
Intelligent Active Queue Management Using Explicit
Congestion Notification

Cesar A. Gomez, Xianbin Wang, and Abdallah Shami
Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada

Email:{ cgomezsu, xianbin.wang, abdallah.shami }@uwo.ca

Abstract—As more end devices are getting connected, the
Internet will become more congested. A variety of congestion
control techniques have been developed either on transport or
network layers. Active Queue Management (AQM) is a paradigm
that aims at mitigating the congestion on the network layer by
active buffer control to avoid overflow. However, finding the right
parameters for an AQM scheme is challenging, due to the
complexity and dynamics of the networks. On the other hand, the
Explicit Congestion Notification (ECN) mechanism is a solution
that makes visible incipient congestion on the network layer to the
transport layer. In this work, we propose to exploit the ECN
information to improve AQM algorithms by applying Machine
Learning techniques. Our intelligent method uses an artificial
neural network to predict congestion and an AQM parameter
tuner based on reinforcement learning. The evaluation results
show that our solution can enhance the performance of deployed
AQM, using the existing TCP congestion control mechanisms.

Keywords—Active Queue Management (AQM), congestion
control, Explicit Congestion Notification (ECN), Machine Learning

I. INTRODUCTION
Thanks to the proliferation of smart devices and the

paradigm of Internet of Things (IoT), the demand for
connections to the Internet is dramatically growing. As a
response, Internet Service Providers (ISP) are focused on
improving the performance of their networks and connections to
the Internet. However, engineers and researchers are trying to
address this by solving the conventional network congestion
problem since the Internet was born. On the one hand,
congestion avoidance mechanisms in TCP have been part of the
solution and essential for the massive adoption of the World
Wide Web. On the other hand, due to the bottlenecks along the
paths, buffers have been deployed to avoid packet loss when
packets arrive at faster rate than can the link. Nevertheless,
excessive buffering leads to increasing delays, as packets have
to stay longer in the queues, and causing a phenomenon known
as bufferbloat [1]. Network devices tackle this effect through
Active Queue Management (AQM) techniques, which basically
aim at avoiding the buffer’s overflow by dropping or marking
the packets before the buffer fills completely. A variety of AQM
schemes has been proposed, including the classical Random
Early Detection (RED) algorithm [2], the Controlling Queue
Dealy (CoDel) [3], and newer ones such as the Proportional
Integral controller Enhanced (PIE) [4] and the Flow Queue
CoDel (FQ-CoDel) [5]. Despite the advantages of AQM
techniques, they are not widely adopted in ISPs’ network

devices for the following reasons: first, some AQM mechanisms
have parameters that may be difficult to tune in very dynamic
environments. Second, routers and switches with more memory
available in the market have created the misconception that the
larger the buffers, the better.

The main advantage of dropping packets with AQM rather
than with the tail drop, i.e. buffers with no AQM, is to avoid the
unnecessary global synchronization of flows when a queue
overflows. Consequently, network devices drop more packets
when no AQM scheme is in use and the network throughput is
deteriorated. In contrast, an AQM method can decide to either
drop or mark packets when the network experiences incipient
congestion. The process of marking packets instead of dropping
them is known as Explicit Congestion Notification (ECN). The
employment of ECN can reduce the packet loss and latency of
Internet connections, among other benefits such as improving
throughput, reducing probability of retransmission timeout
expiry, and reducing the head-of-line blocking [6]. Moreover,
the importance of ECN relies on its fact of making incipient
congestion visible, by exposing the presence of congestion on a
path to network and transport layers. The data containing ECN-
marked packets can be exploited to learn some characteristics
such as the level of congestion of a network operator, the
behavior of TCP protocols or applications, for instance. For
these reasons, the deployment of new ECN-capable end systems
and the necessity of reducing queuing delay in modern networks
have motivated the interest in ECN [7]. IETF has published a
significant number of RFC documents regarding ECN, which
indicates strong level of interests from industry and academia.

ECN is specified in RFC3168 [8], which defines four
codepoints through two bits in the IP header, to indicate whether
a transport protocol supports ECN and if there is congestion
experienced (CE). This IETF recommendation also specifies
two flags in the TCP header to signal ECN: the ECN-Echo
(ECE) and the Congestion Window Reduced (CWR). Then, if
the AQM algorithm in any router along the path determines that
there is congestion, the router marks the packets with the CE
code to indicate to the receiver that the network has experienced
congestion. Once the CE-marked packet arrives at the receiver,
it echoes back a packet to the sender with the ECE flag set in the
TCP header to notify that congestion was experienced along the
path. Consequently, the sender reduces the data transmission
rate and sends the next TCP segment to the receiver with the
CWR flag set. It is important to highlight that TCP also responds
to non-explicit congestion indication produced by tail-drop

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints201909.0077.v1
http://creativecommons.org/licenses/by/4.0/

queues or AQM dropping. How TCP performs those actions
depends on the congestion control mechanisms on the transport
layer and their details are out of the scope of this paper.
However, it is evident that the utilization of ECN mitigates the
need for packet retransmission and, consequently, avoids the
excessive delays due to retransmissions after packet losses. In
addition, without ECN it is not possible to determine if the
packets are lost because of congestion or poor link quality.
Finally, we point out the rest-of-path congestion concept
introduced in the Congestion Exposure (ConEx) mechanism,
which to some extent has inspired our work. Although proposed
several years ago, the implementation of ConEx is not widely
deployed, as it needs modifications to the TCP protocol at the
sender side [9].

Accordingly, in this work we propose an intelligent use of
the standardized ECN mechanism for existing AQM solutions.
We build our method on Machine Learning techniques for the
exploitation of ECN. The method consists of two main parts: a
congestion predictor and a dynamic parameter tuner. The latter
applies a Reinforcement Learning (RL) technique to balance the
delay and throughput by adaptively setting the AQM
parameters. The congestion predictor is a Neural Network (NN)
that forecasts if there will be congestion on the rest-of-path. Our
main goal is to propose a scheme that is fully compatible with
existing TCP congestion control mechanisms and already
deployed AQM techniques. Although previous works have used
Machine Learning techniques to solve problems regarding
AQM, to the best of our knowledge, none of them exploits ECN
to improve the AQM mechanisms. For example, authors in [10]
compare several AQM techniques based on NN with
conventional AQM techniques. Through simulations, the
authors show that the studied NN-based methods converge
faster than the traditional techniques. Similarly, Bisoy and
Pattnaik propose in [11] an AQM controller based on feed-
forward NN, which stabilizes the queue length by learning the
traffic patterns. Also, on the basis of RL, Bouacida and Shihada
present in [12] the LearnQueue method, which focuses on the
operation in wireless networks. Authors model their solution by
adapting the Q-learning algorithm to control the buffer size. By
means of unsupervised learning techniques, authors in [13]
propose a cognitive algorithm to detect and penalize
misbehaving ECN-enabled connections. Although the problem
and the employed techniques differ from ours, we find some
similarities in terms of exploiting the TCP connection data and
the implementation on top of existing AQM mechanisms.

II. INTELLIGENT AQM DESIGN
As we mentioned in the Introduction, our goal is to enhance

the performance that current AQM techniques provide at
bottlenecks. We have explained how the ECN can reduce the
connections’ latency when enabled in the AQM along a path.
However, ECN is not currently exploited to estimate the
congestion ahead and dynamically adjust the AQM parameters
in a router. Our hypothesis is that TCP connections can have
better performance if AQM schemes are tuned based on the
specific network conditions. Yet, this is a non-trivial problem
due to the complexity of IP networks. Consequently, we propose
an intelligent method for improving existing AQM that learns
from the experience and ECN feedback of a changing network.
Our method is meant to be implemented on edge routers for two

main reasons: first, edge routers are more prone to experience
congestion than core routers, due to the bottleneck link between
the access network and the backbone. Second, our mechanism
uses traffic data in the downstream direction, which may take
different paths in the core network. Despite these reasons, our
solution can be deployed in core network devices even if ECN
feedback is not completely obtained. The overall scenario for
our stated problem is shown in Fig. 1. It is also important to
highlight that ECN is not a perfect mechanism for congestion
control. If an AQM decides to mark every packet with incipient
congestion regardless the status of the queue, the AQM could
produce a harmful effect. That is why we argue that a right and
dynamic setting of the AQM parameters is pertinent. Moreover,
we point out the potential of applying Machine Learning
techniques due to the complexity of this problem.

A. Congestion Predictor
To predict the congestion, we take advantage of the ECE flag

available in the TCP header of the packets in direction B without
taking into account the ones involved in the ECN negotiation, as
those packets indicate the setting of ECN-capable TCP sessions,
rather than congestion or response to congestion [8]. We model
the congestion prediction as a time series problem. The core of
the congestion predictor is a Long Short-Term Memory
(LSTM), which is a Recurrent Neural Network (RNN)
architecture with memory blocks in the hidden layers. The
memory blocks have multiplicative gates that allow storing and
accessing information over long periods. In this way, the
vanishing gradient problem of the RNN is mitigated in the
LSTM, since the gradient information is preserved over time.
For this reason, LSTMs have been successfully applied to
address real-world sequential or time-series problems [14]. The
inputs consist of both the current sample and the previous
observed sample, such that output at time step ݐ − 1 affects the
output at time step ݐ . Each neuron has a feedback loop that
returns the current output as an input for the next step. This
structure makes LSTMs an effective tool for prediction,
especially in those cases where there is no previous knowledge
about the extent of the time dependencies.

The inputs of our LSTM-based congestion predictor are
denoted as a sample vector with the number of ECE-marked
packets arriving at time intervals of 100 ms. This value

Fig. 1. Scenario for our stated problem. Edge routers aggregate end devices
and connect to the core network through bottleneck links.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1

corresponds to the typical assumption for Round-Trip Time
(RTT) in IP networks. Additionally, we rearrange that vector as
an input matrix ܆ corresponding to ten time steps and an output
vector ܡ of one time step, such that:

where ݔ௧೔ is the quantity of ECE-marked packets in the time
interval ݅ and ܰ is the total number of samples. The rationale
behind rearranging the samples in ten time steps is that a time
interval of 100 ms may be too long for some network conditions.
In this way, the estimation of arriving ECE-marked packets does
not become a sort of stale value.

For the design and training of the LSTM, we assume that the
data are gathered in a ten-minute period, which is reasonable due
to the dynamics of internet networks. Consequently, there would
be a dataset with 6000 samples, corresponding to the number of
intervals of 100 ms in ten minutes. In addition, we consider an
LSTM with three hidden layers and we use the approximation
formula proposed in [15] to determine the number of neurons
per layer, as follows:

where ௜ܰ௡ is the number of inputs, ܰ is the number of
samples, and ܮ is the quantity of hidden layers. Then, ௡ܰ ≈ 30
neurons per hidden layer. Finally, we take into account a dropout
regularization of 20%, so that the model does not overfit and
yields more generalized weights after training.

B. Q-Learning based AQM Parameter Tuner
In general, the parameters of AQM algorithms are set to

values that yield a reasonable performance for the typical
network conditions. However, AQM mechanisms are expected
to allow parameter adjustment depending on the specific
characteristics of a network and their interactions with other
network tasks over time [16]. Consequently, we embrace the
idea of adjusting AQM parameters according to the network’s
changing circumstances, so that the performance is dynamically
improved, as well. Nevertheless, the achievement of this goal
can end up in a very complex job. For this reason, we propose a
mechanism that adaptively tunes the parameters of the AQM in
use as an RL-aided decision process.

We model the dynamic AQM parameter-tuning problem as
a Markov Decision Process (MDP). Previous works have
successfully modeled complex decision-making problems in
networks through MDPs, [17]. For this intelligent method, the
decision process is based on the inferred rest-of-path congestion,
i.e. the output of our congestion predictor described in Section
II-A. In this way, we define the states ܵ as a set of discrete levels
of congestion that the flows will be likely to experience along
the path, the set of actions ܣ comprises specific values if the
target parameter, and the reward ܴ depends on the power
function of the connection, which is defined as the throughput-

to-RTT ratio. In our environment, the edge router acts as the
agent that makes the decisions and, therefore, no extra
intelligence of processing load is needed at the end devices. The
idea behind using the predicted rest-of-path congestion is to
proactively tune the AQM at the edge router. Consequently, our
method can adjust the target parameter so that more packets are
dropped instead of being marked, as they will be likely dropped
ahead. On the other hand, if low congestion is forecasted ahead,
the AQM will mark more packets based only on its own
congestion.

Nevertheless, finding the appropriate target for the trade-off
between dropping/marking packets is a non-trivial problem and
that is why we use RL. In other words, we model our problem
as an MDP with the objective of finding an optimal policy that
maximizes the throughput-to-RTT ratio. To do so, we utilize the
Q-learning algorithm [18], which defines a function ܳ(ܵ, (ܣ
representing the quality of a certain action in a given state and is
defined by:

where ܽ ∈ ܣ ∋ ߙ , [0,1] is the learning rate, and the
discount factor γ ∈ [0,1] describes the preference of the agent
for current rewards over future rewards. This equation
characterizes the maximum future reward of present state and
action in terms of immediate reward and maximum future
reward for the next state. In this manner, the Q-learning
algorithm iteratively approximates the function ܳ(ܵ, .(ܣ

More specifically, we model our AQM parameter tuner
considering the current states as the observed levels of
congestion in direction B, and the rest-of-t-path congestion
prediction in direction A as possible next states. Both current
and next states are discretized to delimit the complexity of the
environment. The actions are a set of predefined values for the
target parameter of the specific AQM in use.

III. EVALUATION METHODOLOGY AND RESULTS
In this section, we provide the details about the

experimentation setup for the evaluation of our proposed
solution. We first explain the preliminary experiments
conducted to show the feasibility of our method as a whole, by
studying the basis of each component separately. Later, we
evaluate the performance of our intelligent AQM mechanisms
comparing its operation to the behavior of conventional AQM.
For our experimentation, we use the Mininet network emulator
and the queue disciplines available in the Linux kernel. In this
way, we validate the potential deployment of our scheme in real
network scenarios.

A. Effects of Tuning AQM Parameters
With respect to the AQM parameter tuner, in this work we

evaluate our proposal using CoDel [3] and FQ-CoDel [5].
Therefore, the target parameter to tune is the acceptable
minimum standing/persistent queue delay. To show the
influence of changing the target parameter in the RTT and
throughput, we conducted some preliminary experiments by
implementing a topology like the one depicted in Fig. 1. In the
emulation scenario, the edge router on the left (R1) performs the

܆ = ൦

௧బݔ ௧భݔ ⋯ ௧వݔ
௧భݔ ௧మݔ ⋯ ௧భబݔ

⋮ ⋮ ⋱ ⋮
௧ಿషభబݔ ௧ಿషవݔ ⋯ ௧ಿషభݔ

൪ , ܡ = ൦

௧భబݔ
௧భభݔ

⋮
௧ಿݔ

൪

(1)

௡ܰ = ൫ ௜ܰ௡ + √ܰ൯ ⁄ܮ (2)

ܳ(ܵ, :(ܣ = ܳ(ܵ, (ܣ + ܴ] ߙ + γ max௔ܳ(ܵᇱ, ܽ) − ܳ(ܵ, [(ܣ
(3)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1

AQM control and has 20 hosts, named hosts B, connected to it.
On the other side, 20 hosts connect to the right edge router (R2):
these are hosts A. There are also a pair of monitor hosts, and one
of them actively logs the measured RTT (mRTT) and
throughput by means of sending probe packets to the other one.
Note that for this experiment we consider a propagation delay of
20 ms and a bandwidth of 200 Mbps between hosts B and R1.
Conversely, there is no propagation delay from R1 to R2 and, to
emulate the path bottleneck, the link between the two routers has
a bandwidth of 20 Mbps. The links between R2 and the hosts A
have a bandwidth of 100 Mbps and no propagation delay. In
addition, all hosts are ECN-enabled and each pair of hosts AB
generates TCP traffic, mainly in direction A. Importantly, in this
work, we conduct our experimentation only with CUBIC, the
default TCP congestion control in Linux.

The experiment consists of modifying the target and interval
parameters of CoDel and FQ-CoDel in R1, while data are being
constantly and simultaneously transferred from the hosts B to
hosts A. The interval parameter ensures that the measured
minimum delay does not become too old and, typically, the
target delay is 5% of this interval. Therefore, we setup CoDel
and FQ-CoDel in R1 with target values from 50 μs to 6 ms and
intervals from 1 ms to 120 ms, respectively. We left the other
parameters as default, except the hard limit on the queue size,

which we set to 1000 packets. This a configurable parameter set
by the system administrator. Fig. 2 shows the resulting average
mRTT and throughput for both queue disciplines for this
experiment. Note that Fig. 2a has two different scales for the y-
axis, since the mRTT is significantly longer for CoDel. As can
be seen, although the target parameter of these AQM algorithms
is meant to operate unchangeably, there is a noticeable effect
when the target parameter varies. The lower the target queue
delay, the more dropped packets, since not all packets can be
ECN-marked when the router experiences congestion.
Consequently, RTT is low and throughput high when low target
delay is configured. On the other hand, as the target parameter
increases, the AQM mechanism produces more ECN-marked
packets and drops less. This is consistent with our solution
formulation explained in Section II-B.

B. Transferring the Predictor Model
As an initial training and test for our congestion predictor,

we use the data from a backbone Internet link of an ISP collected
by the Center for Applied Internet Data Analysis (CAIDA). The
CAIDA’s monitors collect packet headers at large peering points
and a wide variety of research projects has used its anonymized
traces [19]. Specifically, we use the data from the collection
monitor that is connected to an OC192 backbone link (9953
Mbps) of a Tier 1 ISP, between New York, US, and Sao Paulo,
Brazil. We use this dataset as valid data for an edge router,
according to previous works cited in CAIDA’s website, in which
those data have been used similarly. In particular, we chose to
analyze the data from December 20, 2018.

We perform the pre-training for the congestion predictor
with data containing ECE-marked packets sent from New York
to Sao Paulo, as we found that there are more ECE-marked
packets in direction B than in direction A. According to the
assumptions explained in Section II-A, we use the trace data in
the ten-minute period with the highest number of ECE-marked
packets that are not part of the ECN negotiation, that is from
8:00 to 8:10 EST. The traces show that, in this period, there were
402 different source IPv4 addresses sending ECE-marked
packets to 315 destination hosts. We split the dataset into a
training subset, corresponding to 80% of samples, and a test
subset with 20% of samples. After 100 epochs of training, we
test the model by making predictions with samples from the
normalized subsets. We obtain a Root Mean Squared Error
(RMSE) score of 0.08 and a Mean Absolute Error (MAE) score
of 0.04 for the test subset. Similarly, we get an RMSE of 0.07
and a MAE of 0.03 for the training subset. Fig. 3 shows the
actual normalized number of ECE-marked packets arriving at
the router in direction B and the prediction over the test subset.
As can be seen, the white spaces in the graph mean consecutive
time intervals with no congestion, i.e. no ECE-marked packets
at the network device. On the other hand, the spikes depict time
intervals in which congestion was experienced. Note that rather
than predicting an accurate number of ECE-marked packets that
will arrive, we model the predictor to estimate whether there will
be significant congestion within the next time interval. In this
way, Fig. 3a illustrates how the resulting prediction captures the
tendency of the levels of congestion ahead.

Accordingly, we use the pre-trained LSTM model to
accelerate the congestion estimation in our method. As the

a)

b)

Fig. 2. Effects of varying the target parameter in CoDel and FQ-CoDel
algorithms on: a) Averaged mRTT. b) Averaged throughput.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1

network conditions change, our method updates the predictor by
re-training it with new data. However, this re-training process is
much faster, as the LSTM updates in just one epoch, which takes
about four seconds in our emulation environment. To see how
the pre-trained congestion predictor behaves in a new
environment, we run an experiment with the topology described
in Section II-B. Moreover, to stress the network and make it
more stochastic, we set random values of bandwidth and
propagation delays on the links between hosts and routers.
Likewise, each host B starts its transmission at a random time.
The link bandwidth between R1 and R2 is the only non-random
value fixed at 10 Mbps. Also, FQ-CoDel is the AQM method in
this experiment with its default target delay and interval values,
which are 5 ms and 100 ms, respectively.

In relation to the re-train process, we update the model with
data gathered in six seconds. As we designed the congestion
predictor for 6000 intervals (see Section II-A), we need to
reduce the value of each time interval for the updates. Therefore,
in this case, we re-train the LSTM with data in time intervals of
1 ms. After one update, the obtained values of RMSE are 0.09
and 0.13 for training and test subsets, respectively. In the same
way, the resulting values of MAE are 0.04 for training and 0.06
for test. These scores show that our model can make predictions
in the new network with an important approximation without the

need for training the model from scratch. Fig. 3b depicts the
congestion prediction results in the described network. Note that
we scale by two times the graph corresponding to the prediction,
i.e. the blue plot, for clarity of the comparison. Again, rather than
the exact number of ECE-marked packets, we want to predict
the congestion level trends ahead.

C. Performance Evaluation of the Intelligent AQM
In this subsection we elaborate more about the experiments

that we conducted to show the job of our proposed method as a
whole. In Section II-B, we briefly described how the congestion
predictor integrates with the AQM parameter tuner. Basically,
we evaluate the MDP for this problem as follows. We consider
100 levels of congestion as current or next states. The observed
congestion corresponds to the current state and the predicted
congestion is the next state. To determine their levels, we keep
the maximum observed and predicted values as reference for the
discretization. We also delimit the actions to 100 values, which
in this case are the target delay of FQ-CoDel and CoDel. In this
way, the possible actions are a set of values from 50 μs to 5 ms
in steps of 50 μs. As we explained in Section III-A, we modify
two parameters at the same time: the target delay and the
interval. Thus, the experiments are more consistent, as these two
parameters are tightly related. Again, the hard limit buffer size
parameter is set to 1000 packets and the used TCP congestion
control is CUBIC. The starting values for the target and the
interval parameters are the default ones in the Linux kernel: 5
ms and 100 ms, respectively.

Fig. 4 shows the results comparison when our intelligent
method is applied to FQ-CoDel and CoDel, in terms of the
cumulative power function. Note that these AQM schemes have
static target parameters set to their default values when no
intelligence is dynamic adapting them. As any other RL-based
solution, the basic idea is to have an agent, i.e. the edge router in
our problem, making decisions and getting feedback from the
environment to calculate the rewards. To achieve so, we
constantly capture the ECE-marked packets arriving at the
router in direction A. Every second, the agent predicts the
congestion of the rest-of-path in direction B. As the agent does
not know what action to take at the beginning, there is an initial
stage of exploration, which depends on the parameter ߝ. The
value of this parameter determines if the Q-Learning algorithm

a)

b)

Fig. 3. Actual and predicted congestion obtained after: a) Pre-training over 100
epochs, using the CAIDA’s dataset. b) Re-training in one epoch, based on
network emulation data.

Fig. 4. Cumulative power of the connection measured during the experiments
in the emulation environment. The intelligent method is applied to FQ-CoDel
and CoDel. All mechanisms utilize ECN.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1

prefers to explore rather than exploit the historical data. In our
experiments, we set ߝ = 0.5 so that the algorithm does not
explore too greedily. After taking an action, either by randomly
exploring or by extracting Q-values, the monitors hosts measure
the mRTT and throughput with active probes. We use these
measures to calculate the power of the connection function,
which we use as the reward function. Once the rewards are
known, the algorithm updates the Q-values by applying (3).
Instead of updating the Q-values iteratively with a matrix
containing the rewards previously known, we train the model in
an online manner by getting the feedback from the network. This
could have the disadvantage of a poor behavior at the beginning,
but the results show that the tuning improves over the time.
Additionally, we point out that we implemented fixed values for
the rest of the parameters of the Q-Learning algorithm during
the experiment, that is ߛ = 0.8 and ߙ = 0.5.

Another point to consider is the performance of our method
in terms of the buffer occupancy at the router. Based on the
statistics obtained from the Linux Traffic Control, in Table I we
compare the percentage of buffer occupancy for each considered
scenario. Note that we take into account the set hard limit buffer
size for the percentage calculation. In other words, the buffer
occupancy would be 100% if the queue had 1000 packets at an
instant. As can be seen, the buffer occupancy is lower when our
intelligent method is used thanks to the balance between
dropped/marked packets that the algorithm achieves over the
time. Finally, we want to mention that the Python code of the
experiments described in this subsection is publicly available at
[20]. We intent to make our contribution accessible to
researchers and developers who are actively working on
congestion-related problems of the Internet. Please cite this
paper if you use any posted script for your works.

IV. CONCLUSIONS
In this work, we showed how the appropriate tuning of AQM

parameters can improve the RTT and throughput of TCP
connections in a dynamic IP network. Additionally, we showed
that it is possible to take advantage of the ECN mechanism to
predict congestion on the rest-of-path. We modeled a congestion
predictor based on an LSTM, which we pre-trained with data of
an unknown network topology. We exposed how to transfer the
predictor model to a new network and get good estimates with a
short re-training. Also, we described a solution for the decision-
making problem about the parameters that an AQM scheme
should use according to the networks’ conditions. We
demonstrated that this can be achieved by modeling the problem
as an MDP and finding pair values of state-action through the
Q-learning algorithm. Although we employed the power
function of the connection as the reward function, our method
can work with other rewards depending on the applications or

the variable to be optimized of the TCP connections. As a future
work, we plan to test our proposed method with different TCP
congestion control mechanisms, as well as more AQM
algorithms. Finally, we point out that, although our experiments
included only two AQM schemes with queue delay as the target
parameter, the proposed intelligent method could be easily
adapted to other mechanisms with different target parameters
such as the queue size.

REFERENCES
[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”

Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011.
[2] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEEACM Trans. Netw., vol. 1, no. 4, pp. 397–
413, Aug. 1993.

[3] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Queue, vol. 10,
no. 5, pp. 20:20–20:34, May 2012.

[4] R. Pan, P. Natarajan, F. Baker, and G. White, Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem. RFC Editor, 2017.

[5] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E.
Dumazet, The Flow Queue CoDel Packet Scheduler and Active Queue
Management Algorithm. RFC Editor, 2018.

[6] G. Fairhurst and M. Welzl, The Benefits of Using Explicit Congestion
Notification (ECN). RFC Editor, 2017.

[7] A. M. Mandalari, A. Lutu, B. Briscoe, M. Bagnulo, and O. Alay,
“Measuring ECN++: Good News for ++, Bad News for ECN over
Mobile,” IEEE Commun. Mag., vol. 56, no. 3, pp. 180–186, Mar. 2018.

[8] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, The Addition of
Explicit Congestion Notification (ECN) to IP. RFC Editor, 2001.

[9] M. Kühlewind and R. Scheffenegger, TCP Modifications for Congestion
Exposure (ConEx). RFC Editor, 2016.

[10] F. Li et al., “A comparative simulation study of TCP/AQM systems for
evaluating the potential of neuron-based AQM schemes,” J. Netw.
Comput. Appl., vol. 41, pp. 274–299, May 2014.

[11] S. K. Bisoy and P. K. Pattnaik, “An AQM Controller Based on Feed-
Forward Neural Networks for Stable Internet,” Arab. J. Sci. Eng., vol. 43,
no. 8, pp. 3993–4004, Aug. 2018.

[12] N. Bouacida and B. Shihada, “Practical and Dynamic Buffer Sizing using
LearnQueue,” IEEE Trans. Mob. Comput., pp. 1–1, Sep. 2018.

[13] S. Latré, W. V. de Meerssche, D. Deschrijver, D. Papadimitriou, T.
Dhaene, and F. D. Turck, “A cognitive accountability mechanism for
penalizing misbehaving ECN-based TCP stacks,” Int. J. Netw. Manag.,
vol. 23, no. 1, pp. 16–40, 2013.

[14] A. Graves, “Long Short-Term Memory,” in Supervised Sequence
Labelling with Recurrent Neural Networks, A. Graves, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 37–45.

[15] J. Ke and X. Liu, “Empirical Analysis of Optimal Hidden Neurons in
Neural Network Modeling for Stock Prediction,” in 2008 IEEE Pacific-
Asia Workshop on Computational Intelligence and Industrial
Application, 2008, vol. 2, pp. 828–832.

[16] F. Baker and G. Fairhurst, IETF Recommendations Regarding Active
Queue Management. RFC Editor, 2015.

[17] C. A. Gomez, A. Shami, and X. Wang, “Machine Learning Aided Scheme
for Load Balancing in Dense IoT Networks,” Sensors, vol. 18, no. 11, p.
3779, Nov. 2018.

[18] R. S. Sutton and A. G. Barto, “Temporal-Difference Learning,” in
Reinforcement Learning: An Introduction, MIT Press, 2018, pp. 131–132.

[19] Center for Applied Internet Data Analysis, “CAIDA Internet Data --
Passive Data Sources.” [Online]. Available:
http://www.caida.org/data/passive/index.xml. [Accessed: 07-Jan-2019].

[20] “Intelligent method to be used with AQM schemes such as CoDel and
FQ-CoDel.” [Online]. Available:
https://github.com/cgomezsu/IntelligentAQM. [Accessed: 01-May-
2019].

TABLE I. BUFFER OCCUPANCY COMPARISON

 Intelligent AQM Non-Intelligent AQM

 Average Maximum Average Maximum

FQ-
CoDel 1.60 % 2.70 % 2.09 % 2.80 %

CoDel 0.91 % 2.30 % 1.58 % 2.90 %

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0077.v1

https://doi.org/10.20944/preprints201909.0077.v1

