

1 Article

2 **The Survival Impact of Fluoropyrimidine**
3 **Metronomic Maintenance Therapy Following**
4 **Adjuvant Oxaliplatin-based Chemotherapy in**
5 **Patients with Stage III Colorectal Cancer after**
6 **Radical Resection: Functional Roles of EGFR as a**
7 **Potential Predictor**

8 Ching-Wen Huang^{1,2}, Cheng-Jen Ma^{1,3}, Yi-Ting Chen^{4,5}, Hsiang-Lin Tsai^{1,2}, Yung-Sung Yeh^{1,6}, Wei-
9 Chih Su¹, Tsung-Kun Chang¹, Wen-Hung Hsu^{7,8}, Fang-Jung Yu^{7,8}, Jaw-Yuan Wang^{1,2,9,10,11,*}

10 ¹Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung
11 Medical University, Kaohsiung, Taiwan

12 ²Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung,
13 Taiwan

14 ³Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital,
15 Kaohsiung Medical University, Kaohsiung, Taiwan ⁴Department of Pathology, Kaohsiung Medical University
16 Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

17 ⁵Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University,
18 Kaohsiung, Taiwan

19 ⁶Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University
20 Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

21 ⁷Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital,
22 Kaohsiung Medical University, Kaohsiung, Taiwan

23 ⁸Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University,
24 Kaohsiung, Taiwan

25 ⁹Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung,
26 Taiwan

27 ¹⁰Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

28 ¹¹Clinical Pharcogenomics and Pharcoproteinomics, College of Pharmacy, Taipei Medical University, Taipei,
29 Taiwan

30 ¹²Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan

31 *Correspondence: Prof. Jaw-Yuan Wang: Division of Colorectal Surgery, Department of Surgery, Kaohsiung
32 Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung 807,
33 Taiwan; cy614112@ms14.hinet.net; jayuwa@cc.kmu.edu.tw

34 Received: date; Accepted: date; Published: date

35 **Abstract:** *Background:* This retrospective study evaluate the survival effects of metronomic
36 maintenance therapy with fluoropyrimidine in patients with stage III colorectal cancer (CRC)
37 according to epidermal growth factor receptor (EGFR) expression. *Methods:* We enrolled 197 patients
38 with stage III CRC who had undergone radical resection and FOLFOX regimen adjuvant
39 chemotherapy. The clinicopathological features and effects of metronomic maintenance therapy on
40 survival according to treatment group and EGFR expression were analyzed. By conducting an *in vitro*

41 cell line study and *in vivo* study through knockout of EGFR gene, we analyzed the capacities of cell
42 proliferation and migration. *Results:* Postoperative relapse and mortality were significantly more
43 common in the FOLFOX group. Metronomic maintenance therapy was a significantly independent
44 predictive factor of postoperative relapse and mortality, as well as a prognostic factor of disease-free
45 survival and overall survival. We also demonstrated that EGFR-knockout Caco2 cells are more
46 sensitive to the inhibition effect of fluoropyrimidine than the control those. *Conclusions:* The present
47 study suggested EGFR expression as the prognostic factor in patients with stage III CRC receiving
48 metronomic maintenance therapy. By analyzing EGFR expression and treatment strategies, we can
49 identify the potential candidates with optimal survival benefit from metronomic maintenance
50 therapy in patients with stage III CRC.

51 **Keywords:** fluoropyrimidine; metronomic maintenance therapy; oxaliplatin-based regimen; stage III
52 colorectal cancer; epidermal growth factor receptor
53

54 1. Introduction

55 Colorectal cancer (CRC) is the second most common type of cancer and the third leading cause
56 of cancer-related death worldwide. Approximately 1.7 million new diagnoses of CRC and an 830,000
57 CRC-related deaths were reported in 2016 [1]. In the United States, CRC was the third most common
58 cancer and the third leading cause of cancer death in 2016. Additionally, an estimated 145,600 new
59 CRC diagnoses and 51,020 CRC-related deaths were reported in 2019 [2]. In Taiwan, CRC is the most
60 common cancer type, and its prevalence has increased rapidly since 2006. Moreover, CRC has been
61 the third leading cause of cancer-related death since 1996. The incidence of CRC was 32.38 per 100,000
62 in 2000 (with 7,213 new diagnoses) and 66.32 per 100,000 in 2017 (with 15,579 new diagnoses) [3].

63 According to the SEER (Surveillance, Epidemiology, and End Results) data, 39% of CRC cases
64 are localized-stage disease at diagnosis. The 5-year overall survival (OS) rates for localized-stage
65 disease, regional-stage disease, and distant-stage disease of CRC were reported to be 89.8%, 71.1%,
66 and 13.8%, respectively [4]. In Taiwan, the 5-year OS rates for stage I, II, III, and IV CRC in 2013 were
67 revealed to be 80.9%, 71.2%, 59.9%, and 12.3%, respectively [3]. Furthermore, patients with locally-
68 advanced CRC (Stage II+III) who have undergone adjuvant chemotherapy have a 26.7% risk of
69 developing relapse in 5 years. However, postoperative adjuvant chemotherapy provides a significant
70 survival improvement in patients with stage III CRC after radical surgery [5–7]. MOSAIC trials have
71 demonstrated significant DFS and OS improvement in patients treated with the FOLFOX4
72 (oxaliplatin plus continuous-infusion fluorouracil plus leucovorin) regimen [8,9]. Therefore, an
73 oxaliplatin-based regimen has become the gold-standard postoperative adjuvant chemotherapy for
74 patients with stage III colon cancer. According to an analysis by the ACCENT Group in an 8-year
75 follow-up period, 32.9% of patients developed cancer recurrence. Moreover, 82% of recurrences
76 occurred within the first 3 years in patients with stage III colon cancers and 74% of recurrences
77 occurred within the first 3 years in patients with stage II colon cancers [10,11]; the peak incidence of
78 recurrence was between 1 and 2 years after initial treatment [10]. Because of their similar benefit on
79 survival, most postoperative adjuvant chemotherapy regimens are administrated for 6 months
80 [7,12,13]. Therefore, for patients with stage III CRC, metronomic maintenance therapy with orally
81 administrated fluoropyrimidine following 6 months of an oxaliplatin-based regimen may decrease
82 the risk of recurrence [14]. Capecitabine (Xeloda®; F. Hoffmann-La Roche Ltd, Basel, Switzerland) is
83 an oral fluoropyrimidine carbamate prodrug of 5-FU which has been reported to be an effective

84 single-agent or combined adjuvant chemotherapy for patients with stage III colon cancer [15–18].
85 Therefore, capecitabine is an ideal medicine for metronomic maintenance treatment for patients with
86 stage III CRC.

87 Our previous study demonstrated that epidermal growth factor receptor (EGFR) expression has
88 a prognostic value specifically in patients with metachronous metastatic CRC (mCRC) [19]. We also
89 demonstrated that tumor EGFR expression is a significant independent negative predictive factor for
90 postoperative relapse and a significant independent negative prognostic factor for DFS and OS in
91 patients with stage III CRC who have undergone radical resection surgery and adjuvant
92 chemotherapy with the FOLFOX regimen [20]. Accordingly, we conducted the present retrospective
93 study to evaluate the survival effects of metronomic maintenance therapy with capecitabine after
94 adjuvant oxaliplatin-based regimen therapy in patients with stage III CRC who had undergone
95 radical resection; the conducted this evaluation according to EGFR expression levels. We also
96 investigated the mechanistic connections between 5-FU and EGFR by conducting *in vitro* CRC cell
97 line and *in vivo* animal studies.

98 2. Results

99 2.1. Clinical and Pathological Characteristics of Patients with Stage III CRC Between The Two Treatment 100 Groups

101 The clinical and pathological characteristics of the 197 patients (Figure 1) with stage III CRC are
102 summarized in Table 1. Of the 197 patients, 118 (59.9%) were men and 79 (40.1%) were women. The
103 median age of the 197 patients was 62 (range, 30–82) years. Among all patients, 87 (44.2%) received
104 only an adjuvant oxaliplatin-based regimen (FOLFOX group) and 110 (55.8%) received oral
105 capecitabine as metronomic maintenance therapy after the adjuvant oxaliplatin-based regimen
106 (FOLFOXC group). The median age in the FOLFOX group was 62 (range, 30–81) years, and that in
107 the FOLFOXC group was 63 (range, 35–82) years. For all 197 patients, the median follow-up duration
108 was 61.2 (range, 8.1–128.7) months. IHC analysis of EGFR expression was performed for all patients,
109 of which 129 (65.5%) showed positive EGFR expression (EGFR-positive); this EGFR expression
110 pattern was did not differ significantly between the FOLFOX and FOLFOXC groups ($p = 0.540$; Table
111 1).

112 Lymphovascular invasion was more common in the FOLFOXC group than in the FOLFOX
113 group (48.2% vs. 32.2%; $p = 0.023$). In the FOLFOX group, 46 patients (52.9%) developed postoperative
114 relapse; by contrast, in the FOLFOXC group, only 29 patients (26.4%) developed postoperative
115 relapse. These results indicate a statistically significant difference in relapse between the groups (p
116 < 0.001). In addition, 57 patients (65.5%) in the FOLFOX group and 93 patients (84.5%) in the
117 FOLFOXC group survived, indicating a significant difference in survival between the groups ($p =$
118 0.002). Age, sex, tumor size, tumor location, histological type, tumor depth, lymph node metastasis
119 (N1 or N2), perineural invasion, EGFR expression, and preoperative and postoperative serum CEA
120 levels did not differ significantly between the FOLFOX and FOLFOXC groups (all $p > 0.05$).

121 2.2. Univariate and Multivariable Analyses of Predictive Factors for Postoperative Relapse and Postoperative 122 Mortality

123 To identify independent predictive factors for postoperative relapse and postoperative mortality
124 in the patients with stage III CRC, we used a logistic regression model to perform univariate and
125 multivariable analyses (Table 2). According to the univariate analysis of the correlation between

126 postoperative relapse and clinicopathological features, the EGFR-positive patients had a 2.2-fold
127 higher risk of postoperative relapse than did the EGFR-negative patients ($p = 0.016$). Moreover, the
128 patients in the FOLFOX group had a 3.3-fold higher risk of postoperative relapse than did those in
129 the FOLFOXC group ($p < 0.001$). The multivariate analysis of the correlation between postoperative
130 relapse and clinicopathological features indicated that metronomic maintenance therapy with
131 capecitabine was an independent predictive factor for postoperative relapse ($p = 0.001$; odds ratio
132 [OR], 3.026; 95% confidence interval [CI], 1.554–6.678; Table 2). Furthermore, according to the
133 univariate analysis of the correlation between postoperative mortality and clinicopathological
134 features, the EGFR-positive patients had a 3.9-fold higher risk of postoperative mortality than did the
135 EGFR-negative patients ($p = 0.002$). The multivariate analysis of the correlation between postoperative
136 relapse and clinicopathological features also indicated that EGFR expression and capecitabine
137 metronomic maintenance therapy were independent predictive factors for postoperative mortality (p
138 = 0.008; OR, 3.529; 95% CI, 1.399–8.905; and $p = 0.010$; OR, 2.735; 95% CI, 1.2.7–5.884, respectively;
139 Table 2).

140 2.3. Univariate and Multivariable Analyses of Survival of Patients with Stage III CRC

141 To investigate the independent predictive factors for OS and DFS in the patients with stage III
142 CRC, we used a Cox proportional hazards model to perform univariate and multivariable analyses
143 (Table 3). EGFR expression was revealed to be an independent prognostic factor for both DFS ($p =$
144 0.027; hazard ratio [HR], 1.914; 95% CI, 1.076–3.405) and OS ($p = 0.001$; HR, 4.417; 95% CI, 1.813–
145 10.761). Similarly, metronomic maintenance therapy with capecitabine was revealed to be an
146 independent prognostic factor for both DFS ($p < 0.001$; HR, 3.351; 95% CI, 2.000–5.614) and OS ($p =$
147 0.001; HR, 3.186; 95% CI, 1.631–6.222).

148 A Kaplan–Meier survival analysis indicated that the patients in the FOLFOX group had
149 significantly worse DFS ($p < 0.001$) and OS ($p = 0.001$) compared with those in the FOLFOXC group
150 (Fig. 2A and 2B). The median DFS periods of the patients in the FOLFOX and FOLFOXC groups were
151 16.7 and 57.9 months ($p < 0.001$), respectively, whereas the median OS periods of the patients in the
152 FOLFOX and FOLFOXC groups were 50.3 and 68.7 months ($p = 0.001$), respectively. The 5-year DFS
153 rates were 43% and 71% for the FOLFOX and FOLFOXC groups, respectively. The 5-year OS rates
154 were 58% and 84% for the FOLFOX and FOLFOXC groups, respectively. We also performed
155 subgroup analyses according to EGFR expression and treatment group, and we found no significant
156 differences in the DFS and OS of the EGFR-negative patients between the FOLFOX and FOLFOXC
157 groups (Fig. 2C and 2D); however, we observed significant differences in the DFS (Fig. 2E) and OS
158 (Fig. 2F) of the EGFR-positive patients between the FOLFOX and FOLFOXC groups. Specifically, the
159 EGFR-negative patients in the FOLFOX and FOLFOXC groups exhibited similar DFS (median DFS,
160 79.6 vs. 64.3 months, $p = 0.716$, Fig. 2C) and OS (median OS, 90.9 vs. 80.8 months, $p = 0.681$, Fig. 2D)
161 periods. The 5-year DFS rates were 69% and 70% for the FOLFOX and FOLFOXC groups, respectively,
162 and the 5-year OS rates were 92% and 90% for the FOLFOX and FOLFOXC groups, respectively.
163 However, we found that the EGFR-positive patients in the FOLFOX had a significantly poorer DFS
164 than did those in the FOLFOXC group (13.1 vs. 52.3 months, $p < 0.001$, Fig. 2E). The patients in the
165 FOLFOX group also had significantly poorer OS than did those in the FOLFOXC group (42.0 vs. 61.5
166 months, $p < 0.001$, Fig. 2F). The 5-year DFS rates were 31% and 71% for the FOLFOX and FOLFOXC
167 groups, respectively, and the 5-year OS rates were 39% and 79% for the FOLFOX and FOLFOXC
168 groups, respectively.

169 2.4. Analysis of Postoperative Relapse and Mortality in Patients with Stage III CRC According to EGFR
170 Expression and Treatment Group

171 By combining EGFR expression and treatment group, we performed a univariate analysis using
172 a logistic regression model to determine the predictive factors for postoperative relapse and mortality
173 (Table 4). We found that the EGFR-positive patients in the FOLFOX group had a higher risk of
174 postoperative relapse and mortality than did the EGFR-negative patients in the FOLFOXC group (p
175 < 0.001; OR, 5.429; 95% CI, 2.224–13.250 vs. p = 0.001; OR, 6.323; 95% CI, 2. 175–18.383, respectively).
176 The risks of postoperative relapse and mortality were not significantly different among the other
177 three groups of patients.

178 Our Kaplan–Meier survival analysis revealed that the EGFR-positive patients in the FOLFOX
179 group had significantly poorer DFS and OS than did the EGFR-negative patients in the FOLFOXC
180 group (p < 0.001; p < 0.001; Fig. 2G and 2H). The median DFS periods of the EGFR-positive patients
181 in the FOLFOX group and the EGFR-negative patients in the FOLFOXC group were 13.1 and 64.3
182 months, respectively. The median OS periods of the EGFR-positive patients in the FOLFOX group
183 and the EGFR-negative patients in the FOLFOXC group were 42.0 and 80.0 months, respectively.
184

185 2.5. *In Vitro* Cell Line and *In Vivo* Experiments

186 2.5.1. Characterization of EGFR knockout Caco2 cell lines

187 In this study, we used CRISPR gRNA vectors (OriGene, Rockville, MD, USA) to target the EGFR
188 protein and generate truncated EGFR mutants in Caco2 cells. After screening, we identified one clone
189 with heterozygous deletion. The heterozygous knockout status was confirmed using Western
190 blotting (Fig. 3A).

191 2.5.2. Effect of 5-FU on Caco2 cells proliferation and viability

192 To analyze the suppressive effects of 5-FU (Sigma-Aldrich, Gillingham, UK) on the proliferation
193 of the control and *EGFR* knockout Caco2 cells, we performed the MTS assay to determine the *in vitro*
194 viability of scrambled control and *EGFR* knockout Caco2 cells at 0, 24, 48, and 72 hours after 5-FU
195 (Sigma-Aldrich, Gillingham, UK) treatment. We observed that the *EGFR* knockout Caco2 cells
196 exhibited significantly lower viability at 24 (* p < 0.05; -11.3%), 48 (** p < 0.001; -28.6%) and 72 (** p <
197 0.001; -32%) hours after 5-FU treatment compared with the control cells (Fig. 3B). These results
198 indicate that the *EGFR* knockout Caco2 cells were more sensitive to the antiproliferative effects of 5-
199 FU than the scrambled control Caco2 cells.

200 2.5.3. Effect of 5- FU on the migration of Caco2 cells

201 A wound-healing assay was performed to examine the effects of 5-FU on the migration of Caco2
202 cells. The results revealed that the *EGFR* knockout Caco2 cells exhibited significantly lower migration
203 abilities 24 hours after 5-FU treatment compared with the scrambled control cells (Fig. 3C). These
204 results signify that the *EGFR* knockout Caco2 cells were more sensitive to the migration inhibitory
205 effects of 5-FU than the scrambled control Caco2 cells.

206 2.5.4. Inhibiting Effects of 5-FU on Tumor Growth in Xenograft Mouse Model

207 To evaluate the inhibitory effects of 5-FU on tumor growth *in vivo*, the *EGFR* knockout and
208 scrambled control Caco2 cells were implanted subcutaneously in 7-week-old male nude mice at the
209 bottom left or bottom right flanks (Fig. 3D). The tumors were palpable at 28 days after inoculation
210 and were allowed to grow for 61 days (Fig. 3E and 3F). On day 35, scrambled control and *EGFR*

211 knockout groups were randomly divided into 5-FU-treated and 5-FU-non-treated groups. The mice
212 were treated according to their allocated treatment groups, and tumor burden was quantitated. We
213 found that the mice injected with the *EGFR* knockout Caco2 cells had significantly smaller tumors
214 than did those injected with the scrambled control Caco2 cells ($p = 0.033$) on day 38. The tumors were
215 the smallest in the 5-FU-treated *EGFR* knockout group on day 61 (Fig. 3E and 3F). These results
216 provide evidence that *EGFR* knockout enhanced the antiproliferative effects of 5-FU *in vivo*.

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Table 1. Baseline Characteristics of Patients with Stage III Colorectal Cancer According to Treatment Group.

Characteristic	FOLFOX (N=87, %)	Group	FOLFOXC (N=110, %)	Group	<i>p</i> value
Age					0.745
< 65 years	51 (58.6)		67 (60.9)		
≥ 65 years	36 (41.4)		43 (30.1)		
Gender					0.152
Female	30 (34.5)		49 (44.5)		
Male	57 (65.5)		61 (55.5)		
Tumor size					0.447
<5 cm	54 (62.1)		74 (67.3)		
≥5 cm	33 (37.9)		36 (32.7)		
EGFR expression					0.540
Positive	59 (67.8)		70 (63.6)		
Negative	28 (32.2)		40 (36.4)		
Tumor location					0.991
Right-sided colon	23 (26.4)		29 (26.4)		
Left-sided colon	64 (73.6)		81 (73.6)		
Histology					0.813
WD	11 (12.6)		2 (1.8)		
MD	74 (85.1)		97 (88.2)		
PD	2 (2.3)		11 (10.0)		
Tumor depth					0.293
T1 + T2	9 (10.6.3)		17 (15.5)		
T3 + T4	782 (89.7)		93 (84.5)		
Lymph node metastasis					0.685
N1	57 (65.5)		69 (62.7)		
N2	30 (34.5)		41 (37.30)		
Vascular invasion					0.023*
No	59 (67.8)		57 (51.8)		
Yes	28 (32.2)		53 (48.2)		
Perineural invasion					0.770
No	52 (59.8)		58 (61.8)		
Yes	35 (40.2)		42 (38.2)		
Preoperative Serum CEA					0.065
level	42 (51.9)		71 (65.1)		
<5 ng/ml	39 (48.1)		38 (34.9)		

≥ 5 ng/ml

Postoperative Serum		0.344
CEA ^a level		
<5 ng/ml	70 (81.4)	95 (86.4)
≥ 5 ng/ml	16 (18.6)	16 (13.6)
Postoperative relapse		< 0.001*
No	41 (47.1)	81 (73.6)
Yes	46 (52.9)	29 (26.4)
Mortality		0.001*
No	59 (67.8)	96 (87.3)
Yes	28 (32.2)	14 (12.7)

255 Abbreviations: CEA: carcinoembryonic antigen; EGFR: epidermal growth factor receptor; MD: moderately
256 differentiated; PD: poorly differentiated; SD: standard deviation; WD: well differentiated

257

258

259

260

261

262

263

264

265

266

267

268

Table 2. Univariate and Multivariable Analysis of Predictive factors on Relapse and Mortality in Patients with Stage III Colorectal Cancer

Pre-op CEA (ng/ml)	1.762 (0.966 – 3.214)	0.065	1.547 (0.744 – 3.217)	0.242	1.752 (0.883 – 3.476)	0.108	1.404 (0.6618 – 3.190)	0.418
≥5/ vs <5 (77/113)								
Post-op CEA (ng/ml)	1.684 (0.778 – 3.649)	0.186	1.074 (0.409 – 2.828)	0.885	2.043 (0.895 – 4.661)	0.090	1.404 (0.496 – 3.978)	0.523
≥5 vs <5 (31/165)								
EGFR expression	2.19 (1.158 – 4.175)	0.016*	1.947 (0.965 – 3.927)	0.063	3.917 (1.646 – 9.316)	0.002*	3.529 (1.399 – 8.905)	0.008*
Positive vs Negative (129/68)								
Chemotherapy group	3.314 (1.724 – 5.696)	< 0.001*	3.026 (1.554 – 5.892)	0.001*	2.879 (1.458 – 5.685)	0.002*	2.735 (1.271 – 5.884)	0.010*
FOLFOX vs FOLFOXC (87/110)								

270 Abbreviations: AJCC: American Joint Commission on Cancer; PD: poorly differentiated, MD: moderately differentiated, WD: well differentiated; CEA: carcinoembryonic antigen; OR: odd ratio;

271 CI: confidence interval, * $p < 0.05$

272

273

274

275

276

277

278

279

280

281

282

283

284

Table 3. Univariate and Multivariate Analyses of the Prognostic Indicators for Disease-free Survival and Overall Survival in Patients with Stage III Colorectal Cancer.

Pre-op CEA (ng/ml)	1.540 (0.960 – 2.469)	0.073	1.296 (0.743 – 2.262)	0.361	1.589 (0.873 – 2.894)	0.130	1.322 (0.638 – 2.738)	0.453
≥5/ vs <5 (77/113)								
Post-op CEA (ng/ml)	1.617 (0.917 – 2.852)	0.097	1.271 (0.640 – 2.526)	0.493	1.968 (0.997 – 3.884)	0.051*	1.463 (0.609 – 3.515)	0.395
≥5 vs <5 (31/165)								
EGFR expression	1.951 (1.148 – 3.317)	0.014*	1.914 (1.076 – 3.405)	0.027*	4.203 (1.861 – 9.493)	0.001*	4.417 (1.813 – 10.761)	0.001*
Positive vs Negative (129/68)								
Chemotherapy group	2.995 (1.878 – 4.778)	< 0.001*	3.351(2.000 – 5.614)	< 0.001*	2.759 (1.516 – 5.020)	0.001*	3.186 (1.631 – 6.222)	0.001*
FOLFOX vs FOLFOXC (87/110)								

286 Abbreviations: AJCC: American Joint Commission on Cancer; PD: poorly differentiated, MD: moderately differentiated, WD: well differentiated; CEA: carcinoembryonic antigen; OR: odd ratio;

287 CI: confidence interval, * $p < 0.05$

288

289

290

291

292

293

294

295

296

297

298

299

300

301 **Table 4.** Univariate Analysis of Predictive Factors on Postoperative Relapse and Mortality in Patients with Stage III
 302 Colorectal Cancer by Combination of EGFR Expression and Treatment Group.

Group (N)	Postoperative Relapse		Postoperative Mortality	
	OR ^a (95% CI ^b)	p value	OR ^a (95% CI ^b)	p value
Negative + FOLFOXC (40)	1		1	
Negative + FOLFOX (28)	1.200 (0.404 – 3.563)	0.743	0.538 (0.097 – 2.997)	0.480
Positive + FOLFOXC (70)	1.118 (0.460 – 2.718)	0.806	1.448 (0.470 – 4.459)	0.519
Positive + FOLFOX (59)	5.429 (2.224 – 13.250)	< 0.001*	6.323 (2.175 – 18.383)	0.001*

303 Abbreviations: OR Odd ratio, CI Confidence interval, *Indicated P < 0.05.

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

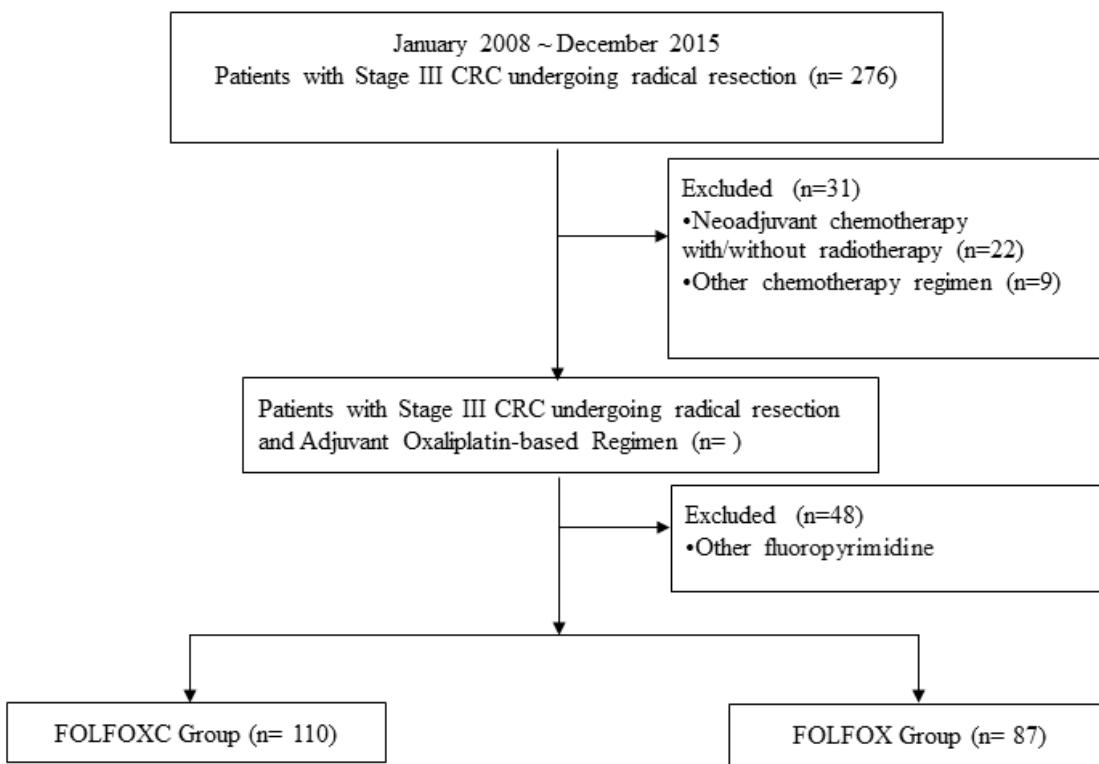
324

325

326

327

328


329

330

331

332

333

334 **Figure 1.** CONSORT diagram showing the inclusion and exclusion criteria in the present study

335

336

337

338

339

340

341

342

343

344

345

346

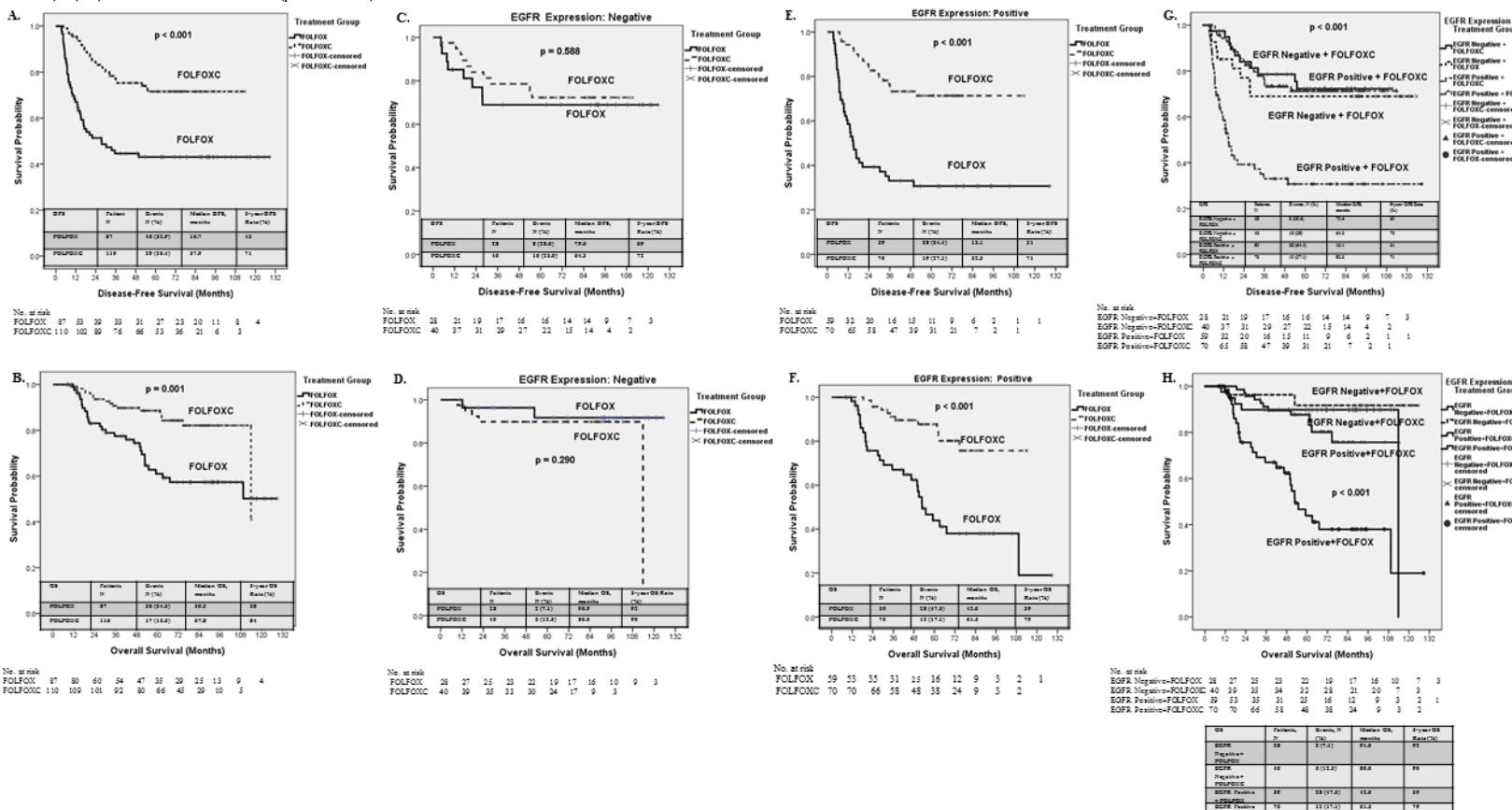
347

348

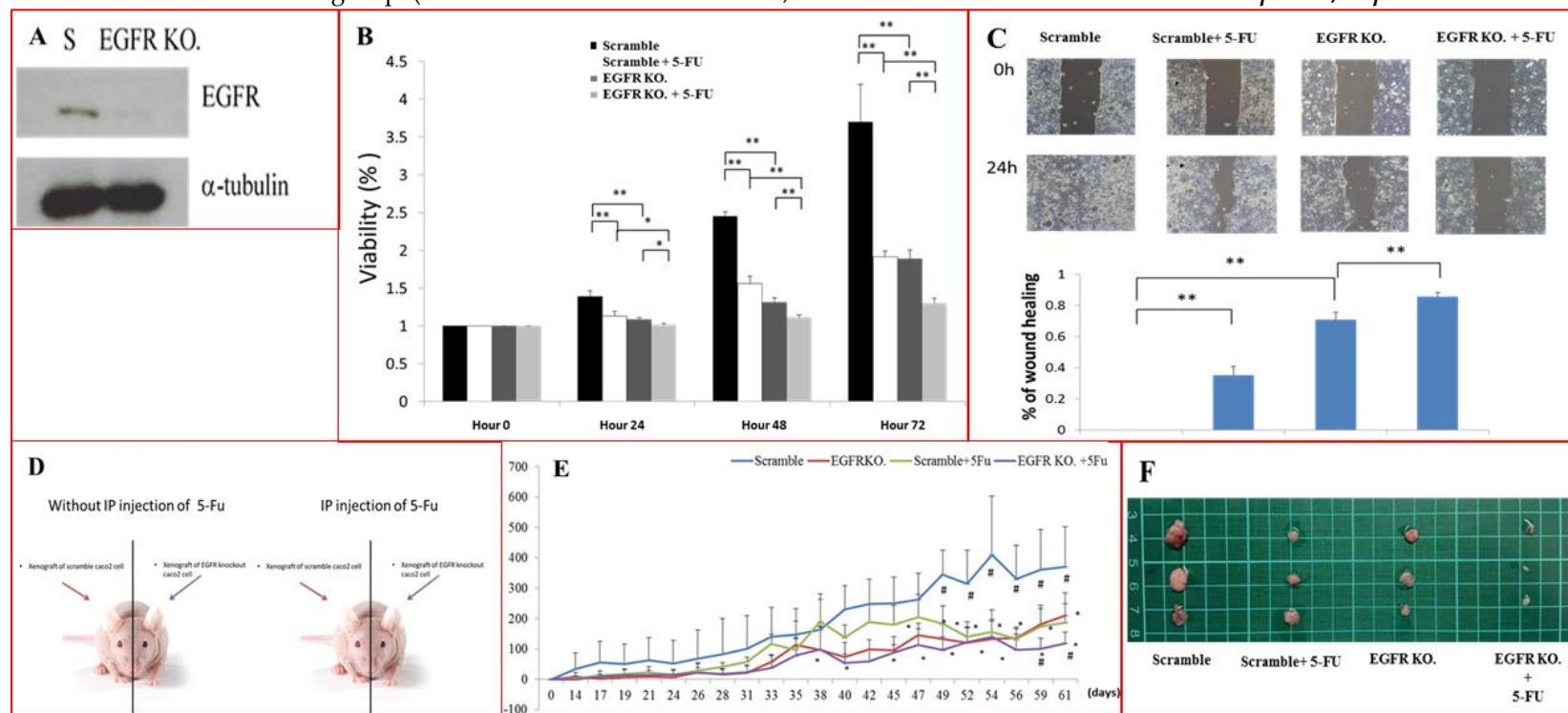
349

350

351


352

353


354

355

356 **Figure 2.** Kaplan–Meier survival curve for patients with stage III colorectal cancer stratified by treatment group and EGFR expression. (A) Disease-free survival stratified by treatment group ($p < 0.001$). (B) Overall survival stratified by treatment group ($p < 0.001$). ($p = 0.001$). (C) Disease-free survival of patients with negative EGFR expression stratified by treatment group ($p = 0.588$). (D) Overall survival of patients with negative EGFR expression stratified by treatment group ($p = 0.290$). (E) Disease-free survival of patients with positive EGFR expression stratified by treatment group ($p < 0.001$). (F) Overall survival of patients with positive EGFR expression stratified by treatment group ($p < 0.001$). (G) Disease-free survival ($p < 0.001$). (H) Overall survival ($p < 0.001$).

362 **Figure 3.** The effects of 5-Fluorouracil (5-FU) (Sigma-Aldrich, Gillingham, UK) on the proliferation, viability, and migration abilities of Caco2 cells. (A) The protein
 363 level of EGFR in Caco2 cells decreased after CRISPR Knockout. Protein level was detected by western blotting. (B) The viabilities of the Caco2 cells decreased
 364 significantly in 5-FU treated *EGFR* knockout Caco2 cells at hour 24 (* $p<0.05$; -11.3%), hour 48 (** $p<0.001$; -28.6%) and hour 72 (** $p<0.001$; -32%). (C) The migration
 365 abilities of the Caco2 cells decreased significantly in 5-FU treated *EGFR* knockout Caco2 cells at hour 24. (D) Each 7 weeks old male nude mouse was implanted
 366 subcutaneously with scrambled control and *EGFR* knockout Caco2 cells in the bottom left or right flanks. 5-FU was injected intraperitoneally at one side of the
 367 bottom at day 35 after implantation of Caco2 cells. (E) The tumor volume was measured thrice a week for 61 days. The tumor growth curve was showed for scramble
 368 control group (scramble; blue line), *EGFR* knockout group (red line), 5-FU treated scramble control group (green line), and 5-FU treated *EGFR* KO Group (purple
 369 line). (F) Compare to control group, the tumor lumps were smaller in 5-FU treated scramble control group and *EGFR* KO group; the smallest tumor lumps were in
 370 5-FU treated scramble control group. (S: Scrambled control Caco2 cells; EGFR KO: *EGFR* knockout Caco2 cells. * $p<0.05$; ** $p<0.001$

372 **3. Discussion**

373 Postoperative adjuvant chemotherapy can improve the survival of patients with stage III CRC,
374 especially when such a chemotherapy regimen is combined with oxaliplatin [5–7,9,10]. However,
375 most patients with stage III CRC develop local recurrences or distant metastases within the first 3
376 years after radical resection [10,11]. Therefore, whether administering maintenance
377 chemotherapeutic agents after 6 months of postoperative adjuvant chemotherapy with an oxaliplatin-
378 based regimen can decrease the risk of local recurrence or distant metastasis in such patients is an
379 appealing topic. In this regard, metronomic maintenance therapy using orally administered
380 fluoropyrimidine agents, such as capecitabine, would be a feasible option for such patients. Although
381 studies on capecitabine metronomic therapy for patients with CRC are limited (most are given to
382 patients with mCRC or elderly patients with advanced CRC), capecitabine has been shown to be
383 effective when used in a postoperative adjuvant manner for patients with stage III colon cancer [16–
384 18,21].

385 Of the 197 patients enrolled in the present study, 87 received only an adjuvant oxaliplatin-
386 based regimen (FOLFOX group) and 110 received oral capecitabine as metronomic maintenance
387 therapy after the adjuvant oxaliplatin-based regimen (FOLFOXC group). IHC analysis revealed that
388 129 (65.5%) patients exhibited positive EGFR expression. No significant difference in EGFR
389 expression was observed between the FOLFOX and FOLFOXC groups. However, the FOLFOX group
390 had a significantly higher proportion of patients who developed postoperative relapse compared
391 with the FOLFOXC group. Furthermore, the mortality rate was significantly higher in the FOLFOX
392 group than in the FOLFOXC group. Using univariate and multivariable analyses, we observed that
393 metronomic maintenance therapy with capecitabine was an independent and favorable predictive
394 factor for reduced postoperative relapse and mortality ($p = 0.001$ and $p = 0.013$, respectively). Using
395 Kaplan–Meier survival analysis, we also observed that metronomic maintenance therapy with
396 capecitabine was an independent prognostic factor for both DFS and OS ($p < 0.001$ and $p = 0.001$,
397 respectively).

398 Lymphovascular invasion is a major poor prognostic factor in patients with CRC [22–26].
399 Although lymphovascular invasion was more common in the FOLFOXC group than in the FOLFOX
400 group, our results reveal that the FOLFOXC group had significantly fewer patients who developed
401 postoperative relapse compared with the FOLFOXC group. Moreover, we demonstrated that
402 metronomic maintenance therapy with capecitabine was an independent predictive factor for
403 postoperative relapse and DFS. These results suggest that metronomic maintenance therapy with
404 capecitabine can inhibit postoperative relapse. Simkens *et al.* conducted a phase 3 randomized
405 controlled trial (CAIRO3) and demonstrated that metronomic maintenance treatment with
406 capecitabine plus bevacizumab significantly improved the progression-free survival (PFS) of patients
407 compared the PFS of an observation group [27]. Another randomized controlled trial conducted by
408 Luo *et al.* revealed a significantly longer PFS in the capecitabine maintenance group compared with
409 another group [28]. Similarly, several *in vivo* and *in vitro* studies have demonstrated the inhibitory
410 effects of metronomic maintenance therapy with capecitabine on the proliferation and metastasis of
411 gastric cancer cells [29], colon cancer cells [30,31], and breast cancer cells [32]. In the present study,
412 we noted that the 5-year OS rate was significantly lower in the patients in the FOLFOX group than in
413 those in the FOLFOXC group. We also observed that metronomic maintenance therapy with
414 capecitabine was an independent predictive factor for OS. Therefore, metronomic maintenance
415 therapy with capecitabine resulted in better DFS and OS. Our results are in line with those reported
416 by Huang *et al.* [14] and Huang *et al.* [33], although these two studies have used tegafur-uracil (UFUR;
417 TTY Biopharm Co, Taiwan) as metronomic maintenance therapy instead of capecitabine.

418 We performed subgroup analyses according to tumor EGFR expression and treatment group
419 to determine the predictive factors for postoperative relapse and mortality. We revealed that the
420 EGFR-positive patients in the FOLFOX had the highest risk of postoperative relapse and mortality
421 and the worst DFS and OS. However, the 5-year DFS and OS rates were not significantly different
422 among the other three groups of patients. Therefore, although the EGFR-positive patients had worse

423 prognoses, capecitabine metronomic maintenance therapy could effectively compensate and
424 improve their prognoses to the same level as that of the EGFR-negative patients. We found that the
425 EGFR-negative patients did not benefit from capecitabine metronomic maintenance therapy in terms
426 of survival. Thus, we determined that only the EGFR-positive patients could benefit from
427 metronomic maintenance therapy, which has not been reported in previous studies [14, 33].

428 On the basis of our results, we hypothesize that EGFR-negative tumor cells are less proliferative
429 and less migratory compared with EGFR-positive tumor cells. Moreover, cell proliferation and
430 migration could be inhibited by fluoropyrimidine-based therapy. In this study, we used Caco-2 cells
431 to perform the *in vitro* and *in vivo* experiments because they express EGFR and exhibit no mutations
432 in the oncogenic gene KRAS [20]. We showed that after CRISPR gRNA transfection, the EGFR protein
433 level in the Caco-2 cells decreased substantially. The proliferative and migratory capacities of the
434 Caco-2 cells decreased after EGFR knockout, and the proliferative and migratory capacities of the
435 Caco-2 cells with or without EGFR expression were inhibited by 5-FU. We determined that 5-FU
436 administration and EGFR Knockout had synergistic inhibitory effects on the proliferative and
437 migration capacities of Caco-2 cells. Notably, these *in vitro* results were verified using *in vivo*
438 experiments.

439 The present study has some limitations. First, this study involved a single-institution
440 retrospective design with a relatively small sample size. Second, we categorized EGFR expression
441 based on the results of IHC analysis, but we did not evaluate the mRNA expression levels in patients.
442 Third, we did not measure the toxicity of capecitabine treatment in the two groups. Nevertheless, our
443 study provided several important findings.

444 4. Materials and Methods

445 4.1. Patients

446 In the retrospective study, we analyzed 197 patients with histologically confirmed stage III CRC
447 who had received surgical treatment from a single institution between January 2008 and June 2012.
448 To reduce the effect of neoadjuvant treatment on gene expression, patients were excluded if they had
449 undergone neoadjuvant treatment with either chemotherapy or radiotherapy before surgery. All 197
450 patients with stage III CRC in the present study had received adjuvant chemotherapy with the
451 FOLFOX regimen after radical surgery. The present study was approved by the institutional review
452 board of Kaohsiung Medical University Hospital (KMUHIRB-E-20150003).

453 4.2. Chemotherapy Treatment Groups

454 The adjuvant oxaliplatin-based regimen was mFOLFOX as follows: each cycle of FOLFOX
455 consisted of oxaliplatin (85 mg/m²) on day 1, folinic acid (400 mg/m²), and a 46-hour infusion of 5-FU
456 (2800 mg/m²) repeated every 2 weeks, biweekly for 12 cycles. Of 197 patients, 87 patients (44.7%)
457 received only adjuvant oxaliplatin-based regimen (FOLFOX group), and 110 patients (55.8%)
458 received oral capecitabine after adjuvant oxaliplatin-based regimen (FOLFOXC group). Oral
459 capecitabine were administered at a total daily dose of 850 mg/m², twice daily, on days 1-14 days
460 every 3 weeks for 6 months. After the detailed information on potential benefits or disadvantages
461 were explained to the patients, they provided oral consent to receive capecitabine.

462 4.3. Patient follow-up

463 Patients were regularly followed up with clinical outcomes and survival statuses.
464 Clinopathological variables included age at diagnosis, sex, tumor location, histological type, TNM
465 classification, vascular invasion, perineural invasion, and preoperative and postoperative serum
466 carcinoembryonic antigen (CEA) level. The TNM classification was defined according to the criteria
467 of the American Joint Commission on Cancer/Union for International Cancer Control (AJCC/UICC)
468 [34]. Right-sided colon cancers were defined as those located in the cecum, ascending colon, hepatic
469 flexure, and transverse colon, whereas left-sided cancers were defined as those located in the splenic
470 flexure, descending colon, sigmoid, and rectum. All patients were followed until their deaths, their
471 last follow-up, or December 31, 2018.

472 The postoperative relapse included the development of a new local recurrence (tumor growth
473 restricted to the anastomosis or the region of the primary operation) or distant metastatic lesions

474 (distant metastases or diffuse peritoneal carcinomatosis) after surgery. Disease-free survival (DFS)
475 was defined as the time from the date of primary treatment to the date of diagnosis for recurrence or
476 metastatic disease or to the date of the last follow-up. Overall survival (OS) was defined as the time
477 from the date of primary treatment to the date of death from any cause or until the date of the last
478 follow-up.

479 *4.4. Immunohistochemical (IHC) analysis of EGFR expression*

480 IHC analysis of EGFR expression was based on those of our previous studies [19, 20]. In brief,
481 formalin-fixed and paraffin-embedded tissue blocks were cut into 3- μ m sections to retrieve antigens.
482 Endogenous peroxidase was blocked using 3% hydrogen peroxide. After washing, the sections were
483 incubated with EGFR. Then, DAKO REAL EnVision Detection System-HRP (Dako) was applied.
484 Finally, the sections were incubated in 3',3'-diaminobenzidine, before being counterstained with
485 Mayer's hematoxylin, dehydrated through two changes of 95 % ethanol and two changes of 100 %
486 ethanol, and cleared in three changes of xylene and then mounted. Negative controls were obtained
487 by replacing the primary antibody with nonimmune serum. The immunoreactivity of EGFR was
488 evaluated by two independent researchers who were blinded to patients' outcomes. The expression
489 patterns of EGFR were determined in a semiquantitative manner through light microscopy.
490 Immunoreactivity for EGFR (membrane staining) was categorized according to the presence of tumor
491 cell staining and staining intensity, as mentioned in our previous studies [19, 20].

492 *4.5. In Vitro Cell Line Experiments and in Vivo Experiments*

493 *4.5.1. Cell culture and Antibodies*

494 The human colon cancer cell line Caco-2 was obtained from the American Type Culture
495 Collection (Manassas, VA, USA). Dulbecco's modified Eagle's medium (DMEM), penicillin-
496 streptomycin mixture, trypsin-EDTA, and fetal bovine serum (FBS) were obtained from Gibco Life
497 Technologies (Milano, Italy). Lipofectamine 2000 was purchased from Invitrogen (Carlsbad, CA,
498 USA). Protein assay kit was bought from Bio-Rad (Berkeley, CA, USA). An enhanced
499 chemiluminescence kit, rabbit monoclonal antibodies against Glyceraldehyde 3-phosphate
500 dehydrogenase (GAPDH) and EGFR were purchased from Proteintech (Chicago, IL, USA) and
501 Abcam (Cambridge, UK), respectively. Goat anti-rabbit immunoglobulin G was obtained from
502 Jackson ImmunoResearch Laboratories (West Grove, PA, USA). MTS (3-(4,5-dimethylthiazol-2-yl)-5-
503 (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (Sigma-Aldrich) and EGFR Human
504 Gene Knockout Kit (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR) were
505 purchased from Sigma-Aldrich (Gillingham, UK) and OriGene (Rockville, MD, USA), respectively.
506 The Caco-2 cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin-
507 streptomycin at 37% and 5% CO₂ in humidified atmosphere. The culture medium was changed every
508 other day and the cells were subcultured using trypsin-EDTA. We obtained 5-FU from Sigma-Aldrich
509 Co. (Gillingham, UK).

510 *4.5.2. EGFR knockout*

511 The processes of EGFR-knockout were performed following the instruction of manufacture with
512 little modification. Before transfection, Caco2 cells were seeded 1 \times 10⁵ per well of 6 wells. 24 hours
513 later, Caco2 cells were transfected with 1 μ g of CRISPR gRNA vectors (gRNA sequence-
514 5'TCCTCCAGAGCCGACTCGC3') and scrambled control (scrambled sequence-
515 5'GCACTACCAGAGCTAACTCA3') with Lipofectamine 3000 ® (ThermoFisher Scientific). After 72
516 hours of incubation, cells were spited 1:10, grown for additional 3 days; and then spited the cells
517 again. After the Caco2 cells were spited for 7 times, puromycin was added for selection and the
518 knockout clones were identified by western blot.

519 *4.5.3. Western blotting*

520 Whole cell lysates were prepared using RIPA lysis buffer RIPA buffer (1 mM EDTA, pH 8.0, 100
521 mM NaCl, 20 mM Tris, pH 8.0, 0.5% Nonidet P-40, 0.5% Triton X-100) and protein concentration was
522 determined using the Bio-Rad protein assay kit. Western blot were perform as previously described
523 [20].

524 *4.5.4. MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-*
525 *2Htetrazolium) cell viability assay.* Transfected Caco2 cells were seeded in 96 wells (5 \times 10⁴ cells per

526 well) and incubated at 37°C. After cells adhesion (as 0h), the transfected Caco2 cells were treated with
527 5-FU (Sigma-Aldrich, Gillingham, UK) (10uM/ml) and incubated at 37°C for 24 hours, 48 hours, and
528 72 hours. MTS was added at hour 0, hour 24, hour 48, and hour 72. Thereafter, the cells were
529 incubated in 37°C for 3 hours and, then, were quantitated spectrophotometrically by using
530 wavelength of 490 nm.

531 **4.5.5. Migration assay**

532 Cell migration was assessed using a wound-healing assay [35]. In brief, the Caco2 cells were
533 cultured as confluent monolayers and wounded with a 200 μ l pipette tip. The detached cells were
534 rinsed off carefully. At hour 0 and 24 after being wounding, each wound was taken three pictures on
535 different areas under a bright field microscopy. Each picture was measured with image J software.
536 Data were showed as a percentage of wound closure compared to initial wound.

537 **4.5.6. In vivo Animal Studies**

538 Six-week-old Balb/c male nude mice were purchased from BioLasco Taiwan Co., Ltd (Taipei,
539 Taiwan). At 7 weeks of age, each nude mouse was implanted subcutaneously with scrambled control
540 and EGFR knockout Caco2 cells in the bottom left or right flanks of 7-week old male nude mouse.
541 The tumor size (cm^3) was measured thrice a week and calculated according to the formula:
542 ($\text{length} \times \text{width}^2$)/2. Following 4 weeks after transplantation, 5-FU (10 mg/Kg) was administrated by
543 intraperitoneal injection thrice a week for 3 weeks. Animals were scarified at 8 weeks after injection
544 of tumor cells. To perform the in vivo study, we followed the protocols approved by the Institutional
545 Animal Care and Use Committee of Kaohsiung Medical University (IACUC Approval No: 105229)
546 in according with the Guiding Principles with the Care and Use of Laboratory.

547 **4.6. Statistical Analysis.**

548 All data were statistically analyzed using the Statistical Package for the Social Sciences, version
549 22.0 (SPSS Inc., Chicago, IL, USA). The correlation between clinicopathological features and treatment
550 group was examined using the Chi-square test for categorical variables and Student t test for
551 continuous variables. Univariate and multivariable logistic regression models were used to evaluate
552 the independent predictors of postoperative relapse and postoperative mortality. A Cox proportional
553 hazard model was used for univariate and multivariable analyses to identify independent prognostic
554 factors for OS and DFS. DFS and OS were evaluated using the Kaplan–Meier method, and the log-
555 rank test was used to compare time-to-event distributions. A p value less than 0.05 was considered
556 statistically significant.

557 **5. Conclusions**

558 In conclusion, we demonstrated that metronomic maintenance therapy with capecitabine could
559 significantly improve the prognoses of patients with stage III CRC following radical resection and
560 FOLFOX adjuvant chemotherapy. Moreover, the effects of prognosis improvement are noteworthy
561 in patients with positive EGFR expression. However, a prospective, randomized clinical trial is
562 necessary to verify the results of the present study.

563 **564 Author Contributions:** Conceptualization, C.W., C.M., Y.C., H.T., and J.W.; methodology, C.W., C.M., H.T., Y.C.,
565 and J.W.; formal analysis, C.W., J.W.; data curation, C.W., C.M., Y.C., H.T., Y.Y., W.S., T.C., W.H., F.Y., J.W.;
566 writing—original draft preparation, C.W.; writing—review and editing, C.W., C.M., Y.T., H.T., Y.Y., W.S., T.C.,
567 W.H., F.Y., J.W.; supervision, J.W.; All authors reviewed the manuscript.

568 **569 Acknowledgments:** This work was supported by grants through funding from the Ministry of Science and
570 Technology (MOST108-2321-B-037-001, MOST107-2321-B-037-003, MOST107-2314-B-037-116, MOST107-2314-B-
571 037-022-MY2, MOST107-2314-B-037-023-MY2) and the Ministry of Health and Welfare (MOHW107-TDU-B-212-
572 123006, MOHW107-TDU-B-212-114026B, MOHW108-TDU-B-212-133006, MOHW108-TDU-B-212-124026)
573 funded by Health and welfare surcharge of tobacco products, and the Kaohsiung Medical University Hospital
574 (KMUH107-7R28, KMUH107-7R29, KMUH107-7R30, KMUH107-7M22, KMUH107-7M23, KMUHS10801,
575 KMUHS10807 KMUHSA10804) and Center for Cancer Research, Kaohsiung Medical University (KMU-
576 TC108A04). In addition, this study was supported by the Grant of Taiwan Precision Medicine Initiative,
577 Academia Sinica, Taiwan, R.O.C. The funding agencies had no role in the collection, analysis and interpretation

578 of data, and in the writing of the manuscript.

579 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
580 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
581 publish the results.

582 References

- 583 1. Global Burden of Disease Cancer Collaboration.; Fitzmaurice C.; Akinyemiju TF.; Al Lami FH.; Alam T.;
584 Alizadeh-Navaei R.; Allen C.; Alsharif U.; Alvis-Guzman N.; Amini E.; Anderson BO.; Aremu O.; Artaman
585 A.; Asgedom SW.; Assadi R.; Atey TM.; Avila-Burgos L.; Awasthi A.; Ba Saleem HO.; Barac A.; Bennett JR.;
586 Bensenor IM.; Bhakta N.; Brenner H.; Cahuana-Hurtado L.; Castañeda-Orjuela CA.; Catalá-López F.; Choi
587 JJ.; Christopher DJ.; Chung SC.; Curado MP.; Dandona L.; Dandona R.; das Neves J.; Dey S.; Dharmaratne
588 SD.; Doku DT.; Driscoll TR.; Dubey M.; Ebrahimi H.; Edessa D.; El-Khatib Z.; Endries AY.; Fischer F.; Force
589 LM.; Foreman KJ.; Gebrehiwot SW.; Gopalani SV.; Grossi G.; Gupta R.; Gyawali B.; Hamadeh RR.; Hamidi
590 S.; Harvey J.; Hassen HY.; Hay RJ.; Hay SI.; Heibati B.; Hiluf MK.; Horita N.; Hosgood HD.; Ilesanmi OS.;
591 Innos K.; Islami F.; Jakovljevic MB.; Johnson SC.; Jonas JB.; Kasaeian A.; Kassa TD.; Khader YS.; Khan EA.;
592 Khan G.; Khang YH.; Khosravi MH.; Khubchandani J.; Kopec JA.; Kumar GA.; Kutz M.; Lad DP.;
593 Lafranconi A.; Lan Q.; Legesse Y.; Leigh J.; Linn S.; Lunevicius R.; Majeed A.; Malekzadeh R.; Malta DC.;
594 Mantovani LG.; McMahon BJ.; Meier T.; Melaku YA.; Melku M.; Memiah P.; Mendoza W.; Meretoja TJ.;
595 Mezgebe HB.; Miller TR.; Mohammed S.; Mokdad AH.; Moosazadeh M.; Moraga P.; Mousavi SM.; Nangia V.;
596 Nguyen CT.; Nong VM.; Ogbo FA.; Olagunju AT.; Pa M.; Park EK.; Patel T.; Pereira DM.; Pishgar F.; Postma
597 MJ.; Pourmalek F.; Qorbani M.; Rafay A.; Rawaf S.; Rawaf DL.; Roshandel G.; Safiri S.; Salimzadeh H.;
598 Sanabria JR.; Santric Milicevic MM.; Sartorius B.; Satpathy M.; Sepanlou SG.; Shackelford KA.; Shaikh MA.;
599 Sharif-Alhoseini M.; She J.; Shin MJ.; Shiue I.; Shrieve MG.; Sinke AH.; Sisay M.; Sligar A.; Sufiyan MB.;
600 Sykes BL.; Tabarés-Seisdedos R.; Tessema GA.; Topor-Madry R.; Tran TT.; Tran BX.; Ukwaja KN.; Vlassov
601 VV.; Vollset SE.; Weiderpass E.; Williams HC.; Yimer NB.; Yonemoto N.; Younis MZ.; Murray CJL.;
602 Naghavi M. Global. Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived
603 With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic
604 Analysis for the Global Burden of Disease Study. *JAMA Oncol.* **2018**, *4*, 1553-1568.
- 605 2. Siegel RL.; Miller KD.; Jemal A. Cancer statistics, 2019. *CA Cancer J Clin.* **2019**, *69*, 7-34.
- 606 3. Ministry of Health and Welfare, the Executive Yuan, Republic of China. Health and Vital Statistics
607 [<http://www.mohw.gov.tw/CHT/DOS/Statistic.aspx>].
- 608 4. Surveillance.; Epidemiology, and End Results (SEER) Program [<http://www.seer.cancer.gov>].
- 609 5. Wolmark N.; Rockette H.; Mamounas E.; Jones J.; Wieand S.; Wickerham DL.; Bear HD.; Atkins JN.;
610 Dimitrov NV.; Glass AG.; Fisher ER.; Fisher B. Clinical trial to assess the relative efficacy of fluorouracil
611 and leucovorin, fluorouracil and levamisole, and fluorouracil, leucovorin, and levamisole in patients with
612 Dukes' B and C carcinoma of the colon: results from National Surgical Adjuvant Breast and Bowel Project
613 C-04. *J Clin Oncol.* **1999**, *17*, 3553-3559.
- 614 6. Porschen R.; Bermann A.; Löffler T.; Haack G.; Rettig K.; Anger Y.; Strohmeyer G.; Arbeitsgemeinschaft
615 Gastrointestinale Onkologie. Fluorouracil plus leucovorin as effective adjuvant chemotherapy in curatively
616 resected stage III colon cancer: results of the trial adjCCA-01. *J Clin Oncol.* **2001**, *19*, 1787-1794.
- 617 7. Haller DG.; Catalano PJ.; Macdonald JS.; O'Rourke MA.; Frontiera MS.; Jackson DV.; Mayer RJ. Phase III
618 study of fluorouracil, leucovorin, and levamisole in high-risk stage II and III colon cancer: final report of
619 Intergroup 0089. *J Clin Oncol.* **2005**, *23*, 8671-8678.
- 620 8. André T.; Boni C.; Mounedji-Boudiaf L.; Navarro M.; Tabernero J.; Hickish T.; Topham C.; Zaninelli M.;
621 Clingan P.; Bridgewater J.; Tabah-Fisch I.; de Gramont A.; Multicenter International Study of Oxaliplatin/5-
622 Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators. Oxaliplatin,
623 fluorouracil, and leucovorin as adjuvant treatment for colon cancer. *N Engl J Med.* **2004**, *350*, 2343-2351.
- 624 9. André T.; Boni C.; Navarro M.; Tabernero J.; Hickish T.; Topham C.; Bonetti A.; Clingan P.; Bridgewater J.;
625 Rivera F.; de Gramont A. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as
626 adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. *J Clin Oncol.* **2009**, *27*, 3109-3116.
- 627 10. Sargent DJ.; Patiyil S.; Yothers G.; Haller DG.; Gray R.; Benedetti J.; Buyse M.; Labianca R.; Seitz JF.;
628 O'Callaghan CJ.; Francini G.; Grothey A.; O'Connell M.; Catalano PJ.; Kerr D.; Green E.; Wieand HS.;
629 Goldberg RM.; de Gramont A.; ACCENT Group. End points for colon cancer adjuvant trials: observations

- 630 and recommendations based on individual patient data from 20,898 patients enrolled onto 18 randomized
631 trials from the ACCENT Group. *J Clin Oncol.* **2007**, *25*, 4569-4574.
- 632 11. O'Connell MJ, Campbell ME, Goldberg RM, Grothey A, Seitz JF, Benedetti JK, André T, Haller DG, Sargent
633 DJ. Survival following recurrence in stage II and III colon cancer: findings from the ACCENT data set. *J*
634 *Clin Oncol.* **2008**, *26*, 2336-2341.
- 635 12. O'Connell MJ.; Laurie JA.; Kahn M.; Fitzgibbons RJ Jr.; Erlichman C.; Shepherd L.; Moertel CG.; Kocha WI.;
636 Pazdur R.; Wieand HS.; Rubin J.; Vukov AM.; Donohue JH.; Krook JE.; Figueredo A. Prospective
637 randomized trial of postoperative adjuvant chemotherapy in patients with high-risk colon cancer. *J Clin*
638 *Oncol.* **1998**, *16*, 295-300.
- 639 13. André T.; Quinaux E.; Louvet C.; Colin P.; Gamelin E.; Bouche O.; Achille E.; iedbois P.; Tubiana-Mathieu
640 N.; Boutan-Laroze A.; Flesch M.; Lledo G.; Raoul Y.; Debrix I.; Buyse M.; de Gramont A. Phase III study
641 comparing a semimonthly with a monthly regimen of fluorouracil and leucovorin as adjuvant treatment
642 for stage II and III colon cancer patients: final results of GERCOR C96.1. *J Clin Oncol.* **2007**, *25*, 3732-373.
- 643 14. Huang MY.; Huang CM.; Tsai HL.; Huang CW.; Hsieh HM.; Yeh YS.; Wu JY.; Wang WM.; Wang JY. Comparison of adjuvant FOLFOX4 chemotherapy and oral UFUR/LV following adjuvant FOLFOX4
644 chemotherapy in patients with stage III colon cancer subsequent to radical resection. *Oncol Lett.* **2017**, *14*,
645 6754-6762.
- 646 15. Twelves C.; Wong A.; Nowacki MP.; Abt M.; Burris H 3rd.; Carrato A.; Cassidy J.; Cervantes A.; Fagerberg
647 J.; Georgoulias V.; Husseini F.; Jodrell D.; Koralewski P.; Kröning H.; Maroun J.; Marschner N.; McKendrick
648 J.; Pawlicki M.; Rosso R.; Schüller J.; Seitz JF.; Stabuc B.; Tujakowski J.; Van Hazel G.; Zaluski J.; Scheithauer
649 W. Capecitabine as adjuvant treatment for stage III colon cancer. *N Engl J Med.* **2005**, *352*, 2696-2704.
- 650 16. Schmoll HJ.; Cartwright T.; Tabernero J.; Nowacki MP.; Figer A.; Maroun J.; Price T.; Lim R.; Van Cutsem
651 E.; Park YS.; McKendrick J.; Topham C.; Soler-Gonzalez G.; de Braud F.; Hill M.; Sirzén F.; Haller DG. Phase
652 III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: a planned safety
653 analysis in 1,864 patients. *J Clin Oncol.* **2007**, *25*, 102-109.
- 654 17. Schmoll HJ.; Tabernero J.; Maroun J.; de Braud F.; Price T.; Van Cutsem E.; Hill M.; Hoersch S.; Rittweger
655 K.; Haller DG. Capecitabine Plus Oxaliplatin Compared With Fluorouracil/Folinic Acid As Adjuvant
656 Therapy for Stage III Colon Cancer: Final Results of the NO16968 Randomized Controlled Phase III Trial. *J*
657 *Clin Oncol.* **2015**, *33*, 3733-3740.
- 658 18. Twelves C.; Scheithauer W.; McKendrick J.; Seitz JF.; Van Hazel G.; Wong A.; Díaz-Rubio E.; Gilberg F.;
659 Cassidy J. Capecitabine versus 5-fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer:
660 final results from the X-ACT trial with analysis by age and preliminary evidence of a pharmacodynamic
661 marker of efficacy. *Ann Oncol.* **2012**, *23*, 1190-1197.
- 662 19. Huang CW.; Tsai HL.; Chen YT.; Huang CM.; Ma CJ.; Lu CY.; Kuo CH.; Wu DC.; Chai CY.; Wang JY. The
663 prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous
664 metastatic colorectal cancer. *BMC Cancer.* **2013**, *13*, 599.
- 665 20. Huang CW.; Chen YT.; Tsai HL.; Yeh YS.; Su WC.; Ma CJ.; Tsai TN.; Wang JY. EGFR expression in patients
666 with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. *Oncotarget.* **2017**,
667 8, 114663-114676.
- 668 21. Woo IS.; Jung YH. Metronomic chemotherapy in metastatic colorectal cancer. *Cancer Lett.* **2017**, *400*, 319-
669 324.
- 670 22. Tsai HL.; Huang CW.; Chen CW.; Yeh YS.; Ma CJ.; Wang JY. Survival in Resected Stage II Colorectal Cancer
671 Is Dependent on Tumor Depth, Vascular Invasion, Postoperative CEA Level, and The Number of Examined
672 Lymph Nodes. *World J Surg.* **2016**, *40*, 1002-1009.
- 673 23. Betge J.; Pollheimer MJ.; Lindtner RA.; Kornprat P.; Schlemmer A.; Rehak P.; Vieth M.; Hoefer G.; Langner
674 C. Intramural and extramural vascular invasion in colorectal cancer: prognostic significance and quality of
675 pathology reporting. *Cancer.* **2012**, *118*, 628-638.
- 676 24. Ang CW.; Tweedle EM.; Campbell F.; Rooney PS. Apical node metastasis independently predicts poor
677 survival in Dukes C colorectal cancer. *Colorectal Dis.* **2011**, *13*, 526-531.
- 678 25. Ueno H.; Mochizuki H.; Shirouzu K.; Kusumi T.; Yamada K.; Ikegami M.; Kawachi H.; Kameoka S.; Ohkura
679 Y.; Masaki T.; Kushima R.; Takahashi K.; Ajioka Y.; Hase K.; Ochiai A.; Wada R.; Iwaya K.; Nakamura T.;
680 Sugihara K. Actual status of distribution and prognostic impact of extramural discontinuous cancer spread
681 in colorectal cancer. *J Clin Oncol.* **2011**, *29*, 2550-2556.
- 682

- 683 26. Akagi Y.; Adachi Y.; Ohchi T.; Kinugasa T.; Shirouzu K. Prognostic impact of lymphatic invasion of
684 colorectal cancer: a single-center analysis of 1,616 patients over 24 years. *Anticancer Res.* **2013**, *33*, 2965-2970.
- 685 27. Simkens LH.; van Tinteren H.; May A.; ten Tije AJ.; Creemers GJ.; Loosveld OJ.; de Jongh FE.; Erdkamp FL.;
686 Erjavec Z.; van der Torren AM.; Tol J.; Braun HJ.; Nieboer P.; van der Hoeven JJ.; Haasjes JG.; Jansen RL.;
687 Wals J.; Cats A.; Derleyn VA.; Honkoop AH.; Mol L.; Punt CJ.; Koopman M. Maintenance treatment with
688 capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled
689 trial of the Dutch Colorectal Cancer Group. *Lancet.* **2015**, *385*, 1843-1852.
- 690 28. Luo HY.; Li YH.; Wang W.; Wang ZQ.; Yuan X.; Ma D.; Wang FH.; Zhang DS.; Lin DR.; Lin YC.; Jia J.; Hu
691 XH.; Peng JW.; Xu RH. Single-agent capecitabine as maintenance therapy after induction of XELOX (or
692 FOLFOX) in first-line treatment of metastatic colorectal cancer: randomized clinical trial of efficacy and
693 safety. *Ann Oncol.* **2016**, *27*, 1074-1081.
- 694 29. Yuan F.; Shi H.; Ji J.; Cai Q.; Chen X.; Yu Y.; Liu B.; Zhu Z.; Zhang J. Capecitabine metronomic
695 chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis. *Oncol Rep.* **2015**,
696 *33*, 1753-1762.
- 697 30. Shi H.; Jiang J.; Ji J.; Shi M.; Cai Q.; Chen X.; Yu Y.; Liu B.; Zhu Z.; Zhang J. Anti-angiogenesis participates
698 in antitumor effects of metronomic capecitabine on colon cancer. *Cancer Lett.* **2014**, *349*, 128-135.
- 699 31. Shaked Y.; Pham E.; Hariharan S.; Magidey K.; Beyar-Katz O.; Xu P.; Man S.; Wu FT.; Miller V.; Andrews
700 D.; Kerbel RS. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose
701 Chemotherapy. *Cancer Res.* **2016**, *76*, 5983-5993.
- 702 32. Zhang Q.; Kang X.; Yang B.; Wang J.; Yang F. Antiangiogenic effect of capecitabine combined with
703 ginsenoside Rg3 on breast cancer in mice. *Cancer Biother Radiopharm.* **2008**, *23*, 647-653.
- 704 33. Huang WY.; Ho CL.; Lee CC.; Hsiao CW.; Wu CC.; Jao SW.; Yang JF.; Lo CH.; Chen JH. Oral tegafur-uracil
705 as metronomic therapy following intravenous FOLFOX for stage III colon cancer. *PLoS One.* **2017**, *12*,
706 e0174280.
- 707 34. Edge SB.; Byrd DR.; Compton CC.; Fritz AG.; Greene FL.; Tortti A III. AJCC cancer staging manual, 7th ed.;
708 Springer, New York, USA, 2010; pp. 143-164.
- 709 35. Gross I.; Duluc I.; Benameur T.; Calon A.; Martin E.; Brabletz T.; Kedinger M.; Domon-Dell C.; Freund JN.
710 The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon
711 cancer cells. *Oncogene.* **2008**, *27*, 107-115.