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Abstract—As more end devices are getting connected, the 
Internet will become more congested. A variety of congestion 
control techniques have been developed either on transport or 
network layers. Active Queue Management (AQM) is a paradigm 
that aims at mitigating the congestion on the network layer by 
active buffer control to avoid overflow. However, finding the right 
parameters for an AQM scheme is challenging, due to the 
complexity and dynamics of the networks. On the other hand, the 
Explicit Congestion Notification (ECN) mechanism is a solution 
that makes visible incipient congestion on the network layer to the 
transport layer. In this work, we propose to exploit the ECN 
information to improve AQM algorithms by applying Machine 
Learning techniques. Our intelligent method uses an artificial 
neural network to predict congestion and an AQM parameter 
tuner based on reinforcement learning. The evaluation results 
show that our solution can enhance the performance of deployed 
AQM, using the existing TCP congestion control mechanisms. 

Keywords—Active Queue Management (AQM), congestion 
control, Explicit Congestion Notification (ECN), Machine Learning 

I. INTRODUCTION 
Thanks to the proliferation of smart devices and the 

paradigm of Internet of Things (IoT), the demand for 
connections to the Internet is dramatically growing. As a 
response, Internet Service Providers (ISP) are focused on 
improving the performance of their networks and connections to 
the Internet. However, engineers and researchers are trying to 
address this by solving the conventional network congestion 
problem since the Internet was born. On the one hand, 
congestion avoidance mechanisms in TCP have been part of the 
solution and essential for the massive adoption of the World 
Wide Web. On the other hand, due to the bottlenecks along the 
paths, buffers have been deployed to avoid packet loss when 
packets arrive at faster rate than can the link. Nevertheless, 
excessive buffering leads to increasing delays, as packets have 
to stay longer in the queues, and causing a phenomenon known 
as bufferbloat [1]. Network devices tackle this effect through 
Active Queue Management (AQM) techniques, which basically 
aim at avoiding the buffer’s overflow by dropping or marking 
the packets before the buffer fills completely. A variety of AQM 
schemes has been proposed, including the classical Random 
Early Detection (RED) algorithm [2], the Controlling Queue 
Dealy (CoDel) [3], and newer ones such as the Proportional 
Integral controller Enhanced (PIE) [4] and the Flow Queue 
CoDel (FQ-CoDel) [5]. Despite the advantages of AQM 
techniques, they are not widely adopted in ISPs’ network 

devices for the following reasons: first, some AQM mechanisms 
have parameters that may be difficult to tune in very dynamic 
environments. Second, routers and switches with more memory 
available in the market have created the misconception that the 
larger the buffers, the better. 

The main advantage of dropping packets with AQM rather 
than with the tail drop, i.e. buffers with no AQM, is to avoid the 
unnecessary global synchronization of flows when a queue 
overflows. Consequently, network devices drop more packets 
when no AQM scheme is in use and the network throughput is 
deteriorated. In contrast, an AQM method can decide to either 
drop or mark packets when the network experiences incipient 
congestion. The process of marking packets instead of dropping 
them is known as Explicit Congestion Notification (ECN). The 
employment of ECN can reduce the packet loss and latency of 
Internet connections, among other benefits such as improving 
throughput, reducing probability of retransmission timeout 
expiry, and reducing the head-of-line blocking [6]. Moreover, 
the importance of ECN relies on its fact of making incipient 
congestion visible, by exposing the presence of congestion on a 
path to network and transport layers. The data containing ECN-
marked packets can be exploited to learn some characteristics 
such as the level of congestion of a network operator, the 
behavior of TCP protocols or applications, for instance. For 
these reasons, the deployment of new ECN-capable end systems 
and the necessity of reducing queuing delay in modern networks 
have motivated the interest in ECN [7]. IETF has published a 
significant number of RFC documents regarding ECN, which 
indicates strong level of interests from industry and academia. 

ECN is specified in RFC3168 [8], which defines four 
codepoints through two bits in the IP header, to indicate whether 
a transport protocol supports ECN and if there is congestion 
experienced (CE). This IETF recommendation also specifies 
two flags in the TCP header to signal ECN: the ECN-Echo 
(ECE) and the Congestion Window Reduced (CWR). Then, if 
the AQM algorithm in any router along the path determines that 
there is congestion, the router marks the packets with the CE 
code to indicate to the receiver that the network has experienced 
congestion. Once the CE-marked packet arrives at the receiver, 
it echoes back a packet to the sender with the ECE flag set in the 
TCP header to notify that congestion was experienced along the 
path. Consequently, the sender reduces the data transmission 
rate and sends the next TCP segment to the receiver with the 
CWR flag set. It is important to highlight that TCP also responds 
to non-explicit congestion indication produced by tail-drop 
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queues or AQM dropping. How TCP performs those actions 
depends on the congestion control mechanisms on the transport 
layer and their details are out of the scope of this paper. 
However, it is evident that the utilization of ECN mitigates the 
need for packet retransmission and, consequently, avoids the 
excessive delays due to retransmissions after packet losses. In 
addition, without ECN it is not possible to determine if the 
packets are lost because of congestion or poor link quality. 
Finally, we point out the rest-of-path congestion concept 
introduced in the Congestion Exposure (ConEx) mechanism, 
which to some extent has inspired our work. Although proposed 
several years ago, the implementation of ConEx is not widely 
deployed, as it needs modifications to the TCP protocol at the 
sender side [9]. 

Accordingly, in this work we propose an intelligent use of 
the standardized ECN mechanism for existing AQM solutions. 
We build our method on Machine Learning techniques for the 
exploitation of ECN. The method consists of two main parts: a 
congestion predictor and a dynamic parameter tuner. The latter 
applies a Reinforcement Learning (RL) technique to balance the 
delay and throughput by adaptively setting the AQM 
parameters. The congestion predictor is a Neural Network (NN) 
that forecasts if there will be congestion on the rest-of-path. Our 
main goal is to propose a scheme that is fully compatible with 
existing TCP congestion control mechanisms and already 
deployed AQM techniques. Although previous works have used 
Machine Learning techniques to solve problems regarding 
AQM, to the best of our knowledge, none of them exploits ECN 
to improve the AQM mechanisms. For example, authors in [10] 
compare several AQM techniques based on NN with 
conventional AQM techniques. Through simulations, the 
authors show that the studied NN-based methods converge 
faster than the traditional techniques. Similarly, Bisoy and 
Pattnaik propose in [11] an AQM controller based on feed-
forward NN, which stabilizes the queue length by learning the 
traffic patterns. Also, on the basis of RL, Bouacida and Shihada 
present in [12] the LearnQueue method, which focuses on the 
operation in wireless networks. Authors model their solution by 
adapting the Q-learning algorithm to control the buffer size. By 
means of unsupervised learning techniques, authors in [13] 
propose a cognitive algorithm to detect and penalize 
misbehaving ECN-enabled connections. Although the problem 
and the employed techniques differ from ours, we find some 
similarities in terms of exploiting the TCP connection data and 
the implementation on top of existing AQM mechanisms. 

II. INTELLIGENT AQM DESIGN 
As we mentioned in the Introduction, our goal is to enhance 

the performance that current AQM techniques provide at 
bottlenecks. We have explained how the ECN can reduce the 
connections’ latency when enabled in the AQM along a path. 
However, ECN is not currently exploited to estimate the 
congestion ahead and dynamically adjust the AQM parameters 
in a router. Our hypothesis is that  TCP connections can have 
better performance if AQM schemes are tuned based on the 
specific network conditions. Yet, this is a non-trivial problem 
due to the complexity of IP networks. Consequently, we propose 
an intelligent method for improving existing AQM that learns 
from the experience and ECN feedback of a changing network. 
Our method is meant to be implemented on edge routers for two  

main reasons: first, edge routers are more prone to experience 
congestion than core routers, due to the bottleneck link between 
the access network and the backbone. Second, our mechanism 
uses traffic data in the downstream direction, which may take 
different paths in the core network. Despite these reasons, our 
solution can be deployed in core network devices even if ECN 
feedback is not completely obtained. The overall scenario for 
our stated problem is shown in Fig. 1. It is also important to 
highlight that ECN is not a perfect mechanism for congestion 
control. If an AQM decides to mark every packet with incipient 
congestion regardless the status of the queue, the AQM could 
produce a harmful effect. That is why we argue that a right and 
dynamic setting of the AQM parameters is pertinent. Moreover, 
we point out the potential of applying Machine Learning 
techniques due to the complexity of this problem. 

A. Congestion Predictor 
To predict the congestion, we take advantage of the ECE flag 

available in the TCP header of the packets in direction B without 
taking into account the ones involved in the ECN negotiation, as 
those packets indicate the setting of ECN-capable TCP sessions, 
rather than congestion or response to congestion [8]. We model 
the congestion prediction as a time series problem. The core of 
the congestion predictor is a Long Short-Term Memory 
(LSTM), which is a Recurrent Neural Network (RNN) 
architecture with memory blocks in the hidden layers. The 
memory blocks have multiplicative gates that allow storing and 
accessing information over long periods. In this way, the 
vanishing gradient problem of the RNN is mitigated in the 
LSTM, since the gradient information is preserved over time. 
For this reason, LSTMs have been successfully applied to 
address real-world sequential or time-series problems [14]. The 
inputs consist of both the current sample and the previous 
observed sample, such that output at time step ݐ − 1 affects the 
output at time step ݐ . Each neuron has a feedback loop that 
returns the current output as an input for the next step. This 
structure makes LSTMs an effective tool for prediction, 
especially in those cases where there is no previous knowledge 
about the extent of the time dependencies.  

The inputs of our LSTM-based congestion predictor are 
denoted as a sample vector with the number of ECE-marked 
packets arriving at time intervals of 100 ms. This value 

 
 

Fig. 1. Scenario for our stated problem. Edge routers aggregate end devices 
and connect to the core network through bottleneck links. 
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corresponds to the typical assumption for Round-Trip Time 
(RTT) in IP networks.  Additionally, we rearrange that vector as 
an input matrix ܆ corresponding to ten time steps and an output 
vector ܡ of one time step, such that: 

where ݔ௧೔ is the quantity of ECE-marked packets in the time 
interval ݅ and ܰ is the total number of samples. The rationale 
behind rearranging the samples in ten time steps is that a time 
interval of 100 ms may be too long for some network conditions. 
In this way, the estimation of arriving ECE-marked packets does 
not become a sort of stale value. 

For the design and training of the LSTM, we assume that the 
data are gathered in a ten-minute period, which is reasonable due 
to the dynamics of internet networks. Consequently, there would 
be a dataset with 6000 samples, corresponding to the number of 
intervals of 100 ms in ten minutes.  In addition, we consider an 
LSTM with three hidden layers and we use the approximation 
formula proposed in [15] to determine the number of neurons 
per layer, as follows: 

where ௜ܰ௡  is the number of inputs, ܰ  is the number of 
samples, and ܮ is the quantity of hidden layers. Then, ௡ܰ ≈ 30 
neurons per hidden layer. Finally, we take into account a dropout 
regularization of 20%, so that the model does not overfit and 
yields more generalized weights after training. 

B. Q-Learning based AQM Parameter Tuner 
In general, the parameters of AQM algorithms are set to 

values that yield a reasonable performance for the typical 
network conditions. However, AQM mechanisms are expected 
to allow parameter adjustment depending on the specific 
characteristics of a network and their interactions with other 
network tasks over time [16]. Consequently, we embrace the 
idea of adjusting AQM parameters according to the network’s 
changing circumstances, so that the performance is dynamically 
improved, as well. Nevertheless, the achievement of this goal 
can end up in a very complex job. For this reason, we propose a 
mechanism that adaptively tunes the parameters of the AQM in 
use as an RL-aided decision process. 

We model the dynamic AQM parameter-tuning problem as 
a Markov Decision Process (MDP). Previous works have 
successfully modeled complex decision-making problems in 
networks through MDPs, [17]. For this intelligent method, the 
decision process is based on the inferred rest-of-path congestion, 
i.e. the output of our congestion predictor described in Section 
II-A. In this way, we define the states ܵ as a set of discrete levels 
of congestion that the flows will be likely to experience along 
the path, the set of actions ܣ comprises specific values if the 
target parameter, and the reward ܴ  depends on the power 
function of the connection, which is defined as the throughput-

to-RTT ratio. In our environment, the edge router acts as the 
agent that makes the decisions and, therefore, no extra 
intelligence of processing load is needed at the end devices. The 
idea behind using the predicted rest-of-path congestion is to 
proactively tune the AQM at the edge router.  Consequently, our 
method can adjust the target parameter so that more packets are 
dropped instead of being marked, as they will be likely dropped 
ahead. On the other hand, if low congestion is forecasted ahead, 
the AQM will mark more packets based only on its own 
congestion.  

Nevertheless, finding the appropriate target for the trade-off 
between dropping/marking packets is a non-trivial problem and 
that is why we use RL. In other words, we model our problem 
as an MDP with the objective of finding an optimal policy that 
maximizes the throughput-to-RTT ratio. To do so, we utilize the 
Q-learning algorithm [18], which defines a function ܳ(ܵ,  (ܣ
representing the quality of a certain action in a given state and is 
defined by: 

where ܽ ∈ ܣ ∋ ߙ , [0,1]  is the learning rate, and the 
discount factor γ ∈ [0,1] describes the preference of the agent 
for current rewards over future rewards. This equation 
characterizes the maximum future reward of present state and 
action in terms of immediate reward and maximum future 
reward for the next state. In this manner, the Q-learning 
algorithm iteratively approximates the function ܳ(ܵ,  .(ܣ

More specifically, we model our AQM parameter tuner 
considering the current states as the observed levels of 
congestion in direction B, and the rest-of-t-path congestion 
prediction in direction A as possible next states. Both current 
and next states are discretized to delimit the complexity of the 
environment. The actions are a set of predefined values for the 
target parameter of the specific AQM in use. 

III. EVALUATION METHODOLOGY AND RESULTS 
In this section, we provide the details about the 

experimentation setup for the evaluation of our proposed 
solution. We first explain the preliminary experiments 
conducted to show the feasibility of our method as a whole, by 
studying the basis of each component separately. Later, we 
evaluate the performance of our intelligent AQM mechanisms 
comparing its operation to the behavior of conventional AQM. 
For our experimentation, we use the Mininet network emulator 
and the queue disciplines available in the Linux kernel. In this 
way, we validate the potential deployment of our scheme in real 
network scenarios. 

A. Effects of Tuning AQM Parameters 
With respect to the AQM parameter tuner, in this work we 

evaluate our proposal using CoDel [3] and FQ-CoDel [5]. 
Therefore, the target parameter to tune is the acceptable 
minimum standing/persistent queue delay. To show the 
influence of changing the target parameter in the RTT and 
throughput, we conducted some preliminary experiments by 
implementing a topology like the one depicted in Fig. 1. In the 
emulation scenario, the edge router on the left (R1) performs the 

܆ = ൦

௧బݔ ௧భݔ ⋯ ௧వݔ
௧భݔ ௧మݔ ⋯ ௧భబݔ

⋮ ⋮ ⋱ ⋮
௧ಿషభబݔ ௧ಿషవݔ ⋯ ௧ಿషభݔ

൪ , ܡ = ൦

௧భబݔ
௧భభݔ

⋮
௧ಿݔ

൪ 

(1) 

௡ܰ = ൫ ௜ܰ௡ + √ܰ൯ ⁄ܮ      (2) 

ܳ(ܵ, :(ܣ = ܳ(ܵ, (ܣ + ܴ] ߙ + γ max௔ܳ(ܵᇱ, ܽ) − ܳ(ܵ,  [(ܣ
(3) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2019                   doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1


AQM control and has 20 hosts, named hosts B, connected to it. 
On the other side, 20 hosts connect to the right edge router (R2): 
these are hosts A. There are also a pair of monitor hosts, and one 
of them actively logs the measured RTT (mRTT) and 
throughput by means of sending probe packets to the other one. 
Note that for this experiment we consider a propagation delay of 
20 ms and a bandwidth of 200 Mbps between hosts B and R1. 
Conversely, there is no propagation delay from R1 to R2 and, to 
emulate the path bottleneck, the link between the two routers has 
a bandwidth of 20 Mbps. The links between R2 and the hosts A 
have a bandwidth of 100 Mbps and no propagation delay. In 
addition, all hosts are ECN-enabled and each pair of hosts AB 
generates TCP traffic, mainly in direction A. Importantly, in this 
work, we conduct our experimentation only with CUBIC, the 
default TCP congestion control in Linux. 

The experiment consists of modifying the target and interval 
parameters of CoDel and FQ-CoDel in R1, while data are being 
constantly and simultaneously transferred from the hosts B to 
hosts A. The interval parameter ensures that the measured 
minimum delay does not become too old and, typically, the 
target delay is 5% of this interval. Therefore, we setup CoDel 
and FQ-CoDel in R1 with target values from 50 μs to 6 ms and 
intervals from 1 ms to 120 ms, respectively. We left the other 
parameters as default, except the hard limit on the queue size, 

which we set to 1000 packets. This a configurable parameter set 
by the system administrator.  Fig. 2 shows the resulting average 
mRTT and throughput for both queue disciplines for this 
experiment. Note that Fig. 2a has two different scales for the y-
axis, since the mRTT is significantly longer for CoDel. As can 
be seen, although the target parameter of these AQM algorithms 
is meant to operate unchangeably, there is a noticeable effect 
when the target parameter varies. The lower the target queue 
delay, the more dropped packets, since not all packets can be 
ECN-marked when the router experiences congestion. 
Consequently, RTT is low and throughput high when low target 
delay is configured. On the other hand, as the target parameter 
increases, the AQM mechanism produces more ECN-marked 
packets and drops less.  This is consistent with our solution 
formulation explained in Section II-B. 

B. Transferring the Predictor Model 
As an initial training and test for our congestion predictor, 

we use the data from a backbone Internet link of an ISP collected 
by the Center for Applied Internet Data Analysis (CAIDA). The 
CAIDA’s monitors collect packet headers at large peering points 
and a wide variety of research projects has used its anonymized 
traces [19]. Specifically, we use the data from the collection 
monitor that is connected to an OC192 backbone link (9953 
Mbps) of a Tier 1 ISP, between New York, US, and Sao Paulo, 
Brazil.  We use this dataset as valid data for an edge router, 
according to previous works cited in CAIDA’s website, in which 
those data have been used similarly. In particular, we chose to 
analyze the data from December 20, 2018. 

We perform the pre-training for the congestion predictor 
with data containing ECE-marked packets sent from New York 
to Sao Paulo, as we found that there are more ECE-marked 
packets in direction B than in direction A. According to the 
assumptions explained in Section II-A, we use the trace data in 
the ten-minute period with the highest number of ECE-marked 
packets that are not part of the ECN negotiation, that is from 
8:00 to 8:10 EST. The traces show that, in this period, there were 
402 different source IPv4 addresses sending ECE-marked 
packets to 315 destination hosts. We split the dataset into a 
training subset, corresponding to 80% of samples, and a test 
subset with 20% of samples. After 100 epochs of training, we 
test the model by making predictions with samples from the 
normalized subsets. We obtain a Root Mean Squared Error 
(RMSE) score of 0.08 and a Mean Absolute Error (MAE) score 
of 0.04 for the test subset. Similarly, we get an RMSE of 0.07 
and a MAE of 0.03 for the training subset. Fig. 3 shows the 
actual normalized number of ECE-marked packets arriving at 
the router in direction B and the prediction over the test subset. 
As can be seen, the white spaces in the graph mean consecutive 
time intervals with no congestion, i.e. no ECE-marked packets 
at the network device. On the other hand, the spikes depict time 
intervals in which congestion was experienced. Note that rather 
than predicting an accurate number of ECE-marked packets that 
will arrive, we model the predictor to estimate whether there will 
be significant congestion within the next time interval. In this 
way, Fig. 3a illustrates how the resulting prediction captures the 
tendency of the levels of congestion ahead. 

Accordingly, we use the pre-trained LSTM model to 
accelerate the congestion estimation in our method. As the 

a) 

b) 

Fig. 2. Effects of varying the target parameter in CoDel and FQ-CoDel 
algorithms on: a) Averaged mRTT. b) Averaged throughput. 
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network conditions change, our method updates the predictor by 
re-training it with new data. However, this re-training process is 
much faster, as the LSTM updates in just one epoch, which takes 
about four seconds in our emulation environment. To see how 
the pre-trained congestion predictor behaves in a new 
environment, we run an experiment with the topology described 
in Section II-B. Moreover, to stress the network and make it 
more stochastic, we set random values of bandwidth and 
propagation delays on the links between hosts and routers. 
Likewise, each host B starts its transmission at a random time.  
The link bandwidth between R1 and R2 is the only non-random 
value fixed at 10 Mbps. Also, FQ-CoDel is the AQM method in 
this experiment with its default target delay and interval values, 
which are 5 ms and 100 ms, respectively.  

In relation to the re-train process, we update the model with 
data gathered in six seconds. As we designed the congestion 
predictor for 6000 intervals (see Section II-A), we need to 
reduce the value of each time interval for the updates. Therefore, 
in this case, we re-train the LSTM with data in time intervals of 
1 ms. After one update, the obtained values of RMSE are 0.09 
and 0.13 for training and test subsets, respectively. In the same 
way, the resulting values of MAE are 0.04 for training and 0.06 
for test. These scores show that our model can make predictions 
in the new network with an important approximation without the 

need for training the model from scratch. Fig. 3b depicts the 
congestion prediction results in the described network. Note that 
we scale by two times the graph corresponding to the prediction, 
i.e. the blue plot, for clarity of the comparison. Again, rather than 
the exact number of ECE-marked packets, we want to predict 
the congestion level trends ahead. 

C. Performance Evaluation of the Intelligent AQM 
In this subsection we elaborate more about the experiments 

that we conducted to show the job of our proposed method as a 
whole. In Section II-B, we briefly described how the congestion 
predictor integrates with the AQM parameter tuner. Basically, 
we evaluate the MDP for this problem as follows. We consider 
100 levels of congestion as current or next states. The observed 
congestion corresponds to the current state and the predicted 
congestion is the next state. To determine their levels, we keep 
the maximum observed and predicted values as reference for the 
discretization. We also delimit the actions to 100 values, which 
in this case are the target delay of FQ-CoDel and CoDel. In this 
way, the possible actions are a set of values from 50 μs to 5 ms 
in steps of 50 μs. As we explained in Section III-A, we modify 
two parameters at the same time: the target delay and the 
interval. Thus, the experiments are more consistent, as these two 
parameters are tightly related. Again, the hard limit buffer size 
parameter is set to 1000 packets and the used TCP congestion 
control is CUBIC. The starting values for the target and the 
interval parameters are the default ones in the Linux kernel: 5 
ms and 100 ms, respectively. 

Fig. 4 shows the results comparison when our intelligent 
method is applied to FQ-CoDel and CoDel, in terms of the 
cumulative power function. Note that these AQM schemes have 
static target parameters set to their default values when no 
intelligence is dynamic adapting them. As any other RL-based 
solution, the basic idea is to have an agent, i.e. the edge router in 
our problem, making decisions and getting feedback from the 
environment to calculate the rewards. To achieve so, we 
constantly capture the ECE-marked packets arriving at the 
router in direction A. Every second, the agent predicts the 
congestion of the rest-of-path in direction B. As the agent does 
not know what action to take at the beginning, there is an initial 
stage of exploration, which depends on the parameter ߝ. The 
value of this parameter determines if the Q-Learning algorithm 

 
a) 

b) 

Fig. 3. Actual and predicted congestion obtained after: a) Pre-training over 100 
epochs, using the CAIDA’s dataset. b) Re-training in one epoch, based on 
network emulation data. 

Fig. 4. Cumulative power of the connection measured during the experiments 
in the emulation environment. The intelligent method is applied to FQ-CoDel 
and CoDel. All mechanisms utilize ECN. 
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prefers to explore rather than exploit the historical data. In our 
experiments, we set ߝ = 0.5  so that the algorithm does not 
explore too greedily. After taking an action, either by randomly 
exploring or by extracting Q-values, the monitors hosts measure 
the mRTT and throughput with active probes. We use these 
measures to calculate the power of the connection function, 
which we use as the reward function. Once the rewards are 
known, the algorithm updates the Q-values by applying (3). 
Instead of updating the Q-values iteratively with a matrix 
containing the rewards previously known, we train the model in 
an online manner by getting the feedback from the network. This 
could have the disadvantage of a poor behavior at the beginning, 
but the results show that the tuning improves over the time. 
Additionally, we point out that we implemented fixed values for 
the rest of the parameters of the Q-Learning algorithm during 
the experiment, that is  ߛ = 0.8 and ߙ = 0.5.  

Another point to consider is the performance of our method 
in terms of the buffer occupancy at the router. Based on the 
statistics obtained from the Linux Traffic Control, in Table I we 
compare the percentage of buffer occupancy for each considered 
scenario. Note that we take into account the set hard limit buffer 
size for the percentage calculation. In other words, the buffer 
occupancy would be 100% if the queue had 1000 packets at an 
instant. As can be seen, the buffer occupancy is lower when our 
intelligent method is used thanks to the balance between 
dropped/marked packets that the algorithm achieves over the 
time. Finally, we want to mention that the Python code of the 
experiments described in this subsection is publicly available at 
[20]. We intent to make our contribution accessible to 
researchers and developers who are actively working on 
congestion-related problems of the Internet.  Please cite this 
paper if you use any posted script for your works. 

IV. CONCLUSIONS 
In this work, we showed how the appropriate tuning of AQM 

parameters can improve the RTT and throughput of TCP 
connections in a dynamic IP network. Additionally, we showed 
that it is possible to take advantage of the ECN mechanism to 
predict congestion on the rest-of-path. We modeled a congestion 
predictor based on an LSTM, which we pre-trained with data of 
an unknown network topology. We exposed how to transfer the 
predictor model to a new network and get good estimates with a 
short re-training. Also, we described a solution for the decision-
making problem about the parameters that an AQM scheme 
should use according to the networks’ conditions. We 
demonstrated that this can be achieved by modeling the problem 
as an MDP and finding pair values of state-action through the 
Q-learning algorithm. Although we employed the power 
function of the connection as the reward function, our method 
can work with other rewards depending on the applications or 

the variable to be optimized of the TCP connections. As a future 
work, we plan to test our proposed method with different TCP 
congestion control mechanisms, as well as more AQM 
algorithms. Finally, we point out that, although our experiments 
included only two AQM schemes with queue delay as the target 
parameter, the proposed intelligent method could be easily 
adapted to other mechanisms with different target parameters 
such as the queue size. 
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TABLE I.  BUFFER OCCUPANCY COMPARISON 

 Intelligent AQM Non-Intelligent AQM 

 Average Maximum Average Maximum 

FQ-
CoDel 1.60 % 2.70 % 2.09 % 2.80 % 

CoDel 0.91 % 2.30 % 1.58 % 2.90 % 
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