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Abstract: Fluid mechanics of flow in hydrophobic, rectangular microchannels with finite 

aspect ratios is of paramount importance. In such microchannels, not only the effect of the side 

walls should be taken into account, but also the classical assumption of no-slip boundary condition 

(BC) is no longer valid at the solid-liquid interface. Accordingly, slip flow can occur in 

microchannels fabricated from surfaces with low wetting conditions, hydrophobic surfaces. 

Determining the interactions of liquid molecules adjacent to solid surface is still a challenging 

issue, and it is especially important in small scale domains. Herein, the fluid mechanics of flow 

through rectangular hydrophobic microchannels has been reconsidered by taking into account the 

general Navier-slip BCs at the solid-liquid interface. For fully developed incompressible flow in 

microchannels at low Reynolds number, partial differential equation (PDE) of the momentum 

equation simplifies to the classical Poisson equation. Accordingly, by analytically solving the 

Poisson equations with general Navier-slip BCs, the most general forms of velocity distributions, 

flow rate, friction factor and Poiseuille number have been obtained.  

Keywords: slip flow; navier-slip boundary condition; hydrophobic microchannels; analytical 

solutions; poiseuille number; velocity profile of poiseuille flow 
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1. Introduction 

In recent years, microfluidic technology has received ever increasing attention [1, 2]. For instance, 

the author’s group has applied this highly versatile and multidisciplinary field in various areas, 

including, drag reduction [3-8], integrated SiC MEMS [9], 3D printed spiral channels for particle 

separation [10], homogeneous mixing of microdroplets using magnetofluidics [11], separation of 

bio-particles [12], 3D cell culture [13, 14], spheroids-on-chips [15] tumors-on-chips [16, 17], 

cancer modelling [18-20], cryopreservation with digital microfluidics using liquid marble [21], 

designing concentration gradient generators (CGGs) [22] enrichment of circulating tumor cells 

(CTCs) [23], detection of autoantibodies [24], assisted reproductive technology (ART) [25], drug 

delivery systems [26, 27], obtaining the concentration profiles of oxygen and glucose in 

microwells  [28] and other numerical simulations [29]  .     

One of the essential components of most of these microfluidic platforms is microchannels. To 

verify the applicability of Navier-Stoke (N-S) equations in microchannels, liquid flow rate can be 

measured at the imposed pressure difference along the given length of the microchannels. The 

obtained results can then be compared to that predicted by N-S equations. Alternatively, Poiseuille 

number, the product of the friction factor and Reynolds number, can be determined by gradually 

increasing the pressure differences and recording the corresponding values of the flow rate. For 

laminar flows, conventional fluid dynamics theories state that this number should be a fixed value 

regardless of channel roughness. However, based on the prior experimental works in the literature, 

there is a lack of consensus regarding this.  The main sources of the discrepancies of these 

experimental data might be related to the following issues [30]: 1) difficulty in measuring the 

microchannel dimensions before and after the experiment accurately; 2) experimental difficulties 

in precise measurements of the flow rate and pressure drop along the microchannel length; 3) 
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evaluating near-wall surface effects of the microchannels. The first two experimental difficulties 

give rise to the uncertainty of the experimental results and can be minimized by appropriate 

selection of the test instruments. However, the prime reason of these discrepancies is due to the 

dominant channel walls effects in the flow through microchannels. As the characteristic size of the 

channel is reduced, surface effects become more pronounced even in the laminar region. This 

implies that depending on channel wall conditions, drag forces on the microchannels can be greater 

than, equal to or even smaller than corresponding values in macrochannels.  

   Larger values of the frictional losses in the microchannels can be attributed to the large values 

of relative roughness (roughness amplitude divided the channels height) especially in the 

noncomposite state. It should be noted other micro-scale effects in extremely small microchannels, 

typically smaller than 10𝜇𝑚, such as electroviscous [31] and pressure-dependent viscosity effects 

[32]  can also give rise to the frictional losses. 

On the other hand, frictional drags in microchannels can be smaller than those in the 

macrochannels mainly as a result of slip between the liquid and solid surface. For the case of 

atomically smooth surfaces, two situations may lead to slip, namely very high shear rate flows and 

hydrophobic channels. In the first case, repulsive forces induced by the high shear rates may 

overcome the attractive Van der Waals forces at the solid surface and lead to intrinsic slip. For the 

water flows this happens when the shear rate is higher than 1010 sec−1 . In the case of hydrophobic 

channels, presence of tiny bubbles near the solid walls might act as a cushion. This can lead to an 

apparent slip of the flow at the vicinity of the solid walls. For instance, wall slip velocity up to 9% 

of the free stream velocity was observed for water flows in hydrophobic channels at moderate 

shear rates [33].  
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In this manuscript, the most general forms of fluid mechanics equations in hydrophobic 

microchannels with finite aspect ratios will be analytically investigated by incorporating the 

general Navier-slip BCs into the governing equations. 

2. Formulations and governing equations 

The physics of the problem and governing equations have been thoroughly explained in our 

previous manuscript [34]. In that work, we limited our approach to no-slip BCs and solve the 

equations based on that assumption. Here, the general Navier slip BCs are assumed at the solid-

liquid interfaces, as follows: 

 𝐵𝐶′𝑠

{
 
 

 
 𝑢(0, 𝑌) = 𝑏𝑠

−
𝜕𝑢

𝜕𝑋
|
𝑋=0

            ;                   𝑢(2𝑤, 𝑌) = −𝑏𝑠
+
𝜕𝑢

𝜕𝑋
|
𝑋=2𝑊

 𝑢(𝑋, 0) = 𝑏𝑤
−
𝜕𝑢

𝜕𝑌
|
𝑌=0

           ;                 𝑢(𝑋, 2ℎ) = −𝑏𝑤
+
𝜕𝑢

𝜕𝑌
|
𝑌=2ℎ

       

 (1) 

The domain of this type of the problem is shown in Figure 1. 

 

Figure 1: Rectangular microchannel with general Navier slip length BCs at the walls 

The slip length 𝑏 can be obtained from different analytical models as discussed in the literature. 

Table 1 summarized the most commonly accepted models of slip length. 
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Table 1: Analytical formulas of effective slip length of different superhydrophobic surfaces 

Slip Length Formula Applicable Geometry Reference 

𝒃 = 
𝓛

𝝅
𝒍𝒏 (𝒔𝒆𝒄 (𝝓𝒈  

𝝅

𝟐
)) 

Periodic 1D strips of no-slip and no-shear 

BCs parallel to the flow direction 

[35, 36] 

𝒃 =  
𝓛

𝟐𝝅
𝐥𝐧 (𝐬𝐞𝐜 (𝝓𝒈  

𝝅

𝟐
)) 

Periodic 1D strips of no-slip and no-shear 

BCs perpendicular to the flow direction 

[37]                                                                                                                                    

𝒃 =
𝓛

𝟐𝝅
(
𝟑𝝅

𝟖
√

𝝅

𝟏 − 𝝓𝒈

− 𝟑 𝐥𝐧(𝟏 + √𝟐)) 

Square arrays of 2D circular micropillars 

(𝜙𝑔 → 1) 

[38] 

 

3. Results and discussion 

Here, both PDE and BCs are non-homogeneous. Specifically, BCs are the so-called Robin BC 

which is the combination of the function and its derivatives. Therefore, we try the eigenfunction 

as the combination of sine and cosine terms, that is: 

 

𝜓(𝑋, 𝑌) = 𝐹(𝑋)𝐺(𝑌)

= [C1sin(𝜇 𝑋) + C2cos(𝜇 𝑋)] [C3sin(𝜈 𝑌) + C4cos(𝜈 𝑌)] 
(2) 

Hence the velocity profile in this general case can be written as: 
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 𝑢(𝑋, 𝑌) =∑∑𝐴𝑖𝑗[C1sin(𝜇𝑖 𝑋) + C2cos(𝜇𝑖 𝑋)] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)] 

∞

𝑗=1

∞

𝑖=1

 (3) 

First derivative of this velocity distribution with respect to 𝑋 becomes:  

 𝜕𝑢

𝜕𝑋
=∑∑𝐴𝑖𝑗[𝜇𝑖 C1cos(𝜇𝑖 𝑋) − 𝜇𝑖 C2sin(𝜇𝑖 𝑋)] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)]

∞

𝑗=1

∞

𝑖=1

 (4) 

   

Similarly, the derivative with respect to 𝑌 reads as:  

 
𝜕𝑢

𝜕𝑌
=∑∑𝐴𝑖𝑗[𝜈𝑗 C3cos(𝜈𝑗 𝑌) − 𝜈𝑗 C4sin(𝜈𝑗 𝑌)]

∞

𝑗=1

∞

𝑖=1

[C1sin(𝜇𝑖 𝑋) + C2cos(𝜇𝑖 𝑋)] (5) 

   

By imposing the first BC, 𝑢(0, 𝑌) = 𝑏𝑠
− 𝜕𝑢

𝜕𝑋
|
𝑋=0

, we have: 

 

∑∑𝐴𝑖𝑗[0 + C2] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)]

∞

𝑗=1

∞

𝑖=1

= 𝑏𝑠
−∑∑𝐴𝑖𝑗[𝜇𝑖C1 − 0] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)]

∞

𝑗=1

∞

𝑖=1

  

(6) 

Simplifying Eq. (6), results: 

 ∴ C2 = 𝑏𝑠
−𝜇𝑖C1 (7) 

By imposing the second BC,  𝑢(2𝑤, 𝑌) = −𝑏𝑠
+𝜕𝑢 𝜕𝑋⁄ |𝑋=2𝑊, we can get: 
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∑∑𝐴𝑖𝑗[C1sin(2𝜇𝑖𝑤) + C2cos(2𝜇𝑖 𝑤)] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)] 

∞

𝑗=1

∞

𝑖=1

= −𝑏𝑠
+∑∑𝐴𝑖𝑗[𝜇𝑖 C1cos(2𝜇𝑖 𝑤)

∞

𝑗=1

∞

𝑖=1

− 𝜇𝑖 C2sin(2𝜇𝑖 𝑤)] [C3sin(𝜈𝑗 𝑌) + C4cos(𝜈𝑗 𝑌)] 

(8) 

Further simplifying results: 

 tan(2𝑤𝜇𝑖) =
(C2 + 𝑏𝑠

+𝜇𝑖C1)

(𝑏𝑠
+C2 − C1)

 (9) 

Replacing Eq. (7) into the above equation results: 

 ∴ tan(2𝑤𝜇𝑖) =
𝜇𝑖(𝑏𝑠

− + 𝑏𝑠
+)

(𝑏𝑠
+𝑏𝑠−𝜇𝑖2 − 1)

 (10) 

Similarly, by imposing the other two BCs one can obtain the following expressions: 

 ∴ C4 = 𝑏𝑤
−𝜈𝑗C3 (11) 

And: 

 ∴ tan(2ℎ𝜈𝑗) =
𝜈𝑗(𝑏𝑤

− + 𝑏𝑤
+)

(𝑏𝑤
+𝑏𝑤−𝜈𝑗2 − 1)

 (12) 

Eqs. (10) and (12) should be solved numerically to obtain the values of 𝜇𝑖 and 𝜈𝑗. For a special 

case where the slip lengths are zero, similar results as described in Section 4.1 can be obtained. 

For instance, let us assume 𝑏𝑠
− = 𝑏𝑠

+ = 𝑏𝑤
+ = 0, then Eq. (10) becomes: 

 tan(2𝑤𝜇𝑖) = 0 ⇒  2𝑤𝜇𝑖 = 𝑖𝜋 ⇒ 𝜇𝑖 =
𝑖𝜋

2𝑤
 (13) 
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Also, if the bottom wall of the microchannel is fabricated from Periodic 1D strips of no-slip and 

no-shear BCs parallel to the flow direction, from Table 1, the effective slip at the bottom wall 

reads as: 

 𝑏𝑤
− = 

ℒ

𝜋
ln (sec (𝜙𝑔  

𝜋

2
)) (14) 

In that case, Eq. (12) becomes: 

 tan(2ℎ𝜈𝑗) =
𝜈𝑗(𝑏𝑤

− + 𝑏𝑤
+)

(𝑏𝑤
+𝑏𝑤−𝜈𝑗2 − 1)

= −𝑏𝑤
−𝜈𝑗 (15) 

To guess the approximate solutions, the graph of the functions on the both sides of Eq. (15) should 

be plotted, Figure : 

 

Figure 2: Finding the roots of Eq. (15) graphically (𝟐𝒉 = 𝟐𝟕𝝁𝒎). 
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Using the numerical method for the channel with 127𝜇𝑚 height, the first six solutions can be 

approximated as: 𝜈1 = 0.0241, 𝜈2 = 0.0482, 𝜈3 = 0.0723, 𝜈4 = 0.0965, 𝜈5 = 0.1206, 𝜈6 =

0.1448. It can be seen that unlike Fourier series in the no-slip solutions, the arguments of sine 

and cosine in the general solution with Navier slip BCs are not periodic. 

Replacing Eq. (7) and Eq. (11) into Eq. (3) and denoting 𝐴𝑖𝑗𝐶1𝐶3 = 𝐵𝑖𝑗 , then: 

 

𝑢(𝑋, 𝑌) =∑∑𝐵𝑖𝑗[sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌)

∞

𝑗=1

∞

𝑖=1

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)]  

(16) 

After differentiating twice from the above equation with respect to 𝑋, it reads: 

 

𝜕2𝑢

𝜕𝑋2
=∑∑𝐵𝑖𝑗[−𝜇𝑖

2 sin(𝜇𝑖 𝑋) − 𝑏𝑠
−𝜇𝑖

3 cos(𝜇𝑖 𝑋)]

∞

𝑗=1

∞

𝑖=1

 [sin(𝜈𝑗 𝑌)

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)] 

(17) 

And differentiating Eq. (16) twice with respect to 𝑌 results: 

 

𝜕2𝑢

𝜕𝑌2
=∑∑𝐵𝑖𝑗[−𝜈𝑗

2 sin(𝜈𝑗 𝑌) − 𝑏𝑤
−𝜈𝑗

3 cos(𝜈𝑗 𝑌)][sin(𝜇𝑖 𝑋)

∞

𝑗=1

∞

𝑖=1

+ 𝑏𝑠
−𝜇𝑖 cos(𝜇𝑖 𝑋)] 

 

(18) 

Previously, we obtained the momentum equation as follows [34]: 
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𝜕2𝑢

𝜕𝑋2
+
𝜕2𝑢

𝜕𝑌2
= 1/𝜇𝑤

𝜕𝑃

𝜕𝑧
 (19) 

where 𝑢  and 𝜕𝑃 𝜕𝑧⁄  is the velocity and pressure gradient in the streamwise direction (i.e., z) 

respectively. Since 𝜕𝑃 𝜕𝑧⁄  and fluid viscosity, 𝜇𝑤, are constant across the channel cross section.  

By replacing Eqs. (17) and (18) into Eq. (19), one can obtain:  

 

∑∑−(𝜇𝑖
2 + 𝜈𝑗

2)𝐵𝑖𝑗[sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌)

∞

𝑗=1

∞

𝑖=1

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)] = 𝐹 

(20) 

Multiplying both sides of the above equation to [sin(𝜇𝑖′ 𝑋) + 𝑏𝑠
−𝜇𝑖′cos(𝜇𝑖′ 𝑋)] [sin(𝜈𝑗′ 𝑌) +

𝑏𝑤
−𝜈𝑗′

3cos(𝜈𝑗′ 𝑌)] and integrating results: 

 ∑∑−𝐵𝑖𝑗(𝜇𝑖
2 + 𝜈𝑗

2)

∞

𝑗=1

∞

𝑖=1

𝐼𝑖𝑗𝑖′𝑗′ = 𝐹 𝐼𝑖′𝑗′  (21) 

where 

 

𝐼𝑖𝑗𝑖′𝑗′ = ∫ ∫  [sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌)

2𝑤

0

2ℎ

0

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)][sin(𝜇𝑖′ 𝑋) + 𝑏𝑠

−𝜇𝑖′cos(𝜇𝑖′ 𝑋)] [sin(𝜈𝑗′ 𝑌)

+ 𝑏𝑤
−𝜈𝑗′cos(𝜈𝑗′ 𝑌)]𝑑𝑋 𝑑𝑌  

(22) 

And: 
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𝐼𝑖′𝑗′ = ∫ ∫ [sin(𝜇𝑖′ 𝑋) + 𝑏𝑠
−𝜇𝑖′cos(𝜇𝑖′ 𝑋)] [sin(𝜈𝑗′ 𝑌)

2𝑤

0

2ℎ

0

+ 𝑏𝑤
−𝜈𝑗′cos(𝜈𝑗′ 𝑌)]𝑑𝑋 𝑑𝑌 

(23) 

Using the orthogonal property:  

 

∫ ∫  [sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌) + 𝑏𝑤

−𝜈𝑗cos(𝜈𝑗 𝑌)][sin(𝜇𝑖′ 𝑋)
2𝑤

0

2ℎ

0

+ 𝑏𝑠
−𝜇𝑖′cos(𝜇𝑖′ 𝑋)] [sin(𝜈𝑗′ 𝑌) + 𝑏𝑤

−𝜈𝑗′cos(𝜈𝑗′ 𝑌)] 𝑑𝑋 𝑑𝑌

=0 if (𝑖 ≠ 𝑖′ & 𝑗 ≠ 𝑗′) 

(24) 

𝐼𝑖𝑗𝑖′𝑗′  can be calculated as: 

 

∫ ∫ [sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)]

2 [sin(𝜈𝑗 𝑌) + 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)]

2
𝑑𝑋 𝑑𝑌

2𝑤

0

2ℎ

0

=𝑊𝑖 𝐻𝑗 

(25) 

where 𝑊𝑖 and 𝐻𝑗 can be obtained as follows: 

 𝑊𝑖 = (𝑤(1 + 𝜇𝑖
2𝑏𝑠

− 2) + 𝑏𝑠
− sin2(2𝜇𝑖𝑤) +

1

4𝜇𝑖
sin(4𝜇𝑖𝑤)(𝜇𝑖

2𝑏𝑠
− 2 − 1)) (26) 

 

 𝐻𝑗 = (ℎ(1 + 𝜈𝑗
2𝑏𝑤

− 2) + 𝑏𝑤
− sin2(2𝜈𝑗 ℎ) +

1

4𝜈𝑗
sin(4𝜈𝑗 ℎ)(𝜈𝑗

2𝑏𝑤
− 2 − 1)) (27) 

Also, 𝐼𝑖′𝑗′  becomes: 
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𝐼𝑖′𝑗′ = ∫ ∫ [sin(𝜇𝑖 𝑋) + 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌)

2𝑤

0

2ℎ

0

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)]𝑑𝑋 𝑑𝑌 = 𝛽𝑖

𝑠𝛽𝑗
𝑤  

(28) 

where: 

 

𝛽𝑖
𝑠 =

1

𝜇𝑖
 [1 − cos(2𝜇𝑖𝑤)] + 𝑏𝑠

− sin(2𝜇𝑖 𝑤) 

 

(29) 

And: 

 𝛽𝑗
𝑤 =

1

𝜈𝑗
 [1 − cos(2𝜈𝑗 ℎ)] + 𝑏𝑤

− sin(2𝜈𝑗 ℎ) (30) 

Finally Eq. (21) can be simplified to: 

 

∴ 𝐵𝑖𝑗 =
−𝐹

𝑊𝑖𝐻𝑗(𝜇𝑖2 + 𝜈𝑗2)
𝛽𝑖
𝑠 𝛽𝑗

𝑤 

 

(31) 

Eventually by replacing Eq. (31) into Eq. (16), velocity profile can be obtained: 

 

𝑢(𝑋, 𝑌) = −𝐹∑∑
𝛽𝑖
𝑠 𝛽𝑗

𝑤

𝑊𝑖𝐻𝑗(𝜇𝑖2 + 𝜈𝑗2)
[sin(𝜇𝑖 𝑋) + 𝑏𝑠

−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌)

∞

𝑗=1

∞

𝑖=1

+ 𝑏𝑤
−𝜈𝑗cos(𝜈𝑗 𝑌)]  

(32) 

3.1.1 General Velocity Profile 

By replacing the (X, Y) with the original (x, y) the final form of the velocity profile becomes: 
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𝑢(𝑥, 𝑦) = 1/𝜇𝑤 (− 

𝜕𝑃
𝜕𝑧
)∑∑

𝛽𝑖
𝑠
 𝛽𝑗
𝑤

(𝜇𝑖
2+𝜈𝑗2)𝑊𝑖𝐻𝑗

[sin(𝜇𝑖 (𝑥+𝑤))+ 𝑏𝑠
−
𝜇𝑖cos(𝜇𝑖 (𝑥

∞

𝑗=1

∞

𝑖=1

+𝑤))] [sin(𝜈𝑗 (𝑦+ ℎ))+ 𝑏𝑤
−
𝜈𝑗cos(𝜈𝑗 (𝑦+ ℎ))] 

(33) 

3.1.2 General Flow Rate 

The flow rate can be calculated as [34]: 

𝑄 = ∫ ∫
−16 𝐹 𝛼2  ℎ2 

𝜋4
∑ ∑ sin(

𝑚𝜋

2𝛼ℎ 
𝑋) sin(

𝑛𝜋

2ℎ
𝑌)𝑑𝑋 𝑑𝑌

 

∞

𝑚=1

∞

𝑛=1

2𝑤

0

2ℎ

0

 (34) 

 

By substituting (32) into Eq. (34), we will have: 

 

𝑄 = ∫ ∫ −𝐹∑∑
𝛽𝑖
𝑠 𝛽𝑗

𝑤

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗
[sin(𝜇𝑖 𝑋)

∞

𝑗=1

∞

𝑖=1

2𝑤

0

2ℎ

0

+ 𝑏𝑠
−𝜇𝑖cos(𝜇𝑖 𝑋)] [sin(𝜈𝑗 𝑌) + 𝑏𝑤

−𝜈𝑗cos(𝜈𝑗 𝑌)] 𝑑𝑋 𝑑𝑌 

(35) 

After replacing Eq. (28) and some mathematical simplifications, the final form of the flow rate 

assuming general Navier BCs becomes: 

 𝑄 = (− 
𝜕𝑃

𝜕𝑧
)∑∑

𝛽𝑖
𝑠2 𝛽𝑗

𝑤2

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗

∞

𝑗=1

∞

𝑖=1

 (36) 
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3.1.3 General Average Velocity Distribution 

The average velocity can be calculated from the flow rate, as follows: 

𝑄 = �̅� × 𝐴 ⇒ �̅� =
𝑄

4 𝛼ℎ2
 (37) 

Eventually, by substituting Eq. (36) into Eq. (37), the general form of average velocity can be 

calculated: 

 �̅� =
(− 

𝜕𝑃
𝜕𝑧
) 

4 𝑤ℎ 𝜇𝑤
∑∑

𝛽𝑖
𝑠2 𝛽𝑗

𝑤2

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗

∞

𝑗=1

∞

𝑖=1

 (38) 

3.1.4 General Friction Factor 

Friction factor can be obtained from the following equation [34]: 

 𝑓 =
 (− 

𝜕𝑃
𝜕𝑧
) . 𝐷ℎ

2 

1
2 𝜇𝑤�̅�

×
1

𝑅𝑒
 (39) 

where hydraulic diameter 𝐷ℎ is: 

 𝐷ℎ =
4(2ℎ. 2𝑤)

2(2ℎ + 2𝑤)
=

4ℎ(𝑤)

ℎ(1 + 𝑤/ℎ)
=
4𝛼ℎ

𝛼 + 1
 (40) 

Substituting Eq. (38) into Eq. (39) results: 

 

𝑓 =
 (− 

𝜕𝑃
𝜕𝑧
) . (

4ℎ𝑤
ℎ + 𝑤

)
2

 

1
2 𝜇𝑤 (

(− 
𝜕𝑃
𝜕𝑧
) 

4 𝑤ℎ 𝜇𝑤
∑ ∑

𝛽𝑖
𝑠2 𝛽𝑗

𝑤2

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗

∞
𝑗=1

∞
𝑖=1 )

1

𝑅𝑒
 

(41) 
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Upon further simplifications, general form of Darcy friction factor can be obtained from Eq. (42): 

 
𝑓 =

128 ℎ3𝑤3

(ℎ + 𝑤)∑ ∑
𝛽𝑖
𝑠2 𝛽𝑗

𝑤2

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗

∞
𝑗=1

∞
𝑖=1

1

𝑅𝑒
 

(42) 

3.1.5 General Poiseuille number 

Finally, Poiseuille number, Po, another important non-dimensional number in fluid mechanics, 

can be defined by multiplying Darcy friction factor to Reynolds number [34]. Using Eq. (42), the 

general form of Po becomes as follows: 

 
𝑃𝑜 =

128 𝛼3 ℎ5

(1 + 𝛼)∑ ∑
𝛽𝑖
𝑠2 𝛽𝑗

𝑤2

(𝜇𝑖2 + 𝜈𝑗2)𝑊𝑖𝐻𝑗

∞
𝑗=1

∞
𝑖=1

 
(43) 

 

4. Conclusions 

Microcahnnels are integral parts of most lab-on-a-chip and microfluidic devices. Evaluating the 

fluid mechanics of flow through such channels have long been the issue of many research articles. 

Precise formulation of the problem is essential to compare and interpret the experimental results 

in these microchannels. In particular, as the characteristic length scale of a channel decreases, 

surface phenomena become largely important and play a crucial role in the physics of the problem. 

However, most of the problem in this field focused on no-slip BC with negligible side-walls effect. 

By taking into account the general Navier-slip BCs, both governing equations and related BCs 

become non-homogeneous. Specifically, the BCs were the so-called Robin BCs, the combination 

of the function and its derivatives. We tackled the problem by using the analytical approach of 

eigenfunction expansion technique. Accordingly, the most possible general forms of classical 
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equations describing the fluid mechanics of flow through hydrophobic microchannels with finite 

aspect ratios were analytically modified by considering the general Navier-slip length BCs. 
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