

1 Article

2 Fisetin a 3, 7, 3', 4'-tetrahydroxyflavone inhibits 3 PI3K/Akt/mTOR and MAPK Pathways and Ameliorates 4 Psoriasis Pathology in 2D and 3D Organotypic Human 5 Inflammatory Skin Models

6 Jean Christopher Chamcheu^{1,*}, Stephane Esnault², Vaqar M. Adhami³, Andrea L. Noll²,
7 Sergette Banang-Mbeumi^{1,†}, Tithi Roy¹, Sitanshu S. Singh¹, Shile Huang^{4,5}, Konstantin Gus
8 Kousoulas⁶, and Hasan Mukhtar²

9 ¹ School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana
10 at Monroe, Monroe, LA 71209-0497, USA; royt@warhawks.ulm.edu; singhss@warhawks.ulm.edu;
11 sbanang@yahoo.fr; chamcheu@ulm.edu

12 ² Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine
13 and Public Health, Madison, WI-53706, USA; alnoll@wisc.edu; sesnault@medicine.wisc.edu

14 ³ Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison,
15 WI-53706, USA; vadhami@dermatology.wisc.edu; hmukhtar@dermatology.wisc.edu

16 ⁴ Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center,
17 1501 Kings Highway, Shreveport, LA 71130-3932, USA; shuan1@lsuhsc.edu

18 ⁵ Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-
19 3932, USA;

20 ⁶ School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA; vtgusk@lsu.edu

21 [†]Current address: School of Nursing and Allied Health Sciences, Louisiana Delta Community College,
22 Monroe, LA 71203, USA

24 ^{*} Correspondence: Jean Christopher Chamcheu; e-mail: chamcheu@ulm.edu; Tel.: +1 318-342-6820; Fax:
25 +1 318-342-1737.

26

27 **Abstract:** Psoriasis is a chronic immune-mediated skin disease that involves interaction of both
28 immune and skin cells, and is characterized by cytokine-driven epidermal hyperplasia, deviant
29 differentiation, inflammation and angiogenesis. Because available treatments for psoriasis have
30 significant limitations, dietary products are potential natural sources of therapeutic molecules,
31 which can rescind molecular defects associated with psoriasis and could possibly be developed for
32 its management. Fisetin (3,7,3',4'- tetrahydroxyflavone), a phytochemical naturally found in
33 pigmented fruits and vegetables, has demonstrated pro-apoptotic and antioxidant effects in several
34 malignancies. This study utilized biochemical, cellular, pharmacological and tissue-engineering
35 tools to characterize the effects of fisetin on normal human epidermal keratinocytes (NHEKs),
36 peripheral blood mononuclear cells (PBMC) and CD4+ T lymphocytes in 2D and 3D psoriasis-like
37 disease models. Fisetin treatment of NHEKs, dose and time-dependently induced differentiation
38 and inhibited interleukin-22-induced proliferation, as well as activation of the PI3K/Akt/mTOR
39 pathway. Fisetin treatment of TNF- α -stimulated NHEKs and significantly inhibited the activation
40 of p38 and JNK, but had no effect on ERK1/2. In addition, fisetin treatment significantly decreased
41 the secretion of Th1/Th-17 pro-inflammatory cytokines, particularly IFN- γ and IL-17A by 12-O-
42 tetradecanoylphorbol 13-acetate (TPA)-stimulated NHEKs and anti-CD3/CD28-activated human
43 PBMCs. Furthermore, we established the *in-vivo* relevance of fisetin functions, using a 3D full-
44 thickness human skin model of psoriasis (FTRHSP) that closely mimics *in-vivo* human psoriatic skin-
45 lesions. Herein, fisetin significantly ameliorated psoriasis-like disease features, and decreased the
46 production of IL-17 by CD4+ T lymphocytes co-cultured with FTRHSP. Collectively, our data
47 identify pro-differentiative, anti-proliferative and anti-inflammatory effects of fisetin, via

48 modulation of PI3K-Akt-mTOR and p38/JNK pathways and the production of cytokines in 2D and
49 3D human skin models of psoriasis. These results suggest that fisetin has a great potential to be
50 developed as an effective and inexpensive agent for the treatment of psoriasis and other related
51 inflammatory skin disorders.

52 **Keywords:** Fisetin; psoriasis; normal human epidermal keratinocyte; cell signaling; cell
53 differentiation; proliferation; inflammatory cytokine; PBMC; CD4+ T lymphocyte; 3D psoriasis-like
54 skin disease model.
55

56 1. Introduction

57 The physical and immunological protective skin barrier function, mainly executed by the
58 outermost epidermis, is sustained through the tight regulation of epidermal keratinocyte
59 proliferation and differentiation, ultimately resulting in the dense impenetrable stratum corneum [1].
60 In normal epidermis, keratins are the most abundant structural proteins that form the keratin
61 intermediate filament cytoskeleton [2]. Upon commitment to terminal differentiation, keratinocytes
62 switch from expressing proliferative keratin 5 and 14 (K5 and K14) in the basal epidermis to express
63 the early differentiation keratin 1 and 10 (K1 and K10) and associated induction of various
64 differentiation-related protein markers in the suprabasal epidermis, which uphold the skin barrier's
65 integrity. These **markers** include keratin tonofilaments, the filament aggregating protein (filaggrin)
66 [1, 3, 4], caspase-14 [5], the enzyme transglutaminase, [4] and loricrin, an impenetrable late cornified
67 envelope protein. Increased interactions between these proteins **cause beneficial effects:**
68 **enhancement of** skin natural moisturizing factor **and** epidermal hydration; maintain stratum
69 corneum barrier function and skin integrity; and protects the induction of inflammation by external
70 stimuli. This cognate process is dysregulated in several chronic inflammatory skin diseases including
71 psoriasis and atopic dermatitis, where lesioned skin keratinocytes exhibit hyperproliferation and
72 aberrant differentiation, two crucial disease hallmarks [6]. Moreover, the expression levels of several
73 differentiation-related proteins including caspase-14 [7], filaggrin [7] and loricrin [8], [4] are
74 downregulated in inflamed, porokeratotic, psoriatic skin lesions compared to non-lesioned and
75 normal skin. Skin keratinocytes serve as the principal source of several pro-inflammatory mediators,
76 including the cytokines interleukin (IL)-1, IL-6, IL-8, IL-10, IL-12, IL-15, IL-18, IL-20, tumor necrosis
77 factor (TNF) [8, 9], and the chemokines CXCL8, CXCL11 and CCL20 [10]. In response to local stimuli,
78 the production of these mediators can initiate an inflammatory process in psoriasis. In addition to
79 keratinocytes, immune cells play a predominant role in chronic inflammatory skin diseases via the
80 production of mediators such as IFN- γ , IL-17, IL-22, IL-23, IL-36 and the chemokine, IP-10 [11-13] [14,
81 15] [16, 17]. Keratinocytes also possess cytokine receptors that serve as targets for activated T
82 lymphocyte-derived IL-17 and IL-22, resulting in increased proliferation, aberrant differentiation and
83 further cytokine production by keratinocytes [8].

84 Agents that possess direct anti-proliferative, pro-differentiative and anti-inflammatory effects in
85 epidermal keratinocytes and immune cells are potentially ideal candidates for treating inflammatory
86 skin disorders such as psoriasis. Efforts to develop treatments for psoriasis remain elusive, mostly
87 relying on small molecules and biologics [11-14], [15], [16, 17]. Most of these treatments have
88 significant limitations, including costs, the need for injections, adverse drug reactions, and loss of
89 efficacy over time [18]. Thus, there is a need for discovery and development of new, safe and effective
90 mechanism-based therapeutics.

91 Dietary botanicals are important natural sources of biologically active products that possess the
92 inherent ability to rescind multiple disease features. Fisetin (3,7,3',4'-tetrahydroxyflavone) (Figure 1A
93 (inset)), is a bioactive flavonol abundantly found in many dietary botanicals, particularly in
94 pigmented fruits and vegetables, including apples, cucumbers, onions, persimmons, and
95 strawberries [19-21]. Fisetin has been reported to possess pleiotropic effects in diverse disease models,
96 including anticancer, anti-inflammatory and antioxidant activities [22-29].

97 Recently, we and others, in the quest for defining mechanism-based dietary antioxidants for
98 disease prevention, showed that at higher micromolar concentrations, fisetin treatment causes
99 growth arrest, apoptosis and regression of both melanoma and UVB-induced cutaneous cancers by
100 modulating the activation of components of the PI3K/Akt/mTOR signaling pathway [24, 26, 30].
101 Furthermore, we and others have recently shown that these pathways, which are frequently
102 deregulated in diverse cancers [31, 32], are also overexpressed in psoriatic and atopic dermatitis skin
103 lesions [33, 34]. There is limited knowledge regarding the role of fisetin on immune cells. In basophils,
104 fisetin suppresses the expression level of the type-2 cytokines [35]. In mice, fisetin reduces the
105 production of type-1 and type-2 cytokines by T lymphocytes [36] and attenuates NF- κ B activity and
106 IL17 production in an *in vivo* allergic airway inflammation mouse model [37]. These observations
107 led us to examine the potential of fisetin as an agent to mitigate the three major hallmarks of psoriasis;
108 activation of inflammation, keratinocyte-induced proliferation, and aberrant differentiation [38]. To
109 the best of our knowledge, no study has evaluated the effects of fisetin on psoriasis. In this study, we
110 assessed the effect of fisetin in psoriasis model, and demonstrated that at low-micromolar
111 concentrations fisetin inhibited intracellular PI3K/Akt/mTOR and MAPK signaling and normal
112 human epidermal keratinocyte (NHEK) proliferation, and it promoted NHEK differentiation without
113 inducing apoptosis. Moreover, fisetin reduced the secretion of pro-inflammatory cytokines by
114 keratinocytes; activated peripheral blood mononuclear cells (PBMC) and CD4+ T lymphocytes; and
115 mechanistically, inhibited intracellular PI3K/Akt/mTOR and MAPK pathways. Furthermore, the
116 functional characteristics/roles of fisetin were also examined in an established *in vivo*-relevant 3D full-
117 thickness engineered human psoriasis-like skin model. Our study demonstrates that fisetin acts on
118 both inflamed keratinocytes and immune cells in 2D and reconstituted 3D skin tissue architecture
119 similar to *in vivo* psoriatic skin lesions, and clarify its mechanism of action on these systems.

120 2. Materials and Methods

121 2.1. Chemicals and Reagents

122 Fisetin, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide (MTT), propidium iodide
123 (PI) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were purchased from Sigma Chemical Co. (St
124 Louis, MO). The antibodies for caspases (-3, -8, and -9), PARP, Bak, Bax, Bad, Bcl-2, PathScan®
125 Multiplex (Phospho-p90RSK, Phospho-Akt, Phospho-p44/42 MAPK (Erk1/2), Phospho-S6 Ribosomal
126 Protein, and Rab11) Western Detection Cocktail I; #5301, Phospho-p38 MAPK (Thr¹⁸⁰/Tyr¹⁸²) (D3F9)
127 XP® Rabbit mAb #4511, Phospho-Akt (Ser⁴⁷³) (D9E) XP® Rabbit mAb #4060, Phospho-mTOR (Ser²⁴⁴⁸)
128 (D9C2) XP® Rabbit mAb #5536, Phospho-mTOR (Ser²⁴⁸¹) Antibody #2974, Phospho-SAPK/JNK
129 (Thr¹⁸³/Tyr¹⁸⁵) (81E11) Rabbit mAb #4668, β -Actin (13E5) Rabbit mAb #4970, PI3 Kinase p110 α (C73F8)
130 Rabbit mAb #4249, PI3 Kinase p85 (19H8) Rabbit mAb#4257, Phospho-Akt (Thr³⁰⁸) (D25E6) XP®
131 Rabbit mAb #13038, PhosphoPlus® p70 S6 Kinase (Thr³⁸⁹, Thr⁴²¹/Ser⁴²⁴) Antibody Kit #9430, mTOR
132 (7C10) Rabbit mAb #2983, and Lamin B1 (D4Q4Z) Rabbit mAb #12586 were obtained from Cell

133 Signaling Technology (Danvers, MA, USA). Recombinant human (rh) IL-22, IL-17A, TNF- α , anti-
134 CD3, anti-CD28, and biotinylated polyclonal goat anti-human IL-17A were from R&D Systems
135 (Minneapolis, MN, USA). Anti-human IL-17A, IFN- γ (clone 2G1) was purchased from Endogen
136 (Pierce/Thermo Scientific), IFN- γ (clone B133.5), IL-4 (clone 8D4-8) and IL-4 (clone MP-25D2)
137 (Pharmingen, Inc.,), p-JNK (clone G-7, sc-6254), p-p38 (clone D-8, sc-7973), filaggrin (clone AKH1, sc-
138 66192), p-p38 (sc-7973), cytokeratin-1 (sc-65999), cytokeratin-10 (sc-51581), Transglutaminase 1 (sc-
139 25786), Fra-1 (sc-605X), c-Fos (sc-52X), Fos B (sc-8013), c-Jun (sc-1694), Jun B (sc-46x), Jun D (sc-74),
140 caspase-14 (sc-5628), were all obtained from Santa Cruz Biotechnology, Inc (Santa Cruz, CA, USA).
141 CELLnTEC progenitor cell culture medium was from ZenBio (ZenBio, Raleigh, NC, USA). Fetal
142 bovine serum (FBS) was obtained from Life Technologies (Grand Island, NY, USA).
143 Transglutaminase Activity Assay Kit (C, K571-100) was from BioVision Inc. (Milpitas, CA, USA).
144 Procarta Plex Mix & Match Human 6-Plex kit was from eBioScience/affymatrix (EPX060-15073; Santa
145 Clara, CA, USA). Horseradish peroxidase conjugated anti-mouse or anti-rabbit secondary antibody
146 was obtained from Amersham Life Science Inc. (Arlington Height, IL, USA), and BCA Protein assay
147 kit was obtained from Pierce (Rockford, IL, USA). Novex precast Tris-glycine gels were obtained
148 from Invitrogen (Carlsbad, CA, USA).

149 2.2. Human Subjects

150 The study protocols were approved by the University of Wisconsin-Madison Health Sciences
151 Institutional Review Board (protocol no. 2013-0059-CR004), informed written consent was obtained
152 from subjects prior to participation, and were conducted according to the principles of the
153 Declaration of Helsinki.

154 2.3. Keratinocytes isolation, culture, activation with IL-22, TNF- α , TPA, and treatments

155 Primary normal human epidermal keratinocytes were isolated from neonatal foreskin and adult
156 skin biopsies, and primary cultures were established in CELLnTEC progenitor cell culture medium
157 (ZenBio, Raleigh, NC, USA) supplemented with penicillin (100 U/mL), 100 μ g/ml streptomycin
158 (100 μ g/mL) and amphotericin (100 μ g/mL) (Life Technologies) as previously described [62]. Frozen
159 cells were thawed and maintained for about 2 months (\approx 8 passages). Human epidermoid carcinoma
160 A431 cells, obtained from ATCC (Manassas, VA, USA), and human immortalized keratinocytes
161 HaCaT cells (ThermoFisher Scientific), were cultured and maintained in DMEM, supplemented with
162 10% FBS and 1% penicillin-streptomycin. Stock solutions of fisetin were made in dimethyl sulfoxide
163 (DMSO), and further diluted in respective growth media for the treatment of NHEK, A431 and
164 HaCaT cells. Control cells were treated with an equivalent volume of vehicle alone, corresponding to
165 a final maximum concentration of 0.1% (v/v) DMSO for each treatment, at which concentrations had
166 no effect on cell viability. All cells were maintained at 37 °C in a humidified atmosphere of 95% air
167 and 5% CO₂, and the growth media were replenished every alternate day until reaching desired
168 confluence (60-80%) prior to experimentation. For rhIL-22 stimulation and drug treatment protocol,
169 near-confluent keratinocytes were pre-treated with or in the absence of varied concentrations of
170 fisetin (10 - 20 μ M) for 8 hours (h) followed by co-treatment with or without rhIL-22 (20ng/mL) for 40
171 h (making a total of 48 h exposure to fisetin). Cells were harvested and lysates were prepared for
172 immunoblot as described below. IL-22-induced cell proliferation and viability analysis in the
173 presence or absence of fisetin as described below.

174 For TNF- α treatment, cells were cultured and pretreated with fisetin over night and were
175 stimulated with or without rhTNF- α (10ng/ml) for 10 to 60 min prior to harvest for western blotting
176 analysis as described below. For 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulation, near-
177 confluent keratinocytes were pre-treated with or without altered concentrations of fisetin (10 - 20 μ M)

178 for 20 h, followed by co-treatment with or without 100 nM/mL of TPA for the final 6 h (for a total
179 of 26 h of exposure to fisetin). Cultured supernatants were centrifuged and centrifugates were
180 collected and stored at -80°C until used. The supernatants were only subjected to a single freeze-
181 thaw cycle and used for analysis of TPA-induced keratinocytes secreted pro-inflammatory mediators
182 (IL-1 α , IL-1 β , IL-6, IL-8 (CXCL8), TGF- α and TNF- α) according to manufacturer's protocol and as
183 previously described [90], and as described below.

184 *2.4. Determination of cell viability by MTT assay*

185 The effect of fisetin on the viability of cells was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-
186 diphenyl tetrazoliumbromide (MTT) assay. NHEK, A431 and HaCaT cells were plated at 5 \times 10³ cells
187 per well in 200 μ l of respective culture media in 96-well microtiter plates. After cells were adherent
188 and proliferating, media containing fisetin (0-80 μ M) were replenished and cultured for 24 and 48 h.
189 After incubating for specified times, MTT solution (0.5 mg/ml in phosphate-buffered saline (PBS))
190 was added to each well and incubated for 3 h, after which the plate was centrifuged at 2000 rpm for
191 5 min at 4°C.

192 Additionally, the effect of fisetin treatment was assessed on the viability of NHEK in relation to
193 the proliferative effect of pre-stimulated with or without rhIL-22 (20ng/ml) and was determined by
194 MTT assay. Briefly, NHEKs were seeded at a density of 2 \times 10⁴ cells/well in 24-well poly(D)lysine (0.1
195 mg/mL; Sigma-Aldrich, USA) pre-coated plates in 1 ml complete culture medium and incubated at
196 37°C and 5% CO₂. At 80% confluent, cells were treated for 6 h with/without fisetin 10-20 μ M, after
197 which rhIL-22 (20ng/ml) was added and further cultured. At 48 h of incubation, medium was
198 removed and cells were rinsed with PBS and incubated for 3 h with 150 μ L of MTT solution (0.5
199 mg/ml in medium). In either cases, MTT solution was removed and the formazan crystals were then
200 solubilized in DMSO (200 μ L) by shaking, and absorbance was spectrophotometrically recorded at
201 570 nm on a Bio-Tek microplate reader (Bio-TEK Instruments Inc., Winooski, VT, USA). The
202 experiment was repeated three times each in sextuplicate with similar results. The effect of fisetin on
203 normal and IL-22 stimulated growth inhibition was assessed as percentage cell viability, where
204 DMSO-treated cells (untreated controls) were considered as 100% viable. DMSO at the concentrations
205 used has no effect on cell viability.

206 *2.5. Cell cycle analysis*

207 NHEKs were treated with fisetin (1-120 μ M) for 24 h, harvested and fixed in chilled 70% alcohol
208 overnight. Cells were then washed twice with PBS, digested with DNase-free RNase (10 μ g/ml) at
209 37°C for 1 h, stained with PI (5 μ g/ml) for 3 h at 4°C in the dark and were analyzed by FACS Calibur
210 (Becton Dickinson) for cell cycle phase distribution.

211 *2.6. Preparation, culture, activation and treatment of peripheral blood mononuclear cells (PBMC)*

212 Peripheral blood was obtained by venipuncture from volunteer healthy donors with appropriate
213 University of Wisconsin-Madison Health Sciences Institutional Review Board approval, as
214 previously described with some modifications[91]. Briefly, heparinized whole blood was centrifuged
215 (700 \times g, 20 min) over a Percoll density gradient (density 1.090 g/ml; Pharmacia Biotech) to separate
216 mononuclear cells from granulocytes. PBMCs were then washed, layered over new calf serum and
217 centrifuged at 800 rpm for 15 min to eliminate platelets. PBMCs were cultured in 24-well dishes at
218 1.0 \times 10⁶ cells/ml with RPMI 1640, 10% FBS, and antibiotics. PBMCs were treated with fisetin (10 μ M)

219 for 10 min, and then activated with anti-CD3 (R&D Systems; coated on plates at 1 µg/ml) plus soluble
220 anti-CD28 (R&D systems; 1 µg/ml). After 6 h of culture, RLT buffer (Qiagen, Valencia, CA) was added
221 on cells for RNA extraction and PCR analysis. After 48 h of culture, cells supernatant fluids were
222 harvested for measurement of proteins by ELISA.

223 *2.7. Preparation and activation of blood CD4+ T lymphocytes*

224 The CD4+ T lymphocytes were prepared as previously described [60]. Briefly, heparinized blood
225 was diluted 1:1 in HBSS, and overlaid above Percoll (1.090 g/ml). After centrifugation at 700xg for 20
226 min at room temperature, the mononuclear cells were recovered from the plasma/Percoll interface,
227 and CD4+ cells were prepared by negative selection using the Miltenyi Biotec CD4+ T Cell Isolation
228 Kit II. Using this method, purity was typically >98% as determined by flow cytometry [60]. For
229 activation, CD4+ T cells (2×10⁶/ml) were cultured in 1 ml of complete medium (RPMI plus 10% FBS)
230 with 1µg/ml of plate-bound anti-CD3 plus 1 µg/ml of soluble anti-CD28 (clones 37407 and UCHT1,
231 respectively; R&D Systems, Minneapolis, MN, USA) in a 24-well plate (Corning Costar, Lowell, MA,
232 USA). In this condition, after 48 h activation, CD4+ T cells had a memory/effector phenotype
233 (CD45RO+ CD25+) as previously shown [60] and were placed with the tissue engineered reconstructs
234 over it. CD4+ T cell subset purification was performed by positive selection with magnetic bead
235 separation (Miltenyi), and cell and FTRHSP free supernatants cytokine levels were detected by ELISA
236 as above.

237 *2.8. ProcartaPlexTM multiplex bead-based immunoassays for cytokines and chemokines*

238 Cultured conditioned supernatant from TPA-stimulated and control keratinocyte cultures in the
239 presence or absence of varied concentration of fisetin were used to determine the levels of produced
240 cytokine and chemokine levels by human 6-Plex Procarta Multiplex Beads. A commercially available
241 human Procarta 6-Plex Bead immunoassay kit (Affymetrix/eBioscience, Santa Clara, CA) was used
242 to determine cytokine and chemokine levels in conditioned media from TPA-stimulated NHEKs as
243 earlier described [90]. The assay includes a range of customized mix-matched human six pro-
244 inflammatory cytokine and chemokine panels that reflect key processes and responses relating to the
245 activation of keratinocyte inflammation. Beads of defined spectral properties conjugated to analyte-
246 specific capture antibodies were combined with 50 µl of cultured supernatant samples to be tested in
247 separate wells of a 96-well black side/transparent bottom microplate and incubated at room
248 temperature (RT) for 120 min following the manufacturer's instructions and as previously described
249 [90]. All cell culture supernatant samples were analyzed in triplicate along with serial standards (7-
250 point dilutions). After each analyte was allowed to bind to the captured antibodies on the beads,
251 washes were performed to remove non-specifically bound proteins, and analyte-specific biotinylated
252 detection antibodies were added and incubated with the beads at RT for 30-60 min. During this
253 incubation, the analyte-specific biotinylated detection antibodies bind to specific epitopes on the
254 immobilized analytes. Following the binding incubation and washes, streptavidin conjugated to
255 Phycoerythrin (SA-PE or Streptavidin-PE), a pigment complex that serve as a fluorescent tag was
256 added and samples were incubated at RT with slow shaking for 30 min. During this final incubation,
257 Streptavidin-RPE binds to the biotinylated detector antibodies associated with the immune
258 complexes on the beads, forming a four-member solid phase sandwich. After washing cycles to
259 remove unbound SA-PE, excess reading buffer was added and incubated at RT for a minimum of 5

260 min in the dark with shaking and stored at 4°C overnight. Fluorescently tagged beads were analyzed
261 with the xMAP Luminex reader (Luminex instrument, Austin, TX) for quantitative analysis. The
262 spectral properties of the beads and the amounts of associated PE fluorescence were monitored to
263 determine the concentration of the following analytes: IL-1 α , IL-1 β , IL-6, CXCL8 (IL-8), TNF α and
264 TGF- α in cultured supernatants from different NHEKs treatment groups. The analyte concentrations
265 were determined by importing data into Procarta PlexTM Multiplex Analyst software v.1.0
266 (Affymetrix/eBioscience, Santa Clara, CA) for analysis as earlier described [90]. Cytokine/chemokine
267 values obtained by immunoassay were referenced against established standards to allow for
268 comparisons between study groups.

269 **2.9. ELISA analysis of Th1-Th2-and-Th17 cytokines, IL-4, IL-17A, and IFN- γ**

270 Supernatant cultures from antiCD3/antiCD28-stimulated PBMC in the presence or absence of
271 varied concentrations of fisetin were used to determine the levels of produced pro-inflammatory
272 cytokine levels by a sandwich ELISA immunoassay. Cytokines were measured in the 48 h PBMC and
273 CD4+ T cells supernatant fluids. IL-17 A, IFN- γ , and IL-4 levels were measured utilizing an “in-
274 house” sandwich ELISA [60, 93]. Coating antibodies included anti-human IL-17A (clone 41809.111,
275 R&D Systems), IFN- γ (clone 2G1, Endogen/Pierce/Thermo Scientific), and IL-4 (clone 8D4-8,
276 Pharmingen, Inc.). Detection antibodies included biotinylated polyclonal goat anti-human IL-17A
277 (R&D Systems), IFN- γ (clone B133.5, Pharmingen, Inc), and IL-4 (clone MP-25D2, Pharmingen, Inc).
278 The ELISA assay sensitivities were < 5 pg/ml for others and <3 pg/ml for IL-17A.

279 **2.10. RNA preparation and real-time-quantitative (q)-PCR**

280 Total RNA was extracted from PBMC using the RNeasy Mini Kit (Qiagen). The reverse
281 transcription reaction was performed using the Superscript III system (Invitrogen/Life Technologies,
282 Grand Island, NY, USA). Gene expression levels were determined by qPCR using SYBR Green Master
283 Mix (SABiosciences, Frederick, MD, USA). Forward and reverse specific primers ((IFNG), forward:
284 gaaacgagatgacttcgaaaagct, reverse: catgtattgcttgcgttgaa, and (IL17A), forward: cgatccacccacccatggaa,
285 reverse: tcccaagatcacagaggatatctct) were designed using Primer Express 3.0 (Applied Biosystems,
286 Carlsbad, CA, USA) to span an exon-exon junction, and blasted against the human genome to
287 determine specificity using <http://www.ncbi.nlm.nih.gov/tools/primer-blast>. The reference gene
288 primers, β -glucuronidase ((GUSB), forward: caggacctgcgcacaagag, reverse: agcggtcgaccatcc), were
289 used to normalize the samples. Standard curves were performed and efficiencies were determined
290 for each set of primers. Efficiencies ranged between 91 and 96%. Data are expressed as fold change
291 using the comparative cycle threshold ($\Delta\Delta CT$) method as described previously [60]. The values
292 presented are fold change = $(2^{-\Delta\Delta CT})$ compared to expression in resting PBMC.

293 **2.11. Preparation of protein lysates from cultured cells and western blotting**

294 Following the treatment of NHEK cells with fisetin (10-20 μ M; for a maximum of 48 h prior to
295 harvest), in the presence or absence of TNF- α or rhIL-22, the media was aspirated, and the cells were
296 washed with cold PBS (pH 7.4). Cells were incubated in ice-cold lysis buffer (50 mM Tris-HCl, 150
297 mM NaCl, 1 mM ethyleneglycol-bis(aminoethylether)-tetraacetic acid (EGTA), 1 mM EDTA, 20 mM
298 NaF, 100 mM Na3VO4, 0.5% NP-40, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF)
299 (pH 7.4), with freshly added protease inhibitor cocktail (Protease Inhibitor Cocktail Set III,
300 Calbiochem, La Jolla, CA) on ice for 30 min. The cells were scraped and cell lysates collected in
301 microfuge tubes, and passed through 22.5-gauge syringe needles to break up the cell aggregates. The
302 lysates were cleared by centrifugation at 14,000 g for 30 min at 4°C, and the supernatant (whole cell
303 lysate) protein concentrations were determined using a BCA protein assay kit (Pierce) according to
304 the manufacturer’s protocol. Lysates were used or immediately aliquoted and stored at -80 °C for
305 further analysis. Western blotting was performed as previously described [94][95] [33, 95]. Briefly,
306 10-20 μ g protein was resolved on 4-12% polyacrylamide gels and transferred to a nitrocellulose

307 membrane. The blots were blocked in blocking buffer (5% non-fat dry milk or BSA/1% Tween 20; in
308 20 mM TBS, pH 7.6) for 45 min at room temperature. Membranes were incubated with appropriate
309 monoclonal or polyclonal primary antibody in the blocking buffer for 2 h at RT, to overnight at 4°C,
310 followed by 3x5min washes, and incubated with anti-mouse or anti-rabbit horseradish-peroxidase
311 conjugated (HRP) secondary antibody obtained from Amersham Life Science Inc. (Arlington Height,
312 IL, USA). Chemiluminescence and autoradiography was detected using Bio-Rad detection and
313 analysis systems as earlier described [94],[95]. Equal loading of protein was confirmed by stripping
314 the immunoblot and re-probing for β -actin, vinculin or lamin B1 as loading controls. The immunoblot
315 results displayed herein are representative of three independent experiments.

316 *2.12. Generation of three-dimensional (3D) Full-Thickness Reconstituted Human Skin Model of Psoriasis*
317 (*FTRHSP*)

318 Metabolically active 3D full-thickness Reconstructed Human Skin model of Psoriasis (FTRHSP)
319 was generated as described previously [40, 62] with slight modifications. The FTRHSP consisted of a
320 multilayered NHEK in a highly differentiated epidermis developed on a fibroblasts contracted-
321 collagen dermal substratum, and a suspension of activated CD4+ T cells underneath the 3D
322 reconstructed epithelium exposed at air-liquid interface (ALI) for 12-14 days as described previously
323 [40, 62] with slight modifications. The dermal component was prepared by contracting collagen gels
324 populated with fibroblasts seeded into in 3.0 μ m Millicell-PCF inserts (Millipore Corporation,
325 Billerica, MA, USA) each placed in wells of a 24-well plate as described previously, and the epidermal
326 component was generated on top [62, 96]. For epidermal components, 2nd-to-3rd passage NHEKs
327 established in low calcium Epi-Life medium were seeded, synchronized and maintained in
328 Progenitor Cell targeted Culture Media (CnT-02-07; CELLnTEC, ZenBio, Research Triangle Park, NC,
329 USA) prior to harvest and used to generate the 3D FTRHSP cultures as earlier described [62, 96].
330 Briefly, after trypsinization, 3×10^5 cells per insert in 250 μ l of CnT-02-07, were seeded into the surface
331 of the generated dermal substratum, each placed in wells of 6 well-tissue culture plates containing
332 2.5 ml of CnT-02-07 medium in a humidified atmosphere with 5% CO₂ and maintained at 37°C. After
333 48 h of culture, CnT-02-07 was switched to CnT-02-3DP5 differentiation medium (2 ml outside the
334 insert, and 0.4 ml inside the inserts (day 2), and further grown for 48-72 h to initiate differentiation
335 (day 5). The medium outside and inside the inserts were then removed, and medium outside the
336 insert was replenished with 1.2 ml of CnT-02-3DP5 complete medium, and cultured at ALI from this
337 time point onwards. After 5 days of cultures at ALI, the medium outside was replenished with pre-
338 warmed CnT-02-3DP5 medium in plates containing coated anti-CD3 and soluble anti-CD28
339 stimulated CD4+ T cells (3×10^5 /0.9ml) (herein referred to as activated T cells) prepared as above (day
340 10) to initiate inflammation. Anti-CD3/CD28 CD4+ T cells in 0.9 ml of medium in the trans-wells at
341 Day 10 were overlaid by placing the insert on top, exposing the underneath dermal side of the 3D
342 skin equivalents on it. Memory T cells were activated, while control or unactivated CD4+ T cells were
343 employed in the control reconstructs. On the same day of co-culture of 3D and activated T cells,
344 topical treatment with or without different concentrations of the test compounds (fisetin or Vit-D₃)
345 was initiated. Fresh media as above were replenished after every alternate days and continued prior
346 to harvest at indicated harvest day (day 15). After 5 days of co-culture in the presence or absence of
347 test compounds, and at harvest, 3-4 mm diameter punch biopsies from each insert were obtained,
348 formalin-fixed and processed for either H&E or immunostaining. We then analyzed the morphology
349 and protein expression levels of markers of inflammation, proliferation and differentiation as well as

350 activation of the PI3K/Akt/mTOR cascade. Additionally, cell-free supernatants were collected for pro-
351 inflammatory cytokine analysis using sandwich ELISA as described above.

352 *2.13. Fisetin and Vit-D₃ treatment of the 3D FTRHSP model system*

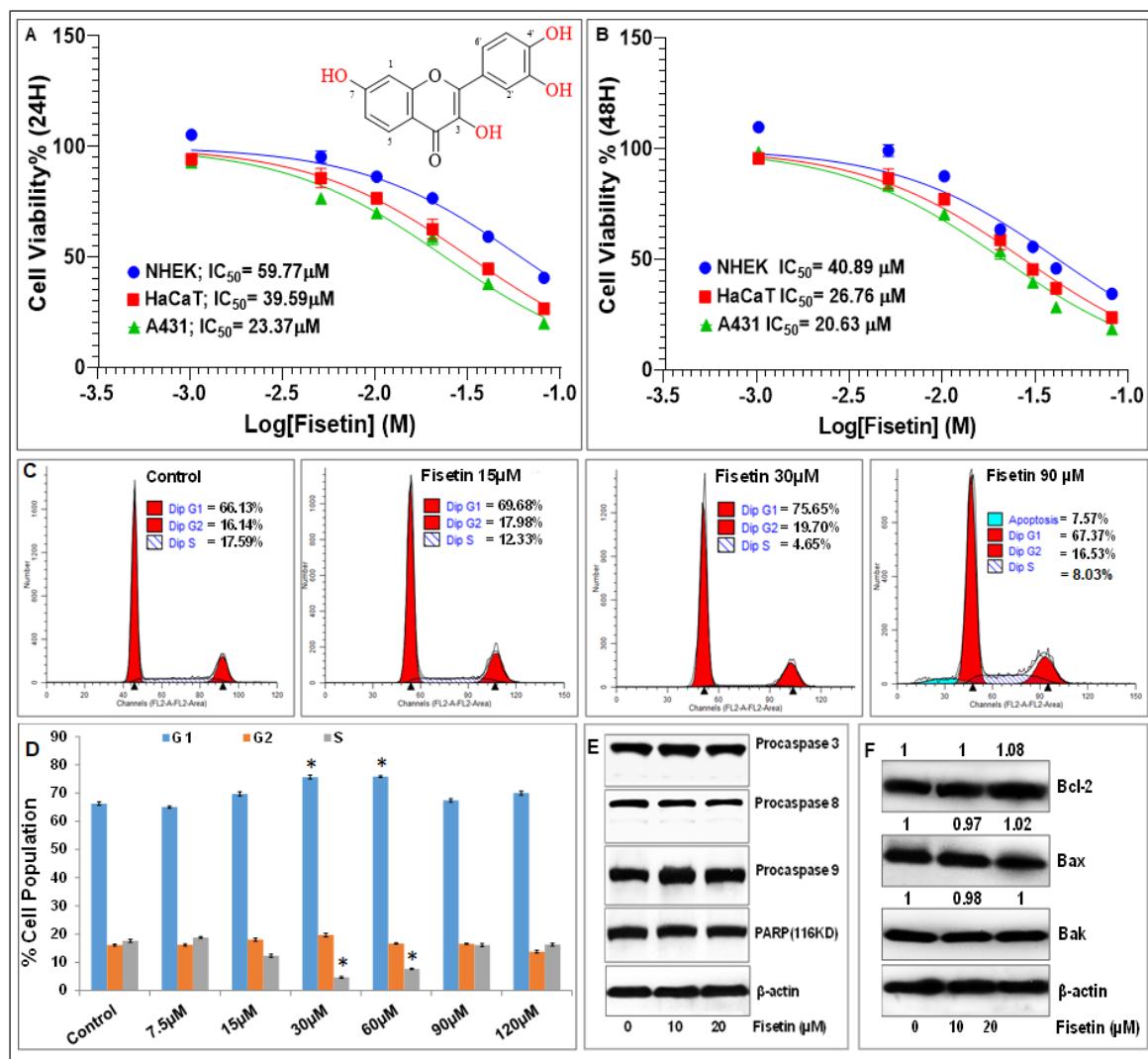
353 Fisetin and Vit-D₃ were dissolved in DMSO and stored as 80 mM, and 0.1 mM aliquots,
354 respectively, at -20°C protected from light. At the time of use, test compounds, fisetin (1-80 μM), or
355 vit-D₃ (0.1 μM) were diluted in culture medium containing 0.1% BSA to stabilize the drugs, and
356 treatment was started at 80% confluence (for monolayer). For the 3D FTRHSP studies exposed to ALI,
357 10μl of different concentration of test agents, fisetin (10-40μM) and vit-D₃ (1×10⁻⁷ μM) that are known
358 to control psoriasis, and used as a positive control were added in the developing tissue.

359 *2.14. Histology, morphometry and immunostaining analyses of the FTRHSP*

360 Formalin fixed paraffin embedded (FFPE) 5 μM cross-sections were de-paraffinized by
361 incubation in xylene (soaking twice for 10 minute each), rehydrated with ethanol (twice in 100%
362 ethanol for 10 min, twice in 95% ethanol for 10 min and then in 70% ethanol for 10 min, and finally
363 in distilled water for 10 min). Antigen retrieval was performed by treatment with fresh sodium citrate
364 buffer with 0.05% Tween 20 at pH 6.0, for 30 min at 100°C, and sections were stained with H&E and
365 evaluated for gross morphology, epidermal and horny layer thickness and immunostained for the
366 specified markers as previously described [62, 75, 97]. Briefly, endogenous peroxidase was blocked
367 with 3% H₂O₂ in methanol and was incubated with blocking solution containing 3% BSA/3% normal
368 goat serum (NGS)/0.4% Triton X-100 in PBS for 60 min at RT, followed by overnight incubation at
369 4°C with monoclonal antibodies (mouse cytokeratin 10 (RKSE 60) (1:75, sc-23877), mouse anti-
370 Desmoglein-1 (1:75, Invitrogen #326000), rabbit anti-filaggrin (1:100; ab34584); rabbit anti-involucrin
371 (1:75; 2215)). After three washes, samples were incubated for 2 h with Texas Red@-X Goat Anti-mouse
372 (1: 600; Invitrogen T6390) and Alexa fluor Goat Anti-rabbit, (1:600; Life technology A11008), followed
373 by three washes of 10min each and were mounted in situ mounting media with 4',6-diamidino-2-
374 phenylindole (DAPI) (#DUO82040, Sigma). Slides were visualized on an Olympus IX71 system
375 microscope (Olympus/HuntOptic & Imaging, Inc., Pittsburg, PA, USA), and digital images at 20x
376 magnification were captured with an Olympus U-CMAD3 attached Olympus DP71 camera
377 (Olympus/HuntOptic & Imaging, Inc.,) linked to a high resolution computer screen and connected to
378 an Olympus U-RFL-T Mercury Burner. Images were processed by using CellSens dimension software
379 v1.6. The thickness in terms of the area of the entire epidermis and the stratum corneum were
380 determined as earlier described [62].

381 *2.15. Statistical Analysis*

382 Statistical analyses were carried out with GraphPad Prism version 7.1 (San Diego, CA), except
383 for qPCR and ELISA, analyses which were performed using the SigmaPlot 11.0 software package
384 (Systat Software, Inc., San Jose, CA, USA). All quantitative data are expressed as means ± SD or SEM,
385 and significant differences were determined by the Student t-test or ANOVA with Bonferroni and/or
386 turkey post hoc testing, and p values <0.05 were considered significant.


387 **3. Results**

388 *3.1. Fisetin inhibits cell proliferation and viability, but does not affect apoptosis of keratinocytes at doses ≤20*
389 *μM*

390 We first examined the effect of fisetin on the growth and viability of primary NHEK and
391 compared to HaCaT, a precancerous immortalized human keratinocytes and A431, an epidermoid
392 carcinoma cell line. Employing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
393 (MTT) assay, dose-and-time course analyses revealed that after 24 and 48 h, fisetin at doses \leq 20 μ M
394 had modest effect on NHEK, while exerting significant inhibition of cell growth and viability of
395 HaCaT and A431. The IC₅₀ on NHEK were calculated to be 59.8 μ M and 40.9 μ M, as compared to
396 HaCaT of 39.6 μ M and 26.8 μ M and A431 of 23.4 μ M and 20.6 μ M at 24 h and 48 h, respectively
397 (**Figure 1A-B**).

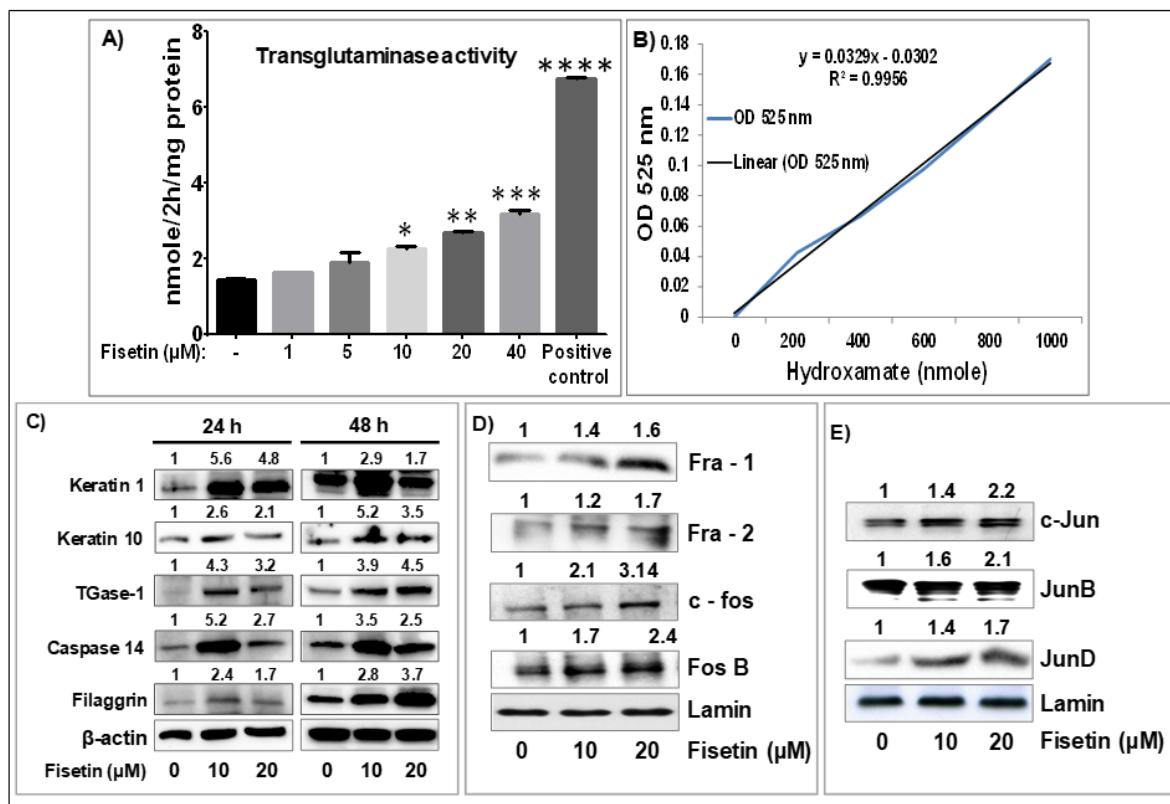
398 To examine whether the effect of fisetin on viable cell number is related to cell cycle arrest or
399 apoptosis, the proportion of cells containing diploid (sub-G₁) levels of DNA were quantified using
400 propidium iodide (PI) staining and flow cytometric analysis. Treatment with 90 and 120 μ M of fisetin
401 as positive control for apoptosis [39], significantly increased the proportion of NHEK in the sub-G₁
402 population (6.9% and 8.24 %), respectively compared to lower doses of fisetin (30-60 μ M) that only
403 expanded the G₁ and increased the S-phase compartments (0% and 0.22%), but did not induce any
404 increases in keratinocyte apoptosis (**Figure 1C-D**). Fisetin at 5-30 μ M did not exhibit toxicity, but cell
405 death was evident at higher doses (**Figure 1C-D**). Western blotting, revealed that at concentrations
406 less than or equal to 20 μ M, fisetin did not induce apoptosis at the time points investigated as
407 evidenced by the absence of activation of caspases 3, 8 and 9 and/or changes in PARP, Bak, Bax and
408 Bcl2 protein levels (**Figure 1E-F**). These observations led us to select doses of 0 to 20 μ M over 24-48 h
409 for further mechanistic studies.

410

411

412 Figure 1: Fisetin at low doses (< 20 μM) does not significantly affect primary normal human
 413 epidermal keratinocyte (NHEK) growth and viability and does not induce apoptosis. (A/B) Relative
 414 number of viable NHEK, immortalized keratinocytes (HaCaT), and A431 cancer cells treated with or
 415 without fisetin (1-80 μM) for 24 h (A) and 48 h as determined by MTT assay. Mean of percentage
 416 viability of NHEK, HaCaT and A431 cell lines plotted against the indicated doses of fisetin.
 417 Experiments were performed three times with each concentration done in octuplicate wells, and IC_{50}
 418 values calculated from these plots are shown. (C) Effects of fisetin on the percentage of cells
 419 population in the different phases of cell cycle, and indication of late apoptosis or necrosis (i.e. PI
 420 positive) cells were only seen in cells treated with higher fisetin concentration. (D) Levels or percent
 421 of cell cycle distribution in fisetin treated cells as assessed by flow cytometry analysis. Bar graphs
 422 represent mean \pm SD of results from three independent experiments performed in triplicate. Statistical
 423 significance was determined using one-way ANOVA and Dunn's multiple comparison test and
 424 significance was considered when $p < 0.05$ (*), as compared with control. (E) and (F) Effect of different
 425 concentrations of fisetin on the expression of markers of apoptosis including caspase-3, -8 and -9,
 426 PARP (85 kDa and 116 kDa) and Bcl-2 family of proteins (Bcl2, Bax and Bak) on cells harvested after
 427 48 h of treatment as analyzed by western blotting. Equal protein loading was confirmed using β -actin
 428 as loading control. (F) Numerical data above the blots represent relative quantitative density values
 429 for the blots normalized with internal loading control. The western blot data shown are representative
 430 immunoblots of two-to-three independent experiments with similar results.

431 3.2. Fisetin treatment promotes human primary epidermal keratinocyte differentiation and upregulates the
 432 expression of AP-1 transcription factor proteins

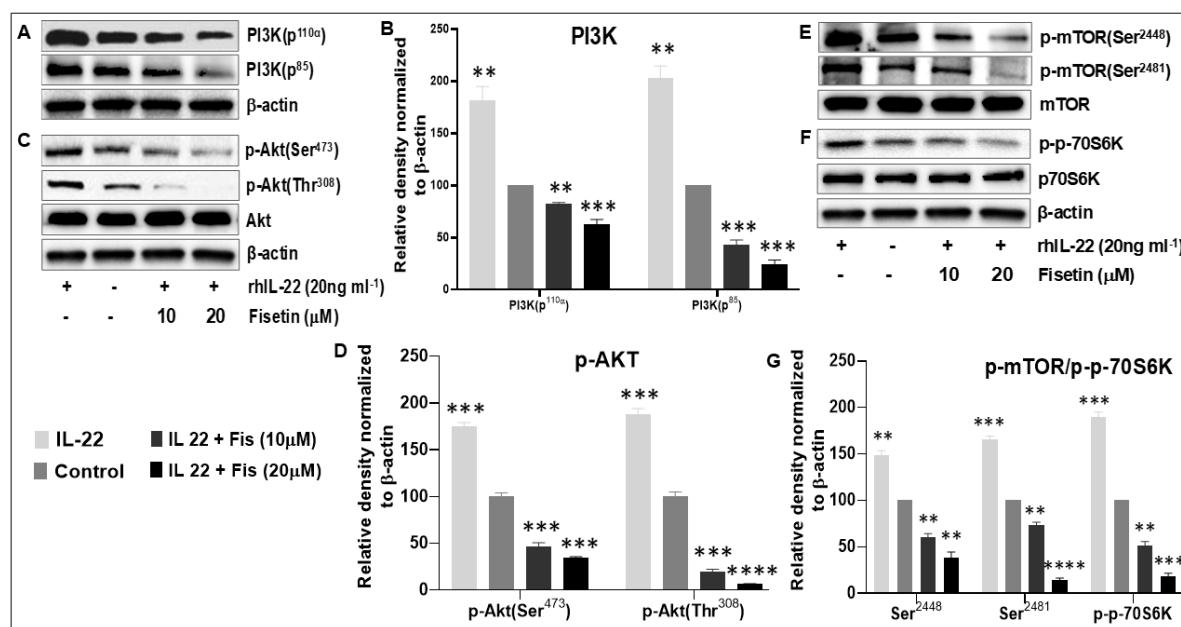

433 Since psoriasis is characterized by aberrant keratinocyte differentiation, a key requirement for
434 epidermal homeostasis [10], we examined whether the anti-proliferative effect of fisetin on NHEK
435 paralleled differentiation. The ability of different concentrations of fisetin to induce terminal
436 differentiation was analyzed by monitoring transglutaminase (TGase) enzyme activity, a marker of
437 terminal keratinocyte differentiation. Significant dose-dependent induction of TGase activity was
438 observed in NHEK (**Figure 2A and B** (graph for linear regression used to plot TGase activity)). In
439 addition, the ability of fisetin to stimulate differentiation was also examined by western blot analysis
440 of the expression levels of early (K1 and K10), intermediate (caspase-14) and late (filaggrin and
441 TGase-1) keratinocyte differentiation markers [40-42]. Following 24-48 h exposure of near confluent
442 NHEK, fisetin dose-and-time-dependently increased the expression of these differentiation markers
443 (**Figure 2C**), indicating that fisetin induce terminal differentiation of keratinocytes at higher
444 concentrations.

445 Activator protein-1 (AP-1), a dimeric protein complex comprising members of the Jun and Fos
446 proto-oncogene subfamilies, is a transcription factor known to play an important role in the
447 regulation of epidermal keratinocytes proliferation, terminal differentiation, cytokine production and
448 inflammation [43],[44, 45]. AP-1 subunits expression levels are downregulated in lesioned compared
449 with non-lesioned psoriatic skin [46, 47]. We determined the effect of fisetin on expression of AP-1
450 factors in NHEKs and observed that fisetin increased the nuclear expression of members of AP-1
451 factor subunits, including Fos (Fra-1/2, c-Fos, Fos B) and Jun (c-Jun, JunB, JunD), as compared to
452 control cultures (**Figure 2D-E**).

453 *3.3. Fisetin regulates IL-22-induced keratinocyte proliferation by inhibiting the PI3K/AKT and mTOR*
454 *pathway components*

455 It is known that type-17 cytokines such as IL-17 and IL-22 play critical roles in psoriasisiform
456 pathology [48, 49], including Akt/mTOR activation [50, 51]. In this light, modulation of the
457 PI3K/Akt/mTOR activity is known to promote epidermal hyperplasia, and exert distinct regulatory
458 roles in the same innate immune cells that are implicated in the immunopathogenesis of psoriasis
459 [34,52, 53]. Here, we employed recombinant human (rh) IL-22-activated keratinocytes *in vitro* to
460 investigate the mechanistic role of fisetin in psoriasis-like changes driven by epidermal keratinocytes
461 hyper-proliferation. We observed by MTT analysis that IL-22 treatment of NHEK significantly
462 induced proliferation ($117 \pm 0.16\%$) compared to control ($100 \pm 0.11\%$) (**Supplementary Figure 1**,
463 $p < 0.01$). When NHEK cultures were treated with 10 and 20 μ M fisetin for 24 h before stimulating with
464 20 ng/ml of rhIL-22, IL-22-induced proliferation ($117 \pm 0.16\%$) was significantly reduced to $75 \pm 0.54\%$
465 %, and $65 \pm 1.09\%$, respectively (**Supplementary Figure 1**, $p < 0.01$).

466
467


468

469 **Figure 2: Fisetin treatment increased the expression of markers of epidermal keratinocytes**
470 **differentiation and AP-1 transcription factor in NHEK.** (A - B) The bar graphs represent dose-
471 dependent induction of the differentiation marker transglutaminase (TGase) (a terminal
472 differentiation marker) activity in NHEK treated with or without different doses of fisetin for 24 h,
473 and the linear plot of the hydroxamate analysis of TGase activity. Data represent means \pm SEM of
474 three independent experiments each performed in quadruplicate. Significance of comparisons were
475 made for control cells versus fisetin-treated cells or positive control, determined one-way analysis of
476 variance as denoted by * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. Dose-and-time dependent
477 increases in the protein expression of (C) early and late differentiation markers, and (D-E) nuclear
478 protein expression of members of AP-1 factors subunits including Jun (C- Jun, Jun B, Jun D) and Fos
479 (C-Fos, Fra-2, Fos-B) in NHEKs when compared to control cultures after 48 h, as analyzed by western
480 blotting. Panel C-E are representative of 2-3 experiments with similar results. Equal protein loading
481 was confirmed using β -actin and Lamin as respective loading controls, and the numerical data above
482 the blots represent the quantitative relative densitometry values for the blots normalized to their
483 respective loading controls.

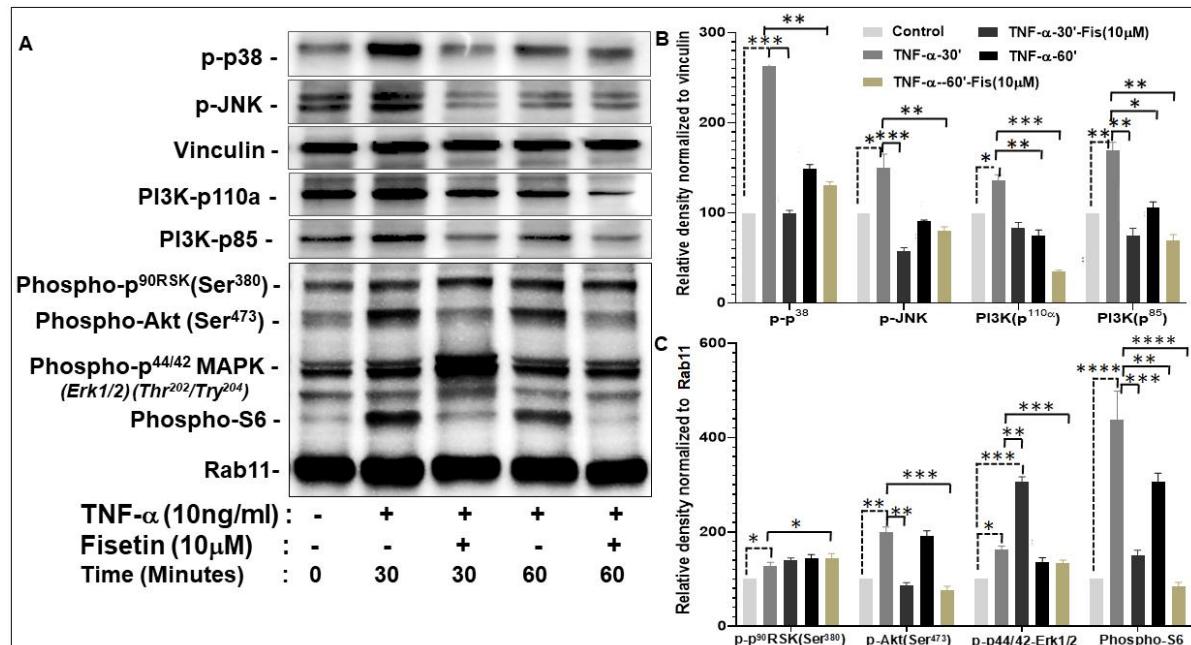
484 Studies have demonstrated that IL-22-induced proliferation of NHEK is mediated through
485 PI3K/AKT/mTOR signaling pathway [50, 54, 55]. Therefore, to mechanistically elucidate how fisetin
486 inhibits the proliferative responses, we examined the effects of fisetin on IL-22-induced activation of
487 PI3K, Akt, mTOR and p70S6K after 12 h. Our western blot analysis showed that fisetin treatment of
488 NHEK significantly and dose-dependently suppressed IL-22-induced increases in protein expression
489 of PI3Ks (p110 α and p85), the phosphorylation of Akt (at Ser 473 and Thr 308), and of mTOR (at Ser 2448
490 and Ser 2481), as well as its downstream effector p-p70S6K (Thr 389), as compared with control (Figure
491 3).

492 **3.4. Fisetin regulates TNF- α -induced activation of the PI3K/Akt/mTOR and MAPK signaling pathways in**
493 **NHEK**

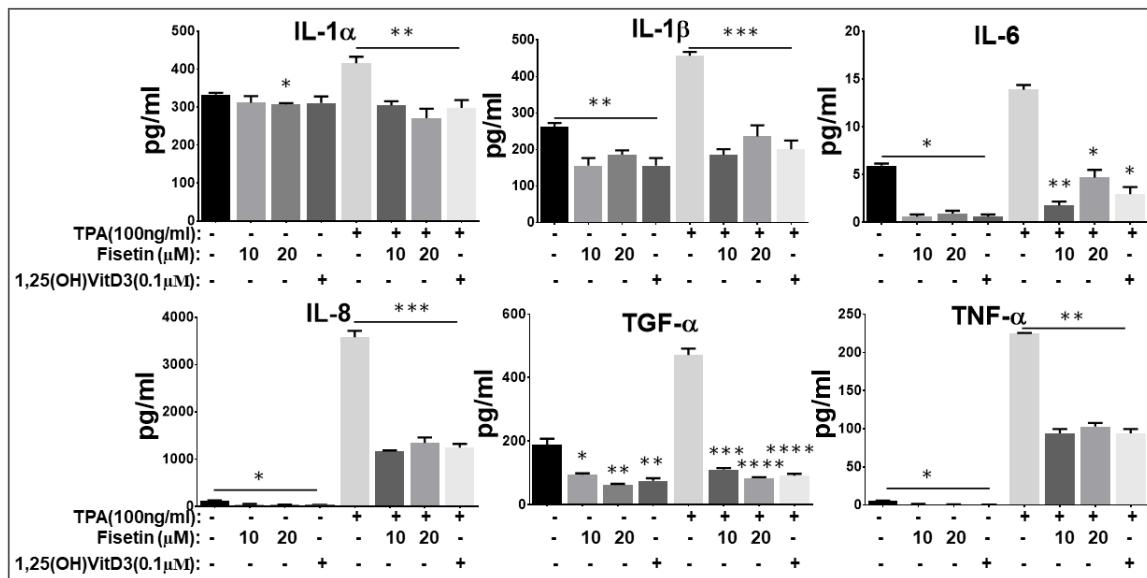
494 Given that fisetin inhibited IL-22-induced responses that are dependent on PI3K/AKT/mTOR
 495 and MAPK signaling, we next examined the effect of fisetin on TNF- α -induced PI3K/AKT/mTOR and
 496 MAPK pathway responses. NHEK cultures were pre-treated with 10 μ M fisetin for 24 h before
 497 stimulating with 10 ng/ml of rhTNF- α , and the ensuing effect on TNF- α -induced activation of
 498 PI3K/AKT/mTOR and MAPK- signaling was examined by western blotting after 30 and 60 min
 499 (Figure 4). At 30 min, TNF- α treatment increased the levels of p-p38, p-JNK, PI3K (p110a and p85),
 500 p-p90RSK, p-Akt, p-ERK and p-S6 (Figure 4). These TNF- α -induced effects were significantly
 501 inhibited upon pre-treatment with 10- μ M fisetin, except for the expression of p-p90RSK and p-ERK,
 502 which latter was enhanced by fisetin treatment (Figure 4).

503

504 **Figure 3. Figure 3: Fisetin significantly suppresses the IL-22-induced activation of the**
 505 **PI3K/Akt/mTOR signaling in NHEK.** Western blot determined protein expression levels of (A-B)
 506 PI3-K (p110 and p85), and (C-D) phosphorylation of Akt (at Ser473 and Thr308), and (E)
 507 phosphorylation of mTOR (at Ser2448 and Ser2481), and (F) phosphorylation of p-p70S6K (Thr389),
 508 as compared with untreated cells (control) and IL-22-treated cells only. (B, D and G) graphs of relative
 509 intensity of normalized protein components, and each bar depict means +/- SD of three different
 510 experiments. *, ** and *** indicate $p < 0.05$, $p < 0.01$ and $p < 0.001$ vs control for IL-22 treated only or vs
 511 IL-22 for fisetin treated cells.


512 3.5. Fisetin pre-treatment inhibits human epidermal keratinocytes, peripheral blood mononuclear cells
 513 (PBMC) and CD4+ T-lymphocytes-induced inflammatory responses

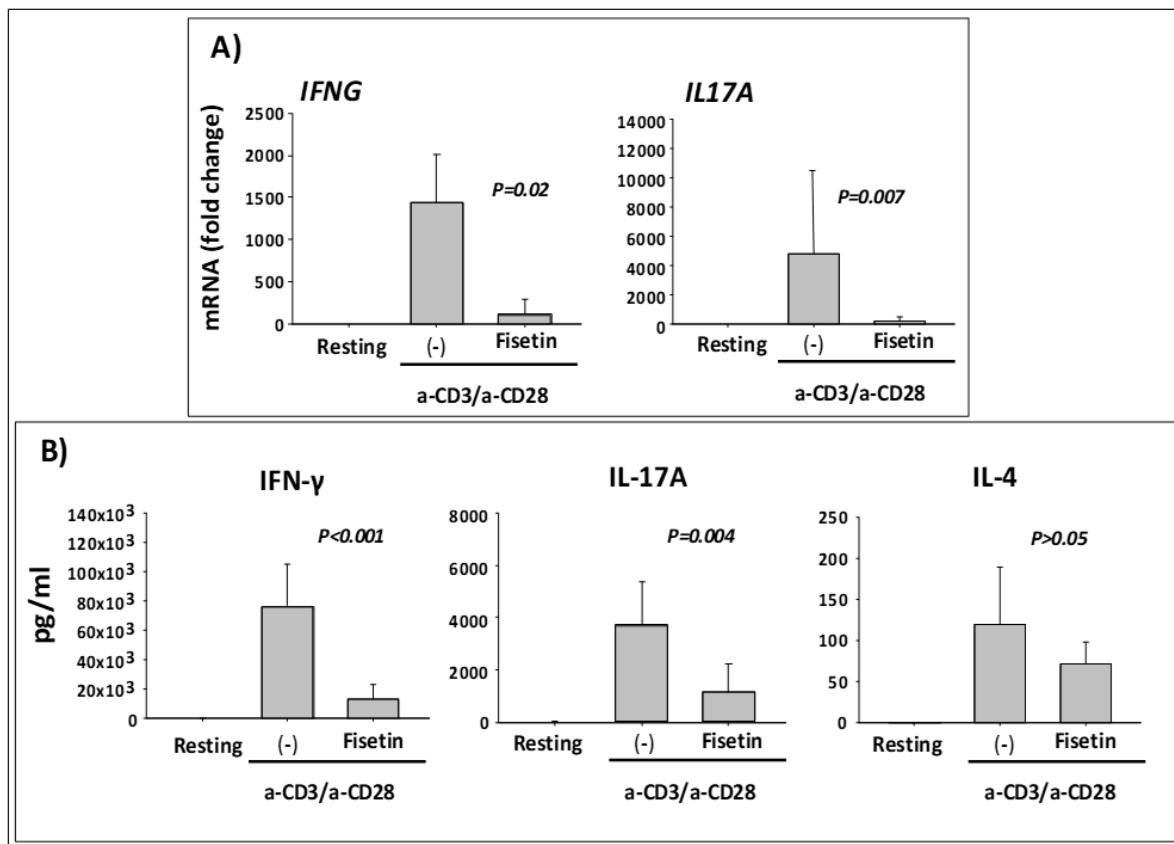
514 Next, we examined the role of fisetin on inflammatory responses induced by 12-O-
 515 tetradecanoylphorbol 13-acetate (TPA) on NHEK and induced by anti-CD3 plus anti-CD28 on
 516 PBMCs, and CD4+ T lymphocytes. Using Procarta-based Multiplex cytokine immunoassay, we first
 517 examined the effects of fisetin (10 and 20 μ M) pretreatment on TPA (100 ng/ml)-induced production
 518 of pro-inflammatory mediators IL-1 α , IL-1 β , IL-6, IL-8, TGF- α and TNF- α by NHEK (Figure 5). It has
 519 been shown that treatment of NHEK with TPA can induce inflammatory response mimicking the
 520 initial keratinocyte activation phase of the psoriatic process [10, 56]. Here, we observed that fisetin
 521 pretreatment significantly decreased unactivated and TPA-induced NHEK secretion of the


522 proinflammatory cytokines IL-1 α , IL-1 β , IL-6, IL-8, TNF- α , and the pro-fibrotic mediator TGF- α . Of
 523 note, fisetin's effects were highly similar to the effects elicited by 1, 25 hydroxyvitamin-D₃ (Vit-D₃)
 524 treatment upon TPA-stimulation (Figure 5).

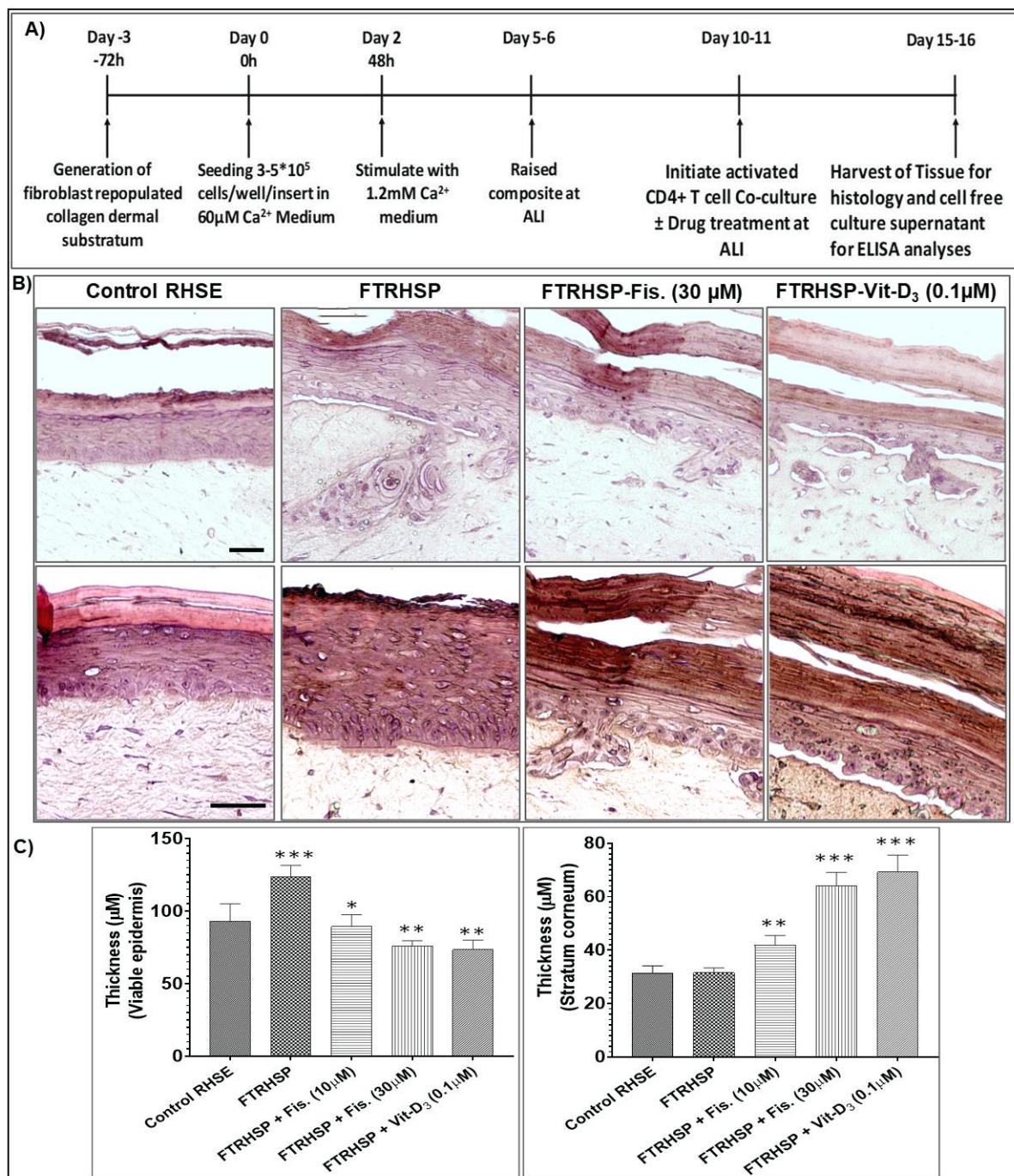
525

526

527
528

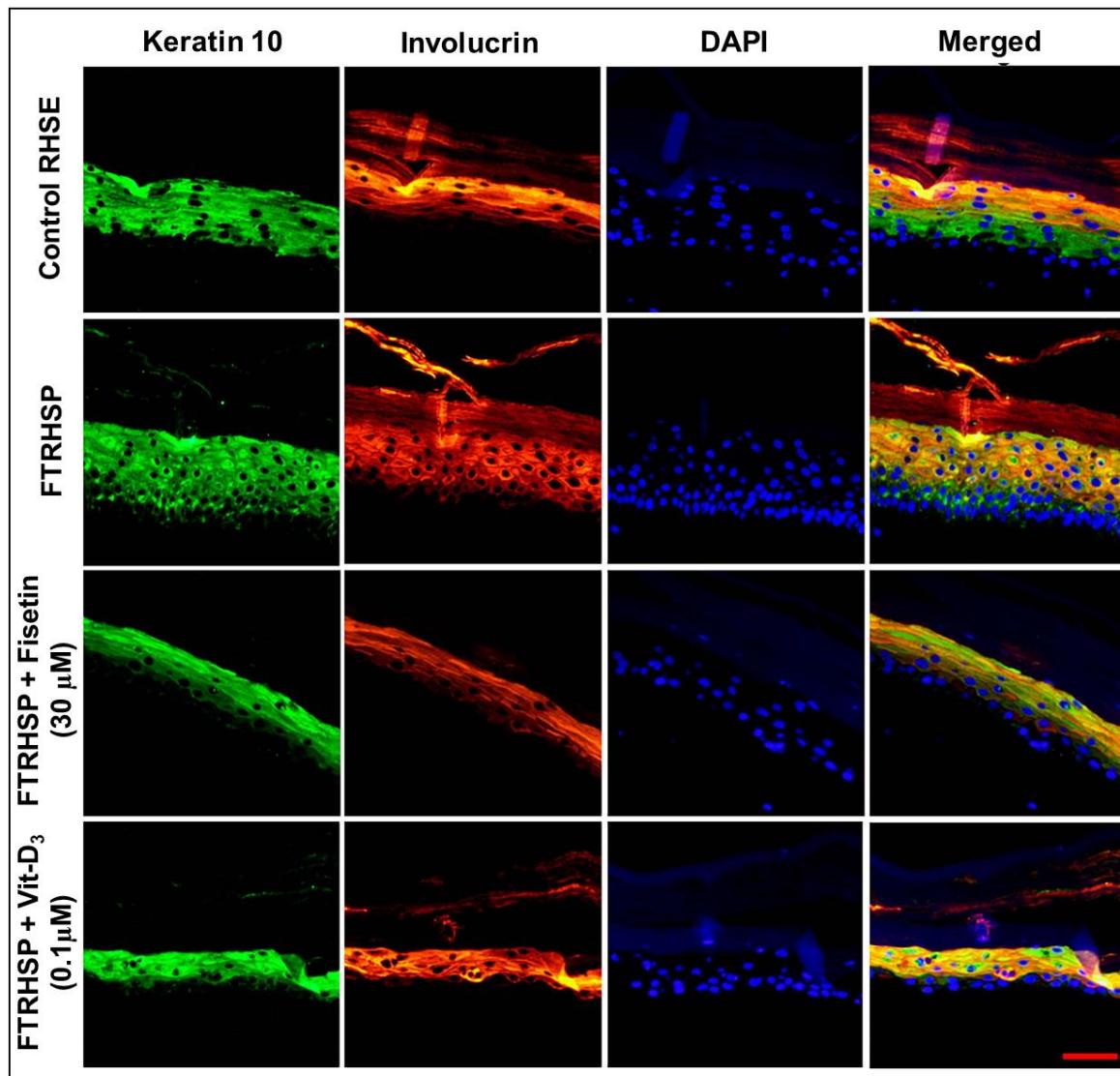

529 **Figure 4: Fisetin regulates the PI3K/Akt/mTOR and MAPK signaling pathways in TNF- α -
 530 activated NHEK.** NHEK cultures were pre-treated for 24 h with/without 10 μ M fisetin and then
 531 stimulated with 10 ng/ml TNF- α for 30 and 60 min prior to immunoblot analysis and quantification
 532 of the expression levels of; p-p38, p-JNK, PI3K (p110 α and p85), p-p90RSK, p-Akt(Ser473),
 533 p-ERK(p44/42) and (phospho-S6).. Proteins were quantitated using the Bio-Rad Image Lab v6
 534 software compared with untreated and TNF- α -activated control cells and were normalized to Rab11
 535 or vinculin as loading controls. (B-C) Quantitative analysis of normalized target protein expressions,
 536 and the plotted values are mean \pm SD of each data set from three independent experiments
 537 performed in triplicates. Significance of comparisons were made for TNF- α -stimulated control cells
 538 versus fisetin-treated at 30 and 60 minutes time points, corresponding to the solid lines, and also
 539 between unstimulated control cells versus TNF- α -stimulated cells indicated by the broken lines as
 540 denoted by * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001.
 541

542


543 **Figure 5: Fisetin reduces the inflammatory response in 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-activated NHEKs.** NHEKs were pretreated with or without different concentration of fisetin (10 and 20 μ M) for 24 h, before stimulation with or without 100 ng/mL of TPA. The secretion and release of pro-inflammatory cytokines (IL-1 α , IL-1 β , IL-6, IL-8(CXCL8) and TNF- α , and TGF- α) in condition culture media was measured by procarta based multiplex immunoassay. Fisetin pretreatment suppressed TPA-induced secretion of these proinflammatory mediators to values similar to that of 1,25 dihydroxyvitamin D3 (Vitamin D3) pretreatment. Values are mean \pm SD of results from three independent experiments each performed in quadruplicate. Statistical significance was determined using one-way ANOVA and Turkey's multiple comparison test. Significance of comparisons were made for TPA-stimulated alone cells versus TPA-stimulated and fisetin/vitamin D3-treated cells, and also between unstimulated control cells versus fisetin/vitamin D3-treated cells as denoted by * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001.

555 Because both keratinocyte and immune cell activation are involved in the initiation and
 556 chronicity of psoriasis and other inflammatory skin diseases [57-59], we next examined the effect of
 557 fisetin on anti-CD3/anti-CD28-activated PBMC secretion of inflammatory mediators. Subsequently,
 558 the mRNA expression level of type-1 and type-17 pro-inflammatory cytokines (*IFNG* and *IL-17A*),
 559 were analyzed when PBMCs were pretreated with fisetin (10 μ M) for 10 min followed by activation
 560 with anti-CD3/CD28 for 6 h. As shown in **Figure 6A**, pretreatment of PBMC with fisetin resulted in
 561 significant inhibition of *IFNG* and *IL17A* mRNA accumulations. Under these conditions, PBMC were
 562 cultured for 48 h and analyzed for the cytokine protein production and release by ELISA. Altogether,
 563 these results demonstrated a significant inhibitory effect of fisetin on IFN- γ and IL-17 secretion, in
 564 spite of no obvious effect on the type-2 cytokine IL-4 (**Figure 6B**), and thus inhibition of inflammatory
 565 cells induced responses associated with modulation of the expression of critical pro-inflammatory
 566 cytokines in psoriasis.

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581


Figure 6: Fisetin suppresses the expression and secretion of IFN- γ and IL-17 in activated-human peripheral blood mononuclear cells (PBMC). PBMC were prepared from circulating blood from three different healthy blood donors, and were cultured without (resting) or with anti-CD3 plus anti-CD28 (a-CD3/a-CD28), either treated with 10 μ M of fisetin or vehicle alone (-) for 10 min before activation. (A) PBMC were activated for 6 h before measurement of the type-1 and type-17 proinflammatory cytokines, IFN- γ (*IFNG*) and IL-17A (*IL17A*) mRNA expression levels. Fold change in mRNA levels compared to resting cells, which expression level was fixed at one, were determined. Means \pm SE are shown, and log10 transformation followed by paired t test was used to compare mRNA levels in a-CD3/a-CD28-activated PBMC with or without fisetin. (B) PBMC were activated for 48 h in the indicated conditions and secreted cytokines (IFN- γ , IL-17A and IL-4) present in the cell culture media were measured by ELISA. Means \pm SD are shown and the paired t test was used to compare values between fisetin (-) for a-CD3/a-CD28-activated PBMC.

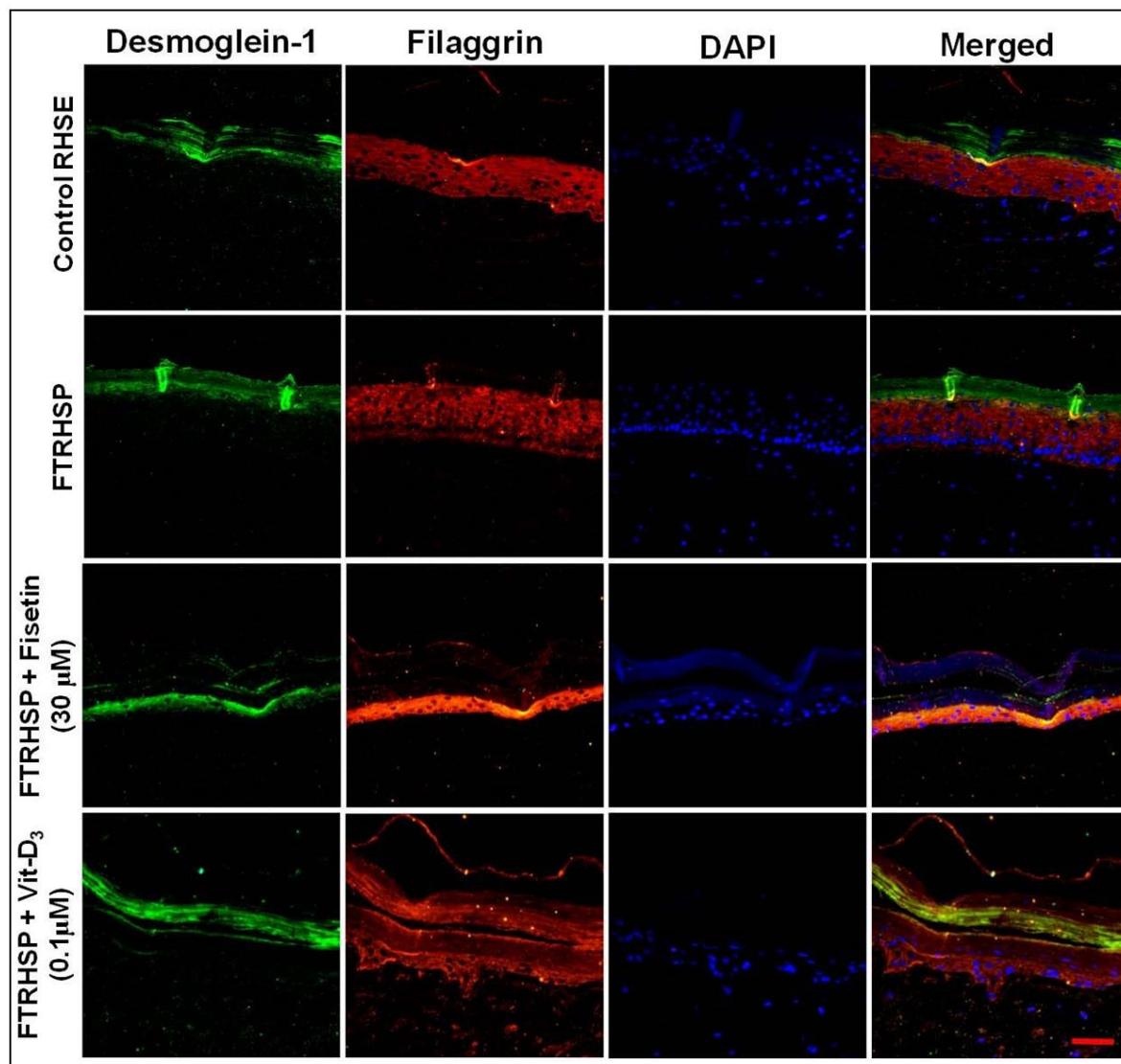
582

583 **Figure 7: Fisetin modulated psoriasis-like features in three-dimensional (3D) full-thickness**
 584 **reconstituted human skin model of psoriasis (FTRHSP). (A)** Protocol for the
 585 establishment/generation of the 3D full-thickness reconstituted human skin model of psoriasis
 586 (FTRHSP), and for evaluation of the therapeutic effects of compounds (fisetin or known control
 587 agent vitamin D₃ (Vit-D₃)) on psoriasis-like pathologic features. Candidate compounds were added
 588 on top of the tissue after 5 days of lifting to air-liquid interface and at the same day in wells
 589 containing pre-activated or not T lymphocytes at the base of the engineered reconstructs and co-
 590 cultured. These were continually cultivated for additional 5 days in the presence or absence of these
 591 agents prior to harvest, with media replenishment every alternate day. **(B)** Photomicrographs of
 592 Modified Mayer's Hematoxylin and Eosin stained control RHSE, FTRHSP and FTRHSP treated
 593 with/without fisetin/Vit-D₃ reconstructs, scale bar; top panel 20 μM, and bottom panel 50 μM. **(C)**

594 Bar graphs showing quantification of changes in the thickness of: A) the viable epidermis (left panel), significant decreased thickness in treated group vs FTRHSP and B) stratum corneum (right panel), significant increased thickness in treated group vs FTRHSP. The FTRHSP were generated
 595 and treated under the different conditions (including with or without test agents fisetin or Vit-D₃),
 596 and analyzed as detailed methods section. Significant differences between means \pm standard
 597 deviation were determined as denoted by $^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$ vs. control RHSE.
 598
 599

601 **Figure 8. Fisetin modulates psoriasis-like features in the 3D full-thickness reconstituted human**
 602 **skin model of psoriasis (FTRHSP).** Immunofluorescence staining was performed on FTRHSP sections
 603 by incubating with primary antibody against targets overnight at 4 °C followed by incubation with
 604 specific Alexa Flour 488-labelled secondary antibodies for 2 h at room temperature in the dark.
 605 Samples were mounted in mounting medium containing 4',6-diamidino-2-phenylindole (DAPI) and
 606 analyzed microscopically. Immunofluorescence staining analysis of differential staining showing the
 607 protein expressions of early (K10) and late (involucrin) differentiation markers in control RHSE and
 608 FTRHSP under different treatment conditions. Stainings are shown in red and green respectively, and
 609 DAPI in blue and results are representative images of 2 independent experiments each performed in
 610 quadruplicate in comparison to control and treated FTRHSP. Scale bar = 20 μm.

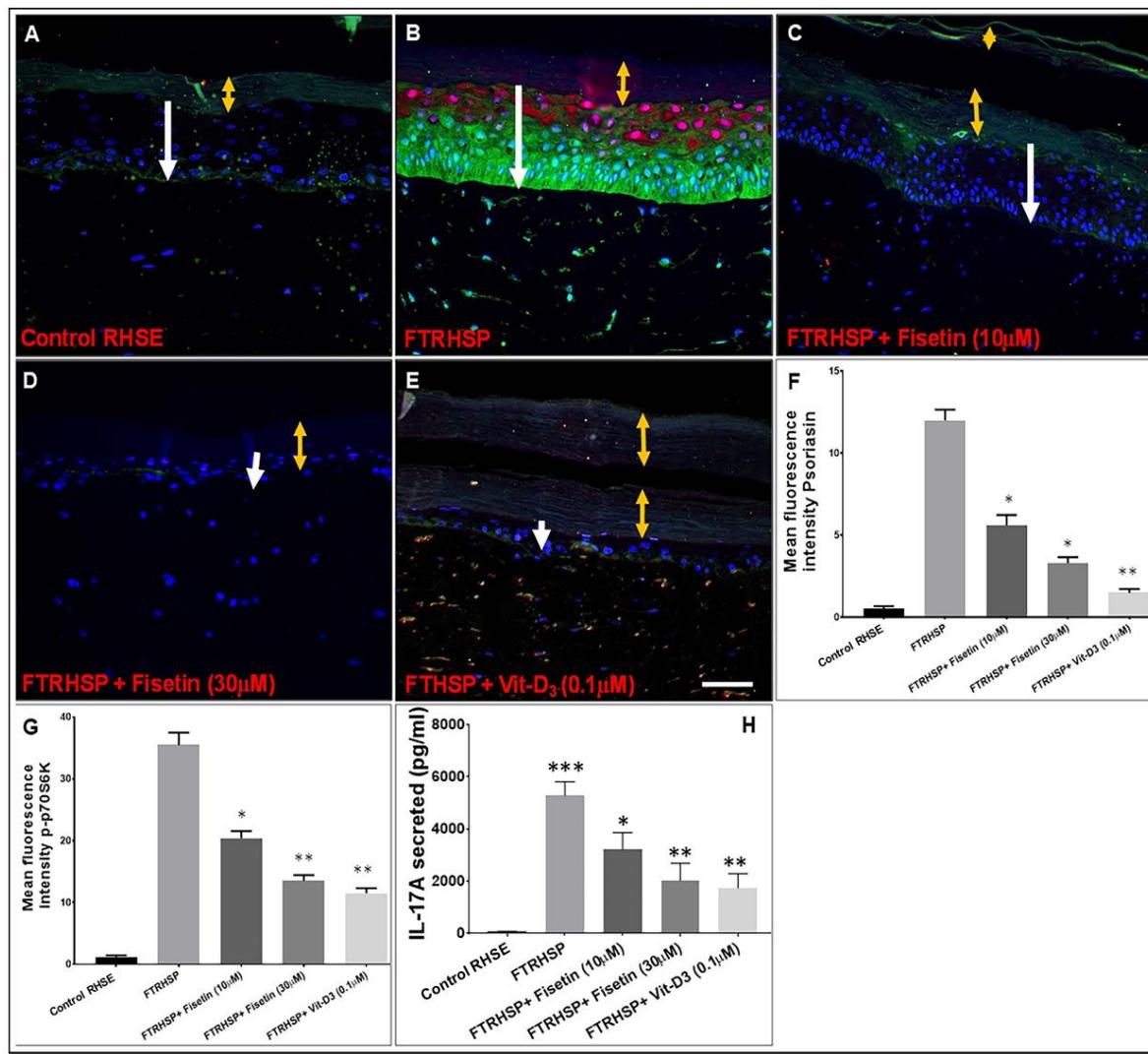
611 3.6. *Topical application of fisetin modulates psoriasis-like features, suppresses proliferation, and modulates*
612 *differentiation in T cell-induced three-dimensional (3D) full-thickness reconstituted human skin model of*
613 *psoriasis (FTRHSP)*

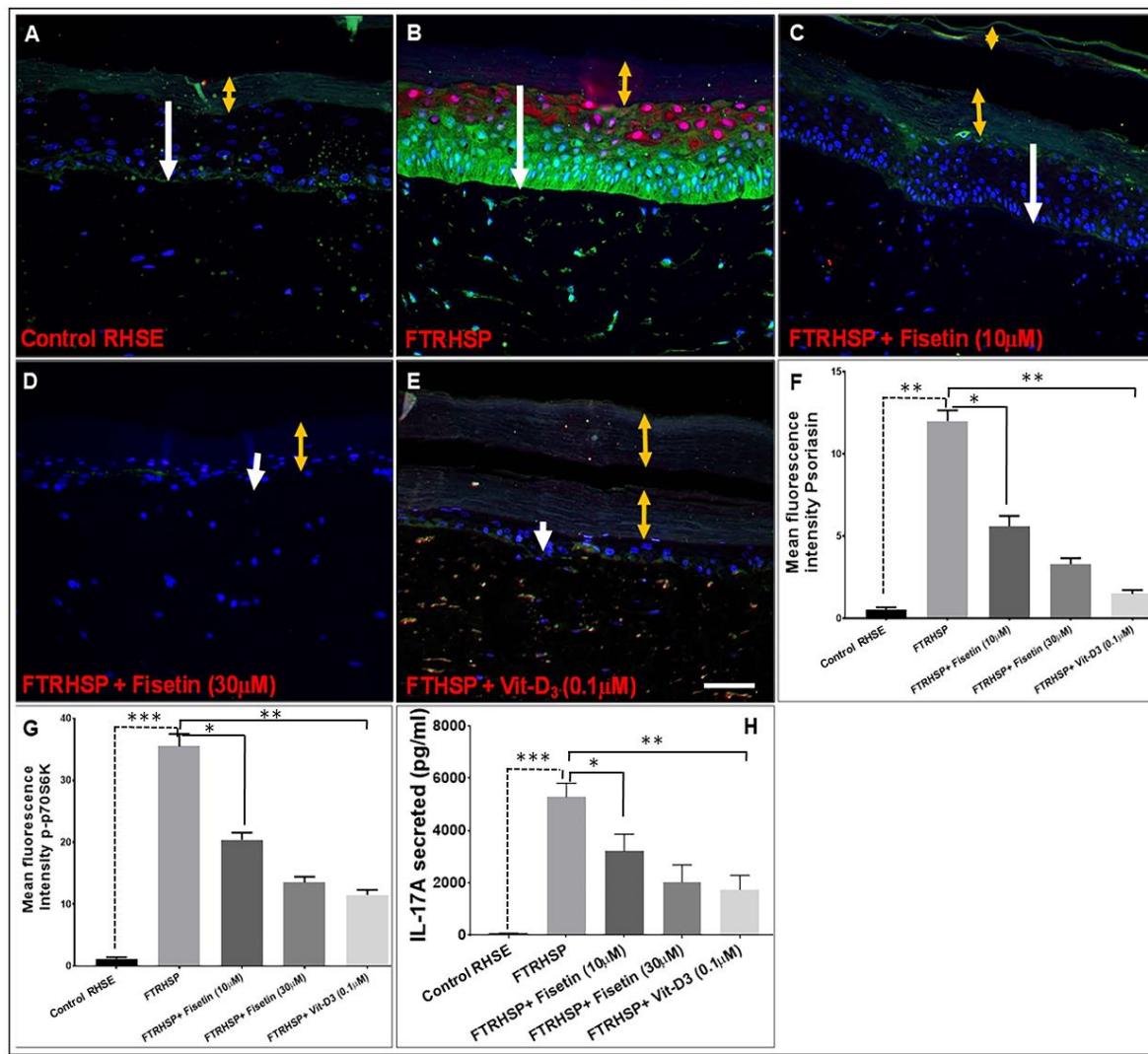

614 Since human psoriatic skin lesion is phenotypically characterized by increases in epidermal
615 hyperplasia, antimicrobial peptides, inflammation, and aberrant differentiation and signaling
616 cascades [40, 62-64], we determined the effect of fisetin on the established FTRHSP model which
617 mimic *in vivo* features of psoriatic skin lesions and compared with Vit-D₃. After 5 days of
618 administering T cells to the 3D human skin equivalents (day 15 from start), tissues were harvested as
619 above and molecular markers of epidermal differentiation, inflammation and proliferation were
620 determined as indicated in protocol in **Figure 7A**. We observed that control FTRHSP (RHSE) tissues
621 generated by co-culture with non-activated CD4+ T cells, showed more condensed epithelium. In
622 contrast, the regenerated 3D FTRHSP incorporating activated CD4+ T cells, recapitulated several
623 features of human psoriatic lesion with lesser cornification including increases in epidermal
624 thickness, proliferation and other changes in the aforementioned features (**Figure 2 B-C**; and data not
625 shown). Furthermore, as previously reported [40, 62], fisetin-treated FTRHSP tissues co-cultured
626 with activated CD4+ T cells had much prominently thinner viable epidermis similar to control tissues.
627 These observations were comparable to the effects elicited by a single dose of Vit-D₃ (0.1μM) (**Figure**
628 **7 B-C**)

629 Additionally, by analysis of immunostained FTRHSP tissues for the expression of psoriasis-
630 related skin proteins markers, we observed that compared with control tissues, terminal
631 differentiation process was perturbed, as demonstrated by increased expression of Ki67 (proliferation
632 (**data not shown**)), and aberrant increase and expression of differentiation markers (filaggrin, K-10,
633 involucrin, TGase-1 and junctional protein, desmoglein-1) (**Figure 8 - 9, and Supplementary Figure**
634 **2**). Interestingly, we observed that topical application of fisetin or single dose of Vit-D₃ after 5 days
635 markedly suppressed **proliferation**, accompanied by normalization/induction of the expressions of
636 differentiation markers including K-10, involucrin, filaggrin, TGase-1 and desmoglein 1, in the
637 spinous via granular epidermal cell layers of the FTRHSP (**Figure 8 -9, and Supplementary Figure**
638 **2**).

639

640 3.7. *Topical application of fisetin suppresses mTOR activation, and inflammation in T cell- induced 3D*
641 *FTRHSP model.*


642 Next, we examined the effect of fisetin on the mTOR pathway, the pro-inflammatory alarmin,
643 psoriasin (that acts as antimicrobial peptide) and the secretion of pro-inflammatory cytokine, IL-17A
644 in the FTRHSP tissues and conditioned media respectively, and compared with Vit-D₃ by employing
645 immunofluorescence and ELISA analyses. Deregulated expression of these markers was associated
646 with psoriatic skin lesion in the FTRHSP tissues and supernatants. We observed that compared with
647 control tissues, the activated T cells co-cultured 3D FTRHSP tissues showed increased
648 staining/induction expression of psoriasin and p-p70S6K (**Figure 10A-G**), as well as increased
649 secretion of IL-17A (**Figure 10H**). Topical application of fisetin or Vit-D₃ prominently suppressed the
650 observed increases in protein expression of psoriasin, p-p70S6K as well as IL-17A production in the
651 established FTRHSP (**Figure 10**).



652

653 **Figure 9.** Representative immunofluorescent photomicrographs showing protein expression levels of
 654 differentiation (filaggrin) and desmosomal (desmoglein-1) protein markers in control RHSE and
 655 FTRHSP under different treatment conditions versus fisetin or Vit-D₃-treated FTRHSP tissues. Results
 656 are representative of three independent experiments each performed in quadruplicate and comparing
 657 control RHSE vs. FTRHSP treated groups. Data green (Dsgl-1); red (filaggrin), blue (DAPI) and mixed
 658 is merged representation. Dsgl-1=desmoglein-1. Scale bar = 20 μ m.

659

661

662 **Figure 10. Fisetin modulated the expression of makers of psoriasis-like inflammation and mTOR**
 663 **activity in 3D human skin model of psoriasis.** Immunofluorescence staining for p-p70S6K and
 664 Psoriasisin was performed on FTRHSP sections by incubating with primary antibody against targets
 665 overnight at 4 °C followed by incubation with specific Alexa Flour 488-labelled secondary antibodies
 666 for 2 h at room temperature in the dark. Samples were mounted in mounting medium containing
 667 4',6-diamidino-2-phenylindole (DAPI) and analyzed microscopically. (A-E) the antimicrobial
 668 peptide (psoriasisin) and mTOR activation effector, p-p70S6K stainings are shown in red and green
 669 respectively, and DAPI in blue. Representative pictures are shown. Scale bar = 20 μm. (F-G) For
 670 densitometric quantification each color image was separated into its green, blue, and red channel
 671 component using ImageJ software (National Institutes of Health), and green and red channels were
 672 used to analyze mean fluorescent intensity. Data shown here are mean fluorescence intensity ± SEM.
 673 (H) Differential protein expression levels of IL-17A secreted in the conditioned media of FTRHSP
 674 cultures. Pro-inflammatory cytokines IL-17A in conditioned media, were analyzed when 3D
 675 FTRHSP were treated without and with fisetin (10-30 μM) treatment or 0.1 μM Vit-D₃ for 5 days
 676 following activation by co-culturing with anti-CD3/CD28 activated CD4+ T cells for 7 days as
 677 described in method section. Significant differences were determined and significance of
 678 comparisons were made for the expression levels of the target proteins of FTRHSP tissues versus
 679 fisetin or Vitamin D₃-treated FTRHSP, corresponding to the solid lines, and also between non-
 680 activated T cell-exposed control RHSE versus FTRHSP tissues indicated by the broken lines as
 681 denoted by **p*<0.05, ***p*<0.01, ****p*<0.001.
 682

683 **4. Discussion**

684 In spite of recent progresses in the detailed understanding of the underlying molecular basis of
685 psoriasis pathogenesis, existing treatment strategies still yield fluctuating and often-elusive
686 outcomes; hence, some effective treatments are generally associated with serious side effects. Also,
687 recent efficacious synthetic agents are unrealistically expensive. Therefore, it is necessary to look into
688 cheaper, safe and cost effective anti-psoriatic agents. In this respect, medicinal plants have long been
689 used as traditional remedies and are still used by over 75% of the world's population to meet
690 healthcare needs (World Health Organization, 2013). Bioactive natural ingredients hold promise and
691 remain a source of potential new therapeutics, because the identification of their constituent bioactive
692 phytochemicals provide for the development of novel, clinically-useful, cheaper and relatively safe
693 drugs [65].

694 In this study, we demonstrated that fisetin has direct pro-differentiative, anti-proliferative, and
695 anti-inflammatory effects on both 2D and 3D cultures of keratinocytes and immune cells. To our
696 knowledge, this is the first report indicating a direct effect in simplified and complex 3D systems of
697 psoriasis-like disease. To investigate the effect of fisetin on NHEK differentiation, we selected
698 differentiation markers relevant to psoriatic skin lesions, reflecting different stages of differentiation.
699 K1 and K10 "often regarded as keratinization markers" are among the first proteins expressed by
700 differentiating keratinocytes indicative of the fundamental switch from the basal proliferative to the
701 post-mitotic phenotype. This switch is dysregulated in human and murine psoriatic skin lesions, and
702 psoriatic keratinocytes maintain their proliferative capacity into the suprabasal and granular layers
703 [4, 54, 66, 67]. We report that fisetin significantly induced protein expression of the early, intermediate
704 and late markers of keratinocytes differentiation after 24 - 48 h of treatment. The bi-phasic effect of
705 fisetin on K10 and other early markers, with concentrations greater than 10 μ M inducing less
706 expression levels of K10 and caspase-14 is likely because higher concentrations of fisetin drive
707 keratinocytes to late differentiation. At later stages of differentiation, a decline in K10 and caspase-14
708 expression is expected, accompanied and as evident by dose-dependent increase in TGase activity
709 and protein expression, a late marker of differentiation that facilitates terminal differentiation and
710 formation of the cornified envelope [42]. Thus, increased expression of K10 and TGase-1 delineates
711 the effect of fisetin not only to initiate keratinocyte differentiation but also to complete the barrier
712 integrity stage. Furthermore, psoriatic lesions exhibit aberrant and reduced distribution and
713 expression of epidermal TGase [68], and other differentiation markers including caspase-14, filaggrin,
714 and involucrin, etc., resulting in hyperproliferation and parakeratotic skin [54, 69, 70]. Cutaneous
715 inflammation in hyperplastic psoriasis skin lesions is often associated with increased expression of
716 markers of proliferation, inflammation and proinflammatory factors. These major characteristic
717 hallmarks of psoriasisform disease including the antimicrobial peptides, psoriasin (S100A7) and
718 koebnerisin (S100A15), two epidermal S100 calcium-binding proteins proteins [64, 71, 72], with
719 distinct roles but both serving as proinflammatory alarmins and chemoattractants[73], and cytokines.
720 Moreover, the overexpression of the components of mTOR/PI3K/Akt and associated signaling has
721 been associated with psoriatic disease [33, 34, 74]. In this study, fisetin (1-40 μ M) treatment of NHEKs
722 significantly increased TGase enzyme activity by 13-120%, as well as increased the protein
723 expressions of TGase-1 and other differentiation markers often observed to be downregulated in
724 lesioned psoriatic skin [54, 75]. Therefore, the antiproliferative and prodifferentiative effects of fisetin

725 on keratinocytes suggest that fisetin may correct proliferative and differentiation imbalances
726 observed in psoriatic keratinocytes.

727 Importantly, the effect of fisetin was examined on inflammation, another major hallmark of
728 psoriasis by analyzing the expression and secretion of key psoriatic cytokines induced by known
729 activators of human keratinocytes and immune cells. These immune cell-derived cytokines are
730 capable of activating keratinocytes, thereby exacerbating the flares [10]. Therefore, the role of
731 inflammatory and type-17 cytokines in the psoriatic cytokine network has led to the development of
732 antipsoriatic biologic drugs targeting TNF- α and IL-17A. Examples include etanercept (Enbrel®), a
733 TNF- α antagonist and secukinumab, an antibody anti-IL-17A antagonist for psoriasis treatment [16,
734 17, 76]. Furthermore, high serum levels of TNF α and IL-6 are observed in psoriasis patients compared
735 with healthy controls[77], and IL-1 α , which is primarily produced by skin keratinocytes, regulates
736 proliferation, differentiation, as well as dictates immune function [78], via priming IL-23-induced
737 modulation of IL-17A production by T cells[79-82]. Overexpression of IL-1 α in basal epidermal layers
738 of transgenic mouse model leads to psoriasis-like phenotype with keratinocyte hyperplasia and
739 immune cell infiltrates [83-85]. Here, inflammatory cytokine production in keratinocytes, was
740 stimulated by a known inducer of keratinocyte inflammatory response, TPA [56], while PBMCs were
741 activated by anti-CD3/anti-CD28 treatment, which mimics antigen presentation to lymphocytes [60].
742 Since keratinocyte is the major source of a spectrum of different cytokines including IL-1, IL-6 and
743 TNF α in skin inflammatory responses [8, 10, 86], by stimulating NHEKs with TPA, we presumably
744 mimicked the initiation phase of the psoriatic process [54, 87]. Our data on both, multiplexed and
745 sandwich ELISAs, showed that fisetin was capable of efficiently inhibiting the production of
746 inflammatory cytokine induced in keratinocytes, PBMCs and activated-CD4+ T cells co-cultured with
747 3D FTRHSP. Among the cytokines down-regulated by fisetin were Th-1/Th-17 cytokines, including
748 IL-17A and IFN- γ . Therefore, we propose that fisetin, by inhibiting proliferation, inducing
749 differentiation, and downregulating the psoriatic cytokine network in keratinocytes and immune
750 cells, could restore keratinocyte and skin homeostasis, and may act as a possible anti-psoriatic agent
751 as suggested by the 3D psoriatic skin model studies. Furthermore, these findings suggest that fisetin
752 exerts inhibitory functions on the two major cell types involved in psoriasis pathogenesis,
753 keratinocytes, and immune cells by inhibiting the activation of PI3K/AKT/mTOR and MAPK
754 pathway components. The induction of ERK1/2 activation by fisetin is a mechanistic phenomenon
755 observed in several other studies by our team and others. This is reflected in relation to activation of
756 activation of cutaneous keratinocyte differentiation (specialized program cell death in keratinocytes)
757 rather than the much expected induction of proliferation PMID: 30356079; PMID: 31438640, and the
758 result is not much surprising as constitutive activation of ERK is related to apoptosis. It is admitted
759 that targeting immune cells and their mediators is the ultimate approach to treat psoriasis. Moreover,
760 considering the essential role of keratinocyte cross-talk with immune cells in inflammatory skin
761 diseases like psoriasis, targeting inflammatory mediator network from both keratinocytes and
762 immune cells, as well as the anti-proliferative and pro-differentiation potential may enhance the anti-
763 psoriatic effect of a compound such as fisetin. Considering the fact that fisetin exerts a pleiotropic
764 effect, targeting the three major hallmarks of psoriasis as a single, natural agent, and not only is it
765 safe and effective, fisetin may also be less compromising to the patient's immune system. The
766 observed increased expression of psoriasin (S100A7), an antimicrobial peptides in the generated
767 CD4+ T cells activated 3D FTRHSP compared to normal FTRHSP, was suppressed by topical fisetin

768 treatment to values comparable to suppression induced by physiologic Vit-D₃ [73, 88, 89]. We earlier
769 showed increased expression of keratinocyte-induced immune mediator secretion without immune
770 cells derived cytokines in psoriatic skin equivalents [62], which are critical facets in the pathogenesis
771 of psoriasis [89]. Herein, we observed that fisetin inhibited the increased release of both keratinocyte
772 and activated immune cell-associated Th1/Th-17 pro-inflammatory cytokines production including
773 (IL-17A, TNF- α , IFN- γ etc.). It is important to note that the inculcated keratinocytes and activated
774 immune cells in the currently established FTRHSP model elicits and mimics the feedback loop often
775 induced by specific immune cells in the immunopathogenesis of psoriatic skin lesions. In view of the
776 intricacy of psoriasis etiology, it is noteworthy that agents like fisetin that are capable of rescinding
777 numerous critical endpoints in psoriasisform disease, are prospective therapeutic agents for the
778 control of psoriasis.

779 To the best of our knowledge, this study demonstrates for the first time in 2D and 3D psoriasis-
780 like systems the direct effects of fisetin on psoriasis-like features and thus highlights its likely
781 multifactorial prospect as an agent from natural botanical sources consumed on daily basis. This
782 could peak interest to be developed for preventing, slowing the progression or treatment of psoriasis
783 and other inflammatory diseases. Furthermore, granting the current model is promising, additional
784 studies employing complimentary animal, and humanized murine psoriasis-like skin models that
785 integrate more of the immune axis (e.g. activated dendritic cells) are needed to further corroborate
786 the detailed mode of action and efficacy of fisetin without involving too much into animal
787 experimentation. Taken together, the current study provides a rationale for future preclinical proof-
788 of-concepts leading to clinical studies to evaluate fisetin for the control of psoriasis in human patients.

789 **Author Contributions:**

790 JCC conceived and designed the research, conducted experiments, acquisition, analysis and
791 interpretation of data, and wrote the first draft of the manuscript. SE and VMA contributed to the
792 design, experiments, acquisition, analysis and interpretation of data and writing the manuscript.
793 ALN, SBM, TR, SSS, contributed in performing research and collected the data and initial analysis.
794 HM provided initial lab space, and together with SH, and KGK provided guidance and key insights
795 into the planning of the project, interpretation of the data, and placing the conclusions into the
796 broader context. All authors revised the manuscript critically for important intellectual content, and
797 approved the final version of the manuscript to be published.

798 **Funding:**

799 This study was partially supported by an American Skin Association (ASA) Carson Research
800 Scholar Award in Psoriasis (to JCC), a University of Wisconsin-Madison Skin Disease Research
801 Center Pilot and Feasibility Research Award (to JCC) from NIH/NIAMS grant P30 AR066524, a
802 startup fund from the University of Louisiana at Monroe (ULM) College of Pharmacy (to JCC), a
803 ULM College of Pharmacy Faculty Research Seed grant 5CALHN-260615 (to JCC), a LBRN Pilot
804 Award (to JCC) from an NIH/NIGMS IDeA grant P20GM12345 (to KGK), NIH/NIGMS IDeA
805 INBRE/COBRE Collaborative administrative supplement grant 3P20GM103424-18S1 (to JCC),
806 NIH/NIAMS grant R01AR059742 (to HM), and SE is supported by Program Project grant P01
807 HL088594 and Clinical and Translational Research Center grant UL1 RR025011 from the National Institutes
808 of Health.

809 **Acknowledgments:**

810 The authors thank the research subject volunteers who participated in this study, Larissa DeLain
811 and Kartik R. Roy for laboratory technical support, and assistance with cell culture, Samuel T.
812 Boateng and Roxane-Cherille Chamcheu for assistance with histology and immunostaining, Dr.
813 Seetharama D. Jois for providing graduate student service towards this study, and Dr. Anthony L.
814 Walker for helpful discussions and critical review of this manuscript.

815 **Conflicts of Interest:**

816 The authors declare no conflict of interest

817 **REFERENCES**

818 [1] A. Sandilands, C. Sutherland, A.D. Irvine, W.H. McLean, Filaggrin in the frontline: role in skin barrier
819 function and disease, *J Cell Sci* 122(Pt 9) (2009) 1285-94.

820 [2] J.C. Chamcheu, I.A. Siddiqui, D.N. Syed, V.M. Adhami, M. Liovic, H. Mukhtar, Keratin gene mutations in
821 disorders of human skin and its appendages, *Arch Biochem Biophys* 508(2) (2011) 123-37.

822 [3] G. Denecker, E. Hoste, B. Gilbert, T. Hocsepied, P. Ovaere, S. Lippens, C. Van den Broecke, P. Van Damme,
823 K. D'Herde, J.P. Hachem, G. Borgonie, R.B. Presland, L. Schoonjans, C. Libert, J. Vandekerckhove, K. Gevaert, P.
824 Vandenabeele, W. Declercq, Caspase-14 protects against epidermal UVB photodamage and water loss, *Nature*
825 *cell biology* 9(6) (2007) 666-74.

826 [4] E. Candi, R. Schmidt, G. Melino, The cornified envelope: a model of cell death in the skin, *Nat Rev Mol Cell*
827 *Biol* 6(4) (2005) 328-40.

828 [5] E. Hoste, P. Kemperman, M. Devos, G. Denecker, S. Kezic, N. Yau, B. Gilbert, S. Lippens, P. De Groote, R.
829 Roelandt, P. Van Damme, K. Gevaert, R.B. Presland, H. Takahara, G. Puppels, P. Caspers, P. Vandenabeele, W.
830 Declercq, Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin, *The Journal*
831 *of investigative dermatology* 131(11) (2011) 2233-41.

832 [6] E.D. Roberson, A.M. Bowcock, Psoriasis genetics: breaking the barrier, *Trends in genetics : TIG* 26(9) (2010)
833 415-23.

834 [7] A.G. Abdou, A.H. Marae, M. Shoeib, G. Dawood, E. Abouelfath, C-Jun expression in lichen planus, psoriasis,
835 and cutaneous squamous cell carcinoma, an immunohistochemical study, *J Immunoassay Immunochem* 39(1)
836 (2018) 58-69.

837 [8] A. Grone, Keratinocytes and cytokines, *Veterinary immunology and immunopathology* 88(1-2) (2002) 1-12.

838 [9] C. Alappatt, C.A. Johnson, K.L. Clay, J.B. Travers, Acute keratinocyte damage stimulates platelet-activating
839 factor production, *Archives of dermatological research* 292(5) (2000) 256-9.

840 [10] F.O. Nestle, D.H. Kaplan, J. Barker, Psoriasis, *N Engl J Med* 361(5) (2009) 496-509.

841 [11] S. Dubois Declercq, R. Pouliot, Promising new treatments for psoriasis, *ScientificWorldJournal* 2013 (2013)
842 980419.

843 [12] T. Wong, L. Hsu, W. Liao, Phototherapy in psoriasis: a review of mechanisms of action, *J Cutan Med Surg*
844 17(1) (2013) 6-12.

845 [13] J. Villasenor-Park, D. Wheeler, L. Grandinetti, Psoriasis: evolving treatment for a complex disease, *Cleve*
846 *Clin J Med* 79(6) (2012) 413-23.

847 [14] R. Han, M. Rostami-Yazdi, S. Gerdes, U. Mrowietz, Triptolide in the treatment of psoriasis and other
848 immune-mediated inflammatory diseases, *Br J Clin Pharmacol* 74(3) (2012) 424-36.

849 [15] J. Baliwag, D.H. Barnes, A. Johnston, Cytokines in psoriasis, *Cytokine* 73(2) (2015) 342-50.

850 [16] C.L. Leonardi, R. Romiti, P.W. Tebbey, Ten years on: the impact of biologics on the practice of dermatology,
851 *Dermatol Clin* 33(1) (2015) 111-25.

852 [17] J. Schmitt, S. Rosumeck, G. Thomaschewski, B. Sporbeck, E. Haufe, A. Nast, Efficacy and safety of systemic
853 treatments for moderate-to-severe psoriasis: meta-analysis of randomized controlled trials, *Br J Dermatol* 170(2)
854 (2014) 274-303.

855 [18] R. Gniadecki, B. Bang, L.E. Bryld, L. Iversen, S. Lasthein, L. Skov, Comparison of long-term drug survival
856 and safety of biologic agents in patients with psoriasis vulgaris, *Br J Dermatol* 172(1) (2015) 244-52.

857 [19] D.N. Syed, V.M. Adhami, N. Khan, M.I. Khan, H. Mukhtar, Exploring the molecular targets of dietary
858 flavonoid fisetin in cancer, *Seminars in cancer biology* 40-41 (2016) 130-140.

859 [20] N. Khan, D.N. Syed, N. Ahmad, H. Mukhtar, Fisetin: a dietary antioxidant for health promotion, *Antioxid
860 Redox Signal* 19(2) (2013) 151-62.

861 [21] Y. Arai, S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, N. Kinae, Dietary intakes of flavonols, flavones
862 and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL
863 cholesterol concentration, *The Journal of nutrition* 130(9) (2000) 2243-50.

864 [22] P.F. Vale, L. McNally, A. Doeschl-Wilson, K.C. King, R. Popat, M.R. Domingo-Sananes, J.E. Allen, M.P.
865 Soares, R. Kummerli, Beyond killing: Can we find new ways to manage infection?, *Evolution, medicine, and
866 public health* 2016(1) (2016) 148-57.

867 [23] J.A. Kim, S. Lee, D.E. Kim, M. Kim, B.M. Kwon, D.C. Han, Fisetin, a dietary flavonoid, induces apoptosis of
868 cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter, *Carcinogenesis* 36(6)
869 (2015) 696-706.

870 [24] D.N. Syed, J.C. Chamcheu, M.I. Khan, M. Sechi, R.K. Lall, V.M. Adhami, H. Mukhtar, Fisetin inhibits human
871 melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin
872 equivalents and computational modeling, *Biochem Pharmacol* 89(3) (2014) 349-60.

873 [25] H.C. Pal, S. Sharma, C.A. Elmets, M. Athar, F. Afaq, Fisetin inhibits growth, induces G(2) /M arrest and
874 apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and
875 consequent caspases activation, *Exp Dermatol* 22(7) (2013) 470-5.

876 [26] D.N. Syed, V.M. Adhami, M.I. Khan, H. Mukhtar, Inhibition of Akt/mTOR signaling by the dietary flavonoid
877 fisetin, *Anti-cancer agents in medicinal chemistry* 13(7) (2013) 995-1001.

878 [27] V.M. Adhami, D.N. Syed, N. Khan, H. Mukhtar, Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt
879 and mTOR for prostate cancer management, *Biochem Pharmacol* 84(10) (2012) 1277-81.

880 [28] N. Khan, F. Afaq, F.H. Khusro, V. Mustafa Adhami, Y. Suh, H. Mukhtar, Dual inhibition of
881 phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung
882 cancer cells by a dietary flavonoid fisetin, *International journal of cancer* 130(7) (2012) 1695-705.

883 [29] N. Khan, F. Afaq, D.N. Syed, H. Mukhtar, Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle
884 arrest in human prostate cancer LNCaP cells, *Carcinogenesis* 29(5) (2008) 1049-56.

885 [30] H.C. Pal, M. Athar, C.A. Elmets, F. Afaq, Fisetin inhibits UVB-induced cutaneous inflammation and
886 activation of PI3K/AKT/NFkappaB signaling pathways in SKH-1 hairless mice, *Photochemistry and
887 photobiology* 91(1) (2015) 225-34.

888 [31] M. Laplante, D.M. Sabatini, mTOR signaling in growth control and disease, *Cell* 149(2) (2012) 274-93.

889 [32] S.J. Chen, T. Nakahara, M. Takahara, M. Kido, L. Dugu, H. Uchi, S. Takeuchi, Y.T. Tu, Y. Moroi, M. Furue,
890 Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation
891 with cyclin-dependent kinase 2, *Br J Dermatol* 160(2) (2009) 442-5.

892 [33] J.C. Chamcheu, M.I. Chaves-Rodriquez, V.M. Adhami, I.A. Siddiqui, G.S. Wood, B.J. Longley, H. Mukhtar,
893 Uregulation of PI3K/AKT/mTOR, FABP5 and PPARbeta/delta in Human Psoriasis and Imiquimod-induced
894 Murine Psoriasiform Dermatitis Model, *Acta Derm Venereol* 96(6) (2016) 854-6.

895 [34] T. Huang, X. Lin, X. Meng, M. Lin, Phosphoinositide-3 kinase/protein kinase-B/mammalian target of
896 rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target?, *Acta Derm Venereol* 94(4) (2014)
897 371-9.

898 [35] S. Higa, T. Hirano, M. Kotani, M. Matsumoto, A. Fujita, M. Suemura, I. Kawase, T. Tanaka, Fisetin, a
899 flavonol, inhibits TH2-type cytokine production by activated human basophils, *J Allergy Clin Immunol* 111(6)
900 (2003) 1299-306.

901 [36] B. Song, S. Guan, J. Lu, Z. Chen, G. Huang, G. Li, Y. Xiong, S. Zhang, Z. Yue, X. Deng, Suppressive effects
902 of fisetin on mice T lymphocytes in vitro and in vivo, *J Surg Res* 185(1) (2013) 399-409.

903 [37] F.Y. Goh, N. Upton, S. Guan, C. Cheng, M.K. Shanmugam, G. Sethi, B.P. Leung, W.S. Wong, Fisetin, a
904 bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF- κ B, *Eur J
905 Pharmacol* 679(1-3) (2012) 109-16.

906 [38] J.L. Harden, J.G. Krueger, A.M. Bowcock, The immunogenetics of Psoriasis: A comprehensive review,
907 *Journal of autoimmunity* 64 (2015) 66-73.

908 [39] D.N. Syed, F. Afaq, N. Maddodi, J.J. Johnson, S. Sarfaraz, A. Ahmad, V. Setaluri, H. Mukhtar, Inhibition of
909 human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/beta-catenin
910 signaling and decreased Mitf levels, *J Invest Dermatol* 131(6) (2011) 1291-9.

911 [40] J.C. Chamcheu, F. Afaq, D.N. Syed, I.A. Siddiqui, V.M. Adhami, N. Khan, S. Singh, B.T. Boylan, G.S. Wood,
912 H. Mukhtar, Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not
913 apoptosis: studies in submerged and three-dimensional epidermal equivalent models, *Exp Dermatol* 22(5) (2013)
914 342-8.

915 [41] K.E. Nograles, B. Davidovici, J.G. Krueger, New insights in the immunologic basis of psoriasis, *Seminars in
916 cutaneous medicine and surgery* 29(1) (2010) 3-9.

917 [42] R.L. Eckert, M.T. Sturniolo, A.M. Broome, M. Ruse, E.A. Rorke, Transglutaminase function in epidermis, *J
918 Invest Dermatol* 124(3) (2005) 481-92.

919 [43] E. Ezhkova, H.A. Pasolli, J.S. Parker, N. Stokes, I.H. Su, G. Hannon, A. Tarakhovsky, E. Fuchs, Ezh2
920 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells, *Cell* 136(6) (2009) 1122-
921 35.

922 [44] R.L. Eckert, G. Adhikary, C.A. Young, R. Jans, J.F. Crish, W. Xu, E.A. Rorke, AP1 transcription factors in
923 epidermal differentiation and skin cancer, *J Skin Cancer* 2013 (2013) 537028.

924 [45] R. Zenz, R. Eferl, L. Kenner, L. Florin, L. Hummerich, D. Mehic, H. Scheuch, P. Angel, E. Tschachler, E.F.
925 Wagner, Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins, *Nature*
926 437(7057) (2005) 369-75.

927 [46] C.A. Elmets, An animal model of psoriasis in mice deficient in epidermal Jun proteins, *Arch Dermatol*
928 142(11) (2006) 1499-500.

929 [47] R. Zenz, R. Eferl, C. Scheinecker, K. Redlich, J. Smolen, H.B. Schonthaler, L. Kenner, E. Tschachler, E.F.
930 Wagner, Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease, *Arthritis Res Ther* 10(1)
931 (2008) 201.

932 [48] T. Mabuchi, T. Takekoshi, S.T. Hwang, Epidermal CCR6+ gammadelta T cells are major producers of IL-22
933 and IL-17 in a murine model of psoriasisform dermatitis, *J Immunol* 187(10) (2011) 5026-31.

934 [49] M.N. Hedrick, A.S. Lonsdorf, A.K. Shirakawa, C.C. Richard Lee, F. Liao, S.P. Singh, H.H. Zhang, A.
935 Grinberg, P.E. Love, S.T. Hwang, J.M. Farber, CCR6 is required for IL-23-induced psoriasis-like inflammation in
936 mice, *J Clin Invest* 119(8) (2009) 2317-29.

937 [50] A. Mitra, S.K. Raychaudhuri, S.P. Raychaudhuri, IL-22 induced cell proliferation is regulated by
938 PI3K/Akt/mTOR signaling cascade, *Cytokine* 60(1) (2012) 38-42.

939 [51] K. Wolk, H.S. Haugen, W. Xu, E. Witte, K. Waggie, M. Anderson, E. Vom Baur, K. Witte, K. Warszawska, S.
940 Philipp, C. Johnson-Leger, H.D. Volk, W. Sterry, R. Sabat, IL-22 and IL-20 are key mediators of the epidermal
941 alterations in psoriasis while IL-17 and IFN-gamma are not, *J Mol Med (Berl)* 87(5) (2009) 523-36.

942 [52] L.M. Johnson-Huang, M.A. Lowes, J.G. Krueger, Putting together the psoriasis puzzle: an update on
943 developing targeted therapies, *Dis Model Mech* 5(4) (2012) 423-33.

944 [53] L.C. Zaba, J.G. Krueger, M.A. Lowes, Resident and "inflammatory" dendritic cells in human skin, *J Invest
945 Dermatol* 129(2) (2009) 302-8.

946 [54] J.C. Chamcheu, V.M. Adhami, S. Esnault, M. Sechi, I.A. Siddiqui, K.A. Satyshur, D.N. Syed, S.M. Dodwad,
947 M.I. Chaves-Rodriquez, B.J. Longley, G.S. Wood, H. Mukhtar, Dual Inhibition of PI3K/Akt and mTOR by the
948 Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced
949 Psoriasis-Like Disease in Mice, *Antioxid Redox Signal* 26(2) (2017) 49-69.

950 [55] A. Datta-Mitra, A. Mitra, R. Ray, S.P. Raychaudhuri, S. Kundu-Raychaudhuri, 1,25-Dihydroxyvitamin D3-
951 3-bromoacetate, a novel vitamin D analog induces immunosuppression through PI3K/Akt/mTOR signaling
952 cascade, *International immunopharmacology* 17(3) (2013) 744-51.

953 [56] B.H. Kim, J.M. Lee, Y.G. Jung, S. Kim, T.Y. Kim, Phytosphingosine derivatives ameliorate skin inflammation
954 by inhibiting NF-kappaB and JAK/STAT signaling in keratinocytes and mice, *J Invest Dermatol* 134(4) (2014)
955 1023-1032.

956 [57] N.C. Bremilla, L. Senra, W.H. Boehncke, The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond,
957 *Front Immunol* 9 (2018) 1682.

958 [58] F. Ecoeur, J. Weiss, K. Kaupmann, S. Hintermann, D. Orain, C. Guntermann, Antagonizing Retinoic Acid-
959 Related-Orphan Receptor Gamma Activity Blocks the T Helper 17/Interleukin-17 Pathway Leading to
960 Attenuated Pro-inflammatory Human Keratinocyte and Skin Responses, *Front Immunol* 10 (2019) 577.

961 [59] R. Sabat, K. Wolk, L. Loyal, W.D. Docke, K. Ghoreschi, T cell pathology in skin inflammation, *Semin
962 Immunopathol* 41(3) (2019) 359-377.

963 [60] S. Esnault, E.A. Kelly, L.M. Nettenstrom, E.B. Cook, C.M. Seroogy, N.N. Jarjour, Human eosinophils release
964 IL-1ss and increase expression of IL-17A in activated CD4+ T lymphocytes, *Clin Exp Allergy* 42(12) (2012) 1756-
965 64.

966 [61] H. Liu, C. Rohowsky-Kochan, Regulation of IL-17 in human CCR6+ effector memory T cells, *J Immunol*
967 180(12) (2008) 7948-57.

968 [62] J.C. Chamcheu, H.C. Pal, I.A. Siddiqui, V.M. Adhami, S. Ayehunie, B.T. Boylan, F.K. Noubissi, N. Khan,
969 D.N. Syed, C.A. Elmets, G.S. Wood, F. Afaq, H. Mukhtar, Prodifferentiation, anti-inflammatory and
970 antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional
971 reconstituted human skin model of psoriasis, *Skin Pharmacol Physiol* 28(4) (2015) 177-88.

972 [63] E.H. van den Bogaard, G.S. Tjabringa, I. Joosten, M. Vonk-Bergers, E. van Rijssen, H.J. Tijssen, M. Erkens, J.
973 Schalkwijk, H. Koenen, Crosstalk between keratinocytes and T cells in a 3D microenvironment: a model to study
974 inflammatory skin diseases, *J Invest Dermatol* 134(3) (2014) 719-727.

975 [64] R. Wolf, O.M. Howard, H.F. Dong, C. Voscopoulos, K. Boeshans, J. Winston, R. Divi, M. Gunsior, P.
976 Goldsmith, B. Ahvazi, T. Chavakis, J.J. Oppenheim, S.H. Yuspa, Chemotactic activity of S100A7 (Psoriasin) is
977 mediated by the receptor for advanced glycation end products and potentiates inflammation with highly
978 homologous but functionally distinct S100A15, *J Immunol* 181(2) (2008) 1499-506.

979 [65] G.M. Cragg, D.J. Newman, Natural products: a continuing source of novel drug leads, *Biochimica et*
980 *biophysica acta* 1830(6) (2013) 3670-95.

981 [66] R. Moll, M. Divo, L. Langbein, The human keratins: biology and pathology, *Histochemistry and cell biology*
982 129(6) (2008) 705-33.

983 [67] H. Iizuka, H. Takahashi, M. Honma, A. Ishida-Yamamoto, Unique keratinization process in psoriasis: late
984 differentiation markers are abolished because of the premature cell death, *J Dermatol* 31(4) (2004) 271-6.

985 [68] E. Candi, S. Oddi, A. Paradisi, A. Terrinoni, M. Ranalli, P. Teofoli, G. Citro, S. Scarpato, P. Puddu, G. Melino,
986 Expression of transglutaminase 5 in normal and pathologic human epidermis, *J Invest Dermatol* 119(3) (2002)
987 670-7.

988 [69] C.A. Harrison, C.M. Layton, Z. Hau, A.J. Bullock, T.S. Johnson, S. MacNeil, Transglutaminase inhibitors
989 induce hyperproliferation and parakeratosis in tissue-engineered skin, *Br J Dermatol* 156(2) (2007) 247-57.

990 [70] S. Lippens, M. Kockx, G. Denecker, M. Knaapen, A. Verheyen, R. Christiaen, E. Tschachler, P. Vandenabeele,
991 W. Declercq, Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing
992 in organotypic skin cultures, *Am J Pathol* 165(3) (2004) 833-41.

993 [71] E. Hattinger, S. Zwicker, T. Ruzicka, S.H. Yuspa, R. Wolf, Opposing functions of psoriasin (S100A7) and
994 koebnerisin (S100A15) in epithelial carcinogenesis, *Curr Opin Pharmacol* 13(4) (2013) 588-94.

995 [72] R. Sabat, S. Philipp, C. Hoflich, S. Kreutzer, E. Wallace, K. Asadullah, H.D. Volk, W. Sterry, K. Wolk,
996 Immunopathogenesis of psoriasis, *Exp Dermatol* 16(10) (2007) 779-98.

997 [73] Z. Hegyi, S. Zwicker, D. Bureik, M. Peric, S. Koglin, A. Batycka-Baran, J.C. Prinz, T. Ruzicka, J. Schuber, R.
998 Wolf, Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 "alarmins"
999 psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis, *J Invest Dermatol* 132(5) (2012) 1416-24.

1000 [74] C. Buerger, Epidermal mTORC1 Signaling Contributes to the Pathogenesis of Psoriasis and Could Serve as
1001 a Therapeutic Target, *Front Immunol* 9 (2018) 2786.

1002 [75] J.C. Chamcheu, I.A. Siddiqui, V.M. Adhami, S. Esnault, D.J. Bharali, A.S. Babatunde, S. Adame, R.J. Massey,
1003 G.S. Wood, B.J. Longley, S.A. Mousa, H. Mukhtar, Chitosan-based nanoformulated (-)-epigallocatechin-3-gallate
1004 (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine
1005 psoriasisform dermatitis, *Int J Nanomedicine* 13 (2018) 4189-4206.

1006 [76] C.E. Griffiths, Comparing biological therapies in psoriasis: implications for clinical practice, *Journal of the*
1007 *European Academy of Dermatology and Venereology : JEADV* 24 Suppl 6 (2010) 10-4.

1008 [77] O. Arican, M. Aral, S. Sasmaz, P. Ciragil, Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17,
1009 and IL-18 in patients with active psoriasis and correlation with disease severity, *Mediators Inflamm* 2005(5)
1010 (2005) 273-9.

1011 [78] K. Taniguchi, K. Arima, M. Masuoka, S. Ohta, H. Shiraishi, K. Onotsuka, S. Suzuki, M. Inamitsu, K.
1012 Yamamoto, O. Simmons, S. Toda, S.J. Conway, Y. Hamasaki, K. Izuhara, Periostin controls keratinocyte
1013 proliferation and differentiation by interacting with the paracrine IL-1alpha/IL-6 loop, *J Invest Dermatol* 134(5)
1014 (2014) 1295-304.

1015 [79] C.L. Langrish, Y. Chen, W.M. Blumenschein, J. Mattson, B. Basham, J.D. Sedgwick, T. McClanahan, R.A.
1016 Kastelein, D.J. Cua, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, *J Exp*
1017 *Med* 201(2) (2005) 233-40.

1018 [80] P. Muhr, J. Renne, V. Schaefer, T. Werfel, M. Wittmann, Primary human keratinocytes efficiently induce IL-
1019 1-dependent IL-17 in CCR6+ T cells, *Exp Dermatol* 19(12) (2010) 1105-7.

1020 [81] K.E. Nograles, L.C. Zaba, E. Guttman-Yassky, J. Fuentes-Duculan, M. Suarez-Farinias, I. Cardinale, A.
1021 Khatcherian, J. Gonzalez, K.C. Pierson, T.R. White, C. Pensabene, I. Coats, I. Novitskaya, M.A. Lowes, J.G.

1022 Krueger, Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-
1023 response pathways, *Br J Dermatol* 159(5) (2008) 1092-102.

1024 [82] H. Park, Z. Li, X.O. Yang, S.H. Chang, R. Nurieva, Y.H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, C. Dong,
1025 A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17, *Nature immunology*
1026 6(11) (2005) 1133-41.

1027 [83] A.M. Brotas, J.M. Cunha, E.H. Lago, C.C. Machado, S.C. Carneiro, Tumor necrosis factor-alpha and the
1028 cytokine network in psoriasis, *Anais brasileiros de dermatologia* 87(5) (2012) 673-81; quiz 682-3.

1029 [84] J.E. Gudjonsson, A. Johnston, M. Dyson, H. Valdimarsson, J.T. Elder, Mouse models of psoriasis, *J Invest*
1030 *Dermatol* 127(6) (2007) 1292-308.

1031 [85] R.W. Groves, H. Mizutani, J.D. Kieffer, T.S. Kupper, Inflammatory skin disease in transgenic mice that
1032 express high levels of interleukin 1 alpha in basal epidermis, *Proc Natl Acad Sci U S A* 92(25) (1995) 11874-8.

1033 [86] F.O. Nestle, P. Di Meglio, J.Z. Qin, B.J. Nickoloff, Skin immune sentinels in health and disease, *Nature*
1034 *reviews. Immunology* 9(10) (2009) 679-91.

1035 [87] I. Helwa, R. Patel, P. Karempeiris, I. Kaddour-Djebar, V. Choudhary, W.B. Bollag, The antipsoriatic agent
1036 monomethylfumarate has antiproliferative, prodifferentiative, and anti-inflammatory effects on keratinocytes, *J*
1037 *Pharmacol Exp Ther* 352(1) (2015) 90-7.

1038 [88] A. Datta Mitra, S.P. Raychaudhuri, C.J. Abria, A. Mitra, R. Wright, R. Ray, S. Kundu-Raychaudhuri,
1039 1alpha,25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent
1040 for psoriasis, *J Invest Dermatol* 133(6) (2013) 1556-64.

1041 [89] W.L. Trepicchio, M. Ozawa, I.B. Walters, T. Kikuchi, P. Gilleaudeau, J.L. Bliss, U. Schwertschlag, A.J. Dorner,
1042 J.G. Krueger, Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in
1043 psoriasis lesions, *J Clin Invest* 104(11) (1999) 1527-37.

1044 [90] J.C. Chamcheu, V.M. Adhami, S. Esnault, M. Sechi, I.A. Siddiqui, K.A. Satyshur, D.N. Syed, S.M. Dodwad,
1045 M.I. Chaves-Rodriquez, B.J. Longley, G.S. Wood, H. Mukhtar, Dual Inhibition of PI3K/Akt and mTOR by the
1046 Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced
1047 Psoriasis-Like Disease in Mice, *Antioxid Redox Signal* (2016).

1048 [91] S. Esnault, Z.J. Shen, E. Whitesel, J.S. Malter, The peptidyl-prolyl isomerase Pin1 regulates granulocyte-
1049 macrophage colony-stimulating factor mRNA stability in T lymphocytes, *J Immunol* 177(10) (2006) 6999-7006.

1050 [92] J. Renne, V. Schafer, T. Werfel, M. Wittmann, Interleukin-1 from epithelial cells fosters T cell-dependent skin
1051 inflammation, *Br J Dermatol* 162(6) (2010) 1198-205.

1052 [93] E.A. Kelly, R.R. Rodriguez, W.W. Busse, N.N. Jarjour, The effect of segmental bronchoprovocation with
1053 allergen on airway lymphocyte function, *Am J Respir Crit Care Med* 156(5) (1997) 1421-8.

1054 [94] J.C. Chamcheu, M.I. Chaves-Rodriquez, V.M. Adhami, I.A. Siddiqui, G.S. Wood, B.J. Longley, H. Mukhtar,
1055 Upregulation of PI3K/AKT/mTOR, FABP5 and PPARbeta/delta in Human Psoriasis and Imiquimod-induced
1056 Murine Psoriasisform Dermatitis Model, *Acta dermato-venereologica* (2016).

1057 [95] J.C. Chamcheu, H. Navsaria, I. Pihl-Lundin, M. Liovic, A. Vahlquist, H. Torma, Chemical chaperones protect
1058 epidermolysis bullosa simplex keratinocytes from heat stress-induced keratin aggregation: involvement of heat
1059 shock proteins and MAP kinases, *J Invest Dermatol* 131(8) (2011) 1684-91.

1060 [96] L. Calvo-Castro, D.N. Syed, J.C. Chamcheu, F.M. Vilela, A.M. Perez, F. Vaillant, M. Rojas, H. Mukhtar,
1061 Protective effect of tropical highland blackberry juice (*Rubus adenotrichos* Schleidl.) against UVB-mediated
1062 damage in human epidermal keratinocytes and in a reconstituted skin equivalent model, *Photochem Photobiol*
1063 89(5) (2013) 1199-207.

1064 [97] A. Karrys, I. Rady, R.N. Chamcheu, M.S. Sabir, S. Mallick, J.C. Chamcheu, P.W. Jurutka, M.R. Haussler, G.K.
1065 Whitfield, Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are
1066 Associated with Risk for Psoriasis, *Nutrients* 10(2) (2018).
1067