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Abstract: Tornadoes remain an active subject of observational and numerical research due to the 

damage and fatalities they cause worldwide as well as poor understanding of their behavior, such 

as what processes result in their genesis and what determines their longevity and morphology. 

A numerical model executed on a supercomputer run at high resolution can serve as a powerful 

tool for exploring the rapidly evolving tornado-scale features within a simulated storm, but saving 

large amounts data for meaningful analysis can result in unacceptably slow model performance, an 

unwieldy amount of saved data, and saved data spread across millions of files. In this paper, a system 

for efficiently saving and managing hundreds of terabytes of compressed model output is described 

in order to support a supercomputer simulation of a tornadic supercell thunderstorm. The challenges 

of managing a simulation spanning over a quarter trillion grid volumes across the Blue Waters 

supercomputer are also described. The simulated supercell produces a long-track EFS tornado, and 

the near-tornado environment is described during tomadogenesis, where single upward-growing 

vortex undergoes several vortex mergers before transitioning into a multiple vortex tornado. 

Keywords: Tornadogenesis; numerical simulation; volume rendering; visualization; supercell 

u thunderstorm; Hierarchical Data Format; ZFP compression; VAPOR3

10 1. Introduction

11 Supercell thunderstorms remain an active target of both observational and numerical study, as 

18 they are the source of the majority of observed tornadoes, and are always associated with the most 

1g damaging, those rated EF4 and EFS on the Enhanced Fujita scale. Since the 1970s, when computing 

20 technology had advanced enough, numerical models have been used to explore the three-dimensional 

21 structure and morphology of supercell thunderstorms. The earliest simulations (e.g., [1-3]) were 

22 coarsely resolved and spanned a domain too small to hold the full storm, which limited their utility; 

23 however these same simulations captured important physical and morphological characteristics of 

24 supercells that have been found to be consistent with both theory and observations. Since this time, 

2s additional 3D cloud model simulations, e.g., [4-13], containing tornadoes or tornado-like vortices 

20 have been conducted at increasingly higher resolutions over time; however it is not clear that data is 

21 being saved at high enough spatial and temporal resolution to capture the relevant processes involving 

28 tornado genesis and maintenance in many of these simulations. 

2g Despite advances in computing technology and numerical model sophistication, adequately 

30 resolved simulations of tornado producing supercells are lacking. Observational and numerical studies 

31 of tornado producing supercells have shown an abundance of subtornadic vortices along cold pool 

32 boundaries in supercells [14-17]. The smallest of these vortices exhibit diameters of tens of meters, and 
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33 hence could not be present in supercell simulations run with 0(100) meter resolution found in many 

34 recent studies, nor would even the most sophisticated subgrid turbulence closure be able to account 

35 for these unresolved features. Further, many numerical studies of supercells use a stretched mesh 

36 focusing the most vertical resolution at the ground but decreasing with height. This configuration can 

37 result in improperly dissipating turbulent kinetic energy, piling up energy at high wave numbers [18]. 

38 These choices of problem size and the use of a stretched mesh are chosen pragmatically to make the 

39 simulation less computationally intensive. While most, but not all, modern thunderstorm models 

40 are able to take advantage of distributed memory architectures such as those found on modern 

41 supercomputing hardware, scaling a simulation to run efficiently on hundreds of thousands to millions 

42 of processing cores is a nontrivial exercise. Without special attention to the underlying communication 

43 infrastructure, numerical models will scale poorly to large core counts to make such high resolution 

44 simulations unfeasible. In the United States, federally funded supercomputing systems such as Blue 

45 Waters [19,20] require a full NSF proposal process that includes evidence of reasonable scaling to large 

46 core counts. A model that scales poorly will likely not be granted access to run at large core counts, 

47 and even if it was, the amount of useful science produced would be minimal. 

48 Further limiting scientists' ability to run large simulations on distributed memory supercomputers 

40 is the input/output (I/O) bottleneck. Typically, simulations of supercells are executed whereby 

60 floating-point data is saved periodically (typically on the order of once per model minute or more) 

51 for post hoc analysis, which can take many months to years to complete due to the complexity 

62 of the simulation and the traditional methods for doing analysis (such as the use of Lagrangian 

53 tracers). A recent trend in large-scale modeling is the use of in situ visualization and analysis [21] 

s4 which enables investigators to visualize model output (and even manipulate the simulation) on 

ss the same supercomputing resources while the model's state is held in core memory. The utility of 

56 in situ visualization and analysis for tornado research is questionable, however, considering that a 

57 scientifically interesting simulation may take months to years to analyze, and this analysis will be done 

58 from files saved to disk that are repeatedly accessed with analysis and visualization software, much of 

s• which may be written by investigators long after the simulation was executed. This typical analysis 

60 workflow does not benefit from the ability to visualize and/ or analyze a simulation while it is in core 

61 memory of a supercomputer. 

62 Thus, a significant limiting factor in conducting research on tornadic supercells is the ability to 

63 save significant amounts of data frequently in order to capture, at high resolution, the rapidly evolving 

64 flow associated with tornado behavior. Abundant visual evidence and radar observations indicate that 

65 the process of tornadogenesis often occurs rapidly, over periods of dozens of seconds, where surface 

66 flow quickly goes from nontornadic to producing visible debris from tornado strength damage. These 

67 observations further support the notion that in order to properly model tornado behavior in supercells, 

68 a small time step (associated with a small grid spacing) is required. 

60 The well-known issue with increasing resolution in a three-dimensional model is that halving 

70 the grid spacing (doubling the resolution) requires 23 (8) times more computer memory just to hold 

71 the arrays that define the model state. Further, in order to maintain computational stability, a halving 

72 of the time step is required, resulting in (at least) 16 times more calculations than at twice the grid 

73 spacing. In reality, due to having larger communication buffers for exchanging halo data between 

74 nodes and the increased latency and jitter inherent in larger simulations of this kind, performance is 

7s even worse than back-of-the-envelope calculations imply. If one considers a supercell simulation with 

70 isotropic 100 m isotropic grid spacing, the same simulation run with 10 m grid spacing would require 

77 more than 1,000 times more memory and, owing to a halving of the time step to assure computational 

78 stability, more than 10,000 times more calculations. Such a simulation requires both supercomputing 

,. resources as well as a model that is able to efficiently utilize these resources, including the ability to 

80 save large amounts of data frequently in order to have scientific utility. 

81 In this paper, the author describes the use of a modified version of the CMl model [22,23] 

82 in executing an isotropic, ten meter grid spacing, quarter-trillion grid volume simulation on the 
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83 Blue Waters supercomputer. Modifications to CMl were done exclusively on its 1/0 code with no 

84 modification to the model physics. The new 1/0 driver, dubbed LOFS, uses the HDFS file format [24] 

86 with the core driver (which buffers files to memory) and ZFP lossy floating point compression [25] on 

86 all 3D arrays. LOFS has enabled the author to save over 270 TB of total data in the simulation described 

87 below that includes a 42 minute segment saved in 0.2 second intervals over a 20.8 km x 20.8 km x 

88 5.0 km subdomain, whereby 1/0 took up only 37% of total wallclock utilization. Post-processing 

89 code will also be described, with the main focus being a utility that converts LOFS data to individual 

90 NetCDF files. NetCDF [26] is an open-source self-describing data format developed by Unidata that is 

91 commonly used in the atmospheric sciences. Visualization of the simulation data reveals a fascinating 

02 evolution of the storm's low level vorticity field that includes formation and merging of dozens of 

93 vortices, some of which come together to form a powerful multiple-vortex tornado. 

94 The paper is organized as follows: In the first section, the author's use of the CMl model is briefly 

96 described. The second section describes LOFS and its objectives; how the author implemented LOFS 

96 in CMl; its file and directory layout; the internal structure of individual HDFS files that comprise 

97 LOFS; and how data can be read back from LOFS and converted to NetCDF files. The performance of 

98 ZFP floating point compression on saved 3D data is also described. In the third section, a primarily 

•• descriptive discussion of tornadogenesis is presented using output from 2D and 3D graphical software 

100 as support, revealing the benefit of saving high resolution data at a very high temporal frequency in 

101 order to capture the rapid, fine-scale processes of tornadogenesis. The paper concludes with a brief 

102 summary and discussion of future work to be conducted. 

103 2. The CMl model

104 The CMl model [22] was written to run efficiently on distributed memory supercomputers, 

105 using non-blocking MPI communication that overlaps communication with calculation, resulting in 

106 a computational kernel that scales efficiently to hundreds of thousands of MPI ranks. As of this this 

107 writing, CMl had been cited in over 220 peer-reviewed scientific studies published in 31 different 

108 scientific journals [23]. CMl offers several solver options and physics parameterizations, and the 

100 author finds CMl especially suited for highly idealized, high resolution thunderstorm modeling due 

110 to its parallel performance at large scale, high-order accurate numerics and sophisticated microphysics 

111 parameterization options. The model mechanics and governing equations are well documented and 

112 its author makes the source code freely available. 

m CMl is a hybrid-parallel model, offering both OpenMP parallelization (via the parallelization 

114 of many triply-nested for loops found throughout the code) and Message Passing Interface (MPI) for 

m exchanging halo data between MPI ranks during model integration as well as executing occasional 

116 global communication operations. On the Blue Waters supercomputer, which contains 32 integer cores 

m and 16 floating point co-processors per node, the best performance was found running 2 OpenMP 

118 threads per MPI rank, with 16 MPI ranks per shared memory node, hence using all 32 cores per node. 

m It is worth noting that ideally, one would prefer a single MPI rank to span a compute node with 

120 intranode parallelization being handled entirely by OpenMP across all cores such that halo data was 

121 not exchanged on a shared memory node; however with CMl's OpenMP implementation, this results 

122 in poor performance. It is also worth noting that the performant behavior of the author's configuration 

123 on Blue Waters reflects the efforts of the MPI authors to optimize the code over the years, including its 

124 performance on shared memory hardware (e.g., [27]). 

125 CMl by default contains output options that include unformatted binary output and NetCDF, with 

120 one uniquely named file being saved per MPI rank per save cycle. On distributed-memory multicore 

127 computers, the option of saving one NetCDF file per node per save cycle is also available, reducing the 

128 total number of files being saved by a factor of the number of ranks per node. However, the author 

129 was unable to achieve desired research goals with all available options. This led to experimentation 

uo with the HDFS file format and ultimately resulted in the development of a file system called LOFS, 

m described below. 
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132 3. LOFS: Lack 0£ a File System

133 The LOFS abbreviation came about following the author's realization that what was being 

134 achieved in his work was the creation of a file system, which can be loosely defined as a method for 

m naming and storing files for storage and retrieval. LOFS is not a file system in the traditional sense such 

136 as what is found on modern operating systems such as Linux (e.g., ext4, Btrfs, XFS, Lustre), macOS 

131 (e.g., HPFS+, APFS) or Windows (e.g., FAT, VFAT, NTFS). Rather, LOFS is a "file-based file system" 

138 comprised of directories and files that lives on top of the actual file system of the operating system 

13e being used (on Blue Waters, the underlying file system is Lustre). The LOFS abbreviation was initially 

140 chosen from the author's initials, but officially LOFS stands for Lack Of a File System, acknowledging 

141 that it's only a file system in the most basic sense, and should be discerned from the sophisticated code 

142 that underlies traditional file systems underpinning modern operating systems. 

143 3.1. Historical context and the path to LOFS 

144 Following the acquisition of early access to the Blue Waters supercomputer in 2010, the author 

145 quickly found that 1/0 was be the major bottleneck with regards to wallclock utilization for large 

14e simulations on the machine with CML This marked the beginning of a process of trial and error with 

141 different 1/0 configurations with the HDFS file format, so chosen due to its flexibility, extensibility, 

148 parallelization capability and hierarchical storage model that enable saved data to be organized much 

m like that found on the familiar Linux operating system. At the same time, the author was collaborating 

150 with Matthieu Dorier, the software architect of Damaris, a new approach to 1/0 involving the use of 

1s1 dedicated 1/0 cores [28,29]. Damaris was undergoing rapid development, and was considered as an 

152 option; however due to the uncertainty of the software's future as well as the author's reticence to rely 

153 on an external package that itself relied on other external libraries written in different languages, this 

154 approach was not pursued. Ultimately, an "all Fortran" solution was pursued that would not require 

155 additional external software beyond the HDFS and ZFP libraries or the use of multiple compilers to 

156 build the model. 

151 Early approaches to tackling the 1/0 problem involved the use of parallel HDFS (pHDFS), a 

158 natural choice for a massively parallel model writing to a parallel file system. It was quickly determined 

15• that this would result in files that were very large and unwieldy, and performance for writing single 

160 files was not acceptable. Next, a similar approach was tried where new MPI communicators that 

161 evenly divided the full model domain into identically sized blocks wrote their own files, each with 

162 pHDFS. This provided an additional advantage that allowed the saving of subdomains of the full 

163 model domain in order to reduce the total 1/0 load. While this offered performance advantages, a 

164 major disadvantage of the use of pHDFS was that it did not allow for the use of any compression 

1es plugins (at the time of this writing, some compression choices were available, but still considered 

166 experimental). 

161 Following the discovery that compression was not possible with pHDFS, only serial HDFS options 

168 were considered. A breakthrough came following the discovery of the core HDFS driver [30] which 

16• allows HDFS files to be entirely constructed in local memory and later flushed to disk. Because frequent 

110 1/0 was a cornerstone of the required approach, writing to memory (as opposed to disk) frequently 

111 was an attractive option. While supercomputing manufacturers, acknowledging the 1/0 bottleneck 

112 found in many HPC applications, have begun to address this issue with approaches such as using 

113 burst buffers [31], memory operations remain faster than the act of writing files to disk. Writing files 

114 to memory, in addition to being faster due to higher available bandwdith, also involves less latency 

115 than doing frequent 1/0 to disk, which is often exacerbated by the fact that the underlying parallel 

116 file system is being concurrently utilized by other jobs running on the machine. Further, Blue Waters 

111 XE nodes each contain 64 GB of memory, and, for large simulations, the memory footprint of CMl 

118 was only about 3% of that, allowing much headroom for the construction of large files on each node. 

11• 0£ course, at some point data must be written to disk, but it was found that supercomputer such as 
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190 Blue Waters actually perform quite well when a lot (but not too many) large files (each on the order of 

181 several to dozens of GB each) are written concurrently - and infrequently - to multiple directories. 

192 A final challenge in the implementation of LOPS was finding a way to map the MPI ranks to 

193 the hardware in such a way that only intranode communication to a single core on each node was 

184 required to assemble a continuous node-sized chunk of the domain (so that viewing any individual 

18s written file would be like looking at a tiny patch or column of the full physical domain). On multicore 

186 supercomputers, by default, MPI ranks are assigned in what Cray refers to as "SMP-style placement" 

191 [32] where node 1 contains the first N ranks numered consecutively, node 2 contains the next N

188 consecutive ranks, etc., which, for CMl's 20 node decomposition, means each node contains a 

189 distorted piece of the actual physical model domain. Rank reordering was first achieved by using 

190 external tools provided by Cray that involved the construction a file containing the reordered rank 

191 numbers that was read at runtime. This approach, however, was found to be unwieldy and in order to 

m make rank reordering not dependent upon the type of supercomputer being used, an all-MPI approach 

m was devised in which a new global communicator was assembled whose rank numbers were assigned 

104 to match the 20 decomposition (see Fig 1). 

45 46 47 48 61 62 63 64 57 58 59 60 61 62 63 64 

41 42 43 44 57 58 59 60 49 50 51 52 53 54 55 56 

37 38 39 40 53 54 55 56 41 42 43 44 45 46 47 48 

33 34 35 36 49 50 51 52 33 34 35 36 37 38 39 40 

13 14 15 16 29 30 31 32 25 26 27 28 29 30 31 32 

9 10 11 12 25 26 27 28 17 18 19 20 21 22 23 24 

5 6 7 8 21 22 23 24 9 10 11 12 13 14 15 16 

1 2 3 4 17 18 19 20 1 2 3 4 5 6 7 8 

Figure 1. Example of rank reordering for a 4 node (2x2 2D node decomposition) simulation with 

16 cores (4x4 2D core decomposition) per node. Numbers indicate MPI rank, starting at 1, for each 

communicator. Initially (left image, communicator MPI_COMM_WORLD) ranks are ordered in "SMP" 

mode where each subsequent node is populated with ranks in ascending order. Following rank 

reordering (right image, new MPI_COMM_CMl communicator), nodes/ranks are mapped to the 

physical horizontal model domain (each rank contains the full vertical extent of the physical model 

domain). The lowest numbered rank on each node collects, assembles, compresses, buffers to memory, 

and writes to disk. 

m 3.2. Objectives of the LOFS approach 

190 LOPS is a form of what has been called "poor man's parallel I/O" [33] or, using more modern 

m terminology, a system of Multiple Independent Files (MIF) [34]. LOPS uses serial HOF5, but from 

198 within CMl, files are written in parallel (concurrently) to disk. Supercomputers such as Blue Waters 

m use a parallel file system that is writable by all MPI ranks, and experience has shown that so long 

200 as not too many files are written concurrently to a single directory, but spread out amongst many 

201 different directories as is the case with LOPS, excellent I/O bandwidth is achieved. However, LOPS 

202 was designed such that "stitching together" files into one single file as an intermediate step is not 

203 required to read from a continuous region of stored data. One component of LOPS is a conversion 

204 program (lofs2nc described below) that writes single CF compliant NetCOF [35] files which can 

20s be read by a variety of analysis and visualization software. In the case of the tornadic supercell 

200 simulation described below, the area surrounding the region of interest for studying tornado genesis 

201 and maintenance spans roughtly 5 km x 5 km x 5 km, or 500 x 500 x 500 grid points, which does not 

208 create too unwieldy a file size when several variables of that dimension are written to a NetCOF file. 

200 The objectives of LOPS are as follows: 
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210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

1. Reduce the number of files written to disk that would occur if each MPI rank wrote one file per

save, as is traditionally done, to a reasonable number
2. Minimize the number of times actual 1/0 is done to the underlying file system
3. Write big (but not too big) files
4. Offer users the ability to use lossy floating point compression to reduce the amount of written

data 
5. Make it easy to save only a subdomain of the full model domain
6. Make it easy to read in data for analysis and visualization after it is written

These objectives are achieved as follows: 

1. LOFS files each contain multiple time levels, as opposed to a single time per file, as well as

having only one file per node (as opposed to one file per MPI rank per time) be written to disk.

If, for example, 50 times are buffered to memory per file and each multicore node contains 16

MPI ranks, the number of files saved is reduced by a factor of 800 under a typical one time per

file and one file per MPI rank paradigm.
2. Similarly, by buffering many time levels to memory as the file is assembled, many "saves" occur

without writing to disk.
3. This occurs naturally as a result of the prior two items. Files will never exceed the total memory

available on a given node. For the 10-m simulation described below, a typical file size in an active

area of the domain was only 2.5 GB when buffering 50 ZFP compressed times to memory and

saving 15 3D arrays each of the 50 times
4. This is achieved through the HDF5 plugin system that allows for external compression algorithms

to be used.
5. Since hundreds to thousands of shared memory nodes are participating in the simulation,

and each node independently writes LOFS data, namelist options are available that save over

user-specified ranges in both the horizontal and vertical, resulting in only activating nodes that

write "data of interest" over any continuous 3D subdomain. In the simulation described herein,

the saved subdomain spanned 2,080 by 2,080 by 500 grid volumes (20.8 km by 20.8 km by 5 km)

in x, y and z respectively, centered on the low level mesocyclone of the supercell.
6. This is achieved through the use of reading and conversion code described in section 3.6.

m 3.3. CMl modifications 

240 LOFS is written in Fortran95 and uses Fortran modules, and was written to minimize the amount 

241 of changes made to the default CMl code for easier porting to new versions of CMl and/ or other 

242 distributed memory MPI models. LOFS has been used with CMl release 16 (the CMl version that 

243 produced the simulation described below) as well as CMl release 18. The process for adapting LOFS 

244 to CMl can be summarized as follows: 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

250 

257 

1. Remove references to existing writeout code from CMl's makefile (due to its scope, LOFS is not

a "user selectable" option like NetCDF)
2. Add appropriate references to LOFS source code files and compiler options for LOFS to the CMl

makefile
3. Using the sed command, replace all instances of the communicator MPI_COMM_WORLD with

MPI_COMM_CMl in CMl source code
4. Insert rank reordering code, which initializes the MPI_COMM_CMl communicator (this is done

where CMl initializes MPI).
5. Replace existing writeout subroutine with a new writeout subroutine that calls several other

LOFS subroutines that exist in their own source code files
6. Include the appropriate LOFS modules in existing CMl source code that requires it
7. In select parts of the code, insert subroutines that do tasks such as allocating LOFS-only variables,

broadcasting LOFS-only namelist values, etc. 

259 While LOFS has only been used with CMl, the process outlined above could is designed to be similar 

259 to any similar distributed memory model that uses a 2D domain decomposition. 
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260 3.4. Writing data 

261 In order to provide an overview of how LOFS data is written within CMl, pseudocode is first 

262 presented. In the pseudocode below, the domain decomposition has already been done such that 

263 each node has been mapped to the 2D domain decomposition shown in Fig 1, with each MPI rank 

264 containing the full vertical extent of the domain. 

265 

266 do while model_time .lt. total_integration_time 

267 integrate_one_time_step !Run the solver to model_time+dt 

268 if mod(current_model_time,savefreq) .eq. 0 !Time to do I/0 

259 if i am an io core: 

�o if first visit to this routine: 

271 if iamroot: make directories 

�2 initialize_core_driver 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

initialize_compression_driver 

open_hdf5_file !this creates an empty file on disk 

create_hdf5_groups 

else if this is a new write to disk cycle: 

close_groups 

close_file !This flushes the file to disk 

if iamroot: make_directories 

initialize_core_driver 

initialize_compression_driver 

open_hdf5_file !this creates an empty file on disk 

create_hdf5_groups 

else: 

close_current_time_group 

create_new_time_group 

end if 

write_metadata 

for var in all 3D selected variables: 

MPI_Gather 3D data to io core from other cores on shared memory module 

Reassemble 3D data on I/0 core to continuous subdomain chunk 

write 3D data to time group 

end for 

�4 end if !i am an io core 

20s end if ! mod ( current_model_ time , savef req) . eq. 0 

206 end do 

291 LOFS operates by first initializing the directory structure by calling the execute_command_line 

208 subroutine to call the Linux command mkdir -p to create directories that make up LOFS directory 

m structure. Next, the HDFS core driver and ZFP compression driver are initialized, and one core on each 

300 node that is participating in writing data opens its unique HDFS file, which creates an empty HDFS 

301 file on disk and in memory (data to the disk file is only written when the file in memory is closed). 

302 When it is time to write data, a single core on each participating node collects data (using MPI_Gather) 

303 from the remaining cores for each requested variable to be written and assembles it into a continuous 

304 block of model data that is then written to memory. Following the first write, subsequent writes build 

305 the HDFS files in memory with each new time resulting in a new base-level group (see Table 2). When 

30• the number of times buffered to memory reaches a user-selectable value (in this case, 50), all groups 

301 and files are closed, which flushes the files to disk. Then, new uniquely named directories are created 

308 to house new files, and the process repeats until the model finishes. 

309 For simulations in which data is saved at a very small time interval, the best performance is 

310 achieved when a large number of model times are buffered to memory. T his is accomplished by 

m creating a new base level group that is a zero-padded integer corresponding to the time index (starting 

m with 0) being written. Groups are a useful way to organize data in HDFS files, and they are also 

m used to organize metadata, mesh, and the base state sounding data. Table 1 contains a listing of the 

314 scalar values (which include integer metadata unique to each file) and lD arrays (corresponding to 

315 model sounding data) contained within each HDFS file. Because metadata is so small compared to 
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variable 

/basestate/piO 
/basestate / presO 
/basestate/ qvO 
/basestate/rhO 
/basestate/thO 
/basestate/uO 
/basestate/vO 
/ grid/ corex 
/ grid/ corey 
/grid/myi 
/grid/myj 
/grid/ni 
/grid/nj 
/ grid/ nkwrite_ val 
/ grid/ nodex 
/grid/ nodey 
/grid/nx 
/grid/ny 
/grid/nz 
/grid/xO 
/grid/xl 
/grid/yo 
/grid/yl 
/mesh/dx 
/mesh/dy 
/mesh/dz 
/mesh/umove 
/mesh/vmove 
/mesh/xf 
/mesh/xffull 
/mesh/xh 
/mesh/xhfull 
/mesh/yf 
/mesh/yffull 
/mesh/yh 
/mesh/yhfull 
/mesh/zf 
/mesh/zh 
/times 

description 

Exner function 
pressure 
water vapor mixing ratio 
relative humidity 
potential temperature 
u component of wind 
v component of wind 
number of cores in E/W direction on node
number of cores in N /S direction on node 
E/W index of node
N /S index of node
number of grid points on a node in E/W direction
number of grid points on a node in N /S direction 
Actual number of vertical points saved 
number of nodes in E/W direction 
number of nodes in N /S direction 
number of grid points in E/W direction for full domain 
number of grid points in N /S direction for full domain 
number of grid points in the vertical for full domain 
first E/W grid index in file
last E/W grid index in file 
first N/S grid index in file
last N /S grid index in file 
grid spacing in x
grid spacing in y 
grid spacing in z
E/W box translation component
N /S box translation component
Cartesian staggered mesh locations in E/W direction in file
Cartesian staggered mesh locations in E/W direction in full domain
Cartesian scalar mesh locations in E/W direction in file
Cartesian scalar mesh locations in E/W direction in full domain
Cartesian staggered mesh locations in N /S direction in file
Cartesian staggered mesh locations in N/S direction in file
Cartesian scalar mesh locations in N /S direction in file
Cartesian scalar mesh locations in N/S direction in full domain
Cartesian staggered mesh locations in vertical
Cartesian scalar mesh locations in vertical
Model times in file

Table 1. A listing and description of scalar values and 1D arrays within a single LOFS HDFS file for 

the 10-m run. The basestate group contains 1D floating-point arrays of model sounding variables 

mapped to the model mesh. Variables in the grid group refer to integer quantities that indicate the 

dimension of the model domain, 2D decomposition information, and indices describing where data is 

within the full domain. The mesh group contains floating-piont arrays containing the local and global 

Cartesian coordinates in each dimension, as well as the domain translation values chosen to keep the 

simulated storm centered within the model domain (i.e., the storm motion vector components). The 

times array contains a listing of the double-precision model time corresponding to each of the saves 

within the file. 
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316 the floating point data that contains the model state, the author chose to write identical redundant 
317 metadata to all HDFS files. Such redundant metadata includes the number of nodes and cores per 

318 node used in the simulation, Cartesian mesh coordinates and dimensions of the full model domain, the 

310 model base state (from the CMl input_sounding file) mapped to the vertical mesh, etc. Routines for 

320 interrogating and reading in LOFS data exploit this redundancy as "any file will do" to retrieve enough 
321 metadata to describe and assemble any subdomain of the simulation. The /times dataset contains 

322 the floating point model time that corresponds to each saved time level within the file. Metadata that 

m varies between files includes the grid indices and Cartesian location with respect to the full model 
324 domain that are contained in the file. 

array name description of contents dimensions 

/00000/2D/static/snapshot_dbz_0500 reflectivity 500m AGL (80, 80) 
/00000/2D/static/snapshot_prespert_0500 perturbation pressure 500m AGL (80, 80) 
/00000/2D/swath/hwin_max_sfc max sfc horiz wind swath (80, 80) 
/00000/2D/swath/hwin_max_sfc_move max sfc translated horiz wind swath (80, 80) 
/00000/2D/swath/prespert_rnin_1000 min 1km AGL pressure perturbation swath (80, 80) 
/00000/3D/dbz reflectivity (500, 80, 80) 
/00000/3D/khh subgrid eddy viscosity (500, 80, 80) 
/00000/3D/kmh subgrid eddy diffusivity (500, 80, 80) 
/00000/3D/ncg number concentration of graupel (500, 80, 80) 
/00000/3D/nci number concentration of cloud ice (500, 80, 80) 
/00000/3D/ncr number concentration of rain (500, 80, 80) 
/00000/3D/ncs number concentration of snow (500, 80, 80) 
/00000/3D/prespert pressure perturbation (500, 80, 80) 
/00000/3D/qc cloud liquid mixing ratio (500, 80, 80) 
/00000/3D/qg graupel mixing ratio (500, 80, 80) 
/00000/3D/qr rain mixing ratio (500, 80, 80) 
/00000/3D/qvpert perterubation water vapor mixing ratio (500, 80, 80) 
/00000/3D/rhopert perturbation density (500, 80, 80) 
/00000/3D/thpert perturbation potential temperature (500, 80, 80) 
/00000/3D/thrhopert perturbation density potential temperature (500, 80, 80) 
/00000/3D/tke_sg subgrid TKE (500, 80, 80) 
/00000/3D/u u component of wind on staggered mesh (500, 80, 80) 
/00000/3D/v v component of wind on staggered mesh (500, 80, 80) 
/00000/3D/w w component of wind on staggered mesh (500, 80, 80) 

Table 2. A listing and description of 2D and 3D arrays stored within a single HDF5 file for the 10-m 

run for the first of fifty stored times. All 3D arrays are shown, but only 5 of 48 2D arrays are shown 

for brevity. The top level group is a zero-padded index corresponding to the time level stored in the 

file, starting at 0 (and ending at 49 for this run). The 2D subgroup contains two subgroups of its own: 

static contains 2D horizontal snapshots of model prognostics and diagnostics while swath contains 

horizontal slices of statistical properties. The levels above ground of each 2D slice are chosen by the 

user. The 3D subgroup contains all of the chosen three-dimensional floating point model prognostics 

and diagnostics. Each 2D and 3D floating point array is a continuous chunk of the full physical model 

domain that can be viewed independently, but is typically used as a building block for the assembling 

of larger subdomains for conversion to file formats such as NetCDF, or read in directly to an array for 

analysis or visualization. 

32s Table 2 contains a listing of 2D and 3D floating point data found in each HDFS file. These include 

326 two-dimensional horizontal patches of user-selected static variables at various model heights, CMl 

321 "swath" variables that provide a statistical look at both mesh relative and ground relative quantities 
328 over time, and 3D data describing the model's state. The top level group is a zero-padded index 

m describing what time level (starting at 0, and ending at 49 in this example) is being saved in the file, 
330 with the 2D and 3D subgroups indicating the rank of the arrays that follow. Actual array dimensions 

331 are also found in the listing; for 2D arrays, they are in ( ny, nx) order and ( nz, ny, nx) order for 3D 

332 arrays. 
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symbolic notation 

history 

String 

3D 

TTTTT 

ttttttt 

nnnnnnn 

NNNNNNN 

Example 

history 

E1Reno10m-a 

3D 

05000 

2000000 

0009000 

0009151 

description 

Prefix always used for history data 
User supplied descriptive string 
Indicates the directory contains three-dimensional data 
zero padded integer time in seconds 
fractional part of time in seconds 
node directory containing files on nodes 9000-9999 
node number of file 

Table 3. 
files that 

Naming convention 
comprise LOFS. The 

for one 
full file 

member of 
with path 

a collection of HOPS 
for this example is 

history.E1Reno10m-a/3D/E1Reno10m-a.05000.2000000/0009000/E1Reno10m-a.05000.2000000_0009151.cm1hdf5. 
The simulation described herein contains a subdomain of the full model domain, and is comprised of 
676 HDFS files out of a total possible 19,600 

333 3.5. Directory layout and file naming convention 

334 A set of Fortran95 subroutines constructs the total path and filename for each HDF5 file based 

335 upon strict rules, with variations in the file and directories that are a function of the node number and 

336 time of the first saved time within the HDF5 file. The naming convention is demonstrated by first 

337 looking at the full path to a single file, corresponding to a file written by node number 9151 starting at 

338 time=5000.2000000 seconds: 

330 history.E1Reno10m-a/3D/E1Reno10m-a.05000.2000000/0009000/E1Reno10m-a.05000.2000000_0009151.cm1hdf5 

340 The naming convention is as follows: 

341 history.String/3D/String.TTTTT.tttttttt/nnnnnnn/String.TTTTT.ttttttt_NNNNNN.cm1hdf5 

342 Table 3 describes the components of the entire path and file name. The hierarchy within LOFS data is 

343 based upon model time, with new directories whose name contain the floating point model time being 

344 created for each time data is flushed to disk. In order to avoid performance issues related to having 

345 too many files in a single directory, data is spread in 1000 file chunks in subdirectories whose names 

346 are simply a sequence of zero-padded factors of 1000. 

347 In the simulation described below, a maximum of 1000 HDF5 files will be found in any node 

348 subdirectory. Spreading the many files that make up a simulation amongst many directories has been 

340 found to produce much better performance than placing them all in one directory. In the example 

350 above, node directory 0009000 would contain, for a simulation in which the full domain was saved, a 

351 thousand files with node numbers 9000 through 9999. 

352 It should be emphasized that on the read side, metadata is extracted from the file and directory 

353 names themselves (in addition to retrieving metadata from files) in order to reconstruct the full domain 

354 space such that the proper files can be accessed when users request data. Further, because of the 

355 high temporal frequency of data saved in this simulation (in this case, every 0.2 s), the time string in 

356 seconds embedded within the HDF5 files is actually a floating point representation of the time that is 

357 then converted to floating point data in the read-side code. Because each HDF5 file contains 50 time 

358 levels in this simulation, the HDF5 time embedded within the file name descriptor refers to the first of 

3so 50 times contained within the file, with all saved times comprising the /times dataset (a 1D double 

300 precision array) stored in each file. 

361 By enforcing strict file and directory naming conventions, read-side applications programmed 

352 with knowledge of these conventions (or using the existing LOFS read-side routines) can traverse 

363 the directory structure and extract metadata from directory names, file names, and finally the files 

364 themselves. Then, using HDF5 calls, a single floating point buffer is created for each requested variable 

365 from multiple files and is stored into an array for analysis, visualization, conversion, etc. 
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argument 

--time=5400.0 
--offset 
--x0=800 
--y0=750 
--x1=1300 
--y1=1250 
--z1=300 
--histpath=3D 
--base=torscale-10m 
--swaths 
--nthreads=4 
thrhopert prespert ... 

description 

Select t = 5400 
Indices are with respect to what was saved, not the full domain origin (0,0) 
west boundary index 
south boundary index 
east boundary index 
north boundary index 
top boundary index 
Top level 3D LOPS directory 
base name given to netcdf files 
Retrieve and save all swaths 
Number of OpenMP threads to use for calculations 
The variables requested 

Table 4. Description of command line arguments to lof2nc such as those used to create NetCDF files 
that are shown in all storm imagery in this paper. 

366 3.6. Reading data from LOFS 

361 For reading LOFS data, routines written in C have been created that provide a way to access 

368 any saved variable at any time spanning any arbitrary subdomain found within the LOFS data. To 

m demonstrate, an example of the lofs2nc utility is described below, creating a NetCDF file containing 

310 all of the 2D found within a subset the LOFS data as well as selected 3D data. 

m Consider a situation where a user wishes to make a NetCDF file that spans the region immediately 

312 surrounding the tornado in the simulation for visualization. This is achieved with lofs2ne, a front end 

373 to a series of underlying routines that traverse the LOFS structure to extract metadata from directory 

374 names and file names, reads redundant metadata from one of the HDF5 files, and then loops across 

375 files, incrementally filling a buffer with user-requested data. An example command follows: 

376 lofs2ne --time=5400.0 --offset --x0=800 --y0=750 --x1=1300 --y1=1250 --z1=300 \ 

311 --histpath=3D --base=torseale-10m --swaths --nthreads= 4 \ 

318 thrhopert prespert uinterp vinterp winterp xvort yvort zvort qe qr qg neg ner dbz 

m Table 4 breaks down the different options to the above lofs2nc command. The user has requested 

380 a 501 (in x) by 501 (in y) by 301 (in z) volume of data whose indices are relative to the origin of the 

381 file corresponding to the lowest saved node number. The user has requested a list of variables, some 

382 of which are read directly from the LOFS data (thrhopert, prespert, qe, qr, qg, neg, ner, dbz) and 

383 some which require calculation based upon other saved data (uinterp, vinterp, winterp, xvort, 

384 yvort, zvort). Due to the large amount of data produced by simulations run at this scale, the author 

385 has chosen a save strategy that focuses on saving the minimum number of 3D arrays needed to 

386 calculate any possible other diagnostic/ derived fields and calculating those fields on the fly (with 

381 calculations parallelized using OpenMP on multicore machines). For instance, the LOFS data saved 

388 for this simulation saved the native u, v, and w CMl variables that lie on the staggered Arakawa C 

3so grid [36) such that the velocity components interpolated to the scalar mesh, as well as the vorticity 

390 components interpolated to the scalar mesh, are calculated within the lofs2nc code. This specific 

391 strategy ensures that the highest amount of accuracy is preserved for all calculations involving velocity 

302 variables in methods consistent with those done within the CMl model. 

393 The process by which the LOFS read-side code retrieves metadata involves an entire traversal of 

394 the saved directory structure as well as reading metadata from at least one of the HDF5 files in each 

m time directory. These combined operations can take dozens of seconds to complete when hundreds to 

396 thousands of time levels are saved, but because the results of these operations always return identical 

397 information, the caching of this information is done the first time the command is run, and cache files 

398 are read for subsequent executions. This makes metadata acquisition essentially instantaneous (only 
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399 requiring the formatted reading of several small text files), leaving the code to spend its time to read 

and write and, if requested, calculate derived variables. 400 

401 Pseudocode for lofs2nc is found below. Note that the first four routines will first check for cache 

402 files and read from these if they exist; otherwise, the LOFS directory structure is traversed and, using 

403 routines of the dirent C library, file names within directories are read, sorted, and a single HDF5 file 

404 is selected for internal metadata acquisition. Cache files are written if they do not exist, such that this 

405 process only occurs once, and does not need to be done again until the LOFS file structure is modified 

406 (for example, by adding more time levels as a simulation progresses through time). 

407 

408 get_num_time_dirs !get number of top level directories in 3D directory 

�• get_sorted_time_dirs !get the directory names and sort using quicksort 

410 get_sorted_node_dirs ! get a sorted list of the zero-padded node directories 

u1 get_all_available_times !get a list of every time level saved in all the data 

412 get_available_3D_variable_names ! get a list of all 3D variable names 

03 get_LOFS_metadata_from_a_HDFS_file !get mesh, grid, and basestate information 

414 initialize_netcdf ! Set dimensions, attributes, and define requested variables 

41s if get swaths: get_all_swaths; write_all_swaths ! All 2D fields read and written 

ue get_data_to_buffer !Buffer variables for diagnostic calculations, if requested 

417 for each requested variable: 

418 

419 

420 

if exists_in_LOFS and not_already_buffered: read variable into buffer 

if is_diagnostic: calculate diagnostic into buffer 

write_requested_quantity_to_netcdf_file 

421 Following metadata acquisition, the list of requested variables is checked against what is available, and, 

422 if diagnostic quantities (such as vorticity components) are requested, temporary arrays are allocated 

423 and a flag is set to indicate which LOFS variable is needed for the diagnostic quantity for buffering 

424 to memory. As an example, if the vertical component of vorticity(') was requested (called zvort in 

425 CMl/LOFS), u and v would be buffered to their own arrays such that zvort could be calculated. If u 

426 and v were also requested for writing to NetCDF files, these buffered values would be written without 

427 re-reading LOFS data. Hence, the code only allocates memory for what is needed and re-uses buffered 

428 variables when needed. The main loop over variable names contains code for calculating diagnostic 

420 quantities, and new quantities can be added at the end user's leisure. 

430 All LOFS HOF operations are serial, and this is also true with lofs2nc. However, because 

431 modern supercomputers use parallel file systems, excellent performance is found executing serial 

432 1/0 operations in parallel by writing scripts that execute many instances of lofs2nc concurrently. 

433 This workflow is nearly always used since a main motivation for LOFS is doing analysis at very high 

434 temporal resolution. Running several instances of any code is easily achievable using shell scripting 

435 where jobs are forked into the background. A tremendous amount of data can be read and written 

436 quickly in this manner, exploiting the inherent parallelization of the operating system running on a 

437 multicore machine and reading (writing) from (to) a parallel file system such as Lustre or GPFS. 

438 3.7. The use of ZFP compression 

439 The primary motivation of the development of LOFS was to enable the saving of very high 

440 resolution data at extremely high temporal resolution. This combination will, without care, result in 

441 unacceptably poor model 1/0 performance due to insufficient 1/0 bandwidth, as well producing as 

442 an overwhelmingly large amount of data. LOFS offers, through the use of input parameters in the 

443 namelist. input file that CMl reads upon execution, the ability to save only a subset of the model 

444 domain, which is practical when one is interested in studying the region of the storm directly involved 

44s in tornado processes near the ground. In the simulation described below, a volume spanning 2,080 

446 by 2,080 by 500 grid points (corresponding to 20.8 km by 20.8 km by 5 km in x, y and z respectively) 

447 was saved in LOFS files from t = 5000.2 s through t = 7490 s, spanning 0.86% of the volume of the 

448 full model domain (see Fig. 3 to see the horizontal extent of saved data). However, this reduction still 

449 results in an unwieldy amount of uncompressed 32 bit floating point data when saved in 0.2 s intervals 
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450 over the life cycle of the tornado. In order to reduce the amount of data saved to disk to a reasonable 

451 value, ZFP [25] floating point compression was used.

452 ZFP uses a lossy algorithm that results in three-dimensional floating-point data that contains 

453 less than the original 32 bits of precision after being uncompressed. However, the resulting data 

454 exhibits compression performance that (usually) far exceeds that of lossless compression algorithms. 

455 Further, an attractive aspect of ZFP is that it offers a dynamic compression option whereby the absolute 

456 maximum amount of accuracy required for each value in each 3D array may be specified, and that 

457 this accuracy parameter is specified in the same units as the saved data. For instance, in the supercell 

458 simulation, simulated reflectivity (shown for example in Fig. 3) is saved in order to create plots that 

450 can be compared to real radar observations of supercells. This variable is used for plotting purposes 

460 only, and will never be differentiated or used in post hoc analysis in equations where high amounts 

461 of accuracy are needed. A value of 1 dBZ was chosen as an accuracy parameter for the dbz variable, 

462 which means every value in the uncompressed 3D dbz arrays will exceed 1 dBZ of accuracy. ZFP's 

463 algorithm is conservative, and in reality, the accuracy of the data will typically far exceed this specified 

464 value throughout the 3D arrays. 

465 Figure 2 provides a box and whiskers plot of compression performance for several 3D variables 

466 at a snapshot in time when the tornado is mature and exhibiting a multiple vortex structure. These 

467 statistics were chosen from all 676 files spanning the saved subdomain. Data within this subdomain 

468 contains regions of both weak and sharp gradients, and the widely varying compression performance 

460 in this example reflects this. For the aforementioned dbz variable, which was saved with 1.0 dBZ 

410 accuracy, the space taken by the 3D array was 5.2% of its uncompressed size, providing an average 

471 compression ratio for this variable of approximately 19:1. Had a larger accuracy parameter been 

412 chosen, compression performance would have increased accordingly. 

473 Because future post hoc analysis will involve Lagrangian trajectory analysis and the effects of lossy 

474 compression on trajectory performance have yet to be determined by the author, a very small value 

41s (0.1 mm s-1) was chosen for each of the three components of velocity, each of which exhibited very

476 similar compression performance. This resulted in an average reduction to 30% of uncompressed, 

411 or roughly a 3:1 average compression ratio, with values ranging from 10% to 58% of uncompressed 

478 across all saved files. This wide variation in compression performance across files is indicative of 

410 the dynamic nature of ZFP compression, where regions of large gradients result in less compression 

480 than regions of weaker gradients. The prespert variable (perturbation pressure in hPa) shows several 

481 outlier compression reductions that correspond to regions of abnormally large gradients that are found 

482 along the length of the tornado (which is tilted, spanning several files) and other weaker vortices. 

483 The cloud mixing ratio variable qc exhibits compression performance in some files where nearly no 

484 data is saved, corresponding to cloud free areas of the simulation, but also many outliers where large 

485 gradients are found within the cloud including along the periphery of the condensation funnel of the 

480 tornado. 

487 So long as accuracy values are chosen carefully for each variable, one may be assured that post 

488 processing and visualization will not result in artifacts or a substantial loss of accuracy that would 

489 result in faulty post hoc analysis. For work of this nature, the use of lossy compression is unfortunate 

400 but necessary and can be thought of as a trade-off between spatial accuracy and temporal accuracy; 

401 without lossy compression, in order to reduce the data load, data would need to be saved with 

402 significantly coarser temporal resolution, removing the ability to do the kind of visualization and 

493 analysis needed to achieve desired research goals. 
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Figure 2. A Tukey [37] box and whiskers plot of compression performance statistics (in terms of 

percentage of uncompressed size) of six of the saved variables within the 676 files spanning the full 

saved subdomain, which is roughly centered on the tornado. The green line represents the median 

value, the red square the mean value, while the box contains the interquartile range (IQR) with the 

bottom and top whiskers within 1.5 IQR of the lower and upper quartile, respectively. Outliers 

are plotted with the '+' symbol. The accuracy parameter chosen at runtime is noted below each of 

the 3D variables names. Larger (smaller) values of the accuracy parameter would have resulted in 

smaller (larger) file sizes. Variables displayed are simulated reflectivity (dbz, in dBZ), perturbation 

pressure (prespert, in hPa), perturbation water vapor mixing ratio (qvpert, in g/kg), liquid cloud 

water mixing ratio (qc, in g/kg), perturbation density potential temperature (thrhopert, in K) and 

vertical wind speed (w, in m/s). The mean compression performance for the shown variables is 11.9% 

of uncompressed, or a compression ratio of 8.4:1 

494 4. The 10 m resolution tornadic supercell simulation

49s The simulation was run on an isotropic mesh with a grid spacing of 10 m, in a box spanning 

496 112km by 112km by 20km (using 11, 200 x 11, 200 x 2000, or 250,880,000,000, grid points). A model 

497 time step of 0.04 s was used in order to maintain stability, and a short time step of 0.01 s was used for 

498 the acoustic time step. The chosen time step is smaller than what was necessary for computational 

499 stability due to aliasing; however, a larger time step resulted in sporadic failure of CMl's saturation 

soo adjustment scheme, which is iterative, to converge, causing the model to abort. The remaining model 

501 parameters were identical to those of [17] with the exception that the TKE closure option of Deardorff 

502 et al [38] was used in place of that of Smagorinsky [39]. 
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503 4.1. Execution of the simulation on Blue Waters 

504 The supercell simulation was executed on the Blue Waters supercomputer in 22 segments between 
606 April 19 and August 2, 2019. Each segment of the simulation beyond the first was run from checkpoint 
606 files that were saved in HDF5 format with all 3D state variables compressed with lossless gzip 
507 compression. The simulation took approximately ten million node hours (320 million core hours) in 
508 total to run to a model time of 7490 s, a few minutes after the cyclonic tornado fully dissipated. This 
m corresponds to just over 21 days of execution using 87% of all available XE nodes on Blue Waters. 
510 Each segment of the simulation ran on 19,600 nodes (672,200 cores) when executing, with a 
m maximum requested run time of 48 hours per segment, the largest allowed on the machine. However, 
512 when running over such a large portion of the machine, node failures were common, occurring on 
513 average four times per 48 hour block. These node failures were out of the author's control and not due 
514 to model instability or any other failure of the CMl model. When a node failure occurred, a message 
m such as the following would appear in the CMl standard output file: 
510 [NID 19080] Apid 78797135 killed . Received node event ec_node_failed for nid 19075 
617 Consultation with Blue Waters support staff indicated that these node failures occurred on the Opteron 
518 processors with a return value of C0MPUTE_UNIT_DATA which indicates an uncorrectable error occurring 
519 on one of the node's CPUs. Recognizing the regularity of these types of unavoidable errors, the author 
520 chose to save checkpoint files every 10 model seconds, and, via a loop within the PBS script file, restart 
521 the model from the most recent checkpoint file automatically such that the entire requested reservation 
522 time could be used. This required the allocation of a handful of extra nodes for each job submission as 
523 a reserve such that there were enough healthy nodes available for each execution, as the failed nodes 
624 would be removed from the pool. With these issues in mind, it is estimated that about a quarter of the 
525 utilized node hours on the machine were "wasted" due to these failures. 
52e Because it was not known whether the simulation would produce a long track EF5 tornado 
527 similar to [17], full domain data was saved only every 10 s until the beginning of tornado maintenance 
628 was observed. Then, using one of the saved checkpoint files, the model was restarted from a time 
52• approximately 10 minutes prior to tornadogenesis and subsequent data was saved over a smaller 
530 subdomain with a save interval of 0.2 s until tornado decay occurred. The 10 s full-domain data, saved 
531 between t = 1800.0 s and t = 4990 s comprised 83 TB of LOFS data, while the subdomain data saved 
532 every 0.2 s from t = 5000.2 s and t = 7490 s weighed in at 187 TB. 

633 4.2. A first look at tornadogenesis 

534 Here a description of the process of tornadogenesis is provided, focusing primarily on the growth 
636 of near-ground vorticity. The model times of the figures following in this section were chosen after 
636 creating a video animation of the 0.2 s data and stepping forwards and backwards through the video 
637 until key moments in the simulation were identified. It should be emphasized that only a topical 
538 analysis of tornadogenesis is provided in this section, and that a more exhaustive quantitative analysis 
639 is beyond the scope of this paper. The supplemental video file SupVl of the vorticity magnitude 
540 field and surface maximum vertical vorticity swaths from t = 5000 s through t = 5390 s is found at 
541 http:// orf.media/ Atmosphere2019. This video sequence begins approximately three minutes prior 
542 to tornadogenesis and continues through about three minutes of tornado maintenance, with frames 
543 displayed every 0.2 s at 30 frames per second. 
544 Figures 4-6 provide an overview of cyclonic vortex paths, superimposed upon density potential 
646 temperature perturbation (0�), to provide a context for the more information-dense three-dimensional 
540 images in subsequent figures (these images originated from the output of the ncview [41] utility, 
647 read from NetCDF files created with lofs2nc). The bulk of surface vortices identified by swaths of 
548 maximum vertical vorticity (s') shown in Figs. 4-9 originate on the cold (west) side of what [42] call 
540 the Left Flank Convergence Boundary (LFCB) (see their Fig. 8). This boundary is clearly visible in 
5so both the surface horizontal wind and e� fields, with its location along the sharp 0� gradient noted in 
551 Figs 4-6. At t = 5000.2 s, approximately three minutes prior to tornadogensis, vortex path directions 
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Figure 3. Simulated radar reflectivity in dBZ, 500 m AGL at t = 5228.8 s, created with ncview. The 

displayed horizontal domain of 20.8 km x 20.8 km represents what was saved across 676 files in 0.2 s 

intervals. White box inset of 4 km x 4 km covers shown horizontal extent in Figs �- The hook echo in 

the reflectivity field in the center of the inset box corresponds to vortex A. 
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Figure 4. Density potential temperature perturbation (0�) in K att = 5000.2s. Horizontal domain 
covers 4km x 4km. Black swaths are the ground-relative paths of cyclonic vortices at the model's 
lowest vertical level (motion is generally southward to eastward). The sharp 0� boundary representing 
the Left Front Convergence Boundary (LFCB) is noted. The color map indicates values of 0� in K. 

0 3 

Figure 5. As in Fig. 4 but at t = 5183.0 s. Vortex A (shown in subsequent figures) is noted. 
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Figure 6. As in Fig. 5 but at t = 5228.8 s, corresponding to the same time in Fig. 3. 

m range from southward to eastward, with many paths abruptly turning from southward to eastward 

553 (see Fig. 4) along their respective paths. Three minutes later, at t = 5183.0 s, the incipient vortex that 

554 "becomes" the tornado (tagged to as vortex A in subsequent figures) has turned from southeastward 

555 to eastward and has begun to produce a 20 m swath of instantaneous ground-relative winds just 

556 exceeding 39 m s-1, the EFl threshold. The direction of vortex paths to the south of vortex A seen

557 in Fig. 5 exhibit a slight to moderate northward component, indicating a convergence of vortices 

558 occurring in its direct vicinity. At this time, vortex A is located along an inflection point in the LFCB, 

559 which is oriented directly north/ south to its north, and towards the SSE to its south. The reorientation 

560 of the LFCB is seen to persist in Fig. 6, 46 s later, with the LFCB showing an eastward bulge consistent 

561 with an increase in eastward momentum to the south of vortex A, which is now exhibiting a 40 m 

562 swath of EF2 strength winds (averaging 55 m s-1 ). A second vortex, vortex B noted in Fig. 6, follows a

563 convergent path with vortex A and is discussed below. 

564 Figures 7-9 provide six snapshots in time, the first two of which overlap with Figs. 5 and 6. These 

565 images were created with the NCAR's VAPOR3 software [40], which can read NetCDF files containing 

566 2D and 3D floating point data natively. The left panel of these images contains three-dimensional 

567 volume rendered vorticity magnitude with a visible threshold value of approximately 1.25 s-1, along

s68 with surface maximum i; swaths that can be matched with those in Figs 5 and 6. SupVl corresponds to 

569 the left panels of these figures, while the right panels present a different viewing angle, and include, 

510 in addition to surface maximum i; swaths, the liquid cloud water mixing ratio (qc) field to show the 

511 behavior of the condensation funnels associated with strong rotation. In Fig. 7a, vortex A can be seen 

512 extending upwards from the ground but is not associated with a visible condensation funnel at this 

m time. In Fig. 7b, 45 s later, vortex A has strengthened at the surface and extended upwards to a height 

574 of nearly 3 km. A second vortex, vortex B, is also visible, having formed in a similar "bottom-up" 

575 manner as vortex A, and is in the process of being assimilated into the circulation of vortex A. Both 

576 vortices are associated with visible condensation funnels also seen in Fig. 7a. Figure 8a shows the 

511 same fields 44 s later, where vortex A is exhibiting a 50 m wide swath of EF3 strength surface winds 

578 (averaging 70 m s-1) with another vortex, vortex C, having just swept behind the path of vortex A and

m extending upwards to a height of approximately 1 km. Vortex A is now "the tornado" as is evidenced 

580 by its co-location with a columnar condensation funnel that extends from the parent supercell cloud 

581 base to the ground. Over the next 12 s, vortex C has grown upward to a height of exceeding 2 km and 

582 has begun a process of merging and wrapping into vortex A (see Fig. 8b). This process is shown most 
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Figure 7. Left column: Three-dimensional vorticity magnitude (volume rendered field, visible threshold 

at about 1.2 s-1) and surface maximum ?; swaths, representing the paths of cyclonic vortices at the

model's lowest vertical level. The domain of the 3D volume spans 4km x 4km x 3km in x,y,z.

The color map references surface?; values in s-1. Right column: Cloud water mixing ratio (volume

rendered field) and surface maximum?; swaths. Vortex A and vortex B and their paths are annotated 

at (a) t = 5183.0 s and (b) t = 5228.0 s, which correspond to the times in Figs. 5 and 6. Images were 

created with VAPOR3 [40]. 
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Figure 8. As in Fig. 7, but at (a) t = 5273.2s and (b) t = 5285.0s. Vortex C, which has begun to wrap 

around vortex A, is also noted. 
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Figure 9. As in Fig. 8, but at (a) t = 5307.0s and (b) t = 5363.6s. The wrapping of vortex C into 

vortex A has reached a height of about 2.5 km by t = 5307 s, and at t = 5363.6 s, the tornado, exhibiting 

ground-relative instantaneous winds exceeding 140 m s-1, is in the process of transitioning into a 

multiple-vortex structure and has become nearly vertically erect below 3 km, moving in a linear fashion 

towards the northeast. 
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683 clearly in SupVl where the two vortices wrap around one another in a "bottom-up" manner. While 

584 mergers of helical vortices in three dimensions have been observed and modeled [43,44], the author 

585 is unaware that this phenomenon has ever been seen in an observed supercell or in simulations of 

686 a supercell. By t = 5307 s, when the wrapping process has extended to a height of approximately 

687 2.5 km, the tornado is exhibiting EF5 surface winds exceeding 105 m s-1 (see Fig. 9a). A minute later,

688 the tornado's diameter has widened, as is evident from the size of the visible condensation funnel and 

589 maximum , swath field, and has also assumed a more vertically erect position, and is moving in a 

590 linear fashion towards the northeast. Maximum instantaneous surface winds exceeding 140 m s-1 are

591 found at this time, shortly before the tornado obtains a multiple vortex structure. 

592 5. Discussion and Future Work

593 In this paper, LOFS, a simple file system designed for saving large amounts of massively parallel 

694 cloud model data efficiently, was described, along with a use example of a the lofs2nc utility for 

595 converting LOFS data to the widely-read NetCDF format. NetCDF files created from lofs2nc by the 

596 author were then read and displayed with ncview [41] (Figs.�) and VAPOR3 [40] where 3D images 

697 were created (Figs. 7-9) and saved to disk to be statically viewed as well as animated (SupVl). The 

698 author's experience with running the simulation on 19,600 Blue Waters nodes (672,200 cores), spanning 

699 87% of the supercomputer's XE nodes, was described, which included a process for recovering 

600 from node failures automatically by restarting the model from the most recent checkpoint files. The 

501 performance of dynamic ZFP lossy floating point compression was described for six 3D fields saved 

602 by CMl, with each variable having maximum accuracy specified at runtime. The use of ZFP and the 

603 choice of saving a small subdomain, focused on the low level mesocyclone, allowed data to be saved 

604 every 0.2 s, and this 1/0 approach took up a reasonable 37% of the model's execution time. A total 

606 of 270 TB of data was saved, with 83 TB of full domain data saved in 10 s intervals from t = 1800 s 

606 through t = 4990 s, and the remaining 187 TB of data saved from t = 5000.2 s and t = 7490 s over a 

607 20.8 km by 20.8 km by 5 km subdomain every 0.2 s. 

608 Visualizations of the vorticity and cloud field reveal a process of tornadogenesis characterized 

609 by the convergence, merging, and upward growth of several near-ground vortices, one of which 

610 wraps around the nascent tornado in a bottom-up fashion. The tornado forms along the Left Front 

m Convergence Boundary [42] which is prominently displayed as a sharp buoyancy gradient in the cold 

512 pool. A few minutes prior to tornadogenesis, vortices on the cold side of this boundary take a sharp 

m turn towards their left (moving southward to eastward) and then begin to travel towards the north 

614 east. Genesis occurs shortly thereafter, with the tornado forming along an inflection point in the LFCB, 

616 which has surged forward to the south of the developing tornado. While only a topical discussion of 

616 tornadogenesis, focusing on vorticity, has been presented, the value of using 3D volume rendering 

617 software such as VAPOR3 [40] has been clearly demonstrated, with animations of vorticity at full 0.2 s 

618 frame spacing telling a compelling story. Only one aspect of the tornadogenesis process has been 

519 presented here, and only over a short span of time; the tornado lasts 42 minutes and transitions to a 

520 wide, multiple vortex tornado that eventually becomes occluded before dissipating. 

521 Much future work needs to be completed in order to quantify the complex morphology of the 

622 simulation. Such work will include: 

623 

624 

625 

626 

627 

628 

629 

630 

631 

• The use of temporal averaging to "smooth out" the details of the simulation in order to focus on

underlying, steady forcing prior to and during tornadogenesis
• Examining the momentum and pressure characteristics of the updraft prior to and during tornado

formation.
• Conducting Lagrangian parcel analysis to explore the forces acting on parcels in the vicinity of

the tornado
• Exploring the sensitivity of the simulation to a turbulence kinetic energy closure by conducting

a second run using the Smagorinsky [39] closure scheme, which was used in a 30 m resolution

simulation of the same storm [17].
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632 Work is already underway to develop Lagrangian parcel tracking code, using LOFS data as input, 

633 optimized for graphical processing units (GPUs) that will enable the tracking of millions of parcels 

634 throughout chosen segments of the simulation. Code has already been created to create the temporally 

635 averaged fields, the utility of which has been shown [45) with the 30 m resolution simulation of [17]. 

636 LOFS read-side and write-side source code is available as supplementary material to this paper. 

637 The write-side code is released in isolation from the CMl model; it is the author's intent to explore the 

638 possibility of releasing an LOPS-enabled branch of the latest version of the CMl model on a repository 

m such as Github such that other researchers can take advantage of LOFS. The LOFS read-side code is 

a4o currently being refactored, and will be released on a public source code repository in the near future. 
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