Microbial surfactants: the next generation multifunctional biomolecules for diverse applications- a review

Emmanuel O. Fenibo¹; Grace N. Ijoma²; Selvarajan Ramganesh³; Chioma B. Chikere⁴
¹World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Nigeria; feniboe1478@gmail.com
²Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, South Africa; nkechijoma@gmail.com
³Department of Environmental Science, University of South Africa – Florida Campus, South Africa; ramganesh.presidency@gmail.com
⁴Department of Microbiology, Faculty of Science, University of Port Harcourt, Nigeria; chioma.chikere@uniport.edu.ng
*Corresponding author: Email: feniboe1478@gmail.com

ABSTRACT
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms with Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerythritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with the synthetic surfactants in terms of performance with established advantages over the synthetic ones including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, the synthetic surfactants are a preferred option in different industrial applications, because of their availability in commercial quantities, unlike the biosurfactants. Usage of synthetic surfactants introduce new species of recalcitrant pollutants to the environment and lead to undesired results where a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus, interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications where biosurfactants have found useful, with emphases in petroleum biotechnology, environmental remediation and in the agriculture sector. Application of biosurfactant in these settings would lead to industrial growth and environmental sustainability.

Keywords: Biosurfactants; Biotechnological applications; MEOR; synthetic surfactants; sustainability
1. INTRODUCTION

Surfactants are a class of chemical compounds possessing amphiphilic (both hydrophobic and hydrophilic) moieties that distribute themselves between two immiscible fluids with the effect of reducing the surface/interfacial tensions and causing the solubility of polar compounds in non-polar solvents [1]. They display properties such as detergency, solubilization, and lubrication; have stabilizing and foaming capacity, and form phase dispersion [2]. Surfactants are either derived synthetically or biologically. Naturally derived surfactants are denominated biosurfactants since they are produced from biological entities, especially microorganisms. Fungi, bacteria, and yeast belonging to different species and strains are known for producing biosurfactants of a diverse variety of molecular structures [3]. Amongst the bacteria domain, genera of *Pseudomonas*, *Bacillus* and *Acinetobacter* dominate the literature space as excellent producers of biosurfactants [2]. The species among these genera that have been extensively studied are *Pseudomonas aeruginosa*, *Bacillus subtilis* and *Acinetobacter calcoaceticus*, amongst other species [1, 4, 5]. Bhardwaj *et al.* [6] and Morita *et al.* [7] had respectively studied *Candida bombicola* and *Pseudozyma rugulosa* representing fungi and yeast. Biosurfactants are broadly grouped into low molecular weight (LMW) and high molecular weight (HMW) biosurfactants based on their biochemical natures. The former efficiently lowers surface and interfacial tensions while the latter is more of an emulsion-stabilizing agent. On the basis of chemical composition, biosurfactants are grouped into glycolipids (rhamnolipids, sophorolipids, trehalolipids, mannosylerythritol lipids), lipopeptides (surfactin, lichenysin, iturin, fengycin, serrwettin), fatty acids/phospholipids/neutral lipids (phosphatidylethanolamine, spiculisporic acid), polymeric biosurfactants (emulsan, alasan, biodispesan, liposan) and particulate biosurfactants (vesicles, whole-cell) [8-10]. Lipopeptides, glycolipids and phospholipids belong to the LMW biosurfactants while the HMW biosurfactants include polymeric and particulate biosurfactants [11]. Microbial and synthetic surfactants are employed in diverse industries including cosmetics, food and pharmaceutical sector.

Surfactants have a versatile phase character and diversity of colloidal structures, thus find application in many industrial processes, especially where modification of the interface activity or stability of colloidal systems are required [12]. There are four categories of surfactants: anionic, cationic, nonionic and zwitterionic [13] based on the composition of the polarity of the head group. The anionic surfactants carry a negative charge, which is the most commonly available surfactants chemically and naturally [14, 15]. They have prominent application in personal care products and soaps because they are very effective in cleansing systems [16]. Further, they are also used in the oil industry, agriculture, health, cosmetics, remediation and bioprospecting because of their wide range hydrophilic-hydrophobic balance (HLB) values, emulsification property and their excellent property in reducing surface tension. The positively charged surfactants (cationic) are suited well for the surfaces with a negative charge, thus used as anti-corrosion/antistatic agents, flotation collectors, fabric softeners, hair conditioners and bactericides [17]. The nonionics are surfactants with uncharged hydrophilic head groups, which are good in low-temperature detergents and emulsifiers probably because of their low irritating effects [18]. The zwitterionic are amphoter surfactants with poor cleansing and emulsifying properties [14] but have excellent dermatological properties and skin compatibility [19]. Also, they are used in manufacturing shampoos and cosmetics. So, surfactants can be used in the petroleum industry, health, pharmaceuticals, in agriculture, detergents, cosmetics, bioprocessing, environmental remediation, in the textile, paint, leader, papermaking and other industries and activities where water could serve as an interactive medium [16, 20-25].

When synthetic surfactants are used to run industrial processes, two categories of pollutants are elicited: by-products from the industrial activity and the remnant of the surfactants. They are both hazardous to the environments and their receptors including man. These elicited chemicals remain persistent in the environment because they are hardly biodegradable. Besides, they consume more energy in a system where they are applied in comparison to biosurfactants [26]. With these disadvantages, it becomes imperative to look out for an alternative approach that will be environmentally suited without compromising performance. The use of biosurfactants in industries had proved that they are eco-friendly, cost-effective, biodegradable, biocompatible, easy to produce, low toxicity, chemical diversity, and stability against changes in environmental conditions. Despite their advances over the synthetic surfactants, the biosurfactants’ output is comparatively low in the global market [27]. This limitation is as a result of low productivity from the microorganisms and the heavy cost attached to downstream processes. With the research interest devoted to the commercial production of biosurfactants, in no time they will competitively substitute synthetic surfactants for the overall good and sustainability of the environment [28, 29-35].
The application of biosurfactants in certain industrial sectors which are critical for sustainable economic development, especially in developing countries would remain as a focus to every biotechnologist. Thus, this review attempts to offer an overview of the multifunctional properties of biosurfactants that influence their applications in current and diverse industrial sectors with emphases on petroleum biotechnology, environmental remediation and agriculture. Overall, the number of industries biosurfactants have found applications prove that it has the potentials to substitute synthetic surfactants in the nearest future.

2 Application of Biosurfactants in the Petroleum Industry

The observed demand for crude oil as major energy sources was 99.3 million barrels per day in 2018 and projected to reach 100.6 million barrels per day in 2019 [36]. With this rate of consumption, medium and light oil will be exhausted and reliance will be on heavy and extra-heavy oils. Consequently, surfactants will be required to extract such heavy oils from reservoirs for global energy consumption. Currently, microbial surfactants have been employed in exploring heavy oil with a record of comparative effectiveness without causing environmental impact because they are biodegradable, unlike the synthetic surfactants. This advantage of eco-friendliness is what synthetic surfactants cannot offer in the entire chain of crude oil processing- exploration, transportation and storage [37]. Also, biosurfactants are used in the formulations of emulsifying/demulsifying agents, anti-corrosives, biocides and other innovative applications in the petroleum industry [38]. Biosurfactants had proved their usefulness in residual oil recovery by solubilizing trapped oil in the rock formation, which is a prerequisite for enhanced oil recovery (EOR). By the same principle, they have also been used in washing contaminated vessels and facilitating pipeline transport of heavy crude [39]. Their anti-corrosion effects on oil prospecting assets are based on the orientation of their polar groups and their antimicrobial activities [40].

2.1 Extraction of crude oil from reservoirs

Oil production from well is achieved through primary, secondary and tertiary recovery methods. The primary and secondary methods employ natural pressure and induced pressure respectively to extract the oil in the reservoir. The recovery of oil by these first two methods is calculated to be 40% leaving 60% of the original trapped in the reservoir [41]. Further, to recover some of the trapped oil, tertiary (enhanced oil recovery) is employed using thermal and non-thermal techniques. The non-thermal technique uses chemical flooding and biological methods. The latter is termed microbial enhanced oil recovery (MEOR). Alternatively, the chemical flooding technique (conventional method) boost the pressure in the reservoir and also creates favourable conditions for the trapped oil recovery [41]. These conditions include the interfacial tension reduction between the oil and the displacing fluid, viscosity reduction, reduction of capillary forces, increasing the drive-water viscosity, oil swelling, alteration of wettability of reservoir rock [42, 43]. The use of synthetic chemicals does not only cause environmental pollution but it is also capital intensive [44]. Besides, poor selection of synthetic surfactants can cause low oil recovery, undesirable wettability alteration, pore surface blockage and rock dissolution through chemical reactions [45]. Biosurfactant applications in EOR can provide the favourable conditions, which are highlighted [46] and as well as resolve the disadvantages associated with environmental pollution and poor chemical selection. By simple definition, MEOR is an oil recovery technique in which microorganisms or their metabolic products are used to recover residual oil [47]. The procedure is usually accomplished by injecting biosurfactants producers followed by nutrient injection into the reservoir or by ex-situ production of biosurfactants and subsequent injection. The resultant is that microorganisms will produce emulsifiers/surfactants that will diminish the capillary forces inherent in the rock pore and reducing the oil-rock surface tension thereby resulting in releasing trapped oil [38, 44, 48]. In the presence of injected CO2, biosurfactants alter the gas wettability and CO2-brine-rock interfacial behaviour which improves the sweep efficiency of the injected fluid and displaced CO2 gas, hence resulting in oil recovery [49].

Application of MEOR had led to the reviving of reservoirs at a lower cost and minimal pollution in comparison to the use of the conventional EOR method [50]. More than 4600 oilfields have been carried out for MEOR in China with 500 wells via microbial flooding recovery [51]. A review conducted by Maudgalya et al. [52] reported the revival of 20 oil reservoirs out of 26 field trials. Khire [53] reported the use of an undisclosed biosurfactant (PIMP) to recover 11.2% of oil from a model reservoir and decreased injection pressure by 40.1%. while Golabi et al. [53] proved through laboratory treatability studies (sand-pack column experiment) recorded the success of 15% oil recovery using crude biosurfactants. One of the outstanding successes of MEOR is the production of 9.75 x 104 t additional crude oil over a decade in the Shengli oil field, China [55]. Apart from being used in MEOR for residual oil recovery, they also inhibit corrosion, arising from the co-introduced air [38] and microbial activities. Biosurfactants interact with metal surfaces and orient the lipophobic head to the surface and the lipophilic tail to the external environment thereby creating an unfavourable condition for corrosion. Furthermore, the antimicrobial effect of
biosurfactants reduces the biomass of sulfate-reducing bacteria (SRB) and inhibit biofilm formation which is both corrosion agents in the reservoir [56, 57]. For instance, bacterial species such as Bacillus licheniformis and Pseudomonas aeruginosa has been shown to have a potential antimicrobial effect on different strains of SRB [58]. A pictorial illustration of how biosurfactants aid MEOR is shown in Fig. 1.

Figure 1. Working principle of biosurfactants in microbially enhanced oil recovery (MEOR)

Extensive literature review on MEOR had shown that anionic glycolipids are preferred category of surfactants for MEOR because of their efficient surface reducing properties, oil spreading activity and the formation of stable emulsion with crude oil [59-61] This class of biosurfactant particularly surfactins and rhamnolipids are well produced by Bacillus subtilis and Pseudomonas aeruginosa respectively. These microorganisms are very common in the environment and are very easy to cultivate in an artificial setting. Crude biosurfactants produced by these organisms can be effectively used for MEOR processes since they can influence the interfacial tension reduction between the heavy oil found in reservoirs and the displacing fluid [44]. Introducing crude biosurfactants alongside with the surfactant producing microorganisms will improve performance efficiency. This is because biosurfactants are tolerant to a wide range of physicochemical and environmental changes such as high salinity (≤ 20%), pH (2-12) and temperature (30-100 °C) [62, 63] as evident in reservoirs. By virtue of fitness and adaptability, the co-introduced microorganisms would keep producing biosurfactants in the formation. Alternatively, indigenous microorganism flooding (IMF) would serve as the same purpose, if not superior. The IMF entails stimulating the microbes indigenous to the reservoir with air and balanced growth media [51, 64] to produce biosurfactants and CO₂. The produced CO₂ will not only increase the pressure in the rock formation but will reduce the viscosity of the heavy oil and react with carbonate to increase the permeability of the formation. The effect of the elicited CO₂ will invariably lead to more oil extraction. The choice of Bacillus and Pseudomonas in MEOR is appropriate because they thrive well in extreme habitats, including reservoir rock formation characterized by high salinity, pressure and temperature.

2.2 Biosurfactants for the formulation of fuels

Diesel fuel is popularly used in electric energy production, transportation and factories around the globe with associated exhaust made up of black carbon, particulate matter (PM), nitrogen oxides (NOx), sulphur oxides (SOx), carbon dioxide (CO₂) and carbon monoxide (CO) [65, 66]. Hardware technology has been employed to reduce these pollutants, especially PM with prohibitive cost [35]. The alternative solution lies in fuel-based technology that will reduce these pollutants without compromising performance nor compensating for the engine’s performance. In pursuant to this, several research works have been carried out on the use of diesel-water blend. Diesel-water blend is the same thing as a water-in-diesel emulsion (WIDE), which have the potential to reduce nitric oxides (NOx) and particulate matter (PM) emission simultaneously with improved performance level. However, the phase separation tends to set in WIDE after a long period of time in storage condition [38]. Consequently, surfactants are needed to stabilize the emulsion with a view to ensuring that the dispersed water droplets remain in suspension within the diesel. In such stabilized form different additives can be added to the blend to improve performance. Currently, fatty acid esters, alcohol ethoxylates, sorbitan monooleate, tween 20, tween 80, span 80, Gemini, fatty acid ethoxylates etc. are the popular surfactants used in stabilizing diesel emulsion [67, 68]. Those surfactants exhibiting HLB ranges from 9
to 10 and their amount in the blend is between 0.5 – 5% by volume [35] while the water content is between 5-15% w/w [69].

However, the synthetic surfactants are expensive and serve as environmental pollutants of concern, hence the need for a cost-friendly and sustainable alternative. This superior alternative chemical is biosurfactant. An attempt was made by Leng et al. [70] in using rhamnolipids to obtain a finer glycerol/water-in-diesel microemulsion. These microemulsion fuels were stored at 4 °C without phase separation for over six months and further, it could be directly introduced into fuel to improve the cold flow property. Pekdemir et al. [71] had earlier reported rhamnolipid to be excellent emulsifier of diesel in both distilled water and seawater. Such microemulsion defined by surfactant produced by *Pseudomonas aeruginosa* AP02-1 can stay up to 4 to 6 months [72]. Though the physicochemical properties of glycerol/water-in-diesel microemulsion are similar to those of diesel, the microemulsion can be formed spontaneously with low consumption of energy. Such fuel-blend can form a super stable emulsion to contain a variety of additives such as anti-foaming agents, anti-rust agents, ignition improvers, lubricity enhancers and metal deactivators [73]. It is important to note that diesel-water blend improves combustion efficiency, reduces unburned hydrocarbons, reduces particulate matter and pollutant emission besides the benefit of cost-saving [38].

From the foregoing, it is instructive to say that when biosurfactants are well applied in the diesel-water blend it can give the best result a synthetic surfactant (or combination of same) can offer. This is because biosurfactant, like rhamnolipid, can have a very low critical micelle concentration (CMC) [72] which is unique for water-in-oil emulsion. A species of the longer chain heteropolysaccharides and proteins emulsifying-type biosurfactants could have been a better option [72]. While the biosurfactant plays the most influential role in the emulsion stabilization, the water component via microexplosion, which plays a major role in improving combustion performance, reduces NOx emission (due to cooling effect arising from water vapourisation), reduce the formation of PM, soot and hydrocarbons (due to reduced rate of reaction) [74, 35]. A comparative study conducted by Raheman and Kumari [75] on biodiesel JB10 blend with water showed that that the JB10 blend is superior to the parent biodiesel.

2.3 Biosurfactants in biodesulphurization

Certain heavy crude oil contains sulphur and nitrogen, which compromise the grading of hydrocarbon fuel and emits toxic gases such as SOx and NOx to the atmosphere. These gases have been implicated in causing health threats, including respiratory and cardiopulmonary disease [76]. Besides, these gases are also responsible for the cause of acid rain which in turn facilitates wear and tear of materials and skin cancer. The conventional method used in removing sulphur is hydrodesulphurization (HDS) which requires a metallic catalyst, high pressure and temperature. This method is targeted mainly for the thiophene-based aromatic heteroclanes: thiophenes, dibenzothiophenes, benzo thiophene [77] however the listed thiophenes has a low desulphurization efficiency [78]. Thus, an alternative approach is used in the petroleum industry to get rid of sulphur from sulphur laden oil. It is called biodesulphurization (BDS). It entails the use of competent microorganisms to selectively remove sulphur from organosulphur hydrocarbons to complement HDS without degrad ing its carbon skeleton. Some of these organisms are *Rhodococcus*, *Lysinibacillus*, *Pseudomonas*, *Sphingomonas*, *Bacillus*, *Gordonia*, *Acinetobacter*, *Arthrobacter*, *Mycobacterium*, *Klebsiella*, *Calderome myces Paenibacillus*, and *Enterobacter* [79-81]. The availability of these sulphur-aromatic compounds to the microorganisms is one of the most challenging factors in the biodesulphurisation process. Mobilization and solubilization effect can address this limitation to some extent by using surfactants. However, between the two categories of surfactants, the biosurfactants tend to be more advantageous for reason of its cost-effectiveness, eco-friendliness, specificity, biocompatibility, and ease of production.

The dibenzothiophene (DBT) represents the model compound of sulphur-containing species of crude oil and fuel [82] *Rhodococcus erythropolis* IGTS8 (a model bacterium) catalysed DBT via what is known as the 4S pathway in defining the BDS process (Fig. 2). Briefly, this pathway involves four enzymes including DszA, DszC (flavin-dependent monooxygenase), DszB (desulphinase) and DszD (Flavin reductase). The DszC converts DBT into dibenzothiophene sulfoxide (DBTO) and dibenzothiophene sulfone (DBTO2). The DBTO2 is converted to 2-hydroxydibenzothiophenyls-2-sulfinic acid (HBPS) by the DszA enzyme [83]. Finally, the HBPS is hydrolysed into 2-hydroxyphenyl (HP) and sulphite by the DszB enzyme [84]. Increased BDS activities can be enhanced by recombinant strains through the manipulation of a Dsz gene [85]. For example, Raheb and Hajipour [86] used an engineered biodesulphurisation bicatalyst (*Pseudomonas aeruginosa* ATCC 9027) for BDS reaction. The result of using engineered microorganism produced rhamnolipid which lowered energy consumption (replacing the bulk energy to the interface) in the DBT transformation process. Besides, the biosurfactants produced can resolve the mass transfer limitation of DBT through mobilization and solubilization techniques. Solubilized DBT would be facilitated to approach the interface of the bacterium and be catalysed by the enzymes from the bacterium. In a separate study, Amin et al. [87] conducted a two-stage cell bioreactor for surfactin production using *Bacillus subtilis* and BDS process.
using *Rhodococcus erythropolis*. The effluent from the *Bacillus* bioreactor was fed into the *Rhodococcus* bioreactor containing DBT in hexadecane with the result of increased BDS rate and productivity. A lipopeptide was used by Lyu *et al.* [88] to show that biosurfactant can significantly increase the yield of 2-HBP. The formation of the 2-HBP marks the end of the BDS process.

![Figure 2. The four-step bio-desulfurization (4S) pathway](image)

By principle, one would expect the 2-HBP to partition into the hydrocarbon phase, while the S_0 is collected in the aqueous phase alongside with the biocatalyst. This biphasic partitioning could be enhanced by the use of a de-emulsifier for purer fuel. Genetic manipulation of the genes involved in BDS obviously would increase desulphurising activities. However, any genetic engineering approach that would regenerate cofactors means facilitating the first two steps of the 4S pathway since the DszC and DszA (enzymes for the first two steps) is greatly influenced by cofactors dependent monooxygenase [89]. It is also confirmed by Li *et al.* [90] that rearranging the dszABC operon to dszBCA in participating cells would give a 12-fold higher activity.

2.4 Transport of crude oil by pipelines

Crude oil is usually transported over extended distances from the extraction-fields to strategic points such as refineries. Transportation of highly viscous crude oil has the problem of poor flowability because of the associated high asphaltenes and paraffin depositions, asphaltene muds and plugging problems in the pipeline [91, 92]. Physically, higher capacity pumps and pipeline dimensions can be remade to restart the pipeline with higher pressure [93], heating
or the use of toluene and xylene as a choice solvent for dissolving mud. Obviously, these solutions incur the high cost of production and release highly toxic wastes to the environment [39]. In a field trial bioemulsifier rather than a biosurfactant was used to transport Bobscan heavy crude with a 200,000 cp viscosity value. The bioemulsifier was used at a concentration of 2 parts per thousand, relative to the oil to form 70% w/v oil-in-water stable emulsion. Such emulsion can be transported for 26,000 miles [38] because they have a great capacity to stabilize the oil-in-water emulsion. A study from Amani and Kariminezhad [94], investigated emulsan produced by Acinetobacter calcoparus PTCC1318 showed a positive result in cleaning a steel tubing a room temperature which connotes that it can be used in pipeline transportation.

Unlike water-in-oil emulsion, the stabilization of emulsion in oil-in-water noted in crude oil transportation via pipelines requires phase separation at their destination (refinery). Thus, interfacial tension reduction is not a priority and the tension active molecule property must have a high HLB. Thus, biosurfactants with high HLB (bioemulsifiers) are suitable to perform the function of increasing the mobility of the oil, excellently. Among the bioemulsifiers, emulsan has been given the highest preference because they have a good number of reactive groups that make the molecule hold tightly to droplets of oil [95] thereby forming barriers that stop drop-coalescence. Mazaheri-Assadi and Tabatabaee [39] reported the use of emulsan (amongst other powerful bioemulsifiers: alasan and biodispersan), produced by Acinetobacter strains as the most effective to reduce the viscosity of oil in transit. On reaching its destination, the hydrocarbons can be treated with emulsane enzymes to remove the bioemulsifiers from the emulsion [74] or de-emulsifier to de-water the emulsion. The application of emulsan or other analogues of emulsifiers would have a challenge when a huge volume of oil is required either in producing the required quantity of the pure emulsifiers or the mechanism of mixing with the high volume of the oil. Again, where blockages have set in, the application of bioemulsifiers may have no positive effect. Hence, the application of emulsifiers may serve as a prophylactic measure to avoid deposition of a new pipeline or a physically cured one.

2.5 Oil storage tank cleaning

The periodical cleaning of waste and heavy oil fraction tanks presents a challenge due to deposits formed in the tank. At times these washings are informed by planned repair of leaking tanks. The washing of these deposits requires different conventional methods which are hazardous, time-consuming, laborious and equally an expensive procedure [96]. Currently, the washing operation may involve solvent liqification, hot water spraying and land farming disposal [97]. With microbial biosurfactants, the oil-in-water emulsion will be formed thereby decreasing the viscosity of sludge and oil deposits to facilitate the pumping out of the waste. A study by Saeki et al. [98] reported how sludge from a tank-bottom was treated by using biosurfactant JE1058BS, (from Gordonia spp.) with a superlative result that remained effective for 21 days. Later, another study from Diab and Din [99] investigated the effect of the supernatant from P. aeruginosa sp. SH 29 applied to the cleaning of oil-contaminated vessels and discovered that in 15 minutes oils was recovered from the bottom and walls of the vessels; and floated on the supernatant as a distinct phase. Further, Silva et al. [100] confirmed that Pseudomonas cepacia CCT6659 biosurfactant for cleaned beaker walls contaminated with an oil layer by 80%, which gave credence to this biosurfactant as oil storage tank the cleaner. The application of biosurfactant in tank bottom sludge will form an oil-in-water emulsion and consequently reduce the viscosity of the oil deposits. At reduced viscosity, the pumping of the oil deposit will be greatly facilitated [95]. Apart from this cleaning purpose, crude oil can also be recovered, however when the emulsion is broken. This can be facilitated by using de-emulsifiers.

3 Biosurfactants for environmental remediation

The petroleum industry releases its waste generated from its three ties of chains: exploration/production, refining and transportation. These wastes include, amongst other things, drill waste, produce water, oil spills, tank bottom sludge, effluents, gas emission, and oil sludge from maintenance operation. These wastes are received by different eco-settings including atmospheric air, terrestrial water and land systems. Common pollutants’ components received by these different environmental media are polyaromatic hydrocarbons (PAHs), waxes, asphaltenes, monoaromatic hydrocarbons (BTEX), paraffin, and heavy metals. These pollutant species present themselves as a global concern due to their toxigenic effect on healthy microorganisms, plants, animals and humans. Consequently, the need to remediate them becomes pertinent in the different environmental media. Different methods of treatment are available ranging from physicochemical to biological [101]. The biological method, denominated as bioremediation is trendy because of its eco-friendliness, cost-effectiveness and simplicity. In whatever variant of bioremediation, one would want to employ for remediation, bioavailability remains the first point of consideration. This is where surfactants come into play in environmental remediation. This class of chemicals represents itself as
either synthetic or natural. Both classes of surfactants are compatible with different wastes-inundated environments: soil and aquatic systems.

3.1 Bioremediation of hydrocarbon contaminated marine environment

The inadvertent spill of hydrocarbons during transport and leaks from drilling rigs into aquatic bodies such as lakes, ponds, bays and oceans is enormous [102]. The consequences too are enormous: fundamental disruption of the aquatic food chain, death of aquatic lives, poor penetration of sunlight etc. Remediation of the polluted marine water body is a necessary response that needs to be undertaken and urgently too. Conventional methods require the application of dispersants (with complex additives including surfactants) to form fine droplets out of oil slicks and oil-in-water emulsion from mousse oil [103]. However, these chemical dispersants are toxic to various aquatic lives and are hardly biodegradable [104]. Thus, the eco-friendly, biodegradable and effective dispersant is required. Biosurfactants could serve these purposes in addition to their cost-effectiveness. The marine ecosystem provides potential habitats and niches for diverse microorganisms [105] including hydrocarbonoclastic. In addition to introduced biosurfactant, more surface-active compounds are elicited in the course of utilizing the exposed hydrocarbon droplets as a source of carbon and energy [106]. Marine bacteria that have been cited as biosurfactant producers, as well as hydrocarbonoclastic in nature, include Alcanivorax, Halomonas, Rhodococcus, Pseudomonas Bacillus, amongst others [107, 108].

An investigation conducted by Whang et al. [109] using rhamnolipid and surfactin revealed that 40 mg l\(^{-1}\) addition of surfactin in the medium enhanced biomass growth with 90% diesel degradation, compared with 40% degradation in a control batch experiment. A decrease in both biomass and degradation ensues when the concentration of biosurfactants was above 40 mg l\(^{-1}\). Addition of rhamnolipid to the diesel-water systems from 0 to 80 mg l\(^{-1}\) increased biomass growth and diesel degradation. Besides, biosurfactants produced from Ralstonia picketti and Alcaligenes piechaudii had also proved effective in the degradation of hydrocarbons up to 80% [110]. Another study by Feng et al. [104] recorded dispersant effectiveness of lipopeptide produced by Bacillus subtilis HSO1121 at a low surfactant-oil-ratio. Besides, the biosurfactant excellently stimulated microbial oil degradation. A study from Shah et al. [111] formulated a binary mixture of sophorolipid and choline laureate as an effective dispersant, better than the individual surfactant, for oil spill remediation.

The biosurfactant dispersant does not only increase the surface area (formation of micelles due to emulsification) but also increases the solubility and mobility of the hydrocarbon pollutants. On the aspect of the microorganisms (especially bacteria), the biosurfactant induces cell surface alteration to be more hydrophobic thereby raising the pinocytosis index of hydrocarbons by the microorganisms [102]. It is instructive to note that the toxigenic effect of the hydrocarbons selectively shifts the microbial community to favour autochthonous hydrocarbon-degrading organisms [112] in the impacted environment. Thus, the adapted microorganisms utilize the soluble and bioavailable hydrocarbons for cell growth and proliferation. In the process, the quantity of the spilled hydrocarbons becomes drastically attenuated in the presence of contributing consortium of bacteria and fungi. However, when the optimum concentration of the biosurfactant is exceeded the biomass growth and degradation rate will be negatively affected. A critical examination of biosurfactant dispersant used in marine remediation indicates that biosurfactant with low CMC is effective and concentration of the dispersant beyond 1-1.5 CMC of the biosurfactants becomes ineffective for biodegradation enhancement [9, 102, 109]. Beyond the optimum concentration, biosurfactants cover the biosurfactant-hydrocarbon aggregates thereby preventing the microorganisms from accessing the hydrocarbons for utilization [113] or the presentation of the biosurfactants as preferable substrate [114].

3.2 Bioremediation of hydrocarbon contaminated soil

Soil serves as a repository to hydrocarbons from oil and gas industry-related activities such as exploration and production, leakages from underground/aboveground storage tanks, pipeline leakages, effluents and industry and transportation-related accidents [115]. The hydrocarbon pollutants constitute n-alkane, cycloalkane, monoaromatic hydrocarbons (MAHs), polyaromatic hydrocarbons (PAHs), resins, asphaltenes, and heavy metals. Apart from the toxigenic effects, they possess physicochemical properties that make them insoluble and recalcitrant. Assorted means of remediation in soil exist which include physical, mechanical, chemical and biological [116]. Amongst all, the biological method stands out because it drives the remediation process on natural course using renewable organic resources and low technology. These renewable organic resources include plants, microorganisms and surfactants from them. Surfactants from these organisms, especially from microorganisms have a critical role to play in the remediation of soil contaminated with hydrocarbons.
Bioremediation of hydrocarbon contaminated environment, like soil, depends on the bioavailability of the hydrophobic compounds. This could be achieved through different mechanisms which include modification of microbes’ cell surface, solubilization, and desorption of the pollutants [117]. A study conducted by Shin et al. [118] used a rhamnolipid to remediate phenanthrene contaminated soil by the combined solubilization-biodegradation regime. In the solubilization step, an appreciable percentage of the contaminant was removed and a significant decrease of phenanthrene recorded during the degradation stage. Further, Bustamante et al. [119] noted the influence of alasan on the biodegradation of polyaromatic hydrocarbons (PAHs): the rate of fluoranthene mineralization was above 50% (using 500 µg ml$^{-1}$ of alasan) with an attendant significant increase in the rate of phenanthrene mineralization by Sphingomonas paucimobilis EPA505. Similarly, Jorfi et al. [120] recorded 86.4% of pyrene degradation with an initial concentration of 500 mg/kg. Complete degradation of aromatic hydrocarbon was demonstrated using a chemical surfactant (FinasolOSR-5) combined with trehalose lipid biosurfactant [121]. A simplified mechanism of biosurfactant action is illustrated in Fig. 3 for a better understanding of hydrocarbon bioremediation in soil.

Hydrocarbons usually have a high octanol-water coefficient constant ratio, which increases with molecular weight. This value resonates with their insolubility and insensitivity to degradation. The presence of biosurfactant and its property of mobilization, emulsification, and solubilization makes the hydrophobic organic matters, including hydrocarbons to be soluble and bioavailable. In the presence of biosurfactants, the contact angle of the soil-oil system increases but reduces the capillary force binding the soil and oil together [122]. This defines the mobilization process and occurs below the biosurfactant critical micelle concentration (CMC). Solubilization mechanism ensues above the CMC with the formation of micelles and increases the solubility of hydrocarbon [123]. The soluble hydrocarbon can be made available to cells (bioavailability) by emulsification of the non-aqueous phase liquid contaminants and facilitated-transport of the pollutants in the solid phase. Bioavailability will greatly enhance microbial degradation and phytoremediation of hydrocarbons in the soil matrix, given that all other environmental factors and nutrients are optimal. Also, by the absorption of biosurfactants to hydrocarbon particles decreases the path length of diffusion between the contaminant and the microorganisms [9], increases the uptake of hydrocarbons by microorganisms and enhances the enzyme activity in the soil [113]. Though subject to more robust research, it has been reported that rhamnolipids produced by Pseudomonas aeruginosa strain specifically degrade hexadecane, indicating that specific biosurfactant does degrade a particular type of hydrocarbon [108]. Rhamnolipid has been reported in the remediation of diverse kinds of hydrocarbon more than any other biosurfactant [120].

![Figure 3. Hydrocarbon and biosurfactants interaction with soil during the bioremediation process. Adapted from [117]](image_url)
3.3 Soil washing

Soil washing is an ex-situ remediation technique that separates hazardous compounds from (excavated) soil by washing the contaminated soil with a liquid often incorporated with chemicals. The main aim of soil washing is to remove contaminants that bind to fine-grained soils like clay, silt, sand and gravels [124]. The wastewater can then be treated and finally disposed of while the washed soil can be reused as backfill at the excavated site. The technique can be applied to soil contaminated with fuels, metals, semi-volatile organic compounds and pesticides. Washing fluid may be composed of water, water/chelating agents, water/surfactants, bases or acids, or organic solvents [125] depending on the target contaminant. Waste of organic compound origin and chlorinated hydrocarbons contaminants are best removed by soil washing. The reason for the surfactant is to increase the solubility of non-aqueous phase liquids (NAPLs) through the reduction of the surface tension between the contaminant and the soil particles [126]. Common synthetic surfactants used for soil washing are Tween 80 (a non-anionic model), sodium dodecyl sulphate (an anionic model), and alkylbenzyldimethylammonium chloride (a cationic model). However, in recent times, biosurfactants are been used in soil washing technology mainly because of their ‘green’ advantage. It is important to note that if the biosurfactants are labile it will not be an efficient option in soil washing [127].

Rhamnolipids have been confirmed as soil-washing agents for improved removal of hydrocarbons and metals. Rhamnolipid-enhanced soil washing targeted for hydrocarbon results from mobilization and solubilization [30, 128 to facilitate separation of the pollutants from the solid particles and increase the partition of the contaminants in the aqueous phase [129]. A study from Ochoa-Loza et al. [130] proved that monorhamnolipid sorption on soil matrix constituents is concentration-dependent and that the monorhamnolipid formed sorbs more strongly alone compared to mixed rhamnolipids. Lai et al. [131] did a comparative study and proved that rhamnolipid removed total petroleum hydrocarbons from heavily polluted soil up to 63% against surfactin (62%), Triton-100 (40%) and Tween 80 (35%). Similarly, Conte et al. [132] carried out a comparative study between humic acid and synthetic surfactants (SDS and TX100) alongside with water in the washing of polluted soil. They were able to prove that the organic surfactants removed pollutants up to 90%. Hence, the application of natural humic acid solutions seems to be a better choice for soil washings of highly polluted soils because of their additional microbial activity promotion capacity, unlike chemical surfactants. Though some level of success has been recorded with biosurfactant application in soil washing, soil sorption remains a key limitation to the application of biosurfactants.

Soil organic matter (SOM) is the most influential factors that govern hydrocarbon sorption to soil particles, though pH, soil texture, clay minerals (smectite, illites and kaolinite being most common) and cation exchange capacity also contribute [133]. The presence of biosurfactants can desorb hydrocarbons, but higher in freshly polluted soil than aged soil due to their solubilization property at a concentration higher than their CMC in the oil-in-water system which results in an increase in the mass transfer of the pollutants from the oil phase to the aqueous phase. Prior to the solubilization stage, the biosurfactants, by virtue of their surface/interfacial tension reduction address the mobilization phase with markers such as capillary force (the force that holds the oil and soil) reduction, wettability, and contact angle reduction [134]. This happens at a concentration below the CMC of the biosurfactants. The mobilization mechanism of the biosurfactant depends on the ionic charge of the biosurfactants [134-137]. Thus, the concentration of the biosurfactant may get reduced in the process. Anionic biosurfactant would perform better as a washing agent [138] than a cationic or nonionic surfactant and the produced anionic wastewater is easier to destabilize through the charge-neutralization mechanism. A desorbing medium other than biosurfactant (which has similar structure and composition) can be used alongside with the biosurfactant to enhance desorption of hydrocarbons from polluted soil like for better result [133]. In the case of loss concentration, a calculated homogenous biosurfactant can be periodically introduced in the washing system to achieve the remediation goal [122]. Rhamnolipids are among biosurfactant that has met most of these requirements for the use as a washing agent in soil washing technique. This is supported by the god number of published articles on the use of rhamnolipid for soil washing [139, 140].

3.4 Metal bioremediation

Metals are persistent soil contaminants and constitute varying degrees of health hazards to animals and humans. Metal contamination has been linked to mental and physical retardation, birth defects, cancer, liver and kidney damage, learning disabilities etc. [141]. Remediation of soil contaminated with toxic metal such as lead,
cadmium, zinc and chromium has been by landfilling [142]. Currently, renewed interest in utilizing microorganisms to effect in-situ remediation of metal-contaminated surface and subsurface soils have been intensified due to the high cost of conventional remediation [9]. The goal of surfactants utilization for both organics and metals are similar: to increase the solubility of the contaminant of interest to facilitate the removal by degradation or flushing. However, it is instructive to note that there are some key differences between metal-contaminated and organic-contaminated soils that need to be considered. Unlike organic contaminants, heavy metals are not biodegradable and are mostly found as a cationic species [143]. Metal pollutants can either be removed or immobilized (being transformed from one chemical state to another, either by a redox process or alkylation, as a result changing in their mobility and toxicity potency) [144, 145].

Like other pollutants remediation, metal remediation is being currently pursued eco-friendly approaches which demand the use of renewable resources like plant, microorganisms and biosurfactants for obvious reasons.

Biosurfactant-induced remediation of metals adopts different mechanisms: sorption, desorption, and complexation [146]. Microbial surfactants have been employed both in soil washing and pump-and-treat techniques to assist in the dispersal, desorption and solubilization of metals in polluted soil and groundwater. Research carried out by Ochoa-Loza et al. [147] reported rhamnolipid-metal stability constants to be similar or higher than stability constants recorded by Pb, Zn, Fe, Ni, and Mn with organic acids used for conventional metal complexation. Franzetti et al. [148] noted that desorption of metal by biosurfactant depend on the complexation formation in line with Le Chatelier’s principle and mobilization based on interfacial tension reduction. Overall, the mechanisms driving biosurfactant-metal binding are precipitation-dissolution, counter-ion association, electrostatic interaction and ion exchange [149]. More information about soil washing for metal removal can be found in the review done by Delil and Koleli [150], Wuana and Okiemen [142], Kim and Song [151] used soil washing method using a flocculating agent to remediate 88% of Cs. Rhamnolipid-aidered washing method was proved by Nielson et al. [152] to be more efficient than a synthetic surfactant (carboxymethyl-β-cyclodextrin). Sophorolipid-enhanced soil washing method was used to remove 83.6% of Cd and 44.5% of Pb by Qi et al. [153]. But in the presence of sophorolipid producing Starmerella bombicolla, the removal increased to 95% of Cd and 52% of Pb. Liduno et al. [154] used biosurfactant-aidered phytoremediation to efficiently remove Ni (41%), Cr (30%), Pb (29%), and Zn (20%). Sarubbo et al. [155] used crude biosurfactant extracts from Candida guillienondii UCP 0092 to remove 98.8% of ZN, 89.3% of Fe and 89.1% of Pb. These pieces of evidence demonstrate that natural tensioactive biomolecules can play a significant role in metal removal in a contaminated ecosystem, especially soil.

Since contaminant sorption relies on the chemical properties of both the soil and the metal, the choice of surfactant used for contaminant complexation will be essential [143]. The addition of a biosurfactant could promote desorption of heavy metals from its solid phases. As a principle, anionic biosurfactant forms electrovalent bonds with the metals, thereby resulting in nonionic complexes stronger than that between soil and metal. The complexes thus formed with the biosurfactant desorb from the soil matrix and migrate to the soil solution and subsequent incorporation into micelles (Fig. 4). Though in the absence of micelles metal can still be desorbed because the rate-controlling mechanism is the surface reaction step. The mechanisms would either form an outer sphere or inner-sphere complexes that could be facilitated by oxide protonation/deprotonation in the presence of water molecules. Within this working framework, the presence of foreign cations and high salinity will drastically reduce the efficiency of the complexation mechanism [156]. Rhamnolipids and surfactins have been shown to be the popular biosurfactants used for metal remediation. Addition of adapted microorganisms would have a positive effect on the overall success of the metal remediation process. Microorganisms can influence the mobility of metal indirectly by adjusting the pH or by stimulating substances which could change the mobility of the metals [122]. Studies have shown that nickel toxicity is reduced by increasing the pH by a variety of different organisms, including yeast (Cryptococcus terreus), filamentous fungi (Penicillium vermiculatum, Rhizopus Stolonifer), and bacteria (Serratia marcescens) [122]. Though explanations behind this detoxification process might be high pH conditions, microorganisms also have the capacity to take up or adsorb great amount of the metal ions through metabolism-dependent uptake [157].
4 Application of Biosurfactants in Agriculture

Improved soil quality is a prerequisite for agricultural activities and crop production. Soil quality for agricultural use is affected by the presence of inorganic and organic pollutants which affect the biotic and abiotic components of the soil [158]. To improve the quality of such impacted soil remediation is needed to reduce organic and metal pollutants to an acceptable or tolerable level as seen in the previous section. Growth of plants in a healthy land needs interaction with soil microorganism in the rhizosphere. This plant-microbe interaction is essential for both plants and the microbes, especially bacteria [159]. Factors that aid these interactions are biofilm formation on the root surface, the release of quorum sensing molecules and microorganism motility [160]. This symbiotic relationship influences nutrient availability and uptake critical for plant growth promotion [31]. According to Ma et al. [161] plant growth-promoting microorganisms (PGPMS) alleviate metal phytotoxicity, stimulate growth through the induction of defence mechanisms against pathogens and change metal bioavailability in soil via acidification, chelation, precipitation, complexation and reduction-oxidation reactions. Interactions of pests and pathogens overwhelm plants in the natural ecological settings. Human intervention in pest/pathogen control, enhancement of plant-microbe interaction and soil remediation is key with a view to maximizing crop yield and turnover. Conventionally, synthetic chemicals are used in all these areas with a heavy toll of environmental degradation and health risks. To lessen the burden of agro-chemical pollutions and health issues arising from them, the quest for green technology becomes imperative. A green molecule that has such a multifunctional application to address the raised concern is biosurfactant.

Biosurfactants have shown to play a huge role in bioremediation of hydrocarbons, metal detoxification and/or removal; and in soil washing technology [112, 113, 117, 119, 120, 135, 147, 148, 150]. Research conducted by Sachdev et al. [158] reported that biosurfactants aid nutrient uptake, including root cell differentiation. Further, biosurfactants produced by the root-associated bacteria increase nutrient availability and uptake and support the efficient distribution of metals and micronutrients in the soil, thus aid plant growth promotion [31], protection against toxic substances and serves as a carbon source. Several biosurfactants have biocontrol value of sustainable agriculture because these molecules have antimicrobial activity against plant pathogens [158]. Biosurfactants produced by Pseudomonas putida had proved to lyse zoospores of Phytophthora capsici: the causal agent of damping-off of cucumber [162]. Biosurfactant produced by strains of Pseudomonas fluorescens had proven effective against Pythium ultimum, Fusarium oxysporum and Phytophthora cryptogea which are notorious plant pathogens [152, 163].
Biosurfactants also inhibit aflatoxin production by Aspergillus spp. which infects crops such as peanuts, cottonseed and corn during storage [158]. Thus, biosurfactants play various roles in plant-pathogen elimination in agriculture and at different processes. Conventional arthropod control strategy involves applications of broad-spectrum chemicals and pesticides, which often produce undesirable consequences. Therefore, innovative approaches need to be sought to address the high cost of chemical control and chemical resistance of insect population associated with the conventional system. Lipopeptide extracted from several bacteria are active against fruit fly Drosophila melanogaster, hence can be used as a biopesticide [164]. Di-rhamnolipids, according to Kim et al. [165] possess insecticidal potent against the green peach aphid. In addition, Parthipan et al. [166] reported how biosurfactants from Bacillus subtilis A1 Pseudomonas stutzeri NA3 inhibited young instars of Anopheles stephensi and reduced the longevity/fecundity of adult mosquitoes.

Biosurfactant properties such as low CMC, interfacial surface reduction and emulsification which influences mobilization and solubilization play a vital role in metal and hydrocarbon remediation. More so, the wettability property of biosurfactant does counter the micronutrient poor solubility created by soil organic matter content, adsorption surface, pH, nutrients interaction and soil texture [31], thereby facilitating the availability and uptake of nutrient. The working principle is that the biosurfactants chelate the trace metal hitherto sorb to the soil, desorb and remove the metal from the soil, which then becomes incorporated into the micelles [149]. Once the nutrients become available for adsorption, the sustainability is assured because the biosurfactant would hardly be affected because it is tolerant to the fluctuation of environmental factors such as salinity, pH, pressure, temperature, etc. The assembling and maintenance of the plant holobiont or phytomicrobiome are driven by biomolecular cue- the quorum sensing chemicals, root exudates and microbial signals [161]. These quorum sensing molecules- acyl-homoserine lactones (AHLs) contribute to the regulation of exopolysaccharide (EPS), essential for the formation of biofilm [167] that can play the role of metal desorption. Root exudates have the potentials to enhance the bioavailability of metals, nutrients and as carbon/energy source for microbes. Consequently, the microbial mass increase in the rhizosphere with the release of biosurfactants. The biosurfactant can regulate AHLs, for example, rhamnolipids from Pseudomonas aeruginosa [168] and as well as enhance phytoremediation. In turn, these microbes stimulate exudation from the plant roots. [168]. Free-living microbes are able to take advantage of the plant exudates to produce diverse organic compounds different from the exudates, such as volatile organic compounds (VOCs), Myc factors, Nod factors exopolysaccharides [161]. The VOCs, by virtue of their chemical nature, trigger plant defence, and growth promotion mechanisms for the colonization of nutrient-deficient soils. Biosurfactants ability to lyse, exhibit an inhibitory effect against certain organisms makes them antimicrobial. The Biopesticide value of biosurfactants lies in the fact that the molecular signal that leads to defence genes and accumulation of antimicrobial metabolites [169]. These molecular signals are called microbe-associated molecular patterns (MAMPs). Glycolipids, especially rhamnolipids, have been given priority attention in agricultural applications [165]. Fig. 5 shows the role biosurfactants play in agriculture.
5 Biosurfactants in other industries

Apart from the petroleum industry, environmental remediation and agriculture, biosurfactants are used in other industries such as laundry detergents, medical/pharmaceuticals, food industry, textile, paint, leather, paper, mining, nanotechnology, bioprocessing, and recently in energy-saving technology [20, 25, 26, 38, 170-185]. The multifunctionality and application versatility lies in their properties (surface and interfacial tension reducing ability, low CMC, wettability, specificity, antimicrobial activity) and their advantages (environmental friendliness, biodegradability, biocompatibility, low toxicity, ease of production, chemical diversity and cost-effectiveness). These unique natures of the biosurfactants allow their utilization and possible replacement of chemically synthesized surfactants in various numbers of industrial operations. However, it is worth knowing that biosurfactants command only ca. 2.5% of the surfactant global market [186] even though its global demand is growing appreciably. The low-output of biosurfactants is as a result of low productivity and downstream processing cost [29, 33, 34, 115, 187].

In the midst of low output, experimental evidence has proven that biosurfactants can be used in the medical/pharmaceutical sector functioning as an antimicrobial agent [188, 189], as an anticancer agent [21, 23], anti-adhesive agent [20, 24], as immunological adjuvants [22, 25], as an antiviral agent [16, 190] and as a gene delivery agent [15, 191]. Microbial biosurfactants play their functional role in the food industry as food emulsifiers and stabilizers [192], as a foaming agent, adhesive, wetting and antimicrobial agent [190]. Fracchia et al. [175] did a detailed review of the biosurfactant application in the textile industry where they are used as pretreatment agent, dye solubility and penetration in fibre. In the leader, paint and papermaking industry, biosurfactant has been used as a degreasing agent, as an agent of dispersant, defoaming, deserinification, calendaring, coating, and colour levelling [178, 181, 192]. Biodispersan produced from Acinetobacter calcoaceticus A2 was used to disperse a 10% limestone in the water mixture and also prevented flocculation [185]. The biosurfactant at an alkaline pH lowers the energy required for cleaving the microstructure of limestone. Also, biosurfactants have been proved to have potential in metallic nanoparticle synthesis [171]. Eswari et al. [193] synthesized silver nanoparticles from AgNO3 using surfactin from Bacillus subtilis. A blend of biosurfactant and nanoparticles serve as a dual function recovery mechanism for oil recovery [194]. Similarly, Balakrishnan et al. [195] used biosurfactant to optimize the synthesis of polyethylene nanoparticles. The use of biosurfactant aided reverse micelles system to recover antibiotics, enzymes and proteins [170, 180] is relatively new but shows high promise with a potential for high scale production and continuous operation. The application of biosurfactants in energy-saving technology with respect to eco-ice systems are less publicized. Kitamoto et al. [196] used biosurfactant to achieve a 35% ice-packing factor (IPF) at a concentration of 10 mg/l in comparison to Span 80 (sorbitan monooleate), a synthetic surfactant, which scored 30% IPF at a concentration of 1000 mg/l. The use of biosurfactants in detergent laundry and cosmetics cannot be overemphasized.

Commercial laundry detergent, cosmetics and other household and personal care industry, ecological issues and the need for green solution are what influence the increasing demand of biosurfactants [197]. Household and personal care products record more than 60% of biosurfactant application followed by industrial cleaners and petroleum biotechnology [198]. This could be attributed to the amenability of the commonest biosurfactants classes: glycolipids, lipopeptides and polymeric surfactants.

Rhamnolipid, surfactin and sophorolipids have shown to be effective in functions that rely on solubilization, thus suitable in MEOR, biodesulphurization (in the presence of the active desulphurizer), agriculture, soil washing and water-in-oil blend. Rhamnolipids are more active in desorption of materials in the soil. Table 1 gives a summary of the industries in which different types of biosurfactants have been applied lately. Bioemulsifiers (polymeric surfactants) show better efficiency when it comes to transportation of heavy crude. MEL-A is unique for gene delivery due to its self-assembling actions. The fact that the microorganisms (Pseudomonas aeruginosa, Bacillus subtilis, Candida spp. Acinetobacter calcoaceticus) producing these popular biosurfactants are not fastidious in nature gives the hope that in the future they will compete with the synthetic surfactants for the interest of the environment. What needs to be done is intensified research to optimize the growth conditions of these microbes, genetically manipulate them to become hyper-producers and find out the most cost-effective growth resource to use and recovery.
Table 1. Industries where biosurfactants are applied: medicine/pharmaceuticals, petroleum industry, agriculture, cosmetics, laundry detergents

<table>
<thead>
<tr>
<th>Industry</th>
<th>Field</th>
<th>Biosurfactant</th>
<th>Mechanism/ Functioning as/Property used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum biotechnology</td>
<td>Extraction of crude oil from reservoirs</td>
<td>Glycolipids and Lipopeptide</td>
<td>Biosurfactants enhance the formation of stable water-oil emulsion, break down oil film in the rock and reduces tension/interfacial tensions thereby reducing the capillary forces that impede oil movement through the rock pores</td>
<td>[38, 43]</td>
</tr>
<tr>
<td></td>
<td>Transport of crude by pipelines</td>
<td>Emulsan, alasan, biodispersan</td>
<td>High molecular weight biosurfactants form a stable water-in-oil emulsion which aids oil mobility, viscosity reduction and prevents drop coalescence</td>
<td>[72, 199]</td>
</tr>
<tr>
<td></td>
<td>Oil storage tank cleaning</td>
<td>Rhamnolipids</td>
<td>A well-circulated biosurfactant will form an oil-in-water and lift/mobilize oil sludge from the bottom of the tank and solubilize in the already formed emulsion</td>
<td></td>
</tr>
<tr>
<td>Bioremediation</td>
<td>Spill remediation (aquatic)</td>
<td>Glycolipid and Trehalose Lipids</td>
<td>Solubilization, oil bioavailable to hydrocarbon-degraders and longer shelf life, biodegradability</td>
<td>[200]</td>
</tr>
<tr>
<td></td>
<td>Soil washing</td>
<td>Rhamnolipids</td>
<td>Reduction of surface and interfacial tensions lead to mobilization and consequent removal of oil from the soil</td>
<td>[134]</td>
</tr>
<tr>
<td></td>
<td>Wastewater treatment</td>
<td>Lipopeptides</td>
<td>Physically separate, concentrate and remove chemicals of concern for modification, recycling or disposal. Rely on detergency, act as emulsifiers/de-emulsifiers and as a bioavailability enhancer</td>
<td>[201]</td>
</tr>
<tr>
<td>Hydrocarbon remediation (soil)</td>
<td>Rhamnolipids, sophorolipids, surfactins</td>
<td>The solubilization property enhances the distribution of contaminants into the aqueous phase, thereby increasing the contaminant bioavailability for biodegradation</td>
<td>[202]</td>
<td></td>
</tr>
<tr>
<td>Heavy metal remediation</td>
<td>Rhamnolipids</td>
<td>Metal-removal mechanisms by biosurfactants from soils are complexation, ion exchange, electrostatic interactions and counterion binding resulting in metal desorption, metal mobilization and metal entrapment by micelles.</td>
<td>[30, 203]</td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td>Precious metal recovery</td>
<td>Biodispersan</td>
<td>Lowers the energy required for cleaving the microstructure of ground limestone. Utilize solubilization property and act as a sequestering agent</td>
<td>[185]</td>
</tr>
<tr>
<td>Nanotechnology</td>
<td>Silver and gold nanoparticles</td>
<td>EPS from algae</td>
<td>Biosurfactant producing organisms converts (Ag-Au) NO₃ to silver/gold particle using enzyme such as nitrate reductase.</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>Improvement of soil quality</td>
<td>Glycolipid</td>
<td>Consideration of all the soil-related bioremediation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant pathogen elimination</td>
<td>Rhamnolipids, cyclic lipopeptides</td>
<td>The biosurfactants act on the target cell by disrupting cell surface structures, thereby liberating the intracellular contents of the plant pathogen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant-microbe interaction</td>
<td>Rhamnolipids</td>
<td>The establishment of the plant-microbe interaction is dependent on the exchange and sensing of a variety of signals (biosurfactants inclusive) by both types of partners.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pest control</td>
<td>Lipopeptides by Bacillus subtilis</td>
<td>Detergency property of biosurfactants exhibit toxicity against nematodes and insects.</td>
<td></td>
</tr>
<tr>
<td>Medicine/Pharmaceuticals</td>
<td>Gene delivery</td>
<td>MEL</td>
<td>Cationic liposome bearing MEL-A effectively increased the transfection of genes into mammalian cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobial activity</td>
<td>Anionic surfactin isoform, rhamnolipids</td>
<td>The antimicrobial effect of biosurfactants is manifested through detergent-like activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anticancer activity</td>
<td>Sophorolipids</td>
<td>Biosurfactants as an antiviral agent, halt cell replication in favour of cell differentiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immunological adjuvants</td>
<td>Surfactin,</td>
<td>Immunomodulating biosurfactants stimulate the immune system by increasing the ratio of lymphocyte transformation and migration of polymorph nuclear cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antiviral activity</td>
<td>Sophorolipid diacetate ethyl ester, surfactin</td>
<td>Inactivation of viral lipid envelopes and capsid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-adhesive agents</td>
<td>Sophorolipids</td>
<td>Biosurfactants adsorption to a substratum modifies the surface hydrophobicity thereby interfering with microbial adhesion and desorption process.</td>
<td></td>
</tr>
<tr>
<td>Sector</td>
<td>Product Recovery</td>
<td>Product</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Bioprocessing</td>
<td></td>
<td>Sophorolipids</td>
<td>Biosurfactants form part of the reverse micelle extraction of antibiotics and proteins using their surfactant properties</td>
<td>[17, 179, 209]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhamnolipid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leather</td>
<td></td>
<td>Saponin</td>
<td>Degreasing: used as skin detergent, emulsifier; tanning and dyeing: wetting and penetration, and promoters</td>
<td>[175]</td>
</tr>
<tr>
<td>Textile</td>
<td></td>
<td>Trehalosetetraester</td>
<td>Removal of lipophilic components from fibre surface as a pre-treatment, removal of oil from fibres and enhanced dispersion of dyes for uniform and better penetration into fibre</td>
<td>[175]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unspecified cHAL 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Pulp processing</td>
<td>Biodispersan</td>
<td>Used for washing and deresinification of pulp by defoaming, dispersion and colour levelling</td>
<td>[175]</td>
</tr>
<tr>
<td></td>
<td>Papermaking</td>
<td>Biodispersan</td>
<td>Limestone was effectively grounded using biodispersan and used as a filter in papermaking. Biosurfactant also used in calendaring through wetting, levelling, coating and colouring</td>
<td>[184]</td>
</tr>
<tr>
<td>Paint/coating protection</td>
<td></td>
<td>Biodispersan</td>
<td>Employed as a dispersant and as a wetting agent during grinding and stabilization for improved mixing property</td>
<td>[210]</td>
</tr>
<tr>
<td>Food industry</td>
<td>Food emulsifier</td>
<td>Polymeric biosurfactants</td>
<td>Modification of the rheological characteristics of the food to a desired consistency and texture using emulsification properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food stabilizer</td>
<td>Rhamnolipids</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Cosmetic industry</td>
<td></td>
<td>Sophorolipids</td>
<td>Application of biosurfactants in cosmetics is due to their low irritancy, cytoprotective effect, anti-ageing, acts like an antioxidant, wettability, moisturizing properties, healing and skin toning features</td>
<td>[7, 171, 211]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhamnolipids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MELs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laundry detergents</td>
<td></td>
<td>Sophorolipids</td>
<td>Properties such as foaming, surface tension reduction, solubilization make it suitable for detergent making</td>
<td>[172]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

The surfactants of bacterial, fungal and yeast origin are referred to as biosurfactants. Though synthetic surfactants are widely used in industrial applications because of their availability in commercial quantity, unlike the microbial surfactants. The use of synthetic surfactants in industries is associated with environmental impact and undesired result where the wrong choice of surfactant is made. These drawbacks can be resulted by using biosurfactants in place of their synthetic congeners in addition to their favourable competitiveness and greener value. With properties such as eco-friendliness, specificity, low toxicity, stability in varying environmental conditions, and chemical diversity biosurfactants stand the chance of replacing synthetic surfactants in industrial applications (such as petroleum industry, bioremediation, agriculture, medicine/pharmaceuticals, food industry, laundry, cosmetics and in energy-saving technology) in the nearest future. The most widely used biosurfactants are rhamnolipids (from *Pseudomonas*), sophorolipids (mainly from *Torulopsis*), mannosylerythritol lipid (mainly from *Candida*), surfactin (from *Bacillus*), and emulsan (from *Acinetobacter*). Their use in different biotechnological applications will reduce environmental pollution currently caused by synthetic surfactants thereby engendering sustainability.

Acknowledgement: This research received funding from the World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR).

Author contributions: The concept and theme of the work were conceived by Chikere, C.B, developed by Fenibo, E.O and proofread by Ijeoma, G.N and Ramganesh, S. All the concerned authors gave their consent to the publication of this work after reading through it.

Conflicts of interest: The authors declare no conflict of interest.

References

64. Bezza F.; Chirwa, E.M. Possible use of biosurfactant produced by microbial consortium from contaminated soil for microbiially enhanced oil recovery. *Chem Eng Transact* 2017, 57, 1411-1416.

88 Lyu, Y.; Zhang, T.; Dou, B.; Li, G.; Ma, C.; Li, Y. A lipopeptide biosurfactant from Bacillus sp. Lv13 and their combined effects on biodesulfurization of dibenzothiophene. RSC Adv 2018, 8(68), 38787-91.

182. Das, K.; Mukherjee, A.K. Crude petroleum-oil biodegradation efficiency of *Bacillus subtilis* and *Pseudomonas aeruginosa* strains isolated from a petroleum-oil contaminated soil from North-East *India*. *Biores Technol* 2007, 98(7), 1339-1345.

187. Anic, I.; Apolonia, I.; Franco, P.; Wichmann, R. Production of rhamnolipids by integrated foam absorption in a bioreactor system. AMB Express 2018, 8(1), 122.

