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21 Abstract: The Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an
22 infected mosquito bite or through human-to-human interaction by sexual activity, blood
23 transfusion, breastfeeding or perinatal exposure. After the 2015-2016 outbreak in Brazil, a strong

24 link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural
25 progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins

26 leading to microcephaly. Here, we present a systematic annotation of interactions between human
27 proteins and the seven non-structural ZIKV proteins corresponding to a Brazilian isolate. The
28 interaction network was generated by combining tandem-affinity purification followed by mass
29 spectrometry with yeast two-hybrid screens. We identified 150 human proteins, involved in
30 distinct biological processes, as interactors to ZIKV non-structural proteins. Our interacting
31 network is composed of proteins that have been previously associated with microcephaly in
32 human genetic disorders and/or animal models. This study builds on previously published
33 interacting networks of ZIKV and genes related to autosomal recessive primary microcephaly to
34 generate a catalog of human cellular targets of ZIKV proteins implicated in processes related to
35 microcephaly in humans. Collectively, this data can be used as a resource for future
36 characterization of ZIKV infection biology and help create a basis for the discovery of drugs which

37 may disrupt the interaction and reduce the health damage to the fetus.

38 Keywords: ZIKV, protein-protein interaction, non-structural viral proteins, network

40 1. Introduction

41 Zika virus (ZIKV) is a neurotropic arthropod-borne virus belonging to Flaviviridae family,
42 along with other Flaviviruses capable of infecting central nervous system, such as West Nile Virus,
43 St. Louis Encephalitis Virus, and Japanese Encephalitis Virus. It is commonly transmitted though the
44 bite of an infected Aedes species mosquito (A. aegypti or A. albopictus). These mosquitoes become
45  infected when they feed on the infected person. Importantly, besides the mosquito bites,
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human-to-human modes of transmission have also been documented, including sexual activity,
blood transfusions and mother to fetus [1].

Since its first confirmed human infection in the 1960s, there were three documented Zika virus
(ZIKV) outbreaks worldwide. The first two occurred in Micronesia and French Polynesia in 2007 and
2013, respectively. The most recent one (2015-2016) started in the Northeastern region of Brazil and
rapidly spread through South America, the Caribbean and Mexico. By July 2016, locally transmitted
cases of Zika infection were first reported in the US (Florida). According to the World Health
Organization (WHO), 73 different countries had reported ZIKV infections by February of 2016 [2,3].
According to CDC, there have been no recorded local transmissions of the Zika virus in the
continental United States in 2018 and 2019. However, with the globally increasing rate of travelling
and the historical ability of viruses to acquire genetically modified virulence, the search for effective
methods of Zika prevention and control remains important.

ZIKV infections in adults have been associated with neurological conditions such as
Guillain-Barré syndrome, acute flaccid paralysis, and meningoencephalitis [4-7]. The Brazilian
outbreak was the first time that ZIKV infection (presented in pregnant women) was correlated to
congenital microcephaly in newborns [8-10]. Both in vitro and in vivo models have demonstrated
that ZIKV has a tropism toward human neural progenitor cells [11-13]. In these cells, ZIKV infection
is followed by apoptosis, corroborating the hypothesis of ZIKV as the etiological agent of these
neurological disorders [4,5,11-13]. Further, independent studies have shown that the microcephaly
and neural development-associated phenotypes seem to be a distinct feature of the Asian lineage
[12,14,15]. However, the precise molecular mechanism(s) underlying these ZIKV-related
manifestations is not understood.

ZIKV is a Baltimore class IV arbovirus from the Flaviviridae family. The ZIKV genome encodes
a polyprotein that is processed by both viral and host proteases into ten proteins. Three of them (the
capsid, pre-membrane and envelope) are responsible for the structural organization of the virus. The
other seven are non-structural (NS) proteins (NS1, NS2A NS2B, NS3, NS4A, NS4B, and NS5)
responsible for regulatory function, viral replication and subvert host responses [16].

The identification of virus-host protein-protein interaction is essential to better understand
viral pathogenesis and to identify cellular mechanisms that could be pharmacologically targeted [17].
To gain further insight into the ZIKV pathogenesis, we generated a virus-host protein-protein
interaction network focused on the interactions mediated by the non-structural proteins encoded by
the Brazilian ZIKV genotype. Here we present a network composed of proteins related to neuron
projection development, microcephaly-associated disorders, and by protein complexes linked to
replication and infection of other members of the Flaviviridae family. In addition, we integrate our
dataset with previously published ZIKV protein interaction networks, highlighting common and
unique protein interaction partners [18-20]. Collectively, this data can be used as a resource to
improve the understanding of the ZIKV pathogenesis and identify putative pharmacological targets
for future treatment approaches.

2. Materials and Methods
2.1. ZIKV NS proteins cDNA constructs

We generated the cDNA of seven individual NS proteins (NS1, NS2A, NS3, NS2B, NS4A, NS4B,
and NS5) corresponding to a ZIKV Brazilian isolate from the state of Pernambuco (GenBank
AMD16557.1) [21]. We used the virus isolate as template for PCR to generate cDNAs for NS1, NS2A,
NS2B, NS4A, and NS4B. We generated the Brazilian genotype cDNAs for NS3 and NS5 using
site-directed mutagenesis with the pLV_Zika_Flag NS3 and pLV_Zika_NS5_Flag plasmids as
template (Addgene # 79634 and # 79639, respectively). Primer sequences will be provided upon
request. All sequences were confirmed by Sanger sequencing.

ZIKV ¢DNAs coding for NS proteins were cloned into pGBKT7 (Clontech) in frame with the
GAL4 DNA binding domain (DBD) for Y2H assays, and into pNTAP (Agilent) vector for the
TAP-MS assays. The GST-tagged baits used for Y2H validations were generated by subcloning the
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96  ¢DNA from the isolated pGADT? (Clontech) plasmid into the pDEST27 vector using Gateway
97  recombination cloning according to the manufacturer’s instructions (ThermoFisher).
98 To validate Y2H interactions, recovered Y2H plasmids containing prey cDNAs were amplified
99 by PCR using primers containing attb sites. PCR products were cloned into pPDONR221 for Gateway
100  recombination cloning (Invitrogen) and subsequently into pDEST27, to produce an N-terminal GST
101  fusion. Primer sequences will be provided upon request
102
103 2.2. Y2H Library Screening

104 To identify direct human brain protein targets of ZIKV NS proteins, we used the
105 MATCHMAKER Gold Y2H system (Clontech). Seven ZIKV viral proteins (NS1, NS2A, NS2B, NS3,
106 NS4A, NS4B, and NS5) were transformed into the Saccharomyces cerevisiae strain Y2HGold
107  (Clontech) alone or co-transformed together with empty pGADT7 vector and tested for
108  auto-activation and toxicity (defined by low transformation efficiency, small colony phenotype, or
109  inability to grow in liquid culture) as previously described by our group [22].

110 All bait proteins were expressed in Y2HGold and did not induce toxic effects on the yeast cell
111  cycle or survival (Figure S3A-B). Y2HGold transformants expressing each bait were mated to Y187
112 strain expressing a pre-transformed human brain normalized cDNA library (Matchmaker® Gold
113 Yeast Two-Hybrid System; Cat.no. 630489; Clontech) for 20 h. The mated cultures were then plated
114 on quadruple dropout medium (SD -Trp/-Leu/-His/-Ade) and incubated for 8-12 days (NS5 was
115  screened twice). For every screen, more than 1 X 106 transformants were screened (Table S1). Yeast
116  miniprep DNA was used to recover pGADT7 fusions from each positive clone (Clontech Yeast
117  Plasmid Isolation Kit), amplified by KOD polymerase chain reaction (PCR) and Sanger sequenced
118  using a T7 primer. Out of frame clones were discarded and in-frame clones were kept for further
119  analysis (Table S2).

120

121 2.3. Validation of Y2H interactions

122 Protein-protein interactions identified in Y2H screens were validated by expression in Human
123 Embryonic Kidney (HEK) 293FT cells and protein pull-downs. HEK293FT cells were co-transfected
124 with pDEST27 containing prey fusions to GST, and pNTAP containing bait fusions to SBP and CBP.
125  Cells were collected after 24 h and lysed in 1% CHAPS lysis buffer [1% CHAPS, 150 mM NaCl, 10
126  mM HEPES (pH 7.4) with protease and phosphatase inhibitors]. Cellular lysates were subjected to
127  affinity purification of the TAP-tagged NS constructs using streptavidin-conjugated agarose beads,
128  which were washed four times with 1% CHAPS lysis buffer and then analyzed by Western blot
129  using anti-GST (GE27-4577-01; Sigma Aldrich) and anti-CBP tag antibodies (GenScript; Cat.no.
130  A00635).

131

132 2.4. Tandem Affinity Purification coupled to Mass Spectrometry

133 HEK293FT cells were transfected using the calcium phosphate method with the
134  SBP-CBP-tagged NS or control (GFP) vectors (Figure 1A). HEK cells have been previously used as a
135  model for characterizing host-pathogen protein-protein interactions (PPI) [19,23, 24].

136 About 1 x 108 cells were used for the purification of the protein complexes using the InterPlay
137  TAP purification kit (Stratagene) as described previously [22].
138 A nanoflow ultra-high-performance liquid chromatograph (RSLC, Dionex) coupled to an

139  electrospray bench top orbitrap mass spectrometer (Q-Exactive plus, Thermo) was used for liquid
140  chromatography-tandem mass spectrometry (LC-MS/MS) peptide sequencing experiments.
141  Samples were loaded onto a pre-column and washed for 8 minutes with aqueous 2% acetonitrile and
142 0.04% trifluoroacetic acid. Trapped peptides were eluted onto an analytical column, (C18
143 PepMap100, Thermo) and separated using a 90-minute gradient delivered at 300 nl/min. Sixteen
144  tandem mass spectra were collected in a data-dependent manner following each survey scan using a

145 15 second exclusion for previously sampled peptide peaks (QExactive, Thermo).
146
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147
148  2.5. Analysis of proteomics data
149 We used Scaffold (Version 4.8.5) to obtain the original samples report of all TAP-MS based

150 peptide and protein identifications. Peptide identifications were retained if they satisfied a
151  minimum of 95.0% threshold. Protein identifications were accepted if they met greater than 50.0%
152  threshold with a minimum of 2 identified peptides.

153 To further analyze the original Scaffold mass spectrometry data, we used APOSTL, an
154  integrative Galaxy pipeline for affinity proteomics data [25]. The following global cutoffs were
155  applied to 7,996 interactions and generated a list of 88 high confidence interactions: SaintScore cutoff:
156  0.5; FoldChange cutoff: 0; NSAF Score cutoff: 0.0000025.

157 APOSTL also interrogates the CRAPome database (http://crapome.org/), which contains
158 common contaminants in affinity purification-mass spectrometry data [26]. Seventeen proteins
159  displayed a CRAPome score >90% and were candidates to be called non-specific interactors.
160  However, two hits were plausible due to being previously implicated in microcephaly (RAB18 and
161 NEDDI1), two hits were found associated with ZIKV NS proteins in a previously published
162  independent study (AHCYL1 and GET4) [19]. Moreover, only 2 out 17 displayed multiple
163  interactions, suggesting that the other 15 proteins do not constitute non-specific interactors in our
164  assay. Therefore, we decided to retain all proteins, but have indicated high CRAPome score in
165  Figure 2 when appropriate.

166

167  2.6. Generation of the microcephaly-associated PIN

168 We generated a microcephaly-associated PIN by searching NCBI's ENTREZ Gene using
169  [microcephaly] AND [Homo sapiens] as a query. This exercise led to 277 genes which were
170  manually curated to remove those without an OMIM designation (i.e. pseudogenes and partially
171  characterized loci) with a final tally of 261 genes. These genes were used as input to BisoGenet [27],
172 which adds edges between the input nodes, to generate a microcephaly-associated network with 370
173  interactions (Table S13). BisoGenet settings were ‘input nodes only’ (Method) and checking
174  ‘protein-protein interactions’ only leaving ‘Protein DNA interaction’ and ‘microRNA silencing
175  interaction’ unchecked. Significant interaction clusters were identified using ClusterONE (Version
176  1.0) [28] using the following settings: ‘minimum size’ = 5; ‘minimum density’ = 0.5; ‘edge weights’ =
177  unweighted. GO enrichment of clusters was done using BINGO [29] as a Cytoscape plug-in.

178

179  2.7. Network generation and GO analysis

180 Network graphics were generated with Cytoscape version 3.7.1 [30]. Each NS integrated dataset
181  was analyzed using WebGestalt to determine enrichment of GO terms. For each bait set (all proteins
182 that interact with each NS bait), the number of genes in the set that were scored for a term was
183  obtained. The number was then divided by the number of genes in the GO database for that term to
184  obtain an enrichment ratio. Enrichment ratios that had a 0.0 value were replaced by 0.3 (half of the
185  lowest non-zero value, 0.6) in the complete set. Bait sets were clustered with Cluster 3.0 using
186  Correlation (uncentered) metric of similarity with no filtering but log2-transformed to depict
187  increase and decrease changes as numerically equal but with opposite sign. The clustering method
188  chosen was complete linkage. It was visualized using Java TreeView v 1.1.6r4 [31].

189
190  2.8. Mitocheck analysis and clustering

191 The Mitocheck phenotype database (20,921 genes), which scores 14 mitosis-related phenotypes
192  in a binary form (presence = 1; absence = 0) from RNA interference screens was downloaded from
193  http://www.mitocheck.org/ as a tab-delimited file in which genes are represented in rows and
194  phenotypes in columns.

195 The enrichment and clustering (for each bait set) were performed as described above. Further,
196  we also deconvoluted the integrated dataset to genes that were positive to at least one of the 14
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phenotypes (Table S9). These new data set were clustered with Cluster 3.0 using Correlation
(uncentered) metric of similarity with no filtering but log2-transformed to depict increase and
decrease changes as numerically equal but with opposite sign. The clustering method chosen was
complete linkage. It was visualized using Java TreeView v 1.1.614 [31].

3. Results

3.1. Yeast-two hybrid screenings

To build the first pair-wise protein-protein interaction database of ZIKV NS proteins encoded
by the Brazilian genotype, we performed stringent Yeast-Two Hybrid (Y2H) screenings using ZIKV
NS proteins as baits to screen a normalized human brain cDNA library (Figure 1A and Table S1).
The Y2H screenings generated a protein-protein interaction network (PIN) ranging from 1 (NS2A) to
56 (NS3) interactions, totaling 99 unique protein hits and 109 bait-prey interactions (Figure 1A-B and
Table S2).

To validate our Y2H PIN, a subset of 38 bait-prey interactions (38.4% of the Y2H PIN) was
tested for interaction in human HEK293FT cells. All NS coding sequences were cloned in an
eukaryotic expression vector in frame with the streptavidin and calmodulin binding proteins (SBP
and CBP, respectively). Candidate interactor cDNAs were expressed in frame with
Glutathione-S-Transferase (GST). CBP pulldown assays were performed against GST-tagged preys
in HEK293FT cells, and 76.3% of interactions were confirmed (Figure 1C).

3.2. Tandem affinity purification followed by mass spectrometry

To further characterize the NS-mediated protein interactions, we expressed all baits as fusions
to SBP and CBP in HEK293FT cells (Figure 1A). We then performed tandem affinity purification
coupled to mass spectrometry (TAP-MS) which resulted in a high-confidence PIN with interactions
ranging from 8 (NS2B and NS5) to 27 (NS2A), totaling 62 unique protein hits and 89 bait-prey
interactions (Figures 1A and 2A-B; Table S3).

3.3. Merged ZIKV PIN

We combined the final Y2H and TAP-MS networks to generate the Merged ZIKV Network
containing 157 nodes (including the baits) with 189 interactions between NS proteins and human
host proteins (Figure 3A) (Table 54). Only 3 out of 151 hits were common to both Y2H and MS-based
networks (BCLAF1, AHCYL1, and COPB1) indicating a limited overlap between methods.

3.4. Gene ontology

Gene ontology (GO) enrichment analysis of the Merged ZIKV PIN identified a subset of
proteins mainly involved in 13 non-redundant biological processes (Figure S1). Among the hits
identified, 13 are members of the proteasome complex (11 unique to the 26S subunit) and five
members of the chaperonin-containing TCP1 (CCT) complexes (8.7% and 3.3% of our PIN,
respectively) (Figure S1 and Table S5). GO enrichment analysis of cellular components revealed an
enrichment of peptidase complex, chaperone complex and ficolin-1-rich granules (Table S6).

Next, we applied unsupervised clustering of bait sets according to their GO enrichment ratios
for biological processes and cellular components (Figure 3B-C and Table S7-8). Interestingly, protein
bait sets were clustered into two major groups (NS1, NS2A and NS3 versus NS2B, NS4A, NS4B and
NS5).

d0i:10.20944/preprints201909.0078.v1
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266 Figure 3. Merged ZIKV PIN. A. Network of the interactions identified by Y2H and TAP-MS
267 screens. The color legend is depicted on the upper left-hand corner. B-C. Clustering of bait sets
268 according to GO enrichment ratio for biological processes (B) and cellular component (C). D.
269 Phenoclusters (clustering of bait sets according to enrichment or depletion of Mitocheck phenotype
270 classes. Clustering and visualization were performed using Cluster v3.0 software and TreeView
271 v1.1.6r4, respectively.
273 3.5. Phenoclusters
274 Autosomal recessive primary microcephaly (MCPH) development is intrinsically associated

275  with impaired mitosis [33]. Therefore, we used data from the Mitocheck project database
276  (http://www.mitocheck.org/) [34,35] to determine the enrichment (or depletion) ratio of our bait sets
277  for each mitotic phenotype scored in Mitocheck (Table S9). We then used the enrichment ratios to
278  cluster bait sets according to their functional similarities (Figure 3D). Bait sets clustered around two
279  large components according to their involvement in mitotic processes. One cluster (NS1, NS2A, and
280  NS3 bait sets) presented enrichment of mitotic phenotypes while the second (NS2B, NS4A, NS4B,
281  and NS5) did not, suggesting that NS1, NS2A, and NS3 are more likely to disrupt cellular mitotic
282  processes (Figure 3D).

283 Finally, to identify individual preys more likely to be involved in mitotic processes we
284  clustered all preys according to their Mitocheck enrichment rations (Figure S2) and identified a
285  cluster of 9 proteins (CEP192, FAM184A, PAPSS1, EFTUD2, ZNF155, BAG6, SELENOP, KIF4A and
286  PHPT1) with phenotypes consistent with centrosomal abnormalities (Table S10). This analysis
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287  reflected the clustering pattern for NS1, NS2A and NS3 bait sets obtained when clustering for GO
288  biological processes and cellular components (Figure 3B-D).

289

290  3.6. Integration with other ZIKV PINs

291 Our work builds on three previous physical interaction networks of host and ZIKV proteins
292  [18-20]. We integrated our PIN with the published networks to evaluate the level of overlap between
293  the four PINs (Figure 4A; Table S11). No common hit was shared by all four PINs and pair-wise
294  overlaps ranged from 1 to 50 hits suggesting that ZIKV-host protein interacting network is still far
295  from reaching saturation and that each network represent a distinct set of interactions with the
296  integration of all datasets being important for the accurate description of the ZIKV-host interaction
297  network (Figure 4A-B).

298 We identified five highly internally connected clusters among the integrated PIN (Figure 4C).
299  Allfive clusters contained components of the ZIKV PIN from this study. Four of them were enriched
300 in proteins involved in: a) Anaphase promoting complex (APC)-dependent proteasomal
301  ubiquitin-dependent protein catabolic process (GO31145); b) Protein amino acid N-linked
302  glycosylation via asparagine (GO18279); c) Protein folding (GO6457); d) Regulation of transcription
303  (GO45449); and e) Histone H2B ubiquitination (GO33523).

304 Finally, 14 unique nodes of our merged ZIKV PIN (9.3% of the data set) have been shown to be
305  important for proper replication of different Flavivirus (Table S12) [36-38], suggesting that our
306  network also contains proteins that could explain the mechanisms of ZIKV replication and help
307  identify therapeutic targets.
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317 nodes. C. Graphic representation of common preys according to the bait and study they were
318 identified. Legend is depicted in the lower right-hand corner.
319  3.7. Integration with a microcephaly-associated network
320 We generated a new network composed of microcephaly-associated genes/proteins (Table 513)

321  and our merged ZIKV PIN using BisoGenet to impute known interactions between nodes in this
322  network (see Experimental Procedures) (Figure 5A). Four highly cohesive (i.e. highly connected
323  internally, but only sparsely with the rest of the network) clusters emerged (Figure 5B). Of those,
324 only three contained components of the ZIKV PIN: Anaphase promoting complex (APC)-dependent
325  proteasomal ubiquitin-dependent protein catabolic process (GO31145), Centrosome duplication
326  (GO7099), and COPI coating of Golgi vesicle (GO48205). Finally, we identified four nodes common
327  to both PINs (CEP192, ASXL1, VARS, and EFTUD2). A similarly limited overlap between the
328  microcephaly-associated and merged ZIKV PIN was also obtained with the three other previously
329  determined ZIKV PINs (Figure 5C).
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332 Figure 5. Integration of Microcephaly-associated PIN with the merged ZIKV PIN. A. Network of the
333 interactions identified by this study, and proteins related to the Microcephalic phenotype (see
334 experimental procedures) B. Clustering of bait sets according to overlapping protein complexes
335 among the integrated network using ClusterONE (Version 1.0) [28]. Gene ontology of these
336 networks were obtained by the Cytoscape plugin, BINGO [29]. Proteins identified in this study are
337 represented as orange nodes. C. Venn diagrams represent the overlap between the
338 Microcephaly-associated PIN and the individual ZIKV PINs.
339
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341 4. Discussion

342 In humans, ZIKV infection was correlated with congenital microcephaly in newborns and with
343 other neurological conditions in adults [4-7,11-13]. Still, little is known about the molecular
344 mechanism of ZIKV infection and how it relates to neurological disorders. Here, we present a
345  human host protein-ZIKV (Brazilian genotype) NS protein interaction network. This network was
346  obtained by a combination of Yeast two-hybrid (Y2H) screens and tandem affinity purification
347  coupled to mass spectrometry (TAP-MS). Y2H screens primarily reveal direct pair-wise interactions
348  and are capable of detecting transient interactions, while TAP-MS will reveal proteins engaged in
349  stable complexes, which may lead to the identification of indirect interactions [39-42]. The use of
350  both methods results in a more comprehensive landscape of ZIKV protein-protein interactions.

351 The merged network combining two complementary methods (Y2H and TAP-MS) contains 157
352  nodes and 189 interactions with a limited overlap between the two methods, consistent with other
353 previously determined PIN [22,41,42]. Further, the subset of Y2H interactions validated in human
354 cells displayed a false positive rate of ~24% in line with other published Y2H screens [22,43-46].
355  These results suggest that this PIN contains high-confidence interactions.

356 Twenty-nine human proteins interacted with more than one ZIKV protein (19.3% of all hits).
357  Similar relatively high levels of promiscuity of human proteins in relation to their viral interactors
358  were also found in previous studies. Scaturro et al. [18], and Coyaud et al. [19] had 10.5% and 36% of
359  all hits interacting to more than one ZIKV protein. Although Shah et al. [20] had a much lower (0.3%
360  of all hits) rate of human proteins interacting to more than one ZIKV protein, a high level of
361  promiscuity of human proteins is also apparent across studies, where the same human proteins are
362  often found interacting with distinct ZIKV proteins. For example, all human proteins shared
363 between Shah et al. [20] and Scaturro et al. [18], or between Shah et al. and this study, were found to
364  interact with different ZIKV NS proteins. In addition, comparisons across other studies showed
365  consistently high levels of discordance in bait interactions (Figure 4B). These data suggest that
366  different ZIKV NS proteins have common targets in the human proteome. However, it is unclear
367  why different studies detected exclusive interactions with different baits. It is conceivable that
368  several ZIKV NS proteins interact with large protein complexes, such as the 26S subunit of the
369  proteasome complex, via different targets; furthermore, differences in the biology of the cells
370  providing the proteome (i.e. levels of protein expression and formation of specific protein
371  complexes), the biochemical methods, or the filtering criteria for significant interactions may also
372  determine which interactions are robust enough to result in detection. Alternatively, some could
373  represent spurious interactions detected due to the overexpression of the baits; however, the limited
374  number of proteins in our dataset with high CRAPome [47] scores indicating consistent recovery in
375  affinity proteomics as non-specific background would suggest otherwise.

376 Further, we identified multiple components of CCT (Chaperonin Containing TCP1 or
377  TriC-TCP-1 Ring Complex) complex as targets. This complex plays a role in trafficking of telomerase
378  and small Cajal body (CB) RNAs through the proper folding of the telomerase cofactor, TCAB1 [48].
379  CBs are transcription-dependent nuclear compartments and play a critical role in neuron biology
380  through snRNP and snoRNP assembly [49]. Interestingly, Coyaud et al. [19] demonstrated that
381  ZIKV NS5 expression leads to an increase in the absolute number of CBs per cell, but to a reduction
382  of the volume of these CBs, suggesting that NS5 expression could lead to CB fragmentation. Our
383  data points to the interaction of NS1 with multiple components of the CCT complex, suggesting that
384 NSl could also play a role in CB stability and in neural disorders. Additionally, it has already been
385  shown that the Dengue virus (DENV) infection occurs in an NS1/CCT-dependent manner [50].

386 Centrosomal abnormalities lead to impaired mitosis, which is a hallmark of MCPH. In fact, our
387  data set present multiple proteins related to phenotypes associated with impaired mitosis (Figure 3B
388  and 3C). Furthermore, our PIN shares 24 (16% of all unique hits) known interaction partners of 14
389  (out of 18) MCPH loci plus CEP63 (Table S14).

390 In that context, CEP192 (identified as an NS3 interaction partner by Y2H) plays a central role in
391  the initial steps of centriole duplications through the interaction and recruitment of CEP152 (MCPH9)
392  and PLK4, respectively. Which is necessary for the proper recruitment of SAS6 (MCPH14), STIL
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393  (MCPH?) and CENPJ (MCPHS) [51-56]. Our data suggest that NS3 could interfere with centriole
394 duplication and consequently could be important for the ZIKV-associated microcephaly phenotype.
395  Furthermore, GO enrichment analysis and Mitocheck phenoclusters suggest that NS1, NS2A and
396  NS3 target host factors implicated in mitotic phenotypes.

397 In summary, the data presented here together with three previously published studies [18-20]
398  provide a valuable resource to dissect the mechanistic underpinnings of central nervous system
399  perturbations caused by ZIKV infection and to identify potential pharmacological targets.

400 Supplementary Materials: The following are available online, Figure S1: GO enrichment of the merged
401 network, Figure S2: Phenoclusters of individual preys, Figure S3: Y2H bait expression, control transformations
402 and matings, Table S1. Yeast two-hybrid screening data, Table S2. Yeast two-hybrid hits, Table S3. TAP-MS hits
403 - APOSTL output, Table S4. Merged PIN (Y2H+TAP/MS), Table S5. GO (Cellular component) enrichment
404  membership, Table S6. GO (Biological Process) enrichment membership, Table S7. Bait-specific GO (Biological
405 Process) enrichment ratios, Table S8. Bait-specific GO (Cellular component) enrichment ratios, Table S9.
406  Phenoclusters of bait sets, Table S10. Phenoclusters of individual preys, Table S11. Integrated ZIKV PIN, Table
407 S12. Flavivirus replication factors (functional screens) intersection with Merged ZIKV PIN, Table S13.
408 Microcephaly-associated genes, Table S14. Merged ZIKV PIN and MCPH subnetwork.
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