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Abstract: Clinically, knowing the number of red blood cells (RBCs) and white blood cells (WBCs) 

helps doctors to make the better decision on accurate diagnosis of numerous diseases. The manual 

cell counting is a very time-consuming and expensive process, and it depends on the experience of 

specialists. Therefore, a completely automatic method supporting cell counting is a viable solution 

for clinical laboratories. This paper proposes a novel blood cell counting procedure to address this 

challenge. The proposed method adopts SegNet - a deep learning semantic segmentation to 

simultaneously segment RBCs and WBCs. The global accuracy of the segmentation of WBCs, RBCs, 

and the background of peripheral blood smear images obtains 89% when segment WBCs and RBCs 

from the background of blood smear images. Moreover, an effective solution to separate grouped 

or overlapping cells and cell count is presented using Euclidean distance transform, local maxima, 

and connected component labeling. The counting result of the proposed procedure achieves an 

accuracy of 93.3% for red blood cell count using dataset 1 and 97.38% for white blood cell count 

using dataset 2. 
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1. Introduction 

The complete blood count (CBC) is typically performed to determine the number of white blood 

cells (WBCs), red blood cells (RBCs), and platelet (PLTs) in a person's sample blood [1]. Medically, 

CBC can help doctors evaluate the overall health of a patient. The number of any components in a 

blood smear that are too high or too low could signal the medical problem. For instance, a low 

number of white blood cells count called Leukopenia can be triggered by HIV, bone marrow 

disorders, lymphoma, severe infections, liver and spleen diseases. A high RBC count called 

erythrocytosis may be caused by congenital heart disease, dehydration, renal cell carcinoma, 

pulmonary fibrosis, polycythemia vera. If the patient has the abnormal results in the CBC test, doctors 

may require the patient to perform other tests to find out the cause of abnormal blood cell counts. 

To estimate the number of cells, a laboratory technician examines a blood sample under a 

microscope. However, the manual blood cell counts are extreme fatigue for the trained laboratorian. 

Furthermore, the results of counting are not reliable due to a large number of blood cells in the 

peripheral smear. Consequently, an automated or semi-automated procedure to support blood cell 

count on blood smear images is very helpful for clinical purpose. 

The proposed method presents two separate phases of segmentation and blood cell count. The 

main target of the segmentation phase is to segment WBCs and RBCs by adopting SegNet 

architecture. Most previous works mainly focused on the segmentation of leucocytes in images using 

various segmentation techniques. Research in [2] combined watershed segmentation with a shift-

invariant complex transform for the segmentation of WBCs. Wei Gao et. al. .In [3], N. H. Harun et. al. 
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experimented three clustering algorithms including k-means, fuzzy c-mean, and moving k-means 

clustering for abnormal WBCs segmentation. 

For the blood cell counting phase, according to literature, few works of blood cell counting 

system that are count simultaneous the number of WBCs and RBCs. Research in [4] utilized various 

conventional image processing methods to enhance the quality of images. In the next steps, J. 

Poomcokrak and C. Neatpisarnvanit classified only red blood cells and counted the number of red 

blood cells by a neural network. The accuracy for counting red blood cells was not too high, reached 

74%. The restriction of this paper only focuses on red blood cells counting. WBC count was not 

included in this paper. In another study, Navin D. Jambhekar [5] demonstrated image processing 

techniques to classify only red blood cells. First, edge detection, feature extraction, and histogram 

were utilized to detect red blood cells. And the next second a shallow neural network with three 

layers was used for counting red blood cells. The accuracy of this paper reached 81%. In [6], Joost 

Vromen and Brendan McCane calculated a gradient magnitude map and traced the contours of 

overlapping cells using Bayesian method associated with a polynomial model to smooth boundaries 

of cells. The supervised methods achieved an accuracy of 82.5% for red blood cells count. The 

methods in [7] focused on counting red blood cells using a circular Hough transform. Beforehand, 

conventional image processing techniques are utilized to separate cells from the background. The 

accuracy of this paper for counting red blood cells achieved 91.87% when conducting on small dataset 

including 10 images. The drawback of the aforementioned works are conducted on the small dataset 

with the accuracy is not too high.  

Lorenzo Putzu and Cecilia Di Ruberto alternated between using image processing techniques 

and segmentation to detect white blood cells in microscopic images [8], [9]. Firstly, they identified 

the background of images using Zack algorithm. Then, histogram equalization was applied on  

component from CMYK color model of the image for WBCs identification. L. Putzu et. al. used 

watershed segmentation to separate the grouped of WBCs. They reported that the accuracy of their 

method for WBC count reached 92% when performed on 33 testing images. K. Jha et. al. [10] proposed 

using a set of image processing techniques and morphological methods for segmenting blood cells 

and counting the number of WBCs. The method was evaluated on twenty images and obtain an 

accuracy of 85% for WBC count. Research in [11] also detected white blood cells by image processing 

techniques such as Zack algorithm, histogram. Z. Alreza and A. Karimian separated clumped 

leucocytes by using the watershed segmentation method. Then, they extracted features, including 

texture, color, average, variance, standard deviation, and entropy features. These features were 

utilized for SVM classification model. Their methods reached the accuracy of 93% for leucocytes 

counts.  

These above methods of segmentation and blood cell count still do remained some drawbacks. 

For example, there is only few works addressed the challenge to separate high overlapping cells and 

count blood cells. Besides, most blood cells in peripheral blood images exist in different shape, color, 

and characteristic. For example, white blood cells (leucocytes) are divided into five types with 

different shapes and color based on their function: monocytes, lymphocytes, eosinophils, neutrophils, 

and basophils, as shown in Figure 1. Moreover, the quality of peripheral blood cell images is also 

affected by acquisition condition, such as illuminance. Hence, an effective methodology to segment 

and count blood cells with compromising accuracy is necessary. In this research, we proposed a 

system included the segmentation phase and the counting phase. SegNet architecture is utilized in 

the segmentation phase for the semantic segmentation of WBCs, RBCs, and the background of 

images. The segmented result images of this phase are employed as the input for the counting phase. 

Distance transform and connected component labelling are utilized to handle with touching cells. 

The rest of this paper is organized as follows. Section 2 introduces about materials and methods. 

The experiment result and discussion are shown in section 3. Finally, the conclusion is illustrated in 

section 4. 
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 (a) Monocytes  (b) Lymphocytes (c) Eosinophils (d) Neutrophils (e) Basophils 

Figure 1. The shape of the five major types of white blood cells. 

 

2. Materials and Methods  

2.1. Dataset Processing 

In this research, the ALL-IDB1 dataset is used for the experiment. The corresponding 

segmentation ground truth images are necessary for the semantic segmentation. Hence, GNU Image 

Manipulation Program (GIMP 2.10.2) is conducted to manually label peripheral blood smear images 

for the blood cell segmentation. It takes a long time to create the ground truth (mask) for the original 

images due to a large number of red blood cells in smear images. Hence, to evaluate our proposed 

method on white blood cell segmentation and counts, we crop a part of each image in ALL-IDB1. 

This cropped images and the corresponding ground truth images are called dataset 1. An example of 

a blood smear image and its mask is depicted in Figure 2. Dataset 1 is a collection of images containing 

42 images and 42 ground truth images. The ground truth images in this dataset provide pixel-level 

labels for three classes including red blood cells, white blood cells, and the background. In figure 2, 

the blue color indicates red blood cells, the green color indicates white blood cells, and the yellow 

color indicates the background. 

In dataset 2, 101 images in ALL-IDB1 are annotated as ground truth. Dataset 2 is used to evaluate 

the performance of WBC count. Therefore, rather than dwelling on the classification of RBCs, WBCs, 

and background, images in dataset 2 are annotated as two classes. All of WBCs in images are 

annotated as the green color, the other cells and background of images are considered as the 

background and annotated as the yellow color, as illustrated in Figure 3.  

 

  

Figure 2. A peripheral blood smear image and its ground truth in dataset 1. 
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Figure 3. A peripheral blood smear image and its ground truth in dataset 2. 

2.2. System overview 

The proposed framework is shown in Figure 4. It includes two phases, segmentation and 

counting clumped cells. Segmentation phase performs SegNet to output semantic segmented images, 

in which RBCs are marked as blue, WBCs are marked as green, and the background is marked as 

yellow. Clumped cell counting phase is in charge of segmenting touching cells and counting cells in 

images. Section 2.2.1 and 2.2.2 present the detailed description of the two phases.  

2.2.1. Segmentation 

In computer vision, object detection is more popular for locating and classifying objects in the 

image. Since object detection algorithms, such as R-CNN and Yolo detect objects by drawing 

bounding rectangles around them, these detected objects do not obtain exactly the shape of objects. 

Semantic segmentation overcomes these aforementioned weakness because it classifies each and 

every pixel in the image. Therefore, semantic segmentation can detect accurately the boundary or 

edge of objects in the image, instead of drawing only boxes around objects.   

In this work, we apply SegNet architecture to efficiently segment WBCs and RBCs in the image. 

SegNet is a deep architecture for the segmentation of multi-class based on assigning each pixel of an 

image into a corresponding class [12]. The SegNet architecture consists of Encoder and Decoder 

network, as shown in Figure 5. Encoder architecture composes three types of layers: convolution, 

batch normalization, and pooling layers. Because the max-pooling layer in Encoder reduces the size 

of the feature map, the boundary of cells in the image can be blurred. Therefore, the boundary 

information is stored in encoder feature maps. The decoder uses max-pooling indices stored in each 

encoder map to upsample the feature map. 

In this paper, SegNet model is developed using weights initialized by the VGG-16. The 

additional layers required for segmentation replace the last pooling layer for classification from the 

pre-trained VGG-16. A label image produced via SegNet network is comprised of labeled pixels with 

corresponding colors. Of these, RBCs which are in blue color, WBCs are in green, and the background 

is in yellow, as can be seen from Figure 4. Then, all RBCs and WBCs are separated into two individual 

images with corresponding colors. The resulted images are used as the input of the counting phase 

to count the number of RBCs and WBCs expounded on section 2.2.2. Furthermore, they can be used 

as the input of a convolutional neural network to early detect leukemia – a type of white blood cell 

cancer.  

2.2.2. Blood cell count 

RBCs and WBCs images are used as the input image for the clumped cell counting phase, as 

illustrated in Figure 4. Cells in an image are touched or overlapped with other cells. First, images are 

converted to binary images. In the next step, distance transform (DT) is applied to these image for 

analyzing the skeleton of blood cells. We utilize distance transform using four distance metrics 

includes Euclidean DT, Chessboard DT, City block DT, and Quasi-Euclidean DT. The experiment 

results figure out that Euclidean DT shows the best approximate results for our purpose. For each 
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pixel in a binary image, Euclidean DT assigns a value which is the distance from the current pixel to 

the nearest non-zero pixel. The formula for Euclidean DT is defined as: 

𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (1) 

Where two pixels have coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2). 

Figure 6 shows an example binary image, and the distance transform of a WBCs image.  

In the next step, binary dilation is used for enlarging the cell shapes contained in distance 

transform images. Each pixel in a distance transform image is superimposed with the center of s 3-

by-3 array of ones. The local maxima is propagated, as shown in Figure 7 (a). Small size cells, i.e., cells 

with the size of less than 30% or incomplete blood cells are discarded. Each cell will be labelled with 

different colors, as shown in Figure 7 (b). Finally, connected component labeling algorithm is 

performed to count the number of separated cells in images.  

 

 

Figure 4. Our proposed procedure. 

 

Figure 5. SegNet architecture [12]. 

 

   
 (a) WBCs image (b) Binary image (c) Distance transform 

Figure 6. An example of distance transform. 
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 (a) Propagating maxima  (b) Segmented image 

Figure 7. Propagating maxima and segmented of clumped cells in the image. 

3. Experiment results and discussion 

3.1. Metrics to evaluate the performance of SegNet 

3.1.1. Accuracy 

Global accuracy gives an overview of the portion of the correctly classified pixels to the total 

number of pixels in the image. Global accuracy is a metric calculated by dividing the correctly 

classified pixels (the sum of true positive TP and true negative TN) by the total number of pixels in 

images.   

𝐺𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
, (2) 

where the false positive is denoted as FP, and the false negative is denoted as FN. 

Accuracy is a metric show the percentage of the correctly classified pixels in each class compared 

to the total number of pixels in that class. It is given as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (3) 

Mean accuracy is an expression of the average accuracy of all classes in images. 

3.1.2. Jaccard index IoU 

𝐼𝑜𝑈 is a measure of the overlap between the ground truth in the dataset and the resulting image 

was generated by our model. This metric is calculated by dividing the area of the overlap between 

the ground truth image and the resulting image by the area of a union. The union is an area which is 

combined with the ground truth and the resulting image. The threshold value of 𝐼𝑜𝑈 larger or equal 

0.5 to decide the segmentation result is good. If 𝐼𝑜𝑈 equal 1, the overlap between X and Y is perfect.  

𝐼𝑜𝑈 is calculated by dividing the size of the intersection between the predicted image, which is 

generated by SegNet architecture, and the actual ground truth by the size of the union of the 

predicted image and the ground truth image. An 𝐼𝑜𝑈 threshold of 0.5 is defined as the value. The 

segmentation result is supposed to be good if the 𝐼𝑜𝑈 is larger than or equal to 0.5, or 𝐼𝑜𝑈 threshold. 

If 𝐼𝑜𝑈 equal 1, the overlap between the predicted set of pixels X and the ground truth Y is perfect. 

𝐼𝑜𝑈 can be calculated using (4):  

𝐼𝑜𝑈 = 𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
 

 

0 ≤ 𝐼𝑜𝑈 ≤ 1 

(4) 

Mean 𝐼𝑜𝑈 is the average 𝐼𝑜𝑈 score of all classes in all images. 
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Weighted 𝐼𝑜𝑈 is the average 𝐼𝑜𝑈 of each class. It is weighted by the number of pixels in that 

class. Weighted 𝐼𝑜𝑈 is used to reduce the impact of errors in small classes because images have 

classes with disproportionate size.  

3.1.3. The boundary F1 (BF) contour matching score 

The boundary F1 (BF) contour matching score (𝐹1 − 𝑠𝑐𝑜𝑟𝑒) is a novel semantic contour-based 

score [15]. This metric indicates how well the predicted boundary of each class aligns with the true 

boundary. The F-score is calculated using the precision 𝑝 and the recall 𝑟, where 𝑝 is calculated by 

dividing the number of correct classification by the all actual positive result 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

Recall 𝑟 is the number of true positive results divided by the sum of TP and FN.  

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(6) 

Finally, the 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 is defined as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑝 ∙ 𝑟

𝑝 + 𝑟
 

 

(7) 

The 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 range is from 0 to 1. If the precision 𝑝 and the recall 𝑟 reach the perfect values, 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 will reach the best value.  

3.2. Experiment results on dataset 1 

3.2.1. Segmentation results 

The size of images in dataset 1 is reduced to [360x480x3] to decrease the computation time and 

memory usage. Of the dataset 1, 70% (29 images and 29 corresponding ground truth images) are used 

for the training process, and 30% (13 images and 13 corresponding ground truth images) are used for 

the testing process. Two data augmentation methods, which including random reflection and 

random translation, are applied to training images to enlarge the number of images from 29 images 

to 145 images.  

In our training dataset, it is observed that RBCs and background pixels occupy more areas than 

WBCs. This class imbalance can affect the learning process of SegNet. To solve this, class weights are 

used to balance the classes [14]. Class weight (w) for each class is defined as follows: 

𝑤 =
1

𝑓
 

 

(8) 

𝑓 =
𝑛

𝑁
 

 

(9) 

where 𝑓 is the frequency of each class, 𝑛 is the number of pixel in the class, and 𝑁 is the total 

number of pixel in the image.  

The last layer of SegNet architecture is updated with class weights. Class weights for three 

classes are shown in Table 1.  

Table 2 presents the metrics to evaluate the performance of SegNet on the testing dataset. The average 

accuracy for the segmentation of three classes reaches 91%. The mean IoU of our model is 79%. These 

results have shown that a good segmentation of RBCs, WBCs, and background is obtained using our 

proposed method. Classification accuracy, the intersection over union (IoU), and the boundary F1 

contour matching score are listed in Table 3. The true positives for white blood cells, red blood cells, 

and background class correspond with 94.93%, 91.11%, and 87.32% as shown in Figure 8. Figure 9 

illustrates an example of WBCs and RBCs segmentation. The final result of SegNet is separate images. 

One of these includes all red blood cells, and the other contains a white blood cell.  

Table 1. The class weights of the classes. 
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Name  Class weight 

White Blood Cells 7.2023 

Red Blood Cells 1 

Background 0.6579 

 

Table 2. Evaluation metrics of SegNet. 

Global 

accuracy 
Mean accuracy Mean IoU Weighted IoU Mean BF Score 

0.89 0.91 0.79 0.81 0.77 

 

Table 3. Class metrics for three classes in images. 

 Accuracy IoU Mean BF Score 

White Blood Cells 0.95 0.75 0.62 

Red Blood Cells 0.91 0.80 0.84 

Background 0.87 0.82 0.84 

 

 

Figure 8. The confusion matrix on the testing dataset. 
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Figure 9. An example of WBCs and RBCs segmentation. 

3.2.2. Results of the counting phase 

In the counting phase, our method was tested on 13 images which contained only red blood cells 

and 13 images which contained only white blood cells. These images are the result of the 

segmentation phase in the previous section. Table 4 and Table 5 show the number of cells which is 

predicted by our method (P) and the number of actual cells in images (A). 

Many previous works have failed to predict the number of cells with a high degree of overlap 

and irregular cell shapes. On the contrary, our method can handle with high overlapping cells such 

as clumps of WBCs with different sizes and shapes. As shown in Table 4, the number of cells is 

approximately the same as that of the actual cells. Similarly, the same conclusion can be obtained 

with WBCs, as figured out in Table 4. Especially, with more touching WBCs composed of a clumped 

cell as illustrated at the first and second row of Table 4, the predicted number of WBCs are exactly 

the same as that of the actual cells. The accuracy of the counting phase is calculated as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
|𝑃 − 𝐴|

𝐴
) × 100 (7) 

Apparently the accuracy of all 13 WBCs images reaches 100%, as figured out in Table 4. For 

RBCs, Figure 10 shows that the accuracy is in the range of 81.82% to 100%. The overall accuracy of 

RBC count reaches 93.30%, as shown in Table 6. 

Figure 11 explains the relationship of a linear regression between the numbers of RBCs, which 

is predicted by our method versus the numbers of actual red blood cells in images. The linear 

regression model of our method is represented as𝑦 = 3.49 + 0.96𝑥. The coefficient of determination 

𝑅2 value is 0.89 proving that our model is able to predict the correct number of RBCs.  

 

Table 4. The predicted (P) and actual count (A) of WBCs. 

WBCs images 
Segmentation of 

clumped cells  
P A WBCs images 

Segmentation of 

clumped cells  
P A 

  

7 7 

  

3 3 

  

5 5 

  

2 2 

  

4 4 

  

1 1 

  

3 3 

  

1 1 
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1 1 

  

2 2 

  

1 1 

  

1 1 

  

1 1 

  

  

 

Table 5. The predicted (P) and actual count (A) of RBCs. 

RBCs images 
Segmentation of 

clumped cells 
P A RBCs images 

Segmentation of 

clumped cells 
P A 

  

36 40 

  

23 24 

 

 

31 31 

  

27 33 

  

26 30 

  

25 30 

  

37 44 

  

35 35 

  

30 29 

  

38 38 

  

22 23 

  

33 33 
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52 53 

  

  

 

 

Figure 10. The accuracy for 13 red blood cell images. 

Table 6. The accuracy of RBC count. 

Image 
Predicted 

number 
Actual number Accuracy (%) 

1 36 40 90 

2 23 24 95.83 

3 31 31 100 

4 27 33 81.82 

5 26 30 86.67 

6 25 30 83.33 

7 37 44 84.09 

8 35 35 100 

9 30 29 96.55 

10 38 38 100 

11 22 23 96.55 

12 33 33 100 

13 52 53 98.11 

   
Overall 

accuracy: 93.30 
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Figure 11. The linear regression relation between the number of predicted red blood cells and the 

number of actual red blood cells. 

3.3. Experiment results on dataset 2 

3.3.1. Segmentation results 

Each image in dataset 1 contains only a few white blood cells. Hence, dataset 2 with more white 

blood cells in each image is used to evaluate our proposed system. In this paper, we use the original 

ALL-IDB1 image database which consists of 49 acute lymphoblastic leukemia (ALL) images and 59 

peripheral blood cells images from non-leukemia people. 108 corresponding labeled images are also 

used as the ground truth for training and testing. The size of images in the dataset 2 is [360x480x3], 

same as the image size of dataset 1. 70% images in dataset 2 (76 original images and 76 corresponding 

ground truth images) are used for training phase. Data augmentation is also applied to the training 

dataset to increase the number of training images to 380 images. Similar to the segmentation on 

dataset 1, 30% of original images (32 images) are used for testing phase.  

This section focuses on the segmentation of white blood cells from the rest cells in the image. 

Therefore all red blood cells and background of images are labeled as yellow, and white blood cells 

are annotated as green, as illustrated in Figure 12. The global accuracy and the mean accuracy of this 

model on dataset 2 both reach 98%. By applying formula (4), the mean IoU and weighted IoU reach 

78.82% and 97.3%, respectively. The mean BF score is 89.14%. All segmentation metrics obtained from 

dataset 2 are higher than those obtained from dataset 1. Table 8 shows the result of dataset 2. 

Class metrics for each class of dataset 2 is shown in Table 9. The accuracy and the Mean BF Score 

of white blood cells class in dataset 2 are higher than those of dataset 1, 97.72% and 86.13% 

respectively. However, the IoU of white blood cells classification in dataset 2 is lower than in dataset 

1, 59.14% and 75.04% respectively.  

True positives for white blood cells class of dataset 2 is 97.72%, as shown in Figure 13. 

 

 

Figure 12. An example of white blood cell classification in dataset 2. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2019                   doi:10.20944/preprints201909.0075.v1

https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
https://doi.org/10.20944/preprints201909.0075.v1


 

Table 7. The class weights of the classes. 

Name  Class weight 

White Blood Cells 18.4013 

Red Blood Cells and background 0.5140 

Table 8. Semantic segmentation metrics of the model on the dataset 2. 

Global 

accuracy 
Mean accuracy Mean IoU Weighted IoU Mean BF Score 

0.98549 0.98145 0.78816 0.97298 0.91308 

 

Table 9. The class metrics for white blood cells class and background class. 

 Accuracy IoU Mean BF Score 

White Blood Cells 0.97716 0.59136 0.86127 

Background 0.98575 0.98495 0.9541 

 

 

Figure 13. The confusion matrix for the testing phase of the dataset 2. 

3.3.2. Results of the counting phase 

We selected 12 images with the highest overlap of WBCs to be shown in Table 9. The predicted 

number and the actual number of 32 white blood cells images are shown in Table 10. For images with 

less WBCs, the accuracy of WBC count can reach up to 100%. For images with more WBCs and high 

overlapping WBCs, the accuracy fluctuates between 75% and 100%, as can be seen in Figure 15. 

As shown in Figure 14, a linear regression between the predicted white blood cells and the actual 

white blood cells in images is represented as 𝑦 = −0. −0.071 + 1.071𝑥 . The coefficient of 

determination 𝑅2 value is 0.99. 𝑅2 value proves that our model can predict the data very well.  

Table 10. The predicted (P) and the actual count (A) of white blood cells in some images which have 

clumped white blood cells. 

 

WBCs images 
Segmentation 

of clumped cells 
P A WBCs images 

Segmentation 

of clumped cells 
P A 
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17 20 

  

20 24 

 

 

22 

 

22 

 

  

16 17 

 

 

7 7 

  

19 21 

 

 

9 12 

  

20 20 

  

13 14 

  

16 18 

  

18 19 

  

16 16 

 

Table 11. The accuracy of WBC count. 

No of mage 
Predicted 

number 
Actual number Accuracy (%) 

1 4 4 100 

2 17 20 85 

3 1 1 100 

4 6 6 100 

5 2 2 100 

6 1 1 100 

7 20 23 86.96 

8 1 1 100 

9 2 2 100 

10 22 22 100 

11 1 1 100 

12 16 17 94.12 

13 2 2 100 

14 2 2 100 

15 1 1 100 

16 7 7 100 

17 2 2 100 
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18 19 21 90.48 

19 9 12 75 

20 20 20 100 

21 2 2 100 

22 1 1 100 

23 4 4 100 

24 2 2 100 

25 1 1 100 

26 13 14 92.86 

27 12 12 100 

28 1 1 100 

29 2 2 100 

30 16 18 88.89 

31 18 18 100 

32 16 16 100 

   
Overall 

accuracy: 97.29 

 

  

Figure 14. Linear regression relation between the number of predicted white blood cells and the 

number of actual white blood cells. 

 

Figure 15. The accuracy for 32 WBCs images. 

3.4. Comparison with current works 

Our method is compared with other previous work in literature. Most researches in the past 

focused only on classifying and counting RBCs or WBCs. In this paper, we not only classify RBCs 

and WBCs simultaneously but also count both RBCs and WBCs. It is noted that our method obtains 
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accuracy far greater than those using other methods such as Neural Network, Bayesian model, or 

Circular Hough Transform for RBC count, as shown in Table 11. 

In addition, most previous works utilized watershed segmentation for the segmentation of 

WBCs which are connected or overlapped in order to count the number of WBCs. By applying deep 

learning in segmentation, we can achieve an accuracy which outperforms that achieved by using 

state-of-the-art techniques,as presented in Table 12. In [11], Lorenzo Putzu et. al. evaluated their 

method in the ALL-IDB1 dataset, same dataset with our research. The ALL-IDB1 dataset contains the 

diversity of images. These images are acquired by different camera and different light condition. For 

testing purpose, Lorenzo Putzu et. al. used 33 images of ALL-IDB1 which acquired from the same 

lighting condition and same camera. Their method obtained the accuracy of 92%. On the contrary, 

our method is tested on the 32 images which is random choosed from ALL-IDB1. Our method reaches 

97.29% for WBC count, significantly higher than Lorenzo Putzu’s method. 

Table 12. Comparison of red blood cell count with other methods. 

Method Average Accuracy (%) 

Neural Network [4] (2008) 74 

Bayesian model [6] (2009) 82.5 

Neural network [5] (2011) 81 

Circular Hough Transform [7] (2014) 91.87 

Proposed method  93.3 

 

Table 13. Comparison of white blood cell count with other methods. 

Method Average Accuracy (%) 

Image processing and mathematical morphology methods [10] 

(2014) 
85 

Image processing techniques, Agglomerate identification 

through roundness analysis, distance transform, watershed 

segmentation, watershed line refining  [11] (2014) 

92 

Color space conversion models, watershed conversion [11] 

(2016) 
93 

Proposed method  97.38 

 

4. Conclusions 

The aim of this paper is to segment WBCs and RBCs in the peripheral blood cell images into 

distinguishing images. A follow-on step has built on these earlier images and also strengthened the 

clumped cell segmentation, as well as blood cells count. WBC and RBC segmentation plays a critical 

role in helping doctors early diagnose some sign of the diseases which affected blood cells.  

In this paper, SegNet - an innovative CNN architecture - are performed for the identification and 

segmentation of WBCs and RBCs in images. The lack of annotated images is a particular challenge 

for semantic segmentation. To solve this challenge, we manually label images to create standard 

annotation images. Due to the limited images in the dataset, data augmentation methods are 

performed in order to increase the number of images. From the experiments on two datasets, we 

conclude that SegNet is highly appropriate for segmenting WBCs and RBCs in blood images.  

For the counting phase, we also have to face with a severe challenge – blood cells usually display 

in images as clumped or overlapped cells – and it put at risk the incorrect counting for WBCs and 

RBCs. In carrying out this challenge, Euclidean distance transform and binary dilation are applied on 

images. After segmenting clumped cells, eight neighbors connected component labeling are utilized 

to determine the number of cells. For the counting phase, our proposed method reaches 93.3% for 

RBC count in dataset 1 and 97.29% for WBC count in dataset 2. 

Based on an experiment on dataset 1, we conclude that our methods proposed in the counting 

phase can handle accurately with clumped white blood cells. On the contrary, based on the 
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experiment on dataset 2, the accuracy of the counting phase decrease when handled with the image 

contained both single white blood cells and clumped white blood cells. Consequently, in the future 

work, we would like to separate single cells and clumped cells into distinct images before counting 

to improve the accuracy of blood cell count.  
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