great (0.54%) the
resulting model performs significantly worse on the new data of the next iteration (1.24%). While the
processing user (2A, the most experienced user participating in our experiments) could neither explain
this by the scan quality or the use of different fonts, a look at the confusion tables quickly identified
the problem: In iteration 2, the error distribution looked like the ones produced by a well converged
model, mainly consisting of the misrecognition of rare capital letters or typical OCR error like the
confusion of c and e. However, in iteration 3 the most frequent errors were dominated by previously
negligible errors which all related to the characters x, v, and j. It turned out that the printer decided to
use printing types with considerably different looking glyphs for different kinds of marginalia.

While some marginalia serve as reminders for the reader or simply repeat some keywords from
the main text, others are referencing other books using Roman numerals which are numbered and
therefore rely on the affected characters a lot. The effect was further fortified as during the third
iteration the pages added by the user contained plenty of marginalia containing references. This
phenomenon did not only affect the recognition quality but also the correction time. Despite the
considerably higher CER in iteration 3 the user handled these lines more than twice as fast on average
as the lines from iteration 2. While the effect can partially be explained by the accumulation of very
short lines (mainly marginalia), another reason, according to the processing user, clearly was the shift
in the error distribution. As explained before, the main cause of error are the highly flawed reference
numberings while the remainder of the text was recognized with very high accuracy. Understandably,
this effects the amount of effort required for correction heavily since the errors are often clumped and
can often be corrected very efficiently, for example by deleting an entire number and simply typing in
xxviij without even having to use the virtual keyboard once.

Concerning the training duration (machine time without human intervention) we do not want to
go into detail in this paper as the required times considerably depend on many factors including the
available hardware, the amount of available GT, many training parameters, especially the use of data
augmentation, and the activation of early stopping. In our experience a modern PC or laptop is enough
to quickly perform standard training runs within one to two hours while even extensive book-specific
training processes can be completed over night. During the course of our experiments we set up an
instance of OCR4all on a server where the data could also be accessed by a highly performant GPU
cluster allowing to complete most of the training processes in a couple of minutes.
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4.2.4. Segmentation Without Semantic Classification

As our first experiment has shown, the segmentation step can be considerably more time
consuming than the OCR, even when aiming for very low CERs. Of course this is especially true for
voluminous books since the effort necessary to obtain a certain recognition accuracy does not scale
with the size of the book, but the segmentation effort does. However, the required manual work to
segment a book can be severely cut down when the aspirations regarding semantic classification are
less strict. Therefore, we conducted another experiment where the single goal of the segmentation is to
provide the subsequent OCR with the means sufficient to produce the required output. Apart from a
clean text/non-text separation this also includes ensuring the correct reading order. Figure 14 shows
the desired results for example pages of the three books we used for this experiment: P1484, C1541,
and N1506.

Figure 14. Representative example image of three books showing the difference between the basic (top
row) and exact (bottom row) segmentation approach. From left to right: P1484, C1541, N1506 (three
images).

We selected these books due to their widely differing layout properties: While P1484’s very
simple layout apart from images and running text only uses a single additional semantic element
(chapter headings), C1541 and N1506 both make use of a wide variety. Still, also these two books differ
considerably since C1541’s layout elements for the most part are simply arranged from top to bottom in
a one column layout, with the comparatively rarely used marginalia being the only exception. N1506
however not only has plenty of marginalia but also incorporates a complex two column sub layout on
every other page.

For our experiment the users 1C and 2B both segmented 20 representative pages of each the books
twice, first using the basic approach (text/non-text and reading order only) and then the complex
approach from the first experiments including a fine-grained semantic classification.

Results

For all sub task we recorded the required times which are presented in Table 8.
As expected the basic segmentation approach requires considerably less time than the exact

one, leading to an average savings of 38% for the experienced and 45% for the unexperienced user.
Regarding the comparison of two users with a different degree of experience the results in general
show the expected tendency, namely a much faster processing by the more experienced user. On
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Table 8. Comparison of two users (1C and 2B) and two different segmentation approaches regarding
the segmentation with LAREX. Apart from the processed Book and the experience of the User we
differentiate between the two segmentation Modes (see Figure 14) basic (B) and exact (E). We give the
Times required for the segmentation of 20 representative pages and for a single page on average. Finally
we calculate the ratio of the basic approach to the exact one (B / E) and between the less experienced
user and the more experienced one (1C / 2B).

Book User Mode Time B / E 1C / 2B
[s] [s / P]

P1484 2B B 120 6 0.75 3.04
2B E 160 8 3.84
1C B 365 18 0.59
1C E 615 31

C1541 2B B 255 13 0.46 3.43
2B E 560 28 3.41
1C B 875 44 0.46
1C E 1,920 96

N1506 2B B 805 40 0.66 1.49
2B E 1,220 61 1.61
1C B 1,200 60 0.61
1C E 1,965 98

average it takes the novice user 2.65 times longer to perform the basic segmentation on the three books.
This factor even rises slightly to 2.95 when an exact segmentation is required.

Interpretations

When taking a closer look at the individual books it is eye-catching that the most time can be saved
using the basic segmentation approach with C1541. This makes sense since dropping the requirement
of semantic classification reduces the complexity of C1541 and thereby the typical Camerarius books
significantly, especially because the reading order in the single column layout is always automatically
correct, as soon as the marginalia, if present, have been cut off. In comparison P1484 does not allow to
save as much time since the required manual effort remains the same for many pages as they simply
contain running text only or running text with images which both are either segmented correctly
automatically or have to be manually corrected, regardless of the segmentation mode. Consequently,
there is a difference in the results from the (semi-)manual segmentation of the headings. As for N1506,
bigger savings were not reached because the complex layout requires most of the manual interventions
in order to ensure the reading order and not because of a correct semantic segmentation. For example,
when the marginalia are correctly separated from the main text LAREX automatically assigns the
correct type. In the two column sections the user can save some time by not separating the headings
but the main matter of expense, that is the column separation in itself, remains.

It is worth mentioning the discrepancy between the two users, while being very similar for P1484
and C1541, is comparatively low for N1506, which at first seems odd, since N1506 is the book with
the most challenging layout not only in this experiment but in the entire corpus. This effect can be
explained when looking at the advantages an experienced has over an unexperienced one. The three
main aspects are:

� Mental understanding of the layout.
� Optimized application of advanced segmentation techniques.
� Raw technical ability.

We think that experienced users can understand a layout considerably faster and then act
accordingly right away. Furthermore, they can use LAREX much more efficiently by putting its
automatic features to work. However, when dealing with extremely complex layouts that require lots
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of manual interventions, the overall degree of advantage is dominated by the effect of raw technical
ability, which we consider to be significant but not as high as the one of the other advantages.

4.3. Fully Automated Processing

Next, we reduce the manual effort to a minimum by choosing a fully automated approach. Since
the Dummy Segmentation of OCR4all relies on the layout analysis functionality comprised in the
OCRopus 1 line segmentation step, more complex layouts cannot expected to be solved without human
intervention. Consequently, we first focus our in-detail evaluation on the 19th century Fraktur models
whose layout is usually rather trivial, before we turn to more challenging material.

4.3.1. 19th Century Novels

This experiment was performed on ten German Fraktur novels from the corpus described above
in 5 using the Calamari Fraktur 19th century ensemble which was trained on a wide variety of data
also derived from 19th century Fraktur novels (see [21] for details).

We randomly selected ten pages from each novel and processed them fully automatically with
OCR4all as well as with ABBYY Finereader Engine CLI for Linux36 version 11 together with ABBYY’s
historical Fraktur (Gothic) module and Old German language settings. The results were compared by
calculating the CER on a page to page basis. To ensure a fair comparison several regularizations, for
example the normalization of the long and short version of the s, were performed beforehand.

Results

Table 9 sums up the results. The values show that OCR4all considerably outperforms ABBYY
Finereader on every single book resulting in an average improvement of over 84% and a relative
improvement of almost 8 with respect to the error rate. On eight of the ten books CERs of below 1%
are achieved while six books even yielded error rates below 0.5%. Wild fluctuations in CER can be
observed for ABBYY Finereader (best: 0.48%, worst: 27%) but also for OCR4all (best: 0.06%, worst:
4.89%) caused by the highly variant quality of the scans as shown in Figure 11.

Table 9. CERs achieved by ABBYY Finereader and OCR4all when being applied fully automatically to
different Books. The final two columns indicate the percent error reduction ErrRed. and the improvement
factor Impr. improvements yielded by OCR4all over ABBYY. Furthermore, we provide the average
(Avg.) over all books for each value.

Book ABBYY OCR4all ErrRed. Impr.

F1781 2.9 0.60 79.3 4.8
F1803 27 4.89 81.9 5.5
F1810 3.8 0.61 84.0 6.2
F1818 10 1.35 86.6 7.5
F1826 1.1 0.06 94.4 18
F1848 0.93 0.20 78.5 4.7
F1851 1.0 0.16 84.0 6.3
F1855 4.0 0.33 91.8 12
F1865 1.6 0.18 88.8 8.9
F1870 0.48 0.13 72.9 3.7

Avg. 5.3 0.85 84.2 7.8

36 https://www.ocr4linux.com/en
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Interpretations

ABBYY struggles noticeably with substantially soiled pages, recognizing lines in regions showing
dirt or bleed through on a regular basis, resulting in gibberish OCR output. OCR4all shows only few
segmentation errors, with the main problem being left out page numbers, which happens due to a
heuristic in the OCRopus 1 line segmentation script that ignores lines that contain less than three CCs.

Table 10. The ten most common confusions over all ten books for ABBYY Finereader and OCR4all,
consisting of the GT, the prediction (OCR), the counted number of occurrences (CNT) and the percent
contribution (%) of a given confusion to the overall number of errors. Whitespaces are shown as and
empty cells denote no prediction.

ABBYY OCR4all

GT OCR CNT % GT OCR CNT %

64 2.6 63 11.9
57 2.3 n u 14 2.7

s S 57 2.3 f s 12 2.3
, 50 2.0 i l 12 2.3

e c 40 1.6 r t 12 2.3
e " 40 1.6 " , 9 1.7
s r 40 1.6 , 9 1.7
- " 39 1.6 i 8 1.5

. 36 1.5 c e 8 1.5
x " 35 1.4 , 6 1.1

Remaining 81.6 Remaining 71.1

First of all it is apparent that the error distribution of the results produced by OCR4all is more top
heavy, with the top 10 making up for almost 30% of the total errors, compared to the one of ABBYY
(less than 20%). However, a closer look shows that the distributions are actually quite similar to each
other, apart from the top error of OCR4all, namely the deletion of whitespaces, which is responsible for
almost 12% of the errors alone. Interestingly, while insertions and deletions of whitespaces represent
the top two errors for ABBYY and OCR4all also fails to predict them on a regular basis, insertions
of whitespaces do not occur in the top ten of OCR4all at all. The remainder of the most frequent
OCR4all errors looks as expected, containing well-known errors like the confusion of similar looking
(at least in 19th Fraktur script) characters like n and u, f and s (originally predicted as the long s and
then regularized), or c and e as well as the insertions and deletions of tiny elements like commata,
sometimes also as part of quotation marks. ABBYY seems to struggle with quotations marks as well
but mostly by confusing seemingly random glyphs like e, -, and x with them. Even when considering
that the original recognition mostly showed french quotation marks (»«) which might explain some of
the confusions the notable accumulation of these errors remains inexplicable. Furthermore, some of
the aforementioned typical OCR errors like the confusions of e and c and s and S still are surprising
since one would expect the powerful dictionary and language modelling capabilities of ABBYY to deal
with these errors quite comfortable. A possible explanation is that these postcorrection operations
do not change characters that have been recognized with a certain degree of confidence to prevent
the introduction of errors when “improving” out of dictionary words like unusual proper names. It
is noticeable that 27 of the 57 s/S errors appear in a single book (F1851) but closer inspection did not
lead to any new insights as the used glyphs differ considerably, are often recognized correctly, and no
pattern regarding the misrecognitions could be observed.

Again, it has to be emphasized that these very low CERs can only be achieved when a highly
performant mixed model is available. In this case we were able to rely on a strong voting ensemble
perfectly fitting the evaluation material. Unfortunately, comparable ensembles are not available for
other scripts and languages, yet.
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4.3.2. Early Printed Books

As expected, the fully automatic processing of early printed books is a tricky task and its
applicability highly depends on the layout and typography of the book at hand. The results presented
above as well as some additional experiments led to the following mostly qualitative observations:

� The current setup can deal with relatively simple layouts consisting of a single or several well
separated columns quite reliably. When several columns have to be identified the user needs to
specify the maximum number of columns occurring on a page.

� Despite the lack of an explicit text/non-text segmentation, the combination of OCRopus 1 line
segmentation and Calamari’s recognition module is surprisingly robust against non-text elements
like noise, artistic border elements, images, and swash capitals. Even if parts of these elements
make it into a text line they often do not deteriorate the text recognition result since Calamari
will ignore them due to the lack of a confident recognition of available characters.
� Marginalia which are located very close to the main text often cannot get separated correctly,

leading to significant errors in the reading order.
� Treating a page that comprises highly varying font sizes, for example a very prominent heading

line and many running text lines whose characters are not even half as high, as a single text
segment can lead to wrongly segmented lines. This happens because the line segmentation
estimates the most likely height of a line on page level and then tries to find fitting lines. A
preceding region segmentation prevents this problem from occurring.
� The available mixed models work reasonably well on the majority of books achieving an average

CER of 7.7% on the corpus we used for our evaluations (see Table 4). However, since this is
probably not good enough for most use cases, book-specific training is necessary. Additionally,
the CERs vary considerably, ranging from below 2% to over 25% on the new GT of the first
iteration of each book, underlining the problematic of mixed models we discussed before.

5. Discussion

Before discussing the results and their meaning in detail we sum up the main findings of our
experiments:

� When dealing with challenging early printed books unexperienced users had to invest 2.3
minutes per page on average to perform a precise segmentation and to reach a CER of below 0.5%
which highlights the effectiveness of the proposed approach. Experienced users can perform
much more efficiently reaching a speedup factor of more than 3 (0.7 minutes per page on average).

� The iterative training approach yielded significant speedups (factor 1.9) compared to the naive
correction of the output of the mixed model.

� A basic segmentation approach which only ensures a sufficient text/non-text separation and
a correct reading order reduces the manual effort required for segmentation considerably by a
factor of more than 2.5.

� The experiments with 19th century Fraktur novels showed that a fully automated application
of OCR4all is not only possible but can be highly precise on material with moderate complex
layouts and if a suitable OCR model is available (average CER of 0.85% compared to ABBYY’s
5.3%).

The obtained results show that OCR4all fulfills its purpose by enabling non-technical users to
capture even the earliest printed books completely by their own and with great quality despite the
challenges provided by complex layout and irregular typography. Due to our strict demands regarding
the semantic classification of layout elements and our goal of high OCR quality, a considerable amount
of manual work was required and accepted. While the experiments showed that even non-technical
users without any background or previous experience in OCR were comfortably able to successfully
work with OCR4all, the results also showed that there is a learning curve and experience is key. This
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holds true for both the segmentation as well as the OCR, with experienced users being almost twice as
fast when it comes to segmenting a page or transcribing a text line compared to unexperienced users
on average. However, the quality of the result was not influenced by the experience of the user, with
both groups achieving an excellent average CER of slightly below 0.5%.

Regarding the two main steps which require manual intervention, segmentation and OCR, the
first one seems to show more room for improvement since the OCR of historical printings made great
progress over the last few year which could also be observed during our experiments. Calamari’s
training and recognition capabilities combined with the easy to use iterative training approach
provided by OCR4all allow the users to utilize state-of-the-art deep learning software and accuracy
improving techniques like pretraining, voting, and data augmentation without ever being forced to
acquire a deeper understanding of the technical concepts behind them. As shown by the evaluations,
CERs below 1% or even 0.5% should almost be considered the norm after a thorough book-specific
training was performed. The segmentation using LAREX proved to be intuitive and highly accurate.

While the usage of OCR4all reduces the manual effort necessary to transcribe an early printed
books tremendously, especially compared to the fully manual approach which often required several
weeks of full-time transcribing to process a single book, we still think that there is room for
improvement.

While a fully automated approach where it is not necessary to look at every single page seems to
be currently out of reach, not only due to the complexity of the layouts but also due to the very high
demands of the users regarding the quality of the segmentation and degree of semantic distinction,
we think that the efficiency of this part of the workflow can be further increased. Especially the
segmentation of the Camerarius books appears to be a rather frustrating task since the one-column
layout in itself is rather trivial but the repeated manual classification of semantic sub regions can be
exhaustive. Pushing the labeling part to a later stage in the workflow, and for example perform it
after the line segmentation or even after the OCR, seems to be a viable solution but the realization is
not trivial. While it is possible to first capture the entire text and then add semantic labels later, for
example by encoding them using TEI, the positional information with regards to the scan would get
lost, considerably limiting the possibilities regarding the presentation of the result. Having said that,
the region coordinates do not necessarily have to be recorded during the region segmentation step.
An alternative could be to first perform a less time consuming text/image separation like the basic
segmentation approach we evaluated earlier. Next, the user could perform the line segmentation and
apply the iterative training approach. Finally, the semantic classification of layout elements would
take place at the very end of the workflow by making use of the line coordinates. For example, when
dealing with a sub heading with adjacent running text above and below, the user could simply select
the line and apply the new type, resulting in three new regions. Especially when processing works
with similar layout properties like the Camerarius books from our experiments this approach would
significantly speed up the segmentation and labeling process without noteworthy affecting the rest of
the workflow.

When discussing the means necessary to increase the degree of automation the need for a
book-specific training also plays an important role. While our experiments have confirmed the
effectiveness and efficiency of the iterative training approach it still represents a time-consuming
task. As thoroughly argued during the first two sections of this work the need for book-specific
training highly depends on the material at hand but most importantly on the intended use of the
results. In this paper we mainly focused on books which are captured within projects that intend
to produce quotable texts as their final result and therefore need to be corrected to their full extent.
Under these circumstances it has to be considered negligent not to perform a book-specific training,
since the ongoing transcription/correction of the book produces comprehensive amounts of GT
anyway. Nevertheless, we are aware of the fact that there are other projects and use cases that, despite
dealing with early printed books, aim for a more quantitative approach and therefore are willing to
make sacrifices regarding text quality and semantic labeling. Our evaluations showed that a basic
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segmentation approach that simply ensures a proper text/non-text separation and a correct reading
order can save around 40% of the time required for segmentation. While this represents a substantial
speedup the required manual effort is probably still too high for some areas of application. Yet, we
have seen that the segmentation approaches currently available in OCR4all cannot deal with more
complex layouts in a (close to) fully automatic manner.

Even after obtaining a sufficient segmentation result with minimal or no human effort, the OCR
represents the next big challenge. When aiming for the greatest extent of automation book-specific
training does not seem like a viable solution. Yet, as we have seen above, despite our repertoire mixed
models trained on a wide variety of fonts geared towards the recognition of different font classes, a
great or at least sufficient OCR quality cannot be guaranteed at all when working with early printed
books. Of course, a wider variety of more specialized mixed models can help to improve results.

Suitable grouping criteria besides the general font type and the age of the books could be the
region or even the printing shop a book was printed in. However, producing GT to train these models
is a very cumbersome and time consuming, especially when starting from scratch (or from very
general mixed models), like we did with Camerarius. A possible solution would be to try to make
use of already available data as much as possible, to identify appropriate font clusters, to train the
corresponding mixed models and to apply them to the parts of a text which have been identified to
contain the respective font. First steps in this direction have been made by Weichselbaumer et al. [45]
who make use of the Gesamtkatalog der Wiegendrucke37 (GW) and its side project the Typenrepertorium
der Wiegendrucke38 (TW) that store extensive information concerning the typography used during
the 15th century and use a CNN that is presented 25 random crops from a page in order to classify
the main font. While the use of the glyphs indexed in GW and TW is definitely promising the font
recognition on a page to page basis does not seem ideal as a more fine-grained classification on word
or even sub-word level would allow a more precise application of suitable OCR models. As we have
seen during our Camerarius use case, the use of several fonts or even scripts on a single page or
even within a line is not uncommon. Therefore, we think that a line-based approach like the one we
proposed for the automatic semantic tagging of a historical lexicon [44] is better suited for the task
since the lines have to be identified anyway before the subsequent OCR step can take place. We already
showed Calamari’s ability to reliably and accurately distinguish between different fonts even when
their typefaces were very similar to each other. Kraken has also taken a few first steps in that direction
by providing a generic model that can differentiate between Latin, Arabic, Greek, and Syriac script.
After detecting the script suitable OCR models can be applied to the (parts of) lines which match.

In general, the applicability of fully automated methods does not only depend on the intended
usage of the results but also on the material at hand. We have shown that OCR4all can achieve excellent
results on 19th century Fraktur models considerably outperforming the commercial state-of-the-art tool
ABBYY Finereader. However, these results could only be obtained because of the relatively straight
forward layout and the availability of a suitable mixed OCR model, which are both aspects which
cannot always be considered to be the case even for 19th century material or even newer. If there is
either a complex layout or no good recognition model available the result will be far from excellent for
any OCR engine. If the layout is either simple or can be ignored because the segmentation is treated
separately the OCR engine with the better recognition engine will win. While OCR4all delivered
superior results compared to ABBYY on 19th century novels, this was not a universal ranking: On
issues of the German periodical “Daheim”, a German journal published between 1864 and 1943,
ABBYY recognized text segments with a CER of 0.07% outperforming Calamari with its standard
voting ensemble (0.09%). Apparently, ABBYY’s internal recognition model for Fraktur had been trained
on a very similar font.

37 https://www.gesamtkatalogderwiegendrucke.de/
38 https://tw.staatsbibliothek-berlin.de/
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As an example regarding the availability of suitably mixed models for more modern printings our
efforts to support the COST39-funded project Distant Reading for European Literary History40 come to
mind where we had to deal with novels mostly printed around 1900 in Antiqua. While the layout was
trivial and the print quality and state of preservation was comparatively excellent our available models
could not deal with the typography or rather the languages. Since among others the novels were
printed in Portuguese, Romanian, and Hungarian many glyphs and diacritica were unknown, resulting
in CERs of around 10% when applying the Antiqua modern standard model. While a few pages
of GT were sufficient to train highly performant (CER < 0.5%) book-specific models this underlines
the problematic nature of having suitably mixed OCR models available does not only relate to early
printed books but also to comparatively modern material, if hitherto unknown glyphs are encountered.
In this case we had to add example lines with the missing characters to our training corpus to train a
new mixed model.

To sum up, despite the open questions and challenges demonstrated above, OCR4all can become
a cornerstone when it comes to the high quality capturing of historical printings (a final summary
of the obtained results is shown in Figure 15). By reducing the required technical know how to a
minimum it is now possible for humanities scholars to take the acquisition of their much desired and
needed textual research data into their own hands.

Figure 15. Final summary of the results dependent on the material and the processing user.

6. Future Work

In this section we first discuss features we would like to integrate into OCR4all or its submodules
in the future before concluding the paper by giving an outlook on the general future of OCR4all.

First of all, one of the main goals to address is the obvious lack of a more potent segmentation
method that can deal with (more) complex layouts in a highly automized way. Therefore, we aim to
include a trainable pixel classifier in order to either provide a valid starting point for other segmentation
approaches by classifying pixels and consequently connected contours as text, image, and noise or
even perform a fine-grained semantic markup [46]. Of course, a more powerful segmentation approach
must also comprise a more sophisticated method for the determination of the reading order which

39 https://www.cost.eu/cost-actions/
40 https://www.distant-reading.net/
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also has to be integrated into LAREX. To generate the reading order, the idea is to allow the user to
comfortably specify rules based on the detected region types as well as their absolute and relative
position.

Regarding training and recognition we want to provide the user with the possibility to comfortably
train several type-specific models for a single work. This can be very helpful, when the book comprises
a few, possibly highly differing, fonts or even scripts, e.g. Latin and Greek. A book-specific trained
script detection model in fact should be expected to perform considerably better, not to mention that
it is not feasible to train generic mixed models to recognize book-specific fonts. Consequently, an
appropriate GT production and training functionality will have to be supported within OCR4all.

Furthermore, in order to train more robust models, a more flexible selection of lines for training,
recognition, and correction is desirable as this allows to train models using GT that is widely spread
over the course of the entire book. This would help to further optimize the iterative training approach
by integrating active learning, i.e. adding lines to the existing GT pool, which the current models had
problems recognizing, instead of random ones. The effectiveness of this approach has already been
shown by [47] who were able to considerably improve the OCR results (average gain of 16%, maximum
gain of 32%) by purposefully adding lines to the training set, that showed the largest disagreement
between the separate outputs of the voters.

Apart from the voting, there are several other use cases in which we want to profit from the
character confidences provided by Calamari. First, the correction process can be supported by
highlighting suspicious characters. Second, by averaging the confidence values over several lines
it is possible to identify segments or pages which contain a worse recognition result compared to
the rest of the book. This could help to identify text parts that suffer from an increased amount
of degradation, contain segmentation errors, use a different type of font, etc. Third, the average
confidence calculated over a representative number of recognized lines can serve as a form of quality
estimation. We know that the confidence values correlate with the recognition rate and that the neural
networks tend to overestimate their performance. Therefore, we hope that it is possible to use a lot
of existing measurements to derive a model which is able to estimate the true recognition accuracy
based on the average confidence [2]. In addition to the automatic selection of the best fitting model for
given data, this would be particularly helpful when the goal of a OCR process is to reach a certain
recognition quality (for example 2% CER are sufficient for most NLP tasks) and it is unclear whether
the output of a mixed model suffices or if book-specific training is required.

A most desirable issue that has to be addressed as soon as possible is the incorporation of a post
processing step, for example using dictionaries or language modelling. However, especially for (very)
early printed books this is not a trivial task due to the lack of consistent spelling rules and the frequent
use of abbreviations.

Moreover, the scan preparation, which as of now is either skipped or performed externally by
using Scan Tailor, should be integrated directly into the web GUI.

In order to allow non-technical users to keep all semantic annotations without having to deal with
the peculiarities of the PageXML format, one or several alternatives to the two existing output formats
are imperative. Since TEI is considered the go-to format for textual markup applications a comfortable
and attractive solution would be to allow the user to simply specify at least some basic mappings
between PageXML types and TEI tags and then let OCR4all export the result as a valid TEI file.

Another useful feature would be an integrated fuzzy search that allows the user to spot keywords
or phrases even if they contain OCR errors. The basis for this is already laid because of Calamari’s
extended recognition output which does not only provide the final textual OCR result but also
additional information like the alternatives for each character and their respective confidence values.

A particularly interesting and challenging goal is to overcome the additional difficulties of
handwritten recognition. Despite the general workflow being very similar, there are several steps that
would require adaptations, for example the line segmentation step since handwritten text often does
not consist of single characters, which the current line segmentation approach heavily relies on, but
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features joined-up writing. Yet, there are already a few pertinent open-source algorithms available,
for example [30], which can at least serve as a valid starting point. Apart from the line segmentation
the remaining steps work quite similarly to when dealing with printed texts. Actually, OCR4all has
already been successfully applied to a Greek manuscript (Aëtius Amidenus - Libri medicinales, 16th

century), achieving character recognition rates in the mid nineties when using only a few hundred
lines of GT.

As mentioned above OCR4all’s primary field of application was planned to be the local setup at a
single users desktop PC or laptop. However, with some manageable extensions regarding a project
and user administration system as well as an interface to a resource scheduling manager, OCR4all can
be deployed and run as a full-featured web service. This would be especially helpful for institutions or
working groups who want to share their resources among themselves in order to work collaboratively.
Even without further extensions a collaborative approach is already possible: During our experiments
we set up an instance for several users to cooperate in a somewhat coordinated way which proofed to
be highly effective.

A key aspect remains the optimization of the teaching material associated with the tool. In the
future we want to build from the already existing written guides not only by adding screencasts
or even tutorial videos but by setting up a knowledge base, most likely in the form of a Semantic
MediaWiki, that not only contains the guides mentioned above in a more modular form but also
extends them with and crosslinks them to the theoretical concepts behind each individual step of the
OCR4all workflow. Combined with a public repository for GT and models, best practices as well as
an assembly of frequently occurring difficulties and proven ways to successfully deal with them, this
would provide the community with a place to share material, knowledge, problems, and solutions.

Despite these comprehensive plans for the future, we already reached our main goal of creating a
tool which provides non-technical users with access to a powerful and easy to use OCR workflow. This
is not only shown by the evaluations but also by the successful application in numerous real-world
projects where OCR4all leads to significant speedups of the OCR of our precious cultural heritage.
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CC Connected Component
CER Character Error Rate
CNN Convolutional Neural Network
CPU Central Processing Unit
CTC Connectionist Temporal Classification
GPU Graphical Processing Unit
GT Ground Truth
LSTM Long Short-Term Memory
OCR Optical Character Recognition
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