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Abstract: This article proposes a monitoring system that allows to track transitions between different 
stages in the berry harvesting process (berry picking, waiting for transport, transport, and arrival to the 
packing) solely using information from temperature and vibration sensors located in the basket. The 
monitoring system assumes a characterization of the process based on Hidden Markov Models and uses 
the Viterbi algorithm to perform inference and estimate the most likely state trajectory. The obtained 
state trajectory estimate is then used to compute a potential damage indicator in real-time. The proposed 
methodology does not require information about the weight of the basket to identify each of the different 
stages, which makes it effective and more efficient than other alternatives available in the industry.

Keywords: Berry harvesting stages; Markov chains; Viterbi algorithm; monitoring; fruit damage 
indicator.10

1. Introduction11

Chile is the main exporter of fresh fruit in the Southern Hemisphere (ODEPA), generating 59.3% of the12

total production [1]. Worldwide, Chile exports more than 75 different species to more than 100 countries13

around the world, being a leader in the export of table grapes, plums, apples, blueberries and peaches.14

In this regard, any improvement in productive processes of fresh fruit harvesting for exportation has a15

significant impact on the national economy. Those improvements should help to efficiently manage the16

whole chain of the productive process: crop, harvest, packing, and transport to the destination market.17

The fruit produced in Chile, is mainly harvested manually (hand picking), but this process requires18

numerous personnel. Although the personnel working in harvesting processes is continuously trained,19

the vast majority of these workers are employed solely during the productive season. The coordination of20

this activity requires highly trained personnel in the process of manual harvest, since the fruit can suffer21

damage, mainly mechanical. Indeed, authors such as Li et al. [2] state that fresh fruit is susceptible to22

mechanical damage during the whole process, from harvesting in the harvest stage, the transfer to the23
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packing, its passage through it, and also during the transport that takes it to its final destination. This24

produces a decline in its quality and, therefore, economic damage. In strawberry studies, 51% of this25

damage occurs in the harvesting operation, 32% in transport to the destination market and only 17% in26

packing [3]. Several researchers have proposed that the mechanical damage in the fruit is given by three27

factors: the impact, the vibration and the pressure by the weight of the fruit [4], [5]. In the case of cherry,28

the processes that cause the loss of quality are three times faster at 20◦C than at 10◦C, and hence the29

importance of placing them fast in cooling chambers when the harvest temperature is high. For its part,30

[6] states that the damage in the cranberry is a product of mechanical damage and storage temperature.31

However, according to authors in [7], the definition of mechanical damage is not completely clear and32

the authors give different definitions. However, there is a general coincidence: mechanical damage is33

caused by one or more types of load (shock or load pressure) [8,9]. In this way, [10] described two different34

types of mechanical damage during post-harvest handling: (a) impacts during the process of harvesting,35

selecting, handling and transporting the fruit; and (b) compression loads during packing or storage lines.36

In the post-harvest stage, from the packing to the destination markets, solutions for the monitoring37

and monitoring of agricultural products mainly aim at measuring the humidity and temperature within38

the transport vehicles. These studies incorporate Global Positioning Systems (GPSs) to pinpoint the39

location of the transport vehicle, General Packet Radio Services (GPRSs) for the communication of the40

transport vehicle with the monitoring station, and the use of Radio Frequency Identification (RFID) for41

the identification of the products [11]. Some of these technological solutions are commercially available,42

guaranteeing that the fruit will be transported under appropriate conditions and following the schedule43

committed by the company. Logistics during the harvest stage, however, are much more difficult to44

monitor, due to the relatively small number of personnel assigned to supervision tasks compared to the45

large number workers associated.46

Ampatzidis et al., [12,13] addresses the problem of the integration of technologies in fruit orchards,47

with the inclusion of Radio Frequency Identification (RFID) technology and bar codes in harvest bins48

and orchard trees of cherries. With the help of an electronic scale and Differential Global Positioning49

Systems (DGPSs) in the tractors that transport the harvest bins, measurements of the weight associated50

with the harvested fruit are efficiently acquired. This allows to establish productivity indicators of the51

orchards and harvest personnel. This research effort recognizes that the weighing process, by means of an52

electronic scale on the tractor that transports the recollection bins, increases the loading time by almost53

33%, and proposes to solve this issue by acquiring these measurements directly at harvesting baskets54

automatically. However, this strategy does not take into account the fact that losses in the logistics chain,55

and the management of resources, are also related to the harvest personnel.56

Some orchards in Chile use bar code technologies to identify the harvest baskets and the personnel57

that collect the fruit, by recording the number of baskets used by each collector and the time between58

each full basket delivery. However, the collected data does not provide information about the damage59

underwent by the fruit during this process [7]. Moreover, this approach does not consider relevant60

variables such as temperature and vibrations during harvesting, which can produce mechanical damage61

to the fruit, accelerating the dehydration process and finally decreasing the shelf life of the product.62

Galeas et al. [14] presented a low complexity prototype of a basket with built-in sensors of weight,63

vibrations, and temperature. The main result was the identification of transition stages of the basket based64

only on the signals acquired. The transition stages shown useful to identify the time that the basket is in65

fruit picking, in waiting for transportation, in transportation to the packing and in the packing. Some66

of the sensors used were low-cost and not invasive, such as the IMUs and temperature, because they67

are based on MicroElectroMechanical (MEM) devices; however, the weight sensor requires supporting68

the strain gauges with mechanical parts inside the harvest basket, impacting directly on the fabrication69

costs. This design needs improvement by finding a way of removing the mechanical component without70

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 September 2019                   doi:10.20944/preprints201909.0002.v1

Peer-reviewed version available at Sensors 2019, 19, 4421; doi:10.3390/s19204421

https://doi.org/10.20944/preprints201909.0002.v1
https://doi.org/10.3390/s19204421


3 of 17

compromising the functionality of the basket. To achieve this development is required to identify the71

harvest’s time transitions without using the fruit’s weight. Length of the time elapsed by each one of the72

harvest phases are useful to avoid high temperatures during prolonged periods of waiting times.73

Time transition identification is a challenging problem, in particular for this settling because, as is74

shown in Galeas [14], the harvest phases go sequentially, and due the data provided is gathered from75

low-cost instrumentation, the problem is well suited for the use of Hidden Markov Chains methods, and76

following the work of Rabiner [15], for this particular problem the Viterbi algorithm is one of the best77

suited.78

In this regard, the objective of this article is to propose a novel monitoring system for berry harvesting79

processes that is solely based on the use of temperature and vibration sensors to perform inference and80

estimate the most likely trajectory and switch times between each harvesting process stage. The obtained81

trajectory estimate will be then used to compute a potential damage indicator for the fruit in terms both of82

the registered temperature and vibration energy.83

The article structure is as follows. Section 2 focuses on providing theoretical background on Markov84

Chains and the Viterbi algorithm. Section 3.4 presents a description of the experimental setup that allowed85

to acquire real-time vibration and temperature measurements directly from berry harvesting bins (i.e., the86

Smartbins) and the proposed methodology for online recognition of different harvesting stages, as well as87

the definition of a potential fruit damage indicator. Section 4 shows an analysis of the obtained results in88

terms of data acquired from a field experimental campaign and Section 5 presents main conclusions of this89

research effort.90

2. Theoretical Background91

2.1. Markov Chains92

The proposed harvesting stage detection algorithm is built on the assumption that this sequence of93

stages can be modeled as a Hidden Markov Model (HMM). Before going into the details that support this94

assumption, though, it is important to define the concept of a first-order Markov Process. A Markov process95

is a stochastic process that satisfies the Markov property (sometimes characterized as “memorylessness"),96

that basically states that one can make predictions for the future of the process based solely on its present97

state; i.e., conditional on the present state of the system, its future and past states are independent [15].98

A first-order Markov Chain is a particular case of a Markov Process [15]. To define it properly, let us99

consider a system such that its condition at any time instant can be characterized by a finite set of states100

S1, S2, · · · , SN . At any time, this system can change its operational condition in time (i.e., the system makes101

a transition from one “state" to another), with transition probabilities that are conditional to the current102

state. We denote the state transition times as t = 1, · · · , and the state at any given time t as qt [15].103

The probabilistic model for system state transitions for the specific case of a discrete first-order Markov104

Chain is completely described by the State Transition Matrix A and the initial state probability distribution105

Π, where:106

P[qt = Sj|qt−1 = Si] = aij, 1 ≤ i, j ≤ N, (1)

and where:107

• aij ≥ 0108

• ∑N
j=1 aij = 1.109
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This Markov Process is denominated “observable" since the system output is a state that can be110

directly measured. The probability of a given sequence can be computed in this case using the following111

straightforward procedure:112

P(O = {Sn0 , Sn1 , · · · , Snl}|Model) = P[Sn0 ] · P[Sn1 |Sn0 ] · · · P[Snl |Snl−1 ]

= π0(n0) · an0n1 · · · anl−1nl

(2)

Figure 1 shows a graphical representation of a single realization of this stochastic process. Please note113

that state transition probabilities are completely determined by the current system state [15].114

𝜋

𝑡 = 1

𝑞𝑛1 𝑞𝑛2

𝑡 = 2

𝑃(𝑞|𝑞𝑛1) 𝜋

𝑡 = 𝑛𝑙−1

𝑞𝑛𝑙−1 𝑞𝑛𝑙

𝑡 = 𝑛𝑙

𝑃(𝑞|𝑞𝑛𝑙−1)…

Figure 1. Graphical representation of a first-order Markov Chain realization.

2.2. Hidden Markov Models (HMMs)115

In many practical cases, the system state cannot be directly measured and must be estimated. These116

cases can be well characterized through the concept of Hidden Markov Models (HMMs). The adjective117

“hidden" refers to the state sequence through which the model passes, not to the parameters of the118

model; the model is still referred to as a hidden Markov model even if these parameters are known119

exactly. Measurements are linked to the system states via a conditional probability density function. As120

a consequence, the resulting model has two sources of uncertainty that affect the inference problem: (i)121

hidden state dynamics and (ii) measurement noise [15].122

A discrete HMM is characterized by the following parameters:123

• N: Number of states. The set of possible states can be denoted by S = {s1, · · · , SN}. The state of the124

system at time t is denoted qt.125

• M: Number of measurements associated with each state. Each measurement corresponds to a126

physical outcome from the system that can be acquired using appropriate sensors.127

• The transition probability distribution between system states A = {aij} where:128

P[qt = Sj|qt−1 = Si] = aij, 1 ≤ i, j ≤ N (3)

• The measurement probability distribution conditional on the state j, B = {bj(k)}:129

bj(k) = P[Ok|qt = Sj], 1 ≤ j ≤ N

1 ≤ k ≤ M
(4)

• The initial probability distribution of system states π, where:130

πi = P[q1 = Si]; 1 ≤ i, j ≤ N (5)
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Considering all of the above, for convenience the following compact notation is typically used to131

denote the entire set of parameters that characterizes the HMM:132

λ = (A, B, π) (6)

A realization of a HMM is graphically depicted in Figure 2. It is important to note that part of133

the system dynamics are hidden to the observer ("hidden evolution model"). These dynamics follow a134

similar pattern as the one depicted in Figure 1. In addition, in a HMM there is an observational model,135

which is conditional on the state trajectory. The objective in an inference problem based on HMMs is to136

estimate the sequence of hidden states S = {s1, · · · , SN} conditional on a set of system measurements137

O = {O1, · · · , ON} [15].138

𝜋
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𝑂𝑛𝑙

𝑃(𝑂𝑛𝑙|𝑞𝑛𝑙)

Hidden state transition model

Measurement model

Figure 2. Graphical representation of a discrete HMM.

2.3. Viterbi Algorithm139

The Viterbi Algorithm (VA) [16], [17], [18] was proposed as a solution to the decoding of convolutional140

codes by Andrew J. Viterbi in 1967. This algorithm had a great impact in the fields of communications141

and signal processing, extending its influence to other domains such as the problem of state estimation142

in stochastic nonlinear systems. The Viterbi Algorithm (VA) aims at finding the optimal estimate for a143

sequence of hidden states (called the Viterbi path) in a HMMs, conditional on a set of system measurements.144

This task is achieved using a dynamic programming formulation, where the inference problem is divided145

in a series of small stages (indexed by the time associated with each observation). At each stage, the VA146

finds the optimal value for the state within the sequence, and it continues the analysis to the next stage in147

an inductive manner. Formally speaking, to find the optimal sequence of hidden states Q∗ = {q∗1q∗2 · · · q∗T}148

in a realization of a HMM, conditional on a sequence of system measurements O = {O1O2 · · ·OT}, the149

following variable is defined: [15,16]:150

δt(i) = max
q1,q2,··· ,qt−1

P[q1, q2, · · · , qt−1, O1O2 · · ·OT |λ], (7)

where δt(i) is the most likely path for the HMM at time t, considering the first t observations and the state151

Si as terminal condition. By induction, it is possible to write:152

δt+1(i) = [max
i

δt(i)aij] · Bj(Ot+1). (8)
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Therefore, the inference problem can now be solved in an iterative manner by running the following153

the Pseudo-code:154

Algorithm 1 Viterbi Algorithm(λ = (A, B, π), O)

Inputs: λ = (A, B, π), O
Output: Q∗ = {q∗1 , q∗2 , · · · , q∗T}

1: for i = 1, · · · , N do . Initialization
2: δ1(i) = πibi(O1)
3: ψ1(i) = 0
4: for j = 1, · · · , N , t = 2, · · · , T do . Recursion
5: δt(j) = max

1≤i≤N
[δt−1(i)aij] · Bj(Ot)

6: ψt(i) = argmax
1≤i≤N

[δt−1(i)aij]

7: P∗ = max
1≤i≤N

[δT(i)]

8: q∗T = argmax
1≤i≤N

[δT(i)]

9: for t = T − 1, T − 2, · · · , 1 do . Reconstruct state sequence
10: q∗t = ψt+1(q∗t+1)

11: return Q∗

3. Materials and Methods155

3.1. The Blueberry Harvesting Process156

The experiment is carried out inside the Boldo S.A. orchard. This orchard has 50 hectares planted157

with blueberries and is located in Yungay, Chile, in coordinates Lat: −37.1149584, Long: −72.1973101.158

As shown in Figure 3, its packing is located at the center of the garden and there are roads that divide159

the plantation of blueberries into 3 sectors and each of these sectors is divided into 7 sub-sectors for the160

irrigation process. Each sector has different varieties, including: Duke, Rabiteye, Brightwell, Tifblue,161

O’neal and Brigitta.162

The process of picking fresh blueberries is done manually and begins by assigning a crew of collectors163

in each sector of the garden (see Figure 4). The collectors walk through the orchard arranged in rows164

of approximately 100 meters in length, provided with a plastic box of 3.5 liters hung from the neck by a165

harness. The harvesting process has a duration of 20 to 40 minutes depending on the experience of the166

harvester and how much fruit is in the bushes. Once filled the plastic box, the collector goes to the first167

storage center (place provided with shade to temporally store the boxes previous to delivery at the local168

packing site). In the reception center, another worker increase the accounting of the number of boxes169

harvested by the collector and records the time when it was received. Finally the collector is provided170

with an empty box to restart the picking process.171
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Figure 3. Blueberry orchard in Yungay, Chile.

Figure 4. Picture of the blueberry orchard.

The boxes full of fruit are stored in this storage center awaiting for a truck with a trailer to take them172

to the local packing site. Once arrived to the packing the net weight of fruit picked is recorded using an173

electronic scale. Then, the filled boxes are entered into the packing throughout a freezing tunnel to lower174

the temperature of the berries. Inside the packing, the boxes are emptied over a classification table and the175

boxes are recycled to begin a new harvest cycle.176

3.2. A Modular Distributed Monitoring System for the Harvesting Process: The “Smartbin"177

The proposed system has was developed, using a harvest basket of 3.5L, which incorporated two178

components:179
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- A main device installed on one of its sides, which contains a SODAQ Autonomous microcontroller180

card, real-time clock, temperature sensors and an inertial unit (IMU) to measure the vibrations of the181

harvest basket and detect the shocks suffered by it. - A false base sustained with a load cell, to measure at182

all times the weight carried by the basket.183

The stand-alone SODAQ card uses an Atmel SAMD21J18 processor, with 256kb of Flash memory,184

32kb of SRAM memory and a 32-bit processor running at 48Mhz. In addition, it has a socket for the use of185

a micro SD card, which allows internal storage of the data. A real-time clock (DS1307) with the time and186

date was added to this device, information that is attached to each captured data. The IMU used is based187

on the MPU-9250 chip with accelerometer, gyroscope and 3-axis magnetometer. The unit also has two188

temperature sensors based on the digital device DS18B20, whose accuracy is 0.5◦C. These temperature189

sensors protrude like two tubes of the main device, glued to one of the internal walls of the harvest box190

to measure the temperature of the berries at two heights, 6cm and 10cm from the base of the box (see191

Figure 5). The load cell located in the false base of the box is connected to an analog / digital converter192

HX711 which in turn is connected to the autonomous SODAQ device. The system was provided with a193

Li-Ion battery of 2300mAh/3.7V, for its energy autonomy, which was estimated at 30 hours of continuous194

operation.195

This main device works as a remote collection unit and as a data logger, transmitting wireless and196

storing all the data collected in an SD Card installed in the Autonomous SODAQ card, with two types of197

records, one that is written every 100 ms with the measurements of the IMU, date and time, and another198

that is written every 15 seconds with measurements of temperature, weight, voltage of the battery, date199

and time. These time measurements are taken to identify faults in the system, and correlate the tests with200

the events that occurred during the day.201

Figure 5. conditioned basket to on line measure of weight, 2 temperatures and accelerations.

3.3. Data acquisition campaign202

Data from the experimental campaign was acquired using 5 “Smartbins" in an experimental set up203

carried out during one day in the middle of the harvest season of blueberries in the “El Boldo" orchard204

(see Figure 3). Each one of the 5 “Smartbins" was used in two consecutive harvest cycles during the day of205

the experiment. As a result, it was possible to record 10 complete harvesting cycles (each cycle finishes206

with the bin returned in the hands of the picker after being emptied). The structure of the acquired data207

set can be summarized as follows:208

• Temp_1: Temperature measurement acquired every 15 seconds using a sensor that is located near209

the bottom of the bin.210
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• Temp_2: Temperature measurement acquired every 15 seconds using a sensor that is located near211

one of the four the external edges of the bin.212

• Accx: Acceleration measurement in x-axis acquired ten times per second with an IMU located inside213

the bin.214

• Accy: Acceleration measurement in y-axis acquired ten times per second with an IMU located inside215

the bin.216

• Accz: Acceleration measurement in z-axis acquired ten times per second with an IMU located inside217

the bin.218

• Weight: Net weight of the “Smartbin" acquired every 15 seconds with sensor that is located at the219

bottom of the bin.220

In terms of nomenclature, and for all practical purposes, each harvesting cycle was labelled using the221

following format: Nicj, where i = 1, 2, 3, 4, 5 refers to the ith bin and j = 1, 2 indicates the number of the222

recorded cycle for that specific bin.223

Eight of these cycles Nicj, where i = 2, 3, 4, 5, j = 1, 2 were used as training data, while two cycles224

where used for validation purposes (N1c1 and N1c2, both corresponding to the 1st bin).225

3.4. Proposed Methodology for Online Harvesting Stage Detection226

The proposed methodology uses the Viterbi algorithm to perform inference of data sets and estimate227

the most likely state trajectory in the harvesting process. Indeed, this case study allows to define a finite228

number of possible “states" (each one associated with one stage of the harvesting procedure), making it a229

perfect candidate for the implementation of inference schemes based on the assumption of HMMs. The set230

of observations O incorporate data from IMUs and temperature sensors. Although the entire process has231

six “states" that can be identified (picking, waiting, transport (full bin), cooling, emptying, and transport232

(empty bin)), only four of them are hereby considered. The latter, since solely the first 4 states are critical in233

terms of quantifying the potential damage to the fruit during the harvesting procedure (the “emptying"234

state is fully automated, and afterwards the bin is empty). These states are:235

1) “Picking"(S1): The pickers, provided with a 3.5 liter plastic box hung around the neck by a harness,236

cover the orchard prepared in rows approximately 100 meters long. Picking lasts 20 to 40 minutes237

per box, depending on the picker’s experience and the volume of fruit on the shrubs. During this238

stage it is possible to measure high energy vibration signals and high temperatures.239

2) “Wait" (S2): When the box is full, the picker goes to the storing center (shaded area), where he/she240

delivers the box for counting. The full boxes remain at the warehouse waiting for the tractor-trailer241

to take them to the local packing area.242

3) “Transport" (full bin) (S3): The tractor-trailer transports full boxes from the warehouse to the local243

packing area.244

4) “Cooling" (freezer tunnel) (S4): The fruit is admitted to packing via a conveyor table, where a245

cooling system lowers its temperature using a freezing tunnel.246

Considering all of the above, a HMM is trained for this case study using eight harvesting cycles247

Nicj, where i = 2, 3, 4, 5, j = 1, 2. Ground truth for the transition times between states in training (and248

also validation) data was defined by incorporating information acquired from the weight sensor that is249

located at the bottom of the “Smartbin". Weight sensor measurements allow to simplify the detection of250

state transitions because they help to determine the moment when the “Picking" stage is over (bin weight251

measurements stabilize at a constant value, a condition that can be tested by a basic hypothesis testing252

procedure), as well as the exact moment when the bin is emptied. Conditional to the latter transition253

times, it is possible to discriminate the “cooling" stage just by detecting sudden drops in temperature254
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measurements, while “wait" and “transport" stages can be identified since they differ significantly in terms255

of the associated energy in the IMU signal.256

The challenge behind the proposed method for state transition detection is to avoid the usage of257

weight measurements altogether (except, as in this case study, for purposes of determining ground truth258

transition times in training data). The latter since it would be preferable and significantly cheaper to259

eliminate this weight sensor from the original design of the “Smartbin". For this purpose, a HMM is260

conceived to describe the transition between the stages of the harvesting process, where the observation261

space is solely determined by the following sensor information:262

1) Inertial Measurement Unit (IMU): data acquired by the IMU. A simple pre-processing algorithm is
implemented to complement this information with an average of the total energy in the vibration
signal every 15[s] over the time window containing the last 15 seconds of measures.

IMU_Energyt =
t

∑
j=t−14

accx(j)2 + accy(j)2 + accz(j)2 (9)

2) Temperature Measurements: Besides the information provided by sensors Temp_1 and Temp_2, a
simple pre-processing algorithm is implemented to measure the difference in readings between both
temperature sensors.

Delta_T(t) = Temp_2(t)− Temp_1(t) (10)

Considering all of the above, and following the maximum likelihood estimation procedure explained263

in [15] to determine the coefficients of state transition matrices in a HMM, it is possible to state that the264

harvesting process can be characterized by the following matrices:265

A =


0.9153 0.0847 0.0000 0.0000
0.0000 0.8169 0.1831 0.0000
0.0000 0.0000 0.6966 0.3034
0.0000 0.0000 0.0000 1.0000

 (11)

π =
[
1 0 0 0

]
(12)

where A is obtained by computing the expected residence time on each state in the training data set [15].266

In this case, π is known since the HMM is always initialized in state S1 (“Picking"). The characterization267

of the entire process using a HMM allows to use the Viterbi algorithm for state transition time detection268

purposes.269

3.5. Proposed Methodology for Fruit Damage Indicator270

A natural byproduct associated with the implementation of the Viterbi algorithm for estimation of the271

most likely state path is that it is also possible to detect start and end times for each of the different stages272

of the berry harvesting process. These start and ending times become critical information to characterize273

the potential damage accumulated during “picking", “waiting", and ‘transport" stages since during that274

lapse the fruit in the bin is exposed to higher level of vibrations and elevated temperatures. Inspired on275

this fact, this research effort has proposed the following damage indicator to assess the potential damage276

incurred by the fruit during the harvesting process:277
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DamageIndicator =
1

105 · (
TS4

∑
i=0

Temp_2i +
TS4

∑
i=0

IMU_Energyi) (13)

where IMU_Energy is a variable that indicates the energy associated with the vibration signal recorded278

by sensors in the bin during a 15[s] sliding window. TS4 corresponds to the moment in which the Viterbi279

algorithm detects a transition from states S3 to S4, measured in seconds. The temporal reference t = 0 is280

established to be synchronized with the start of the “picking" stage.281

The proposed indicator for potential fruit damage offers robustness against disturbances in estimates282

of transition times, since it solely depends on TS4 for all practical purposes. Indeed, TS4 determines the283

start of the “cooling" stage and thus, it is expected to observe at that time simultaneous (and sudden)284

drops in readings of sensors Temp_1 and Temp_2, while the energy in the vibration signal should be small285

compared to “picking" and “transport" stages. This evidence anticipates that errors in the estimate of TS4286

should be negligible in comparison to the total time allotted for the harvesting cycle, and therefore the287

value of the propose damage indicator, which depends on the overall accumulation of stress on the fruit,288

should not exhibit significant changes on its value.289

4. Obtained Results in Experimental Campaign290

Table 1 and Figures 6-15 show the results obtained when applying the proposed scheme for harvest291

stage recognition and potential fruit damage assessment on actual field data from an experimental292

campaign. Each figure consists of three graphs that help to understand the manner in which the proposed293

algorithm interprets the acquired data. The first graph shows the performance exhibited by the Viterbi294

algorithm in the detection of transitions between each one of the first 4 stages of the harvesting process:295

“picking", “wait", ‘transport", and “cooling". The second graph shows the energy of the IMU signal296

(averaged over a 15[s] sliding window), and finally the third graph on each figure show the temperature297

registered on the second temperature sensor inside the bin. Figures 6-15 are sorted in terms of the one that298

represents the most potential fruit damage to the one that is more innocuous. Given the structure of the299

proposed damage indicator, both the time of exposure of the fruit at ambient temperature (principally at300

states S1-S3) and cumulative energy of vibration signals (principally at state S1) have critical influence on301

the assessment of potential damage.302

Table 1. Experimental campaign: Harvesting cycles ordered in terms of potential fruit damage.

Harvesting cycle (Nicj: bini, cyclej) Damage Index
N5c1 1.4762
N2c1 1.3710
N1c1 1.3386
N4c2 1.3017
N3c2 1.2905
N2c2 1.1239
N1c2 1.1119
N5c2 1.0218
N4c1 0.8002
N3c1 0.7484

Figure 6 illustrates a case where the potential fruit damage is the greatest. One of the reasons303

that explain this statement is the fact that in this cycle the fruit was exposed to relatively high ambient304

temperature for a lengthy lapse of time. Moreover, both during the “picking" and “transport" stages, the305

energy of the IMU accelerometer signal is significant, indicating that the fruit in the bin could have been306
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shaken excessively. It is important to note that the Viterbi algorithm in this case fails to detect the transition307

between states S1 and S2 (overall efficacy in detection in this data set is 89.918%). Although this issue308

affects the tractability of the bin in the system, it does not have an impact of the assessment of the potential309

fruit damage since the transitions to S4 (“cooling stage") is perfectly detected.310

Figure 6. Detection of berry harvesting stages. Data set N5c1

Figures 7-8 illustrate a case where the potential fruit damage is significantly high. Although the same311

concepts explained in the previous case also apply here, it is important to note that the energy associated312

to the vibration signal is lower than in the case of Figure 6.Also, please note that the performance of the313

Viterbi algorithm is high (overall efficacy in detection in these data sets is 99.396%), exhibiting a negligible314

delay in the detection of the transition between S1 and S2 in data set N1c1, being the latter used for315

validation purposes of the proposed approach.316

Figure 7. Detection of berry harvesting stages. Data set N2c1
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Figure 8. Detection of berry harvesting stages. Data set N1c1

Although temperature associated with the data shown in Figures 9 - 11 is higher than their317

predecessors, the lapse of time where the fruit was exposed to ambient temperature is considerably318

smaller. In both cases, there is a small delay in the estimate of parameter TS4, but the performance of the319

Viterbi algorithm is still beyond 98.95%.320

Figure 9. Detection of berry harvesting stages. Data set N4c2

Figure 10. Detection of berry harvesting stages. Data set N3c2
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Figure 11. Detection of berry harvesting stages. Data set N2c2

Validation data set N1c2 (Figure 12) is the one where the Viterbi algorithm exhibits the lowest321

performance (overall efficacy in detection in these data sets is 84.667%). Nevertheless, even in this case, the322

error associated with the estimate of parameter TS4 is 90[s], which represents 2% in a data set that records323

4485[s] of operation.324

Figure 12. Detection of berry harvesting stages. Data set N1c2

Last but not least, Figures 13 - 15 exhibit analogous performance in terms of the accuracy of the Viterbi325

algorithm. Interestingly, in terms of potential fruit damage, the most innocuous data set corresponds to326

one where the ambient temperature was low, and where the harvesting cycle lasted less than 4425[s].327

Figure 13. Detection of berry harvesting stages. Data set N5c2
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Figure 14. Detection of berry harvesting stages. Data set N4c1

Figure 15. Detection of berry harvesting stages. Data set N3c1

5. Conclusions328

This article proposes a monitoring system and a for berry harvesting solely based on the use of329

temperature and vibration sensors. The monitoring system assumes a characterization of the process in330

terms of a Hidden Markov Model and uses the Viterbi algorithm to perform inference and estimate the331

most likely state trajectory.332

The obtained state trajectory estimate is then used to compute a potential damage indicator for the333

fruit in terms both of the registered temperature and vibration energy, with overall average efficacy in334

detection for validation data sets of 91.937%, while errors in the estimates of the moment at which the bin335

reaches the cooling stage were not larger than 2%, a fact that validates the proposed damage indicator as a336

robust feature for characterization of the potential degradation in the quality of the fruit when used in337

conjunction with the Viterbi algorithm for purposes of estimating the value of TS4.338

More importantly, the proposed procedure proves to be equivalent in terms of the effectiveness in339

the characterization of the stages of the harvesting process to other alternatives found in the literature,340

but significantly more efficient since it does not require information about the weight of the bin in which341

the fruit is collected to identify the different stages of the harvesting process and determine indicators342

that could help to assess if this harvesting process is being performed normally. It seems that the Viterbi343

algorithm is a complex solution for this problem but is inexpensive to include those procedures in the344

software running on the microprocessor of the “Smartbins", avoiding the need to measure weight and345

consequently disregarding the strain gauges and the mechanical parts needed to support them. The fact346

that it is possible to dispense the utilization of weight sensors in the design of “Smartbins", replacing it by347

more advanced signal processing tools, has a significant economic impact in terms of the penetration of348
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these monitoring devices in the agricultural market as a right solution for some of the problems that the349

industry has faced over these years350
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