

1 **Climate during the Last Glacial Maximum in the Northern Sawatch Range, Colorado, USA**2 Keith A. Brugger^{1*}, Chester A. Ruleman², Marc W. Caffee^{3,4}, and Cody C. Mason⁵3 ¹ Geology Discipline, University of Minnesota, Morris, Morris, MN, USA4 ² U.S. Geological Survey, Denver, CO, USA; cruleman@usgs.gov5 ³ Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA6 ⁴ Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA; mcaffee@purdue.edu7 ⁵ Department of Geosciences, University of West Georgia, Carrollton, GA, USA; cmason@westga.edu

8 * Correspondence: bruggeka@morris.umn.edu

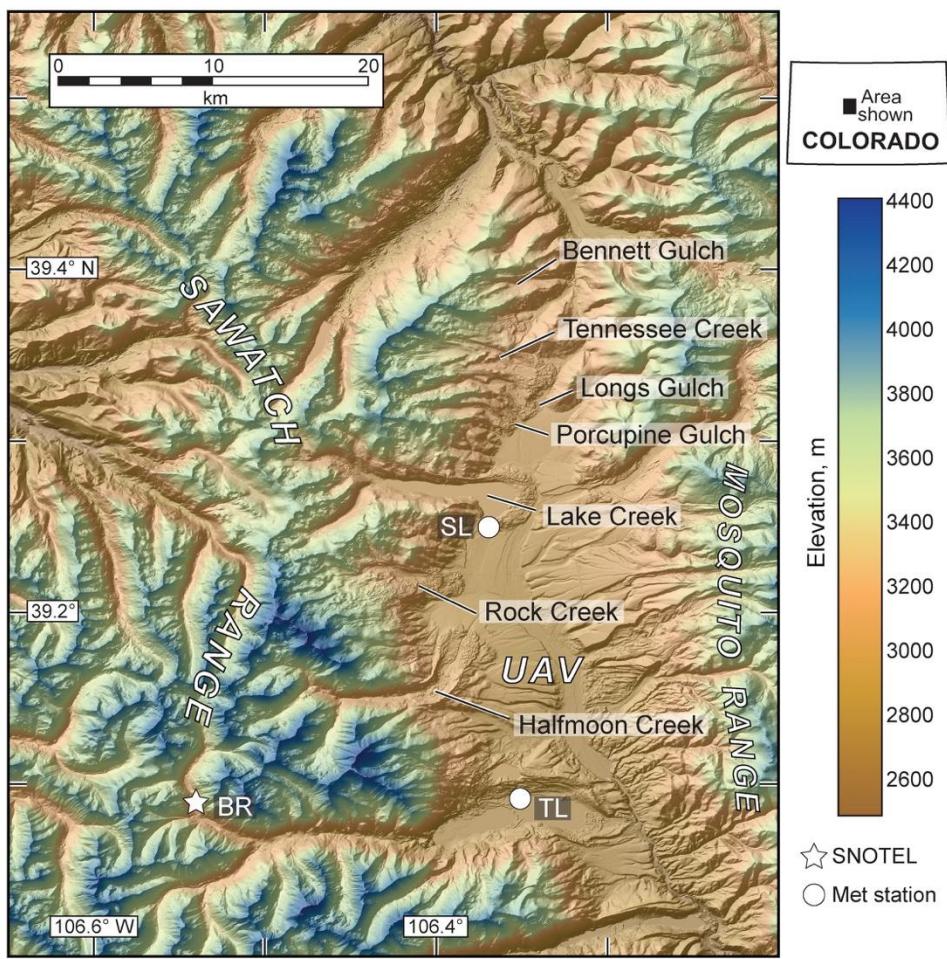
10 **Abstract:** Temperature-index modeling is used to determine the magnitude of temperature depression in
11 the northern Sawatch Range required to maintain steady-state mass balances of six reconstructed glaciers
12 at their extent during the local Last Glacial Maximum (LLGM), dated at ~21 ka. Assuming no significant
13 differences in precipitation compared to modern values, mean annual temperatures in the region were on
14 average $8.8 +0.5/-0.8$ °C cooler than they are today. Allowing for modest increases or decreases in
15 precipitation, required temperature depressions only differ by ± 0.2 °C. Temperature depression in the
16 northern Sawatch Range are consistent, although slightly greater, with those determined in other ranges in
17 Colorado using similar approaches. The estimates presented here are, however, substantially less than those
18 suggested by several downscaled simulations of global LGM climate, that might be due to the need for
19 improved calibration of such downscalings, or the models from which they are derived. Our estimates of
20 LGM temperature depression are considerably greater than that previously determined in the study area and
21 those in two other ranges in Colorado derived using different methodologies, the latter being most likely
22 responsible for the discrepancies.

23 **Keywords:** Last Glacial Maximum; paleoclimate; temperature-index model; Sawatch Range; Colorado

24 **1. Introduction**

25 The development of glacial chronologies in the Rocky Mountains have constrained the timing of the
26 Last Glacial Maximum (LGM, *sensu lato*) in many of the individual ranges and provided valuable insights
27 regarding Late Pleistocene climate change [1-7]. Recent compilations [8-9] of available cosmogenic
28 exposure ages (recalculated to facilitate comparison) of LGM terminal moraines in the Rocky Mountains
29 suggests no apparent coherent geographic pattern of glacial behavior. Assuming these ages represent the
30 onset of moraine abandonment [5], initial ice retreat began as early as ca. 24 ka in some valleys and as late
31 as 15 ka in others. Similar asynchronous glacier behavior is implied by both the ages and extents of the
32 oldest (farthest downvalley) recessional moraines. Exposure ages on these moraines mark the earliest
33 stillstands or readvances during retreat and range from 20.4 to 14.1 ka [9]. Glaciers in several valleys

34 remained near their maximum extents well after abandoning terminal moraines while at the same time in
35 others, glaciers had retreated significantly [10].


36 LGM advances and subsequent ice retreat in the Rocky Mountains were likely initiated by orbital
37 forcing coupled with changes in the concentration of atmospheric greenhouse gases [8, 11-12]. However,
38 the disparate temporal responses of glaciers implied by moraine ages argues for subregional to local
39 modulation of these forcings. Thus a fundamental question arises: what were the nature and spatial scale of
40 such modulations? Several have been proposed including larger-scale changes in atmospheric circulation
41 and concomitant changes in hydroclimate or, on smaller scales, differences in microclimate, contrasting
42 and/or changes in glacier dynamics, differing glacier response times, and differences in glacier hypsometry
43 [1-4, 13-14]. More local modulations were likely idiosyncratic, having caused asynchronous glacier
44 response within a restricted geographical area. In contrast, regional changes in hydroclimate, that are
45 evident in a variety of climate proxies [15-23], arguably played a more dominant role in regional
46 asynchrony of glacier behavior. While the exact cause and abruptness of these changes is debated [18,
47 24-29], all are dependent on reorganization of atmospheric circulation due to the growth and decay of the
48 Laurentide Ice Sheet. Ultimately the accompanying changes in precipitation would have influenced glacier
49 mass balances, and significantly, the timing of ice retreat. The degree and spatial pattern of asynchronous
50 glacier behavior thus has important implications for understanding Late Pleistocene climate change.

51 Another fundamental question is the magnitude of LGM climate change. Many climate proxies (e.g.
52 pollen spectra) are limited in that they often post-date the glacial maximum, or are hindered by the inability
53 to provide quantitative measures of the relevant parameters. In contrast, studies using climate modeling in
54 conjunction with LGM glacier extents have provided somewhat robust estimates of temperature depression
55 and potential changes in precipitation in the Rocky Mountains [5-7, 30-35]. Nevertheless, subregional
56 discrepancies exist possibly owing to (1) actual variations in local temperature and/or precipitation, (2) the
57 different methodologies used, and/or (3) glacier maxima that were time-transgressive and hence the inferred
58 climates represent different times (see discussions in [5, 7]). Moreover, the geographic coverage of these
59 estimates is sparse and only provides a relatively low resolution regional picture of LGM climate.

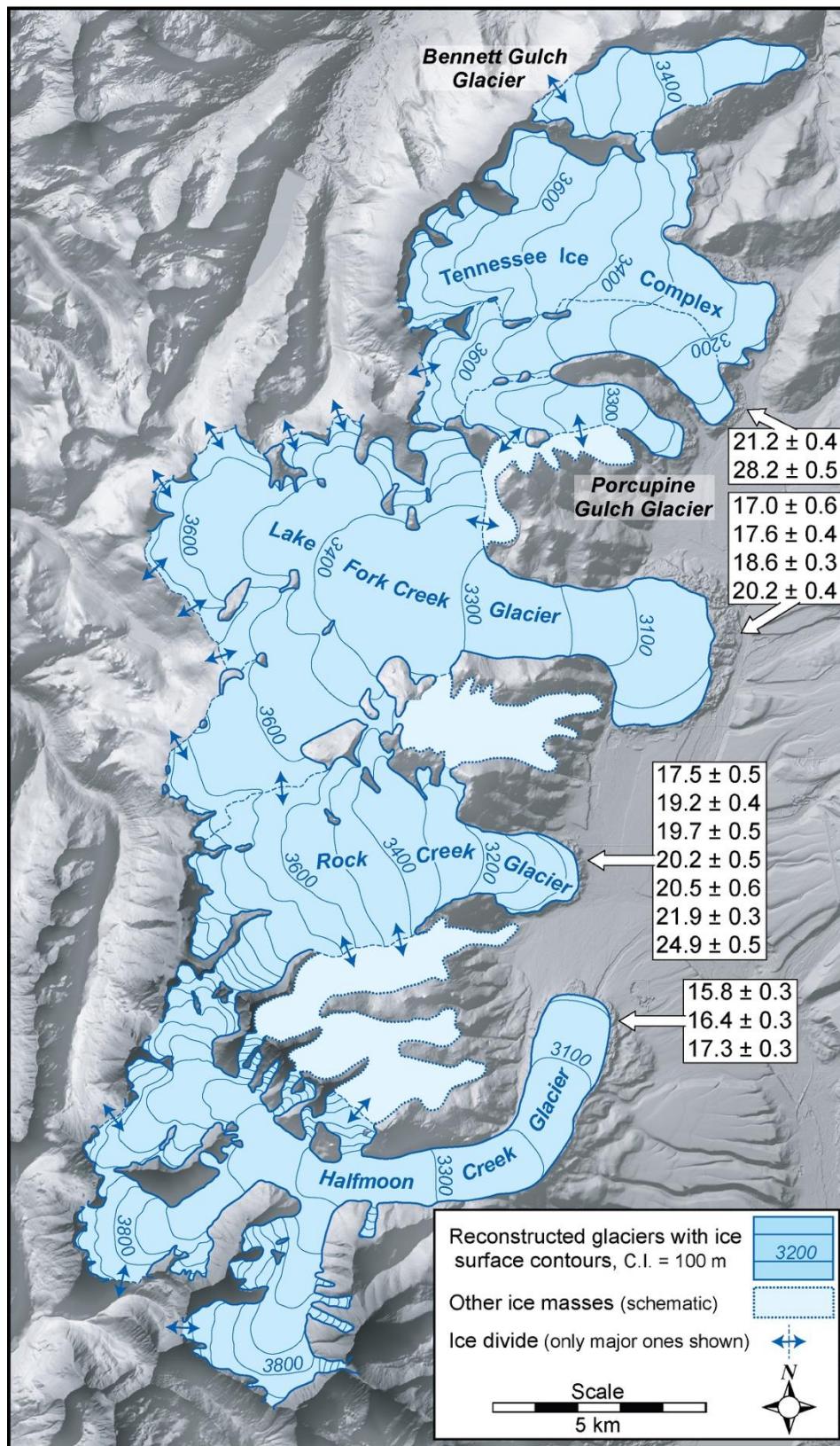
60 Based on the foregoing, it is clear that a better understanding of Late Pleistocene climate change in the
61 Rocky Mountains would benefit from both additional glacial chronologies and climate reconstructions.
62 Toward that end, in this paper we present estimates of temperature depression in the northern Sawatch
63 Range during the LGM, the local timing of which is constrained by new ^{10}Be surface-exposure ages of
64 terminal moraines. Temperature depression is determined by temperature-index modeling of the mass
65 balances required to maintain glaciers at their LGM extents. We then compare these estimates with those
66 suggested by high-resolution downscaling of global climate simulations, and from other ranges in Colorado.

67 **2. Materials and Methods**68 *2.1 Geologic and geomorphic setting*

69 The study area lies at the northernmost extent of the Sawatch Mountains (Fig. 1), a north-south trending
 70 range consisting largely of Precambrian crystalline rocks and Paleogene intrusive bodies [36]. The range
 71 forms the western boundary of the Upper Arkansas Valley, a structural graben associated with the Rio
 72 Grande Rift that became active ca. 30-25 Ma. Topographically, the Sawatch Range is the highest in
 73 Colorado and within the study area several peaks exceed 4000 m, including Mount Elbert (4401 m) and
 74 Mount Massive (4398 m) that are respectively the highest and second highest summits in the Rocky
 75 Mountains. Late Quaternary glaciations were extensive and characterized by valley glacier systems that
 76 sculpted alpine landscapes at higher elevations and deposited prominent terminal and recessional moraines
 77 in valleys. Individual glaciers were typically interconnected by thin, upland ice fields and/or pervasive ice
 78 divides.

79

80 **Fig. 1.** Location map of the study area. Abbreviations: BR Brumley SNOTEL; SL Sugarloaf meteorological station; TL Twin
 81 Lakes meteorological station; UAV Upper Arkansas Valley.


82 *2.2 Modern climate*

83 Modern climate in study area is continental, with mean annual temperatures (MAT) of ~ 2 $^{\circ}\text{C}$ along the
84 mountain front (~ 3000 m) and estimated to be about -4 $^{\circ}\text{C}$ at elevations of 4000 m based on existing climate
85 data (Western Regional Climate Center, <http://wrcc.dri.edu>; National Water and Climate Center,
86 <http://wcc.nrcs.usda.gov>) and PRISM gridded climatology (Parameter-elevation Regressions on
87 Independent Slopes Model; <http://www.prism.oregonstate.edu/>). On average, mean January and July
88 temperatures in the valleys of interest here are lower or higher, respectively, than MATs by ~ 9.5 and
89 ~ 10.5 $^{\circ}\text{C}$. These essentially correspond to the amplitude of yearly temperature variation and show no trend
90 with respect to location but do have a weak, statistically significant dependence on elevation (r^2 values in
91 each valley exceed 0.85). Mean annual precipitation (MAP) over the elevations relevant for the present
92 study varies from ~ 40 cm at 3000 m to over 100 cm at 4000m. Seasonal distribution of precipitation varies
93 with elevation. Lower elevations receive disproportionately more precipitation during the summer months,
94 while at higher elevations precipitation tends to be bimodal with peaks in March-April and then again in
95 July-August. At the highest elevations the earlier peak is typically more dominant.

96 *2.3 Age of LGM moraines*

97 The ages of LGM moraines in the study area are based on cosmogenic ^{10}Be exposure ages of sixteen
98 boulders on terminal moraines fronting the Halfmoon, Rock Creek, Lake Fork Creek, and Long Gulch
99 valleys (Fig. 2). These ages are a subset of a larger number of exposure ages, including those on bedrock
100 surfaces in cirque and valley floors that will be presented and discussed in detail in a forthcoming paper,
101 and are given here only to provide a temporal context for the climate reconstructions. In brief, large quartz-
102 rich boulders were sampled and processed following established procedures [37]. The production rate of
103 Lifton *et al.* (2014) and calibration of Lifton *et al.* (2015) are used to compute cosmogenic ^{10}Be exposure
104 ages using version 3.0 of the University of Washington cosmogenic exposure age calculator with the default
105 calibration data [38-40; <http://hess.ess.washington.edu>]. Additional sample information and analytical
106 results can be found in Table S1 in the Supplementary Material.

107 Seven boulders on the terminal moraine in Rock Creek valley yielded a mean ^{10}Be age of 20.6 ± 2.3 ka.
108 Boulders on the Lake Fork and Halfmoon Creek moraines have mean ages of 18.4 ± 1.4 (n=4) and $16.5 \pm$
109 0.8 ka (n=3) respectively. The older of the two boulders sampled in Longs Gulch, having an age of 28.2 ka,
110 is considered an outlier due to probable ^{10}Be nuclide inheritance. Excluding the latter, boulder ages on
111 terminal moraines span an interval of 24.9 to 15.8 ka. However, in the Halfmoon Creek valley the boulders
112 sampled are upvalley from the outermost crest of the terminal moraine. This is also the case for the three
113 younger ages on the Lake Fork terminal moraine, while the boulder having the oldest age (20.2 ka) is on
114 the distal toe of the moraine. This suggest these younger ages might not date the local LGM but rather the

117 persistence of ice at, or close to, the glaciers' maximum extent. Extensive ice at ~17 ka is also apparent in
 118 the nearby Mosquito Range and was attributed to either a stillstand or slight readvance in response to the
 119 Heinrich Stadial 1 cooling ca. 18-15 ka [7]. Thus these younger ages and the youngest on the Rock Creek
 120 terminal (17.5 ka) notwithstanding, we tentatively take all other ages as representative of the local LGM in
 121 the northern Sawatch that then appears to have occurred between 24.9 and 19.7 ka. The mean age of 21.0
 122 \pm 1.8 ka (n=8) is consistent with the age of LGM advances throughout the Colorado Rocky Mountains [10].

123 *2.4 Glacier reconstruction*

124 LGM glacier extents and ice surface topographies of six paleoglaciers (Fig. 2) were reconstructed on
 125 the basis of lateral-terminal moraine complexes and the upper limits of glacial erosion identified by field
 126 mapping supplemented by analyses of topographic maps, digital elevation models, and Google Earth®
 127 imagery. Contouring of ice surfaces was guided by considerations of mapped ice limits, flow patterns
 128 delineated by large-scale erosional forms, and general convergent and divergent flow in the accumulation
 129 and ablations area respectively. Contours were adjusted iteratively so that reconstructed ice surface slopes
 130 were sub-parallel to those of the valley and to ensure driving stresses τ were between 50 and 150 kPa
 131 commonly measured on modern glaciers [41]. Stresses were calculated using:

132
$$\tau = S_f \rho g h \sin \alpha \quad (1)$$

133 where ρ is the density of ice, g is gravitational acceleration, h is ice thickness, α is the slope of the ice
 134 surface, and S_f is a shape factor to account for drag of the valley sides [42]. The surface slope was averaged
 135 over distances of $10h$ to account for longitudinal stress gradients [41, 43].

136 *2.5 Temperature-index modeling*

137 Simulation of LGM climate in the northern Sawatch Range uses a temperature-index model (TM) to
 138 find the temperature and precipitation changes required to maintain steady-state mass-balances of the
 139 reconstructed glaciers. Details of the TM and the justification for its use were presented in Brugger et al.
 140 (2019) [7]. Here we briefly review the approach and highlight some modifications necessary for the present
 141 application.

142 The variation of the *annual* specific mass-balance (i.e., at a point) b_n with elevation z is simulated by:

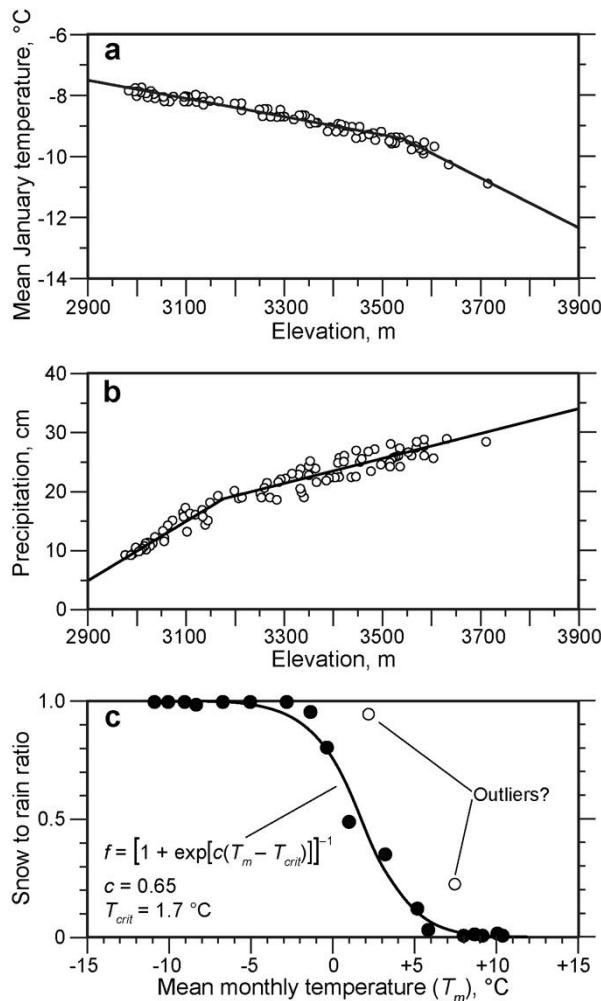
143
$$b_n(z) = \int_{t_1}^{t_2} (P_s(t, z) + M(t, z)) dt \quad (2)$$

144 where $P_s(t, z)$ is the rate of snow accumulation, $M(t, z)$ the rate of snow or ice melt (ablation) over the
 145 glacier's surface during the interval t_1 to t_2 (the hydrologic year). In practice Equation (2) is numerically
 146 integrated over a monthly time-scale to yield monthly melt that is then combined with available monthly
 147 precipitation data and then integrated over the hydrologic year.

148 Melt is determined using a melt (or degree-day) factor m_f that empirically relates ablation to mean
 149 daily air temperature $T_d(t, z)$:

$$150 \quad M(z, t) = \begin{cases} m_f T_d(t, z) & T_d(t, z) > T_m \\ 0 & T_d(t, z) \leq T_m \end{cases} \quad (3)$$

151 where T_m is a threshold temperature above which melting occurs. The advantage of this empirical approach
 152 to model snow and ice melt is that it requires fewer meteorological data and other parameterizations than
 153 other, more physically-based approaches (e.g. energy balance models). More importantly, TMs have proven
 154 successful in simulating *longer-term* ablation over larger spatial scales [44-46].


155 Our simulations were run using a melt threshold temperature T_m of +1 °C, but also 0 °C as these values
 156 are typical of other studies [46-49]. Values of the melt factor m_f for snow and ice are taken as 0.45 and 0.80
 157 cm water equivalent (w.e.) $d^{-1} \text{ } ^\circ\text{C}^{-1}$ that are reasonable means of values measured on relatively debris-free
 158 ice and snow surfaces on modern glaciers [33, 50-51]. Although the values of m_f vary spatially and
 159 temporally [47, 49], they are treated as constants in the present application with m_f initially being set for
 160 that of snow but changes to that for ice once snow melt exceeds accumulation. Because the skill of
 161 temperature-index models is sensitive to the choice of m_f [52] we subsequently show that our results are
 162 not overly sensitive to their precise value(s).

163 Daily air temperature is calculated by:

$$164 \quad T_d(z, t) = \left[H(z) \left[\frac{1 - \cos\left(\frac{(2\pi d)}{365} - \phi\right)}{2} \right]^k - T_{jan}(z) \right] - \Delta T \quad (4)$$

165 where $H(z)$ is the magnitude of the yearly temperature variation, d is the day of the year, ϕ is the phase lag
 166 (= 0.359 rads), and $T_{jan}(z)$ is the mean January temperature at elevation z , and ΔT is a prescribed perturbation
 167 of mean annual temperature (i.e. LGM temperature depression). Daily air temperatures are then used to
 168 determine monthly melt according to Equation (3).

169 Previously [7, 33] H or its equivalent was treated as a constant, however, as alluded to above PRISM
 170 data in the study area reveals a slight systematic decrease with increasing elevation. Lacking a sufficient
 171 number of meteorological stations – especially at higher elevations, $T_{jan}(z)$ is determined using the modern
 172 lapse rate for January obtained from PRISM climate data (Table 1) sampled over the extent of glacier
 173 surfaces. PRISM data suggest two different lapse rates be used in each valley according to the elevation
 174 interval under consideration, therefore data were fit using piecewise linear splines (Fig. 3). The fitting
 175 routine [53] yields a continuous function that optimizes the elevation of the breakpoints (or knots) in the
 176 linear fits. Use of the spline fits resulted in slightly better agreement between modeled and PRISM
 177 temperatures than did simple linear regressions.

178

179 *Fig. 3. Example of piecewise linear spline fits of (a) PRISM mean January temperatures and (b) winter precipitation with elevation*
 180 *in the Lake Creek valley. (c) Snow to rain ratio as a function of mean monthly temperature based on available data in the study*
 181 *area.*

182 Implementation of Equation (4) implies a uniform perturbation of temperature ΔT over the year; no
 183 temperature seasonality is examined in the present study. The constant k in Equation (4) is a tuning
 184 parameter that controls the sharpness of the temperature curve and allowed a better fit to observed
 185 temperatures. Values of k in the valleys studies varied between 1.18 and 1.20 and were chosen to minimize
 186 the difference between simulated mean monthly temperatures and those obtained from the PRISM data and
 187 any relevant meteorological station(s) during the ablation season (May through September). Priority is
 188 given to the ablation season because of the temperature dependence of melting in the TM.

189 Snow accumulation $P_s(t,z)$ is determined by:

$$190 \quad P_s(t,z) = fP_{mod}(t,z) + F \quad (5)$$

191 where $P_{mod}(t,z)$ is the modern precipitation, f is a function that determines what fraction of monthly
 192 precipitation falls as snow based on air temperature (Fig. 3c), and F is a prescribed change in precipitation

(i.e. assumed changes in precipitation during glaciation). Values for $P_{mod}(t, z)$ are calculated from the monthly fraction of the respective seasonal (winter, spring, summer, fall) totals and corresponding vertical precipitation gradients (Table 1). Here, it was particularly useful to fit the seasonal PRISM data using piecewise linear splines (Fig. 3), substantially improving agreement between modeled precipitation and PRISM data. (The exceptions were the PRISM precipitation data for Bennett Gulch that were fitted using simple linear regression.) This reflects the fact that while precipitation is dependent on elevation it is also influenced by location, orography, aspect and other factors [54]. The “bounding” elevation (i.e. the breakpoint) was in some cases seasonally consistent (especially for winter, spring and fall) and in others not. While seasonal precipitation gradients are distinct, intraseasonal variations are small. Monthly fractions of seasonal precipitation only vary by ~5% during the accumulation season and show no significant trend with elevation.

Table 1. Lapse rates and seasonal precipitation gradients for individual valleys obtained from piecewise linear fits of PRISM climatology. All values are significant at the 95% confidence interval or greater.

Valley	dT_{Jan}/dz $^{\circ}\text{C m}^{-1}$	dP_{Winter}/dz cm m^{-1}	dP_{Spring}/dz cm m^{-1}	dP_{Summer}/dz cm m^{-1}	dP_{Fall}/dz cm m^{-1}
Halfmoon	+0.0005 (<3156 m)	0.0312 (<3449 m)	0.0400 (<3418 m)	0.0108 (<3292 m)	0.0296 (<3417 m)
	-0.0048 (>3156 m)	0.0128 (>3449 m)	0.0124 (>3418 m)	0.0027 (>3292 m)	0.0098 (>3417 m)
Rock	-0.0026 (<3469 m)	0.0244 (<3999 m)	0.0297 (<3760 m)	0.0071 (<3182 m)	0.0246 (<3770 m)
	-0.0058 (>3469 m)	0.0004 (>3999 m)	0.0138 (>3760 m)	0.0053 (>3182 m)	0.0100 (>3770 m)
Lake Fork	-0.0030 (<3539 m)	0.0363 (<3171 m)	0.0514 (<3168 m)	0.0168 (<3060 m)	0.0425 (<3167 m)
	-0.0080 (>3539 m)	0.0228 (>3171 m)	0.0210 (>3168 m)	0.0034 (>3060 m)	0.0174 (>3167 m)
Porcupine	-0.0042 (<3307 m)	0.0197 (<3244 m)	0.0256 (<3257 m)	0.0116 (<3229 m)	0.0176 (<3267 m)
	-0.0019 (>3307 m)	0.0268 (>3244 m)	0.0321 (>3257 m)	0.0215 (>3229 m)	0.0236 (>3267 m)
Tennessee	-0.0035 (<3482 m)	0.0246 (<3567 m)	0.0301 (<3565 m)	0.0146 (<3160 m)	0.0199 (<3560 m)
	-0.0058 (>3482 m)	0.0073 (>3567 m)	0.0090 (>3565 m)	0.0028 (>3160 m)	0.0057 (>3560 m)
Bennett	-0.0016 (<3423 m)	0.0152	0.0198	0.0039	0.0114
	-0.0075 (>3423 m)				

3. Results

3.1 Glacier Reconstructions

Pertinent characteristics of the six glacier reconstructions are presented in Table 2. Of note was the difficulty in defining with certainty the boundaries (ice divides) among the paleoglaciers that formed what is referred to here as the Tennessee glacier complex (Fig. 2) that is subsequently treated as one system.

3.2 Temperature-index modeling: model skill

Model skill was first evaluated by simulation of modern climate. The objective here is to determine how accurately the model, with the parameterization described above, captures the area-averaged temperature

233 and precipitation given by the PRISM gridded climatology (1981-2010 normals). For monthly temperature
 234 and precipitation values, averages were obtained from several spot locations chosen from the PRISM data
 235 corresponding to a particular elevation (Table 3). (It should be emphasized that the model uses the PRISM
 236 data only to determine lapse rates and vertical precipitation gradients; that is temperature or precipitation is
 237 not prescribed but rather determined using Equation (4).) The number of locations chosen varied according
 238 to the extent of glacier area at those elevations.

239 **Table 2.** Surface areas, lengths, and thicknesses of reconstructed glaciers

240 Glacier	Area, km ²	Length, km*	Average thickness, m†	Maximum thickness, m†
241 Halfmoon Creek	44.3	11.9	120	240
242 Rock Creek	29.0	10.2	80	150
243 Lake Fork Creek	63.6	15.0	95	200
244 Porcupine Gulch	5.8	7.0	75	125
245 Tennessee complex	38.2	9.7	80	150
246 Bennett Gulch	8.3	6.9	75	115

247 *Longest flow line

248 † Nearest 5 m

249 The model simulates modern climate quite well in terms of mean annual and monthly temperatures and
 250 precipitation (Table 3 and Figs. 4a and b). Modeled MATs typically differ from PRISM values by less than
 251 0.2 °C. Mean monthly temperature differences are also small. This is not surprising given the strong
 252 dependence of temperature on elevation, evidenced by the small standard deviations in the mean annual
 253 PRISM temperatures (Table 3). Differences in MAPs and monthly precipitation amounts are more variable
 254 (cf. standard deviations associated with PRISM MAPs) because of the influence of other factors in
 255 conjunction with elevation. Nonetheless, the differences between modeled and PRISM MAPs are small,
 256 only in one instance exceeding 5%. Mean monthly differences are again small. Arguably however, for the
 257 application of the TM to simulate glacier mass balances, the most relevant comparisons are between the
 258 cumulative temperature differences during the “ablation season” (May-September) and the cumulative
 259 difference in precipitation during the “accumulation season” (October-April). For all valleys in the study
 260 area, these differences average ~0.5 °C and ~2% respectively. It bears mentioning that average differences
 261 in ablation season temperature would be significantly less (~0.3 °C) if not for the higher values in the
 262 Halfmoon Creek valley (Table 3). Similarly, comparisons were made between modeled temperature and
 263 precipitation and the 1981-2010 climate normals for the Sugarloaf and Twin Lakes meteorological stations
 264 (Figs. 4c and d) using parameterizations specific to those locations. Agreement between observed and
 265 modeled monthly and annual means is quite good.

266
267**Table 3.** Comparison of modeled modern temperature and precipitation with PRISM values at select elevations in the study area. Percentages are rounded to nearest whole number or noted when less than one percent. Elevation ranges shown account for $\geq 90\%$ of glacier areas. Values in bold are most significant in terms of modeling paleoglacier mass balances.

268

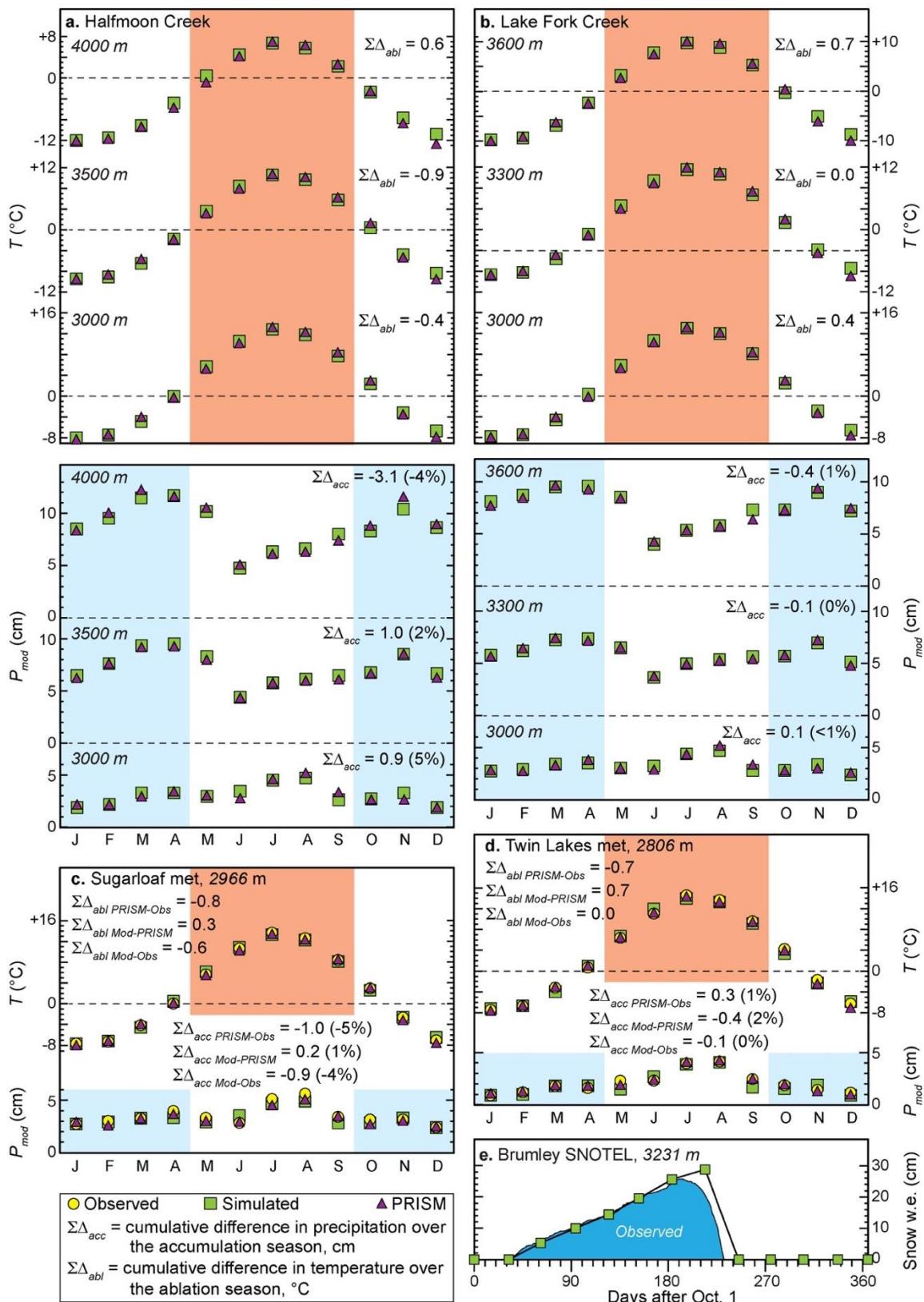
Rock Creek

	3000 (n=5)	3250 (n=6)	3500 (n=6)	3750 (n=6)	4000 (n=4)
Elevation, m (number of PRISM locations averaged)					
Modeled mean annual temperature, °C	1.8	0.9	0.0	-1.7	-3.3
PRISM mean annual temperature, °C	1.8 \pm 0.0	1.0 \pm 0.0	-0.1 \pm 0.1	-1.9 \pm 0.1	-3.7 \pm 0.0
Difference, °C	0.0	-0.1	0.1	0.2	0.4
Mean \pm standard deviation of monthly differences, °C	0.0 \pm 0.5	-0.5 \pm 0.6	0.1 \pm 0.7	0.2 \pm 0.7	0.3 \pm 0.7
Cumulative difference temperatures during ablation season, °C	-0.2	-0.2	< -0.1	< 0.1	0.5
Modeled mean annual precipitation, cm	41.1	62.4	83.4	103.9	118.3
PRISM mean annual precipitation, cm	40.4 \pm 1.1	62.5 \pm 3.8	83.2 \pm 5.1	105.8 \pm 3.2	117.7 \pm 3.3
Difference, cm (%)	0.6 (1%)	-0.1 (< 1%)	0.2 (< 1%)	-1.9 (2%)	0.6 (1%)
Mean \pm standard deviation of monthly differences, cm	0.1 \pm 0.4	0.0 \pm 0.2	0.0 \pm 0.2	-0.2 \pm 0.5	0.1 \pm 0.7
Cumulative difference in precipitation during accumulation season, cm (%)	1.1 (5%)	0.3 (< 1%)	-0.2 (< 1%)	-2.0 (3%)	-2.0 (< 1%)

279

Halfmoon Creek

	3000 (n=4)	3250 (n=7)	3500 (n=11)	3750 (n=16)	4000 (n=9)
Elevation, m (number of PRISM locations averaged)					
Modeled mean annual temperature, °C	1.7	1.1	-0.3	-1.8	-3.2
PRISM mean annual temperature, °C	1.8 \pm 0.0	0.9 \pm 0.1	-0.2 \pm 0.1	-1.8 \pm 0.1	-3.6 \pm 0.1
Difference, °C	-0.1	0.2	-0.1	0.0	0.4
Mean \pm standard deviation of monthly differences, °C	0.0 \pm 0.6	0.2 \pm 0.6	-0.1 \pm 0.7	0.0 \pm 0.7	0.4 \pm 0.8
Cumulative difference temperatures during ablation season, °C	-0.4	1.2	-0.9	-0.9	0.6
Modeled mean annual precipitation, cm	36.6	64.5	85.9	95.3	104.7
PRISM mean annual precipitation, cm	36.5 \pm 1.9	68.7 \pm 7.1	84.1 \pm 7.5	96.4 \pm 5.6	107.5 \pm 10
Difference, cm (%)	0.1 (< 1%)	-4.2 (6%)	1.7 (2%)	-1.1 (1%)	-2.8 (3%)
Mean \pm standard deviation of monthly differences, cm	0.0 \pm 0.4	-0.4 \pm 0.3	0.1 \pm 0.2	-0.1 \pm 0.3	-0.2 \pm 0.5
Cumulative difference in precipitation during accumulation season, cm (%)	0.9 (5%)	-3.0 (7%)	1.0 (2%)	-1.7 (3%)	-3.1 (4%)


292

Lake Fork Creek

	3000 (n=5)	3150 (n=8)	3300 (n=9)	3450 (n=15)	3600 (n=10)
Elevation, m (number of PRISM locations averaged)					
Modeled mean annual temperature, °C	2.0	1.4	0.8	0.2	-0.7
PRISM mean and stand deviation of annual temperature, °C	1.9 \pm 0.0	1.3 \pm 0.0	0.7 \pm 0.1	0.1 \pm 0.1	-0.7 \pm 0.1
Difference, °C	0.1	0.1	0.1	0.1	0.0
Mean \pm standard deviation of monthly differences, °C	0.1 \pm 0.5	0.1 \pm 0.6	0.0 \pm 0.7	0.1 \pm 0.7	0.0 \pm 0.7
Cumulative difference temperatures during ablation season, °C	0.4	0.4	0.0	-0.2	-0.7
Modeled mean annual precipitation, cm	39.3	59.0	71.0	80.7	90.4
PRISM mean and standard deviation of annual precipitation, cm	39.8 \pm 1.4	57.8 \pm 4.0	70.9 \pm 5.4	81.6 \pm 5.9	89.2 \pm 2.9
Difference, cm (%)	-0.5 (1%)	1.2 (2%)	0.1 (< 1%)	-0.9 (1%)	1.1 (1%)
Mean \pm standard deviation of monthly differences, cm	0.0 \pm 0.3	0.1 \pm 0.1	0.0 \pm 0.2	0.0 \pm 0.3	0.1 \pm 0.4
Cumulative difference in precipitation during accumulation season, cm (%)	0.1 (< 1%)	1.0 (3%)	-0.1 (< 1%)	-0.7 (1%)	0.4 (1%)

303

304	Tennessee Creek/Longs Gulch	3100 (n=5)	3300 (n=8)	3500 (n=8)	3700 (n=8)
305	Elevation, m (number of PRISM locations averaged)	1.5	0.7	-0.2	-1.4
306	Modeled mean annual temperature, °C	1.4 ± 0.0	0.7 ± 0.1	0.0 ± 0.1	-1.5 ± 0.1
307	PRISM mean and stand deviation of annual temperature, °C	0.1	0.0	-0.2	0.1
308	Difference, °C	0.1 ± 0.6	0.0 ± 0.7	-0.1 ± 0.7	0.0 ± 0.6
309	Mean ± standard deviation of monthly differences, °C	-0.6	-0.4	-0.6	0.4
310	Cumulative difference temperatures during ablation season, °C	53.1	69.4	84.9	93.2
311	Modeled mean annual precipitation, cm	53.0 ± 0.7	69.6 ± 1.3	84.8 ± 5.9	94.1 ± 3.0
312	PRISM mean and standard deviation of annual precipitation, cm	-0.5 (1%)	-0.6 (1%)	-0.7 (1%)	-0.8 (1%)
313	Difference, cm (%)	0.0 ± 0.3	0.0 ± 0.1	0.0 ± 0.2	-0.1 ± 0.4
314	Mean ± standard deviation of monthly differences, cm	0.6 (2%)	-0.3 (1%)	-0.2 (< 1%)	-1.2 (2%)
315	Cumulative difference in precipitation during accumulation season, cm (%)	3200 (n=4)	3350 (n=5)	3500 (n=5)	3650 (n=1)
316	Bennett Gulch	1.1	0.8	0.0	-1.3
317	Elevation, m (number of PRISM locations averaged)	1.0 ± 0.1	0.8 ± 0.1	0.0 ± 0.0	-1.2
318	Modeled mean annual temperature, °C	0.1	0.0	0.0	-0.1
319	PRISM mean and stand deviation of annual temperature, °C	0.1 ± 0.7	-0.1 ± 0.7	-0.1 ± 0.7	0.0 ± 0.7
320	Difference, °C	0.3	0.0	0.0	-0.3
321	Mean ± standard deviation of monthly differences, °C	62.7	70.2	77.8	85.3
322	Cumulative difference temperatures during ablation season, °C	61.9 ± 1.2	71.5 ± 2.0	77.2 ± 1.8	85.0
323	Modeled mean annual precipitation, cm	0.6 (1%)	-1.3 (2%)	0.6 (1%)	0.3 (< 1%)
324	PRISM mean and standard deviation of annual precipitation, cm	0.1 ± 0.1	-0.1 ± 0.1	0.1 ± 0.2	0.0 ± 0.3
325	Difference, cm (%)	0.8 (2%)	-1.1 (2%)	0.2 (<1%)	-0.3 (1%)
326	Mean ± standard deviation of monthly differences, cm	3100 (n=3)	3250 (n=3)	3400 (n=4)	3550 (n=3)
327	Cumulative difference in precipitation during accumulation season, cm (%)	1.5	0.8	0.3	0
328	Porcupine Gulch	1.4 ± 0.0	0.8 ± 0.0	0.4 ± 0.1	-0.2 ± 0.0
329	Elevation, m (number of PRISM locations averaged)	0.1	0	-0.1	0.2
330	Modeled mean annual temperature, °C	0.1 ± 0.6	0.0 ± 0.7	0.0 ± 0.7	0.1 ± 0.7
331	PRISM mean annual temperature, °C	0.4	-0.4	-0.7	0.7
332	Difference, °C	52	62.4	75.7	88.4
333	Mean ± standard deviation of monthly differences, °C	52.5 ± 0.4	63.8 ± 2.5	75.4 ± 3.3	87.2 ± 3.2
334	Cumulative difference temperatures during ablation season, °C	-0.5 (1%)	-0.4 (1%)	0.3 < 1%)	1.1 (1%)
335	Modeled mean annual precipitation, cm	0.0 ± 0.2	0.0 ± 0.1	0.0 ± 0.2	0.1 ± 0.4
336	PRISM mean annual precipitation, cm	0.0 (<1 %)	-0.5 (1%)	-0.1 (< 0%)	0.3 (1%)
337	Difference, cm (%)				
338	Mean ± standard deviation of monthly differences, cm				
339	Cumulative difference in precipitation during accumulation season, cm (%)				

343 (1981-2010 normal) at the Brumley SNOTEL site. Shaded portions in a–d highlight the critical ablation (orange) and accumulation
344 seasons (blue).

345 Model performance can also be evaluated by comparing simulated snowpack evolution with that
346 observed at SNOTEL stations. Modeling of snow accumulation and melt is more closely related to the goal
347 of simulating glacier mass balance. Unfortunately, the Brumley SNOTEL is the only nearby site on the
348 eastern slope of the northern Sawatch Range, and it lies immediately outside the study area (Fig. 1).
349 Nevertheless, again using valley specific parameterization the TM simulates observed modern snowpack
350 evolution quite well (Fig. 4e) with due consideration of differences in temporal resolution (monthly versus
351 daily respectively) and other factors affecting snow accumulation and melt in SNOTEL settings (see [7]).
352 Varying the melt factor m_f by ± 0.002 m w.e. $d^{-1} \text{ } ^\circ\text{C}^{-1}$ has the net effect of changing the maximum
353 snowpack by no more than $\pm 5\%$. This is because melting (i.e. positive degree-days) only occurs after late
354 April. Likewise, the melt threshold has virtually no impact on snowmelt because its effect is limited to the
355 very short transition from the accumulation to ablation seasons and vice versa.

356 3.3 Temperature-index modeling: inferring Late Pleistocene glacial climate

357 Climate during the last glaciation is determined by finding the temperatures and/or precipitation that
358 satisfy:

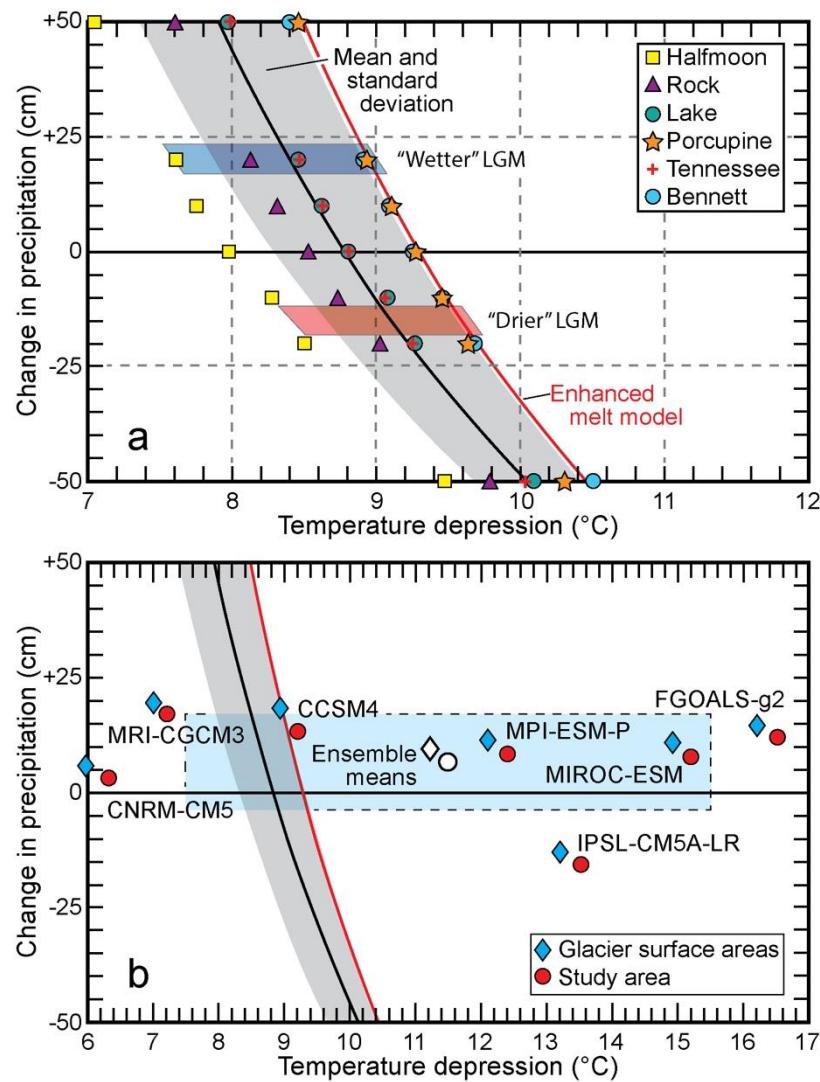
$$359 B_n = \int_A b_n dA \approx \sum_{i=1}^j b_{n_i} A_i = 0 \quad (6)$$

360 where B_n is the steady-state mass-balance, A is glacier area composed of j number of discrete elevation
361 intervals, and b_{n_i} is the mean annual specific net-balance over A_i . Equation (6) explicitly considers glacier
362 hypsometry.

363 In solving Equation (6), the problem of equifinality arises in that there are infinite combinations of
364 temperature depression and precipitation changes that satisfy the condition $B_n = 0$. Therefore, assumptions
365 must be made regarding LGM precipitation in the study area. Lacking robust precipitation proxies, it
366 remains unclear whether the study area was wetter or drier than present during the glacial maximum.
367 Moreover, regional climate modeling [26, 28, 55] suggests the possibility of modest changes in either
368 direction. Therefore, we initially determine mass balances required to maintain steady-state of the six
369 paleoglaciers at their LGM extents by assuming LGM precipitation and its seasonal distribution were
370 comparable to today. We then examine the cases for reasonable increases or decreases in precipitation.

371 Assuming no change in precipitation, temperature depressions ranged from 8.0 to 9.3 $^\circ\text{C}$, the mean
372 being 8.8 ± 0.5 $^\circ\text{C}$ (Table 4; Fig. 5a). Although the inferred temperature depressions hint at a south-to north
373 increase in LGM cooling, consistent with large-scale climate modeling, the associated uncertainties
374 (discussed subsequently) preclude a firm conclusion regarding the coherency of any spatial trend. Changes
375 in LGM precipitation of ± 10 cm with respect to modern MAPs (equivalent to $\sim 10\text{--}25\%$ depending on

376 elevation and location) require greater/smaller temperature depression to compensate for
 377 reductions/increases in snow accumulation. Changes of this magnitude are considered most reasonable
 378 given what is suggested by regional climate modeling [26, 28, 55]. These changes, however, only alter
 379 inferred temperature depressions by $\sim \pm 0.2$ °C (Table 4). The effect of more “extreme” changes in LGM
 380 precipitation on required temperature depressions is shown in Figure 5a. For example, with changes of ± 20
 381 cm, steady-state mass balances of individual glaciers require temperature depressions ranging from ~ 7.6 to
 382 9.7 °C respectively (mean values are 8.5 and 9.2 °C).


383 **Table 4.** Derived temperature depressions based on steady-state mass balance of paleoglaciers. Temperatures are reported to the
 384 nearest tenth of a degree.

	Precipitation change (F), cm = Melt factors (m_f), snow/ice, m w.e. °C $^{-1}$ d $^{-1}$ = 0.0045/0.008	Temperature depression, °C		
		0	+10	-10
		0.006/0.010	0.0025/0.006	0.0045/0.008
Glacier				
Halfmoon Creek (southernmost)	8.0	8.4	7.2	7.8
Rock Creek	8.5	8.9	7.8	8.3
Lake Creek	8.8	9.2	8.1	8.6
Porcupine Gulch	9.3	9.6	8.6	9.1
Tennessee complex	8.8	9.2	8.1	8.6
Bennett Gulch (northernmost)	9.2	9.7	8.6	9.1
Means	8.8 ± 0.5	9.2 ± 0.5	8.1 ± 0.5	8.6 ± 0.5 9.0 ± 0.5

396 Associated uncertainties are estimated via sensitivity analysis to be +0.5/–0.8 °C (Table 5). The greatest
 397 source of uncertainty arises from potential variations in the value of the melt factors for snow and ice. Other
 398 contributions are equally distributed among uncertainties in precipitation and reconstructed glacier
 399 hypsometry. Allowing precipitation to vary not only addresses changes that might have potentially occurred
 400 during the LGM but can also account for changes in its seasonal distribution, vertical gradient(s), and the
 401 fraction that falls as snow – all affecting accumulation hence glacier mass balance [7, 33]. Uncertainty
 402 attributed to those in glacier hypsometry is based on a Monte Carlo simulation wherein a Gaussian
 403 distributed error for the area of each elevation interval was allowed to vary by $\pm 20\%$.

404 4. Discussion

405 Simulations of steady-state mass balances of the six paleoglaciers in the northern Sawatch Range
 406 suggest that climate during the LGM was characterized by mean annual temperatures $\sim 8.8 \pm 0.5$ °C cooler
 407 than present if there were no significant changes in precipitation. Assuming a slightly wetter or drier LGM,
 408 consistent with simulations of regional climate, the means of required temperature depression are 8.7 ± 0.5
 409 and 9.1 ± 0.5 °C respectively (Fig. 5a). Unfortunately, no other proxies for LGM climate exist in the study
 410 area for comparison. Therefore, we compare our results to the PMIP3 (Paleoclimate Modeling
 411 Intercomparison Project Phase 3) LGM climate simulations. Because of the coarse resolution of the PMIP3

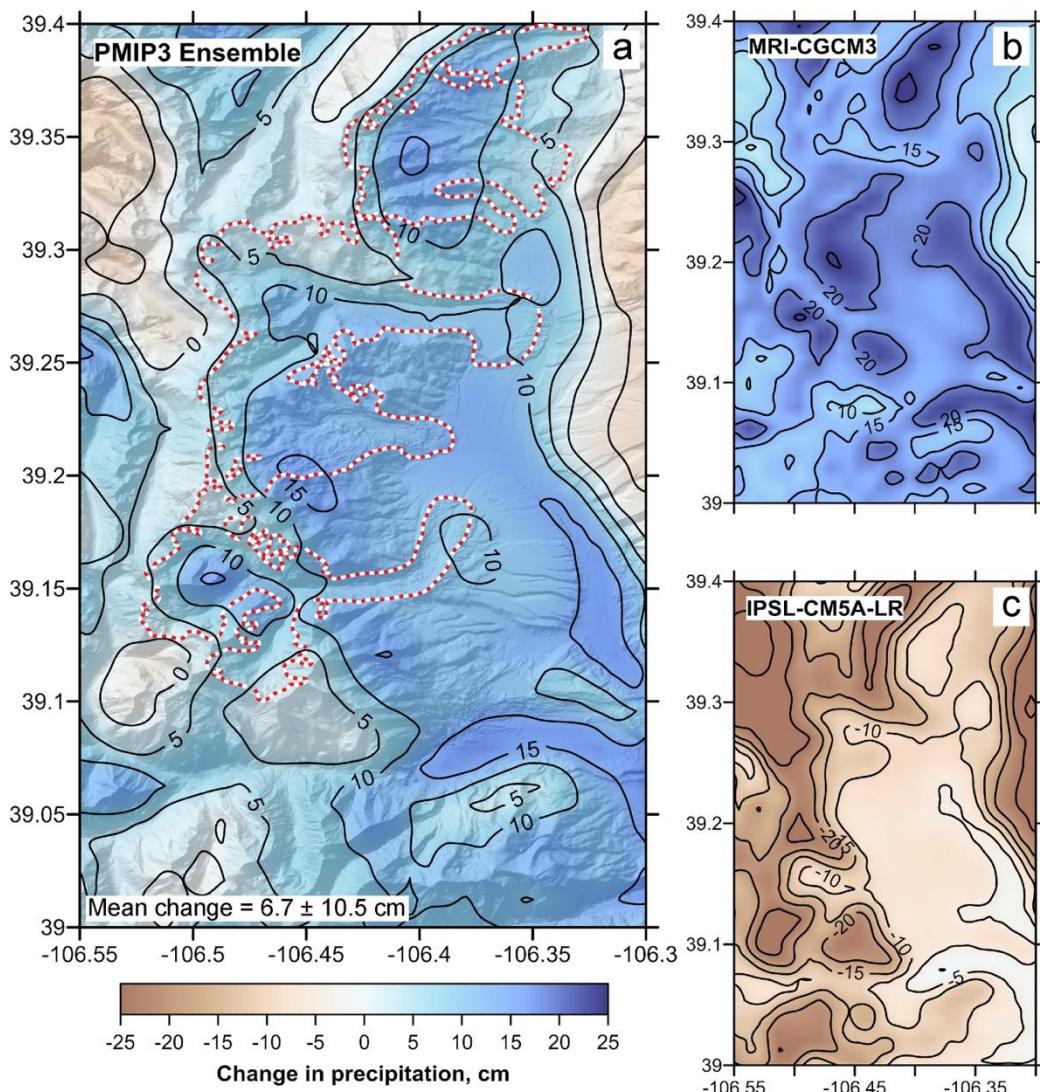
412

Fig. 5 (a) LGM temperature depressions required for steady-state mass balance of paleoglaciers given assumed changes in precipitation. **(b)** Panel (a) redrawn to include changes in temperature and precipitation in CHELSA downscaled PMIP3 simulations for the LGM in the study area, and corresponding changes over glacier areas only (both areas shown in Figs. 6 and 7). Blue shaded box shows standard deviation of ensemble means for the study area only. See text for discussion.

417

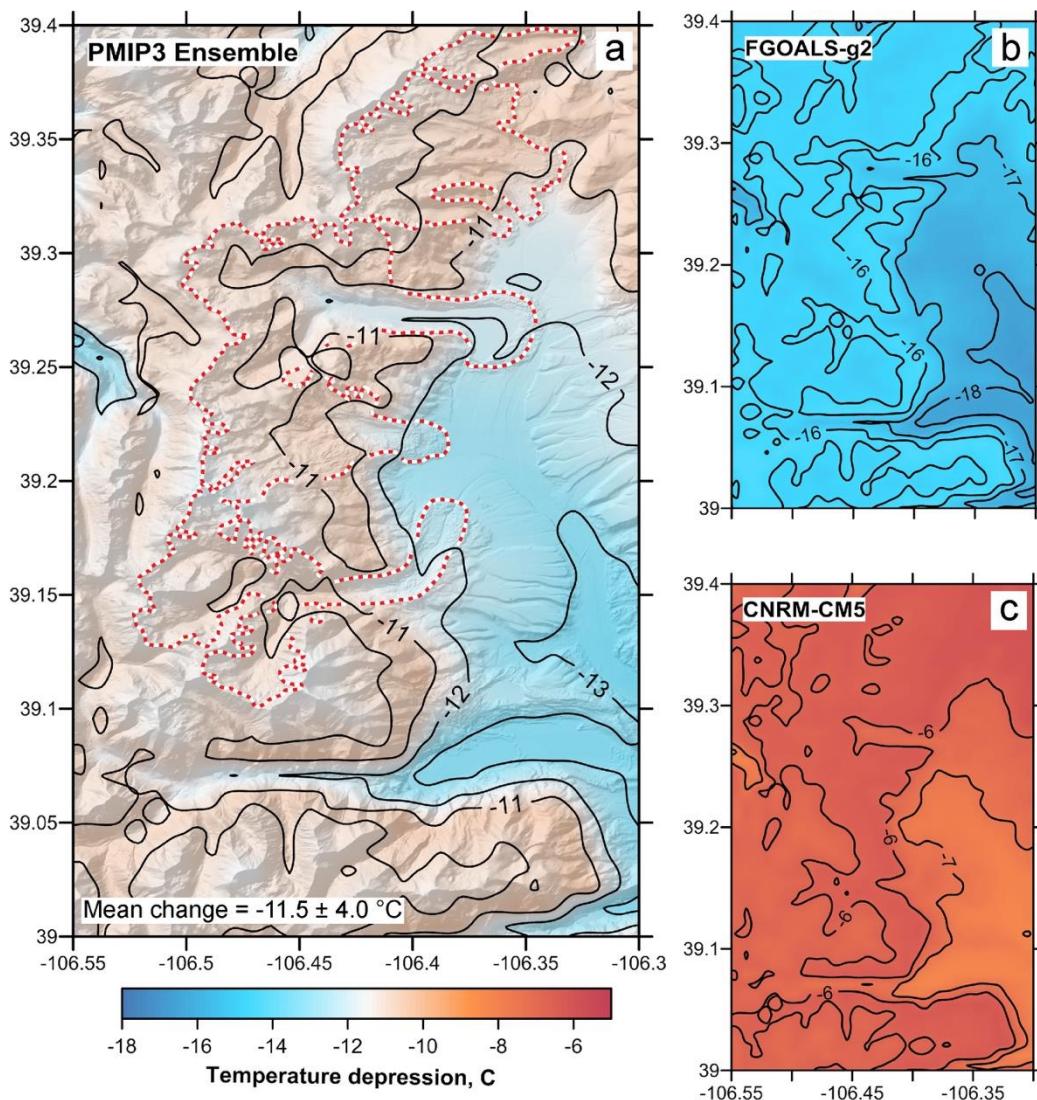
Table 5. Sensitivity of TM simulations to variations of parameter values and resulting uncertainties, grouped by whether the variation increases (positive values) or decreases (negative values) the temperature depression required to maintain steady-state mass balances of paleoglaciers.

			Parameter		
420	Potential change in	Melt threshold	Melt factors (m_f),	Effect of glacier	Total*
421	LGM precipitation,	temperature, °C	cm w.e. $d^{-1} \text{ } ^\circ\text{C}^{-1}$	hypsometry	
422	(F) cm			error, °C	
423					
424	Initial value	0.0	+1.0	ice 0.0080	–
425				snow 0.0045	
426	Variation	± 10	0.0	±0.002	±0.2
427	Effects, °C	+0.2	0.0	+0.7	+0.2
428					+0.8
429		–0.2	0.0	–0.4	–0.2
					–0.5


*Added in quadrature.

431 models (i.e. the study area is subgrid), we make use of the CHELSA (Climatologies at High Resolution for
432 the Earth's Land Surface Areas; [56-57]) downscaled PMIP3 model output that has a resolution of 30 arc
433 sec (~1 km). Regional downscaling suffers from biases inherent in the “parent” global models but can be
434 particularly advantageous in capturing climate in terrain characterized by high relief [58-59]. Downscaling
435 is available for seven models: NCAR-CCSM4, MRI-CGCM3, CNRM-CM5, FGOALS-g2, IPSL-CM5A-
436 LR, MIROC-ESM, and MPI-ESM-P. Departures of LGM MATs and MAPs from the present are
437 determined using the CHELSA modern climatology (defined as 1979-2013). The rationale for using the
438 latter instead of the PRISM climatology is that the same downscaling methods are employed. Differences
439 in the two modern climatologies are such that, on average in the study area, PRISM climatology is
440 characterized by MATs ~0.75 °C cooler and MAPs ~24 cm greater than the CHELSA climatology. We
441 make no formal corrections to account for differences between preindustrial temperatures to which PMIP
442 models are referenced and current temperatures (1986-2005) that are estimated to be 0.55-0.8 °C warmer
443 [60]. Presumably therefore, LGM temperature changes from modern presented here are slight overestimates.

444 LGM MATs and MAPs derived from individual models vary in magnitude over the study area. Average
445 MATs ($n = 1650$) range from -6.7 °C (CNRM-CM5) to as low as -16.9 °C (FGOALS-g2) with an ensemble
446 mean of -11.9 °C. Average MAPs range from a low of 27.5 cm (FGOALS-g2) to a high of 59.2 cm (MRI-
447 CGCM3) with an ensemble mean of 49.2 cm. CHELSA modern climatology yields a mean MAT of -0.4 °C
448 and MAP of 42.6 cm.


449 Most relevant to the present study are the possible changes in MAP and MAT in the study area
450 suggested by the downscaled PMIP3 models. Figures 6 and 7 respectively show changes in LGM MAP and
451 temperature depression based on ensemble mean values, and for the driest/warmest and wettest/coolest
452 scenarios. While not surprising, the magnitude of these changes vary but the spatial patterns are quite similar
453 owing to a degree of elevational dependence. In general, greater increases in MAP and greater temperature
454 depressions are indicated for lower elevations (i.e. valleys). With the exception of IPSL-CA5-LR that
455 suggests a reduction in MAP averaging -15.1 cm, all other models show increases ranging from +3.0
456 (CNRM-CM5) to +16.6 cm (MRI-CGCM3); the ensemble mean is +6.7 cm (Figs. 5b and 6). The potential
457 changes in MAP indicated by the downscaled PMIP3 models address in particular a key unknown in
458 attempting to determine temperature depressions necessary to maintain steady-state mass balances of the
459 paleoglaciers in the northern Sawatch Range. Despite the uncertainties in those models, it would appear
460 that the most likely LGM scenario was one of increased precipitation. Clipping the CHELSA grids to the
461 areas of individual ice masses (shown in Fig. 6a) suggests an increase of ~10 cm. However, as noted
462 previously, an increase of this magnitude is inconsequential for the estimates of LGM temperature
463 depression (Table 4 and Fig. 5a). The wettest scenario (Fig. 6b), corresponding to an increase in MAP of
464 ~20 cm greater than modern, requires a mean temperature depression of ~8.5 °C (Fig. 5a) for steady-state

465 mass balances. In contrast, the driest scenario (Fig. 6c) that corresponds to a decrease in MAP of ~15 cm
 466 over glacier areas, requires a cooling of ~9.2 °C.

467
 468 **Fig. 6.** Changes in LGM mean annual precipitation in the study area from (a) the CHELSA downscaled PMIP3 ensemble, and (b)
 469 the “wettest” and (c) driest scenarios within the ensemble. Glacier areas (simplified) used for clipping the CHELSA grids are
 470 indicated by the red and white lines in (a).

471 The downscaled PMIP3 ensemble mean suggests that average MATs might have been 11.5 °C (or
 472 11.2 °C if grids are clipped to glacier areas) cooler than present (Figs. 5b and 7), with estimates from
 473 individual models between 6.3 (CNRM-CM5) to 16.5 °C (FGOALS-g2). However, Figure 5a reveals that
 474 temperature depressions greater than 10 °C would require substantial decreases in LGM precipitation -
 475 exceeding 50 cm - in order to maintain steady-state glacier mass balances. Reductions of this magnitude
 476 are problematic, especially at lower elevation where today MAPs are 40-60 cm. This begs the question
 477 whether the large

478

479 **Fig. 7.** LGM temperature depression from (a) the CHELSA downscaled PMIP3 ensemble, and (b) the coldest and (c) warmest
 480 scenarios within the ensemble. Glacier areas (simplified) used for clipping the CHELSA grids are indicated by the red and white
 481 lines in (a).

482 temperature depressions suggested by several of the downscaled PMIP3 models (Fig. 5b) can be reconciled
 483 without seemingly improbable reductions in MAP. To explore one possibility, we ran an “enhanced melt”
 484 simulation (Fig. 5a) of paleoglacier mass balance, the reasoning being that greater melt would necessitate
 485 less reduction in MAP, or more specifically snow accumulation. Toward that end, these simulations used
 486 higher melt factors ($m_f = 0.65, 1.0 \text{ cm w.e. } d^{-1} \text{ } ^\circ\text{C}^{-1}$ for snow, ice), a lower threshold temperature for melt
 487 ($T_m = -1 \text{ } ^\circ\text{C}$), and the hypsometry of the Lake Fork Creek paleoglacier because results for the latter closely
 488 match the mean of the group. Even with these constraints, unrealistic reductions in LGM precipitation are
 489 implied for temperature depression exceeding $\sim 10.5 \text{ } ^\circ\text{C}$. We also considered a scenario in which the
 490 seasonal distribution of precipitation changed while MAPs over all elevations remained constant.
 491 Specifically, if 50% of winter and 25% of spring precipitation fell during the summer (hence lessening snow

492 accumulation), the required temperature depressions are ~ 1 $^{\circ}\text{C}$ cooler than those shown in Fig. 5a. Thus
493 given (1) temperature depressions greater than ~ 10 $^{\circ}\text{C}$ require extraordinary reductions in precipitation, (2)
494 that six of the seven downscaled PMIP3 models suggest that LGM climate was likely *wetter* (Fig. 5b), and
495 (3) considering uncertainties, our estimates of 8.1-9.2 $^{\circ}\text{C}$ (means in Table 1) appear to be robust measures
496 of the magnitude of late Pleistocene cooling. The elevational dependence of both changes in MAPs and
497 MATs (Figs. 6 and 7) implies changes in lapse rate and vertical precipitation gradients that would, however,
498 lead to decreased ablation at lower elevations on glacier surfaces. Therefore, these estimates – if anything
499 – might be slight overestimates in LGM temperature depression in the study area. Although two downscaled
500 PMIP3 models yield comparable estimates (i.e. CCSM4, MRI-CGCM3; Fig. 5b), the divergence of our
501 results from what might be expected from many of the other CHELSA downscalings underscores the need
502 for “benchmarking” of the higher resolution model output [59, 61-62].

503 Derived estimates of LGM temperature depression in the northern Sawatch appear to be somewhat
504 greater than those similarly determined in the adjacent Mosquito Range (Fig. 8), although the associated
505 uncertainties render this conclusion equivocal. Furthermore, the northern portion of the Sawatch Range
506 might have been $\sim 1\text{-}2$ $^{\circ}\text{C}$ cooler than the central portion (including the eastern Elk Mountains). More
507 striking, however, is that temperature depressions in the aforementioned regions are as much as 3-4 $^{\circ}\text{C}$
508 greater than those that have been previously reported for the study area [63], and for the Front Range [34]
509 and the Sangre de Cristo Mountains ([5]; Fig. 8). In addition, location-specific values of LGM temperature
510 and precipitation change (with respect to preindustrial) within the western U.S. interpolated from coarser
511 PMIP3 model grids [Supplementary Table S-9 in [26]] suggest perhaps a more uniform temperature
512 depression across the Colorado Rocky Mountains of 8.7 ± 0.3 $^{\circ}\text{C}$ ($n=5$) accompanied by an increase in
513 precipitation of $119 \pm 7\%$. While these estimates are more modest than those suggested by the CHELSA
514 downscaling, they more closely align with those derived by temperature-index modeling and climatic
515 interpretations of equilibrium line altitudes (Fig. 8).

516 It is difficult to ascribe any climatic significance to the differences and discrepancies within and among
517 regions evident in Figure 8 because of the different approaches used, their associated uncertainties, and
518 unknowns – especially LGM precipitation. For example, there are minor differences in the specific
519 application and/or parameterization of temperature-index methodologies (cf. [7], [33]), that themselves are
520 related to, but differ significantly from, the glacial flow modeling [5, 34] in the extent that underlying
521 physical processes are represented. With regard to LGM precipitation, Colorado lies along a boundary
522 between greater and lesser amounts than modern that appears in many regional and global scale climate
523 simulations (see for example Oster *et al.*, 2015 [26]). Thus it is likely that some of the differences in
524 estimated LGM temperature depression are due in part to variations in precipitation. Moreover, it is
525 reasonable to assume that regional temperature depression would vary less so than would changes in

526

527 **Fig. 8.** Derived estimates of LGM temperature depression in Colorado assuming no change in precipitation. Locations are arranged
 528 left-to-right roughly north(east) to south(west) according to the mean latitude of the glacier groups. Blue rectangles indicate
 529 temperature depression with 10 cm increase in precipitation; asterisk indicates 10% increase. Blue diamonds are location specific
 530 values from a PMIP3 ensemble [26]. Methodology: TM = temperature-index modeling, ELA = climatic interpretation at glacier
 531 equilibrium-line altitudes; FM = glacial flow modeling; EBFM coupled energy-balance and glacial flow modeling. Map inset show
 532 the location of individual ranges in Colorado.

533 precipitation. However, reconciling the low estimates in the Front Range and Sangre de Cristo Mountains
 534 with the greater temperature depressions inferred by other approaches and thus conform with those
 535 elsewhere in Colorado, would require extraordinary reductions in LGM precipitation. For the Sangre de
 536 Cristo Mountains in particular, a temperature depression of $>8^{\circ}\text{C}$ would require a reduction in precipitation
 537 of more than 50% [5]. Alternatively, in the northern Sawatch Range precipitation increases of $\sim 300\text{-}600\%$
 538 (dependent on elevation) would be necessary to maintain steady-state mass balances if LGM temperatures
 539 were on the order of 5°C cooler.

540 Considering only the estimates based on temperature-index modeling in Figure 8, it is tempting to
 541 conclude there exists a spatial trend of decreasing temperature depression from the northern Sawatch Range

542 south (and west) to the central Sawatch and Elk Mountains, a distance of about 50 km. Similar trends across
543 Colorado (and more broadly the western U.S.) are present in both the “raw” PMIP3 simulations and those
544 downscaled to coarser grid resolution than the CHELSA data (e.g. Lorenz et al., 2016 [62]). While the
545 former can be viewed as a first order trend of regional temperature depression, it is not apparent in the
546 higher resolution CHELSA downscalings presumably due to their greater dependence on elevation and
547 inclusion of finer scale topography. Considering this and uncertainties, whether such a trend exists over the
548 short distance that mirrors a regional trend remains equivocal.

549 **5. Conclusions**

550 Our results suggest that the last glaciation in the northern Sawatch Range culminated ~21 ka. The timing
551 of the local LGM is consistent with that in adjacent mountains, including the central Sawatch Range
552 immediately to the south, the Mosquito Range to the east, the Park Range to the north, and the Front Range
553 to the northeast, implying regional synchronicity of glacier maxima between ~23 and 20 ka [7, 10].
554 Simulations of steady-state mass balances of six paleoglaciers suggest that climate at this time was
555 characterized by mean annual temperatures $\sim 8.8 \pm 0.5$ °C cooler than present if there were no significant
556 changes in precipitation. Assuming a slightly wetter or drier LGM, consistent with simulations of regional
557 climate, the means of required temperature depression are 8.7 ± 0.5 and 9.1 ± 0.5 °C respectively.

558 Inferred temperature depressions for the northern Sawatch Range are consistent, albeit slightly greater,
559 than those determined using similar approaches in the central Sawatch Range, the Mosquito Range, and the
560 Elk Mountains. They are, however, significantly less than those derived for the study area from several
561 high-resolution downscaling of simulations of global climate change during the Late Pleistocene, and thus
562 argue for additional model-proxy comparisons in order validate and/or improve models and downscaling
563 methods. In contrast, the magnitude of temperature change in the northern Sawatch Range is significantly
564 greater than that suggested for the Front Range and Sangre de Cristo Mountains. Clearly these differences
565 might represent real spatial differences in LGM temperature depression in the Colorado Rocky Mountains,
566 but the magnitude of the differences is not supported by any larger-scale climate simulations. They might
567 also reflect the inability to precisely know how LGM precipitation differed – if at all – from today, and
568 furthermore underscores the need for precipitation proxies. However, it is difficult to reconcile the large
569 differences by appealing solely to unknown precipitation changes as inordinate changes (either increases
570 or decreases) would be required. Therefore, it is more likely that disparate estimates of LGM temperature
571 change in Colorado are due, at least in part, to differences in the methods used in their determination or
572 their implementation.

573 **Supplementary Material:** The following is available on-line, Table S1: ^{10}Be sample and analytical data
574 and calculated ages.

575 **Author Contributions:** C.A.R. is largely responsible for mapping of ice limits with assistance of C.C.M.
576 C.A.R., M.W.C., and C.C.M. collected the samples for cosmogenic exposure dating. M.W.C. processed the
577 samples and calculated the exposure ages. K.A.B. assisted with field mapping, reconstructed the glaciers,
578 and developed and performed the temperature-index modeling. K.A.B. wrote the manuscript but all authors
579 contributed to the ideas presented and edited earlier drafts.

580 **Funding:** This work was supported by internal funds within the U.S.G.S., PRIME Lab, and the University
581 of Minnesota, Morris.

582 **Acknowledgements:** Geologic mapping and sample collection and processing was supported and made
583 available through the USGS National Geologic Mapping Cooperative Program. A. Hudson provided helpful
584 comments on the original manuscript.

585 **Conflicts on Interest:** The authors declare no conflicts of interest.

586 **References**

- 587 1. Licciardi, J.M.; Clark, P.U.; Brook E.J.; Elmore, D.; Sharma, P. Variable responses of western U.S.
588 glaciers during the last deglaciation. *Geology* **2004**, *32*, 81–84.
- 589 2. Thackray, G.D.; Varied climatic and topographic influences on Late Pleistocene mountain
590 glaciation in the western United States. *J Quat. Sci.* **2008**, *23*, 671–681.
- 591 3. Laabs, B.J.C.; Refsnider, K.A.; Munroe, J.S.; Mickelson, D.M.; Applegate, P.J.; Singer, B.S.;
592 Caffee, M.W. Latest Pleistocene glacial chronology of the Uinta Mountains: support for moisture-
593 driven asynchrony of the last deglaciation. *Quat. Sci. Rev.* **2009**, *28*, 1171–1187.
- 594 4. Young, N.E.; Briner, J.P.; Leonard E.M.; Licciardi, J.M.; Lee, K. Assessing climatic and non-
595 climatic forcing of Pinedale glaciation and deglaciation in the western U.S. *Geology* **2011**, *39*, 171–
596 17
- 597 5. Leonard E.M.; Laabs, B.J.C.; Plummer, M.A.; Kroner, R.K.; Brugger, K.A.; Spiess, V.M.;
598 Refsnider, K.A.; Xia, Y.; Caffee, M.W. Late Pleistocene glaciation and deglaciation in the Crestone
599 Peaks area, Sangre de Cristo Mountains, USA - chronology and paleoclimate. *Quat. Sci. Rev.* **2017**,
600 *158*, 127–144.
- 601 6. Quirk, B.J.; Moore, J.R.; Laabs, B.J.C.; Caffee, M.W.; Plummer, M.A. Termination II, Last Glacial
602 Maximum, and Late glacial chronologies and paleoclimate from Big Cottonwood Canyon, Wasatch
603 Mountains, Utah. *Geol. Soc. Am. Bull.* **2018**, *30*, 1889–1902.
- 604 7. Brugger, K.A.; Laabs, B.; Reimers, A.; Bensen, N. Late Pleistocene glaciation in the Mosquito
605 Range, Colorado, USA: chronology and climate. *J. Quat. Sci.* **2019**, *34*, 187–202.
- 606 8. Shakun, J.D.; Clark, P.U.; He, F.; Lifton, N.A.; Liu, Z.; Otto-Bliesner, B.L. Regional and global
607 forcing of glacier retreat during the last deglaciation. *Nat. Comm.* **2015**, *6*, 8059.
- 608 9. Laabs, B.J.; Leonard, E.M.; Licciardi, J.M.; Munroe, J.S. Cosmogenic chronologies of Late
609 Pleistocene glacial maxima along the crest of the Rocky Mountains, USA. *AGU Fall Meeting
610 Abstracts*, **2018**.
- 611 10. Leonard, E.M.; Laabs B.J.C.; Schweinsberg, A.D.; Russell, C.M.; Briner, J.P.; Young, N.E.
612 Deglaciation of the Colorado Rocky Mountains following the Last Glacial Maximum. *Cuad. Invest.
613 Geog.* **2017**, *43*, 497–526.

614 11. Schaefer, J.M.; Denton, G.H.; Barrell, D.J.; Ivy-Ochs, S.; Kubik, P.W.; Andersen, B.G.; Phillips,
615 F.M.; Lowell, T.V.; Schlüchter, C. Near-synchronous interhemispheric termination of the last
616 glacial maximum in mid-latitudes. *Science* **2006**, *312*, 1510-1513.

617 12. Shakun, J.D.; Clark, P.U.; He, F.; Marcott, S.A.; Liu, Z.; Otto-Bliesner, B.L.; Schmittner, A.; Bard,
618 E. Global warming preceded by increasing carbon dioxide concentrations during the last
619 deglaciation. *Nature* **2012**, *484*, 49.

620 13. Hostetler, S.W.; Clark, P.U. Climatic controls of western U.S. glaciers at the last glacial maximum.
621 *Quat. Sci. Rev.* **1997**, *16*, 505-511.

622 14. Licciardi, J.M.; Pierce, K.L. History and dynamics of the Greater Yellowstone Glacial System
623 during the last two glaciations. *Quat. Sci. Rev.* **2018**, *200*, 1-33.

624 15. Wagner, J.D.; Cole, J.E.; Beck, J.W.; Patchett, P.J.; Henderson, G.M.; Barnett, H.R. Moisture
625 variability in the southwestern United States linked to abrupt glacial climate change. *Nat. Geosci.*
626 **2010**, *3*, 110-113.

627 16. Asmerom, Y.; Polyak, V.J.; Burns, S.J. Variable winter moisture in the southwestern United States
628 linked to rapid glacial climate shifts. *Nat. Geosci.* **2010**, *3*, 114-117.

629 17. Bartlein, P.J.; Harrison, S.P.; Brewer, S.; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, G.;
630 Harrison-Prentice, T.I.; Henderson, A.; Peyron, O.; *et al.* Pollen-based continental climate
631 reconstructions at 6 and 21 ka: a global synthesis. *Clim. Dyn.* **2011**, *37*, 775-802.

632 18. Lyle, M.; Heusser, L.; Ravelo, C.; Yamamoto, M.; Barron, J.; Diffenbaugh, N.S.; Herbert, T.;
633 Andreasen, D. Out of the Tropics: The Pacific, Great Basin Lakes, and the late Pleistocene water
634 cycle in the western United States. *Science* **2012**, *337*, 1629-1633.

635 19. Munroe, J.S.; Laabs, B.J.C. Temporal correspondence between pluvial lake highstands in the
636 southwestern US and Heinrich Event 1. *J. Quat. Sci.* **2013**, *28*, 49-58.

637 20. Ibarra, D.E.; Egger, A.E.; Weaver, K.L.; Harris, C.R.; Maher, K. 2014. Rise and fall of late
638 Pleistocene pluvial lakes in response to reduced evaporation and precipitation: evidence from Lake
639 Surprise, California. *Geol. Soc. Am. Bull.* **2014**, *126*, 1387-1415.

640 21. Ibarra, D.E.; Oster, J.L.; Winnick, M.J.; Caves Rugenstein, J.K.; Byrne, M.; Chamberlain, C.P.
641 Warm and cold wet states in the western United States during the Pliocene-Pleistocene. *Geology*
642 **2018**, *46*, 355-358.

643 22. Moseley, G.E.; Edwards, R.L.; Wendt, K.A.; Cheng, H.; Dublyansky, Y.; Lu, Y.; Boch, R.; Spötl,
644 C. Reconciliation of the Devils Hole climate record with orbital forcing. *Science* **2016**, *351*, 165-
645 168.

646 23. Hudson, A.M.; Hatchett, B.J.; Quade, J.; Boyle, D.P.; Bassett, S.D.; Ali, G.; De los Santos, M.G.
647 North-south dipole in winter hydroclimate in the western United States during the last glaciation.
648 *Sci. Rep.* **2019**, *9*, 4826.

649 24. Kutzbach, J.E.; Wright Jr, H.E. Simulation of the climate of 18,000 years BP: Results for the North
650 American/North Atlantic/European sector and comparison with the geologic record of North
651 America. *Quat. Sci. Rev.* **1985**, *4*, 147-187.

652 25. Kim, S-J; Crowley, T.J.; Erickson, D.J.; Govindasamy, B.; Duffy, P.B.; Lee, B.Y. High-resolution
653 climate simulation of the last glacial maximum. *Clim. Dyn.* **2008**, *31*, 1-16.

654 26. Oster, J.L.; Ibarra, D.E.; Winnick, M.J.; Maher, K. Steering of westerly storms over western North
655 America at the Last Glacial Maximum. *Nat. Geosci.* **2015**, *8*, 201-205.

656 27. Lora, J.M.; Mitchell, J.L.; Tripati, A.E. Abrupt reorganization of North Pacific and western North
657 American climate during the last glaciation. *Geophys. Res. Lett.* **2016**, *43*, 11796-11804.

658 28. Lora, J.M.; Mitchell J.L.; Risi, C.; Tripati, A.E. North Pacific atmospheric rivers and their influence
659 on western North America at the Last Glacial Maximum. *Geophys. Res. Lett.* **2017**, *44*, 1051-1059.

660 29. Morrill, C.; Lowry, D.P.; Hoell, A. Thermodynamic and dynamic causes of pluvial conditions
661 during the last glacial maximum. *Geophys. Res. Lett.* **2018**, *45*, 335-345.

662 30. Laabs, B.J.; Plummer, M.A.; Mickelson, D.M. Climate during the last glacial maximum in the
663 Wasatch and southern Uinta Mountains inferred from glacier modeling. *Geomorph.* **2006**, *75*, 300-
664 317.

665 31. Leonard, E.M. Modeled patterns of Late Pleistocene glacier inception and growth in the Southern
666 and Central Rocky Mountains, USA: sensitivity to climate change and paleoclimatic implications.
667 *Quat. Sci. Rev.* **2007**, *26*, 2152-2166.

668 32. Ward, D.W.; Anderson, R.S.; Guido, Z.S.; and Briner, J.P. Numerical modeling of cosmogenic
669 deglaciation records, Front Range and San Juan mountains, Colorado. *J. Geophys. Res.-Earth Surf.*
670 **2009**, *114*, F01026.

671 33. Brugger, K.A. Climate in the southern Sawatch Range and Elk Mountains, Colorado, USA, during
672 the Last Glacial Maximum: inferences using a simple degree-day model. *Arct. Antarct. Alp. Res.*
673 **2010**, *42*, 164-178.

674 34. Dühnforth, M.; Anderson, R.S. Reconstructing the glacial history of green lakes valley, North
675 Boulder Creek, Colorado Front Range. *Arct. Antarct. Alp. Res.* **2011**, *43*, 527-542.

676 35. Birkel, S.D.; Putnam, A.E.; Denton, G.H.; Koons, P.O.; Fastook, J.L.; Putnam D.E.; Maasch, K.A.
677 Climate inferences from a glaciological reconstruction of the Late Pleistocene Wind River ice cap,
678 Wind River Range, Wyoming. *Arct. Antarct. Alp. Res.* **2012**, *44*, 265-276.

679 36. Kellogg, K.S.; Shroba, R.R.; Ruleman, C.A.; Bohannon, R.G.; McIntosh, W.C.; Premo, W.R.;
680 Cosca, M.A.; Moscati, R.J.; Brandt, T.R. Geologic map of the Upper Arkansas River Valley region,
681 north-central Colorado. USGS Sci. Invest. Map 3382, **2017**.

682 37. Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. *Quat.*
683 *Sci. Rev.* **2001**, *20*, 1475-1560.

684 38. Lifton, N.; Sato, T.; Dunai, T.J. Scaling in situ cosmogenic nuclide production rates using analytical
685 approximations to atmospheric cosmic-ray fluxes. *Earth Planet. Sci. Lett.* **2014**, *386*, 149-160.

686 39. Lifton N.; Caffee, M; Finkel, R., Marrero, S.; Nishiizumi, K.; Phillips, F.M.; Goehring, B.; Gosse,
687 J.; Stone, J.; Schaefer, J.; Theriault, B. In situ cosmogenic nuclide production rate calibration for
688 the CRONUS Earth project from Lake Bonneville, Utah, shoreline features. *Quat. Geochron.* **2015**,
689 *26*, 56-69.

690 40. Balco, G.; Stone, J.; Lifton, N.; Dunai, T. A complete and easily accessible means of calculating
691 surface exposure ages or erosion rates from 10Be and 26Al measurements. *Quat. Geochron.* **2008**,
692 *3*, 174-195.

693 41. Cuffey, K.M.; Paterson, W.S.B. 2010. *The Physics of Glaciers* (4th ed.). Elsevier, Boston.

694 42. Nye, J.F. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-
695 section. *Journal of Glaciology* **1965**, *5*, 661-690.

696 43. Bindschadler, R.; Harrison, W.D.; Raymond, C.F.; Crossen, R. Geometry and dynamics of a surge-
697 type glacier. *J. Glaciol.* **1977**, *18*, 181-194.

698 44. Yang, W.; Guo, X.; Yao, T.; Yang, K.; Zhoa, L.; Li, S.; Zhu, M. Summertime surface energy
699 budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. *J. Geophys. Res.*
700 **2011**, *116*, D14116.

701 45. Vincent, C.; Six, D. Relative contribution of solar radiation and temperature in enhanced
702 temperature-index melt models from a case study at Glacier de Saint-Sorlin, France. *Ann. Glaciol.*
703 **2013**, *54*, 11-17.

704 46. Réveillet, M.; Vincent, C.; Six, D.; Rabatel, A. Which empirical model is best suited to simulate
705 glacier mass balances? *J. Glaciol.* **2017**, *63*, 39-54.

706 47. Pellicciotti, F.; Brock, B.; Strasser, U.; Burlando, P.; Funk, M.; Corripio, J. An enhanced
707 temperature-index glacier melt model including a shortwave radiation balance: development and
708 testing for Haut Glacier d'Arolla, Switzerland. *J. Glaciol.* **2005**, *175*, 573-587.

709 48. Gabbi, J.; Carenzo, M.; Pellicciotto, F.; Bauder, A.; Funk, M. A comparison of empirical and
710 physically based glacier surface melt models for long-term simulation of glacier response. *J.
711 Glaciol.* **2014**, *60*, 1140–1154.

712 49. Matthews, T.; Hodgkins, R.; Wilby, R.L.; Gudmundsson, S.; Pálsson, F.; Björnsson, H.; Carr, S.
713 Conditioning temperature-index model parameters on synoptic weather types for glacier melt
714 simulations. *Hydrol. Process.* **2015**, *29*, 1027–1045.

715 50. Hock, R. Temperature index melt modelling in mountain areas. *J. Hydrol.* **2003**, *282*, 104–115.

716 51. Braithwaite, R.J. Temperature and precipitation climate at the equilibrium-line altitude of glaciers
717 expressed by the degree-day factor for melting snow. *J. Glaciol.* **2008**, *54*, 437–444.

718 52. Hodgkins, R.; Carr, S.; Pálsson, F.; Gudmundsson, S.; Björnsson, H. Sensitivity analysis of
719 temperature-index melt simulations to near-surface lapse rates and degree-day factors at Vestari-
720 Hagafellsjökull, Langjökull, Iceland. *Hydrol. Process.* **2012**, *26*, 3736–3748.

721 53. Muggeo, V.M.R. Segmented: an R package to fit regression models with broken-line relationships.
722 *R News* **2008**, *8*, 20–25.

723 54. Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris,
724 P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the
725 coterminous United States. *Int. J. Climatol.* **2008**, *28*, 2031–2064.

726 55. Lowry, D.P.; Morrill, C. Is the Last Glacial Maximum a reverse analog for future hydroclimate
727 changes in the America? *Clim. Dyn.* **2019**, *52*, 4407–4427.

728 56. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann,
729 N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth's land surface areas.
730 *Sci. Data* **2017**, *4*, 170122.

731 57. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann,
732 N.E.; Linder, H.P.; Kessler, M. Data from: Climatologies at high resolution for the earth's land
733 surface areas. *Datadryad* **2017**, <https://doi.org/10.5061/dryad.kd1d4>.

734 58. Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.;
735 Emori, S.; Eyring, V. *et al.* Evaluation of climate models. In *Climate Change 2013: The Physical
736 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
737 Intergovernmental Panel on Climate Change*; Stocker, T.F., Qin D., Plattner G.K. *et al.*, Eds.;
738 Cambridge University Press, Cambridge and New York, **2013**, 741–866.

739 59. Beyer, R.; Krapp, M.; Manica, A. A systematic comparison of bias correction methods for
740 paleoclimate simulations. *Clim. Past Discuss.* in review **2019**, <https://doi.org/10.5194/cp-2019-11>.

741 60. Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.;
742 Masson-Delmotte, V.; Mignot, J.; Thorne, P. Estimating changes in global temperature since the
743 preindustrial period. *Bull. Amer. Meteor. Soc.* **2017**, *98*, 1841–1856.

744 61. Annan, J.D.; Hargreaves, J.C. A perspective on model-data surface temperature comparisons at the
745 Last Glacial Maximum. *Quat. Sci. Rev.* **2015**, *107*, 1–10.

746 62. Lorenz, D.J.; Nieto-Lugilde, D.; Blois, J.L.; Fitzpatrick, M.C.; Williams, J.W. Downscaled and
747 debiased climate simulations for North America from 21,000 years ago to 2100 AD. *Sci. Data*
748 **2016**, *3*, 160048.

749 63. Schweinsberg, A.D.; Briner, J.P.; Shroba, R.R.; Licciardi, J.M.; Leonard, E.M.; Brugger, K.A.;
750 Russell, C.M. Pinedale glacial history of the upper Arkansas River valley: new moraine
751 chronologies, modeling results, and geologic mapping. In *Unfolding the Geology of the West*.
752 Keller S.M., Morgan M.L., Eds. Geological Society of America Field Guide, **2016**, *44*, 335–353.

753 64. Brugger, K.A.; Goldstein, B.S. Paleoglacier reconstruction and late-Pleistocene equilibrium-line
754 altitudes, southern Sawatch Range, Colorado. In *Glacial Processes Past and Present*. Mickelson,
755 D.M., Attig, J.W. Eds., GSA Special Paper 337, **1999**, 103-112.

756 65. Refsnider, K.A.; Brugger, K.A.; Leonard, E.M.; McCalpin, J.P.; Armstrong, P.P. Last glacial
757 maximum equilibrium-line altitude trends and precipitation patterns in the Sangre de Cristo
758 Mountains, southern Colorado, USA. *Boreas* **2009**, 38, 663-678.

759 66. Leonard, E.M. Climatic change in the Colorado Rocky Mountains: estimates based on modern
760 climate at late Pleistocene equilibrium lines. *Arct and Alp. Res.* **1989**, 21, 245-255.