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1 Abstract: This article proposes a monitoring system that allows to track transitions between different
= stages in the berry harvesting process (berry picking, waiting for transport, transport, and arrival to the
s packing) solely using information from temperature and vibration sensors located in the basket. The
+  monitoring system assumes a characterization of the process based on Hidden Markov Models and uses
s the Viterbi algorithm to perform inference and estimate the most likely state trajectory. The obtained
s state trajectory estimate is then used to compute a potential damage indicator in real-time. The proposed
»  methodology does not require information about the weight of the basket to identify each of the different
s  stages, which makes it effective and more efficient than other alternatives available in the industry.

o Keywords: Berry harvesting stages; Markov chains; Viterbi algorithm; monitoring; fruit damage
10 indicator.

11 1. Introduction

12 Chile is the main exporter of fresh fruit in the Southern Hemisphere (ODEPA), generating 59.3% of the
1z total production [1]. Worldwide, Chile exports more than 75 different species to more than 100 countries
1« around the world, being a leader in the export of table grapes, plums, apples, blueberries and peaches.
15 In this regard, any improvement in productive processes of fresh fruit harvesting for exportation has a
s significant impact on the national economy. Those improvements should help to efficiently manage the
1z whole chain of the productive process: crop, harvest, packing, and transport to the destination market.

18 The fruit produced in Chile, is mainly harvested manually (hand picking), but this process requires
1o numerous personnel. Although the personnel working in harvesting processes is continuously trained,
20 the vast majority of these workers are employed solely during the productive season. The coordination of
a1 this activity requires highly trained personnel in the process of manual harvest, since the fruit can suffer
22 damage, mainly mechanical. Indeed, authors such as Li et al. [2] state that fresh fruit is susceptible to
23 mechanical damage during the whole process, from harvesting in the harvest stage, the transfer to the
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2a packing, its passage through it, and also during the transport that takes it to its final destination. This
= produces a decline in its quality and, therefore, economic damage. In strawberry studies, 51% of this
2 damage occurs in the harvesting operation, 32% in transport to the destination market and only 17% in
2»  packing [3]. Several researchers have proposed that the mechanical damage in the fruit is given by three
2s factors: the impact, the vibration and the pressure by the weight of the fruit [4], [5]. In the case of cherry,
20 the processes that cause the loss of quality are three times faster at 20°C than at 10°C, and hence the
s importance of placing them fast in cooling chambers when the harvest temperature is high. For its part,
a1 [6] states that the damage in the cranberry is a product of mechanical damage and storage temperature.
2 However, according to authors in [7], the definition of mechanical damage is not completely clear and
ss the authors give different definitions. However, there is a general coincidence: mechanical damage is
s« caused by one or more types of load (shock or load pressure) [8,9]. In this way, [10] described two different
35 types of mechanical damage during post-harvest handling: (a) impacts during the process of harvesting,
ss  selecting, handling and transporting the fruit; and (b) compression loads during packing or storage lines.
37 In the post-harvest stage, from the packing to the destination markets, solutions for the monitoring
s and monitoring of agricultural products mainly aim at measuring the humidity and temperature within
3o the transport vehicles. These studies incorporate Global Positioning Systems (GPSs) to pinpoint the
20 location of the transport vehicle, General Packet Radio Services (GPRSs) for the communication of the
a1 transport vehicle with the monitoring station, and the use of Radio Frequency Identification (RFID) for
a2 the identification of the products [11]. Some of these technological solutions are commercially available,
«3  guaranteeing that the fruit will be transported under appropriate conditions and following the schedule
« committed by the company. Logistics during the harvest stage, however, are much more difficult to
4 monitor, due to the relatively small number of personnel assigned to supervision tasks compared to the
s large number workers associated.

a7 Ampatzidis et al., [12,13] addresses the problem of the integration of technologies in fruit orchards,
4« with the inclusion of Radio Frequency Identification (RFID) technology and bar codes in harvest bins
4 and orchard trees of cherries. With the help of an electronic scale and Differential Global Positioning
so  Systems (DGPSs) in the tractors that transport the harvest bins, measurements of the weight associated
51 with the harvested fruit are efficiently acquired. This allows to establish productivity indicators of the
s2 orchards and harvest personnel. This research effort recognizes that the weighing process, by means of an
ss electronic scale on the tractor that transports the recollection bins, increases the loading time by almost
s« 33%, and proposes to solve this issue by acquiring these measurements directly at harvesting baskets
ss automatically. However, this strategy does not take into account the fact that losses in the logistics chain,
s« and the management of resources, are also related to the harvest personnel.

57 Some orchards in Chile use bar code technologies to identify the harvest baskets and the personnel
ss that collect the fruit, by recording the number of baskets used by each collector and the time between
ss each full basket delivery. However, the collected data does not provide information about the damage
e underwent by the fruit during this process [7]. Moreover, this approach does not consider relevant
&1 variables such as temperature and vibrations during harvesting, which can produce mechanical damage
ez to the fruit, accelerating the dehydration process and finally decreasing the shelf life of the product.

o3 Galeas et al. [14] presented a low complexity prototype of a basket with built-in sensors of weight,
e« vibrations, and temperature. The main result was the identification of transition stages of the basket based
es only on the signals acquired. The transition stages shown useful to identify the time that the basket is in
es fruit picking, in waiting for transportation, in transportation to the packing and in the packing. Some
ez of the sensors used were low-cost and not invasive, such as the IMUs and temperature, because they
es are based on MicroElectroMechanical (MEM) devices; however, the weight sensor requires supporting
eo the strain gauges with mechanical parts inside the harvest basket, impacting directly on the fabrication
7 costs. This design needs improvement by finding a way of removing the mechanical component without
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7 compromising the functionality of the basket. To achieve this development is required to identify the
72 harvest’s time transitions without using the fruit’s weight. Length of the time elapsed by each one of the
73 harvest phases are useful to avoid high temperatures during prolonged periods of waiting times.

7a Time transition identification is a challenging problem, in particular for this settling because, as is
zs shown in Galeas [14], the harvest phases go sequentially, and due the data provided is gathered from
76 low-cost instrumentation, the problem is well suited for the use of Hidden Markov Chains methods, and
7z following the work of Rabiner [15], for this particular problem the Viterbi algorithm is one of the best
7e  suited.

70 In this regard, the objective of this article is to propose a novel monitoring system for berry harvesting
s processes that is solely based on the use of temperature and vibration sensors to perform inference and
s1 estimate the most likely trajectory and switch times between each harvesting process stage. The obtained
sz trajectory estimate will be then used to compute a potential damage indicator for the fruit in terms both of
es  the registered temperature and vibration energy.

sa The article structure is as follows. Section 2 focuses on providing theoretical background on Markov
es  Chains and the Viterbi algorithm. Section 3.4 presents a description of the experimental setup that allowed
s to acquire real-time vibration and temperature measurements directly from berry harvesting bins (i.e., the
ez Smartbins) and the proposed methodology for online recognition of different harvesting stages, as well as
ss the definition of a potential fruit damage indicator. Section 4 shows an analysis of the obtained results in
s terms of data acquired from a field experimental campaign and Section 5 presents main conclusions of this
%o research effort.

o1 2. Theoretical Background

o2 2.1. Markov Chains

03 The proposed harvesting stage detection algorithm is built on the assumption that this sequence of

s stages can be modeled as a Hidden Markov Model (HMM). Before going into the details that support this

os assumption, though, it is important to define the concept of a first-order Markov Process. A Markov process

9s is a stochastic process that satisfies the Markov property (sometimes characterized as “memorylessness"),
oz that basically states that one can make predictions for the future of the process based solely on its present

s state; i.e., conditional on the present state of the system, its future and past states are independent [15].

% A first-order Markov Chain is a particular case of a Markov Process [15]. To define it properly, let us
100 consider a system such that its condition at any time instant can be characterized by a finite set of states
11 S1,52,-+,SN. At any time, this system can change its operational condition in time (i.e., the system makes
102 a transition from one “state” to another), with transition probabilities that are conditional to the current
103 state. We denote the state transition times as t = 1, - - - , and the state at any given time f as g; [15].

104 The probabilistic model for system state transitions for the specific case of a discrete first-order Markov
15 Chain is completely described by the State Transition Matrix A and the initial state probability distribution
1ws 11, where:

Plgr = Sjlqi-1 = Si] = @i, 1<i,j<N, 1)
10 and where:
108 o le']' >0

109 o ]‘I\il {Ill']' =1.
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110 This Markov Process is denominated “observable" since the system output is a state that can be
1+ directly measured. The probability of a given sequence can be computed in this case using the following
12 straightforward procedure:

M
R

P(O = {Suy,Sny, -+ S, }|Model) = P[Sy;] - P[Su,|Suy) - - - P[Sn;|Sn; ;]

@)
= 710(10) * Angny =+ * Any_ym,
113 Figure 1 shows a graphical representation of a single realization of this stochastic process. Please note
us that state transition probabilities are completely determined by the current system state [15].
Figure 1. Graphical representation of a first-order Markov Chain realization.
us  2.2. Hidden Markov Models (HMMs)
116 In many practical cases, the system state cannot be directly measured and must be estimated. These

ur cases can be well characterized through the concept of Hidden Markov Models (HMMs). The adjective
ue  “hidden" refers to the state sequence through which the model passes, not to the parameters of the
e model; the model is still referred to as a hidden Markov model even if these parameters are known
120 exactly. Measurements are linked to the system states via a conditional probability density function. As
121 a consequence, the resulting model has two sources of uncertainty that affect the inference problem: (i)
122 hidden state dynamics and (ii) measurement noise [15].

123 A discrete HMM is characterized by the following parameters:
124 e N: Number of states. The set of possible states can be denoted by S = {s1,---,Sn}. The state of the
12 system at time ¢ is denoted g;.
126 e M: Number of measurements associated with each state. Each measurement corresponds to a
127 hysical outcome from the system that can be acquired using appropriate sensors.
phy Yy q & approp
126 e The transition probability distribution between system states A = {a;;} where:
Plgr = Sjlgi-1=Si]=a;, 1<ij<N 3)
120 e The measurement probability distribution conditional on the state j, B = {b;(k)}:

)
130 o The initial probability distribution of system states 7, where:

ni:P[qlzsi]; 1§i,j§N (5)
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131 Considering all of the above, for convenience the following compact notation is typically used to
132 denote the entire set of parameters that characterizes the HMM:

A= (A B, m) (6)

133 A realization of a HMM is graphically depicted in Figure 2. It is important to note that part of

13s  the system dynamics are hidden to the observer (“hidden evolution model”). These dynamics follow a
135 similar pattern as the one depicted in Figure 1. In addition, in a HMM there is an observational model,
136 which is conditional on the state trajectory. The objective in an inference problem based on HMMs is to
17 estimate the sequence of hidden states S = {s1,- -, Sy} conditional on a set of system measurements
s O={0,---,0n}[15].

[ Hidden state transition model

PQlan,_,)

P(On,|qn,) P(On, |qn,) P(On_,n,_,) P(On,1qn,)

o) (o

[ Measurement model |

Figure 2. Graphical representation of a discrete HMM.

130 2.3. Viterbi Algorithm

140 The Viterbi Algorithm (VA) [16], [17], [18] was proposed as a solution to the decoding of convolutional
11 codes by Andrew J. Viterbi in 1967. This algorithm had a great impact in the fields of communications
12 and signal processing, extending its influence to other domains such as the problem of state estimation
13 in stochastic nonlinear systems. The Viterbi Algorithm (VA) aims at finding the optimal estimate for a
1as  sequence of hidden states (called the Viterbi path) in a HMMs, conditional on a set of system measurements.
s This task is achieved using a dynamic programming formulation, where the inference problem is divided
s in a series of small stages (indexed by the time associated with each observation). At each stage, the VA
17 finds the optimal value for the state within the sequence, and it continues the analysis to the next stage in
1s an inductive manner. Formally speaking, to find the optimal sequence of hidden states Q* = {g7q3 - - - 47}
10 in a realization of a HMM, conditional on a sequence of system measurements O = {O10; - - - O7}, the
10 following variable is defined: [15,16]:

0(i) = max Plg1,q2,- - ,41—1,0102---Or|A], ()
912 -1

151 where 6 (i) is the most likely path for the HMM at time ¢, considering the first t observations and the state
12 S; as terminal condition. By induction, it is possible to write:

Orr1(i) = [m?X5t(i)aij] “Bj(Of41)- (8)
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153 Therefore, the inference problem can now be solved in an iterative manner by running the following
1sa the Pseudo-code:
Algorithm 1 Viterbi Algorithm(A = (A, B, 1), 0)
Inputs: A = (A,B, )0
Output: Q" = {q7, 73, -~ .7}
1: fori=1,---,N do > Initialization
2 01(i) = mbi(O1)
3: ¢1(i) =0
4 forj=1,--- ,N,t=2,---,Tdo > Recursion
. N — - (a::] - B
5 a(j) = max [0 (i)aij] - B(Or)
6 Yy(i) = argmax(oy_q (i)ajj]
1<i<N
. P* = or(i
7P = o)
8: g5 = argmax[o7(i)]
1<i<N
9: fort=T-1,T—-2,---,1do > Reconstruct state sequence
10: 7 = Pr1(954)
11: return Q*
155 3. Materials and Methods
s 3.1. The Blueberry Harvesting Process
157 The experiment is carried out inside the Boldo S.A. orchard. This orchard has 50 hectares planted

1ss  with blueberries and is located in Yungay, Chile, in coordinates Lat: —37.1149584, Long: —72.1973101.
1ss  As shown in Figure 3, its packing is located at the center of the garden and there are roads that divide
10 the plantation of blueberries into 3 sectors and each of these sectors is divided into 7 sub-sectors for the
11 irrigation process. Each sector has different varieties, including: Duke, Rabiteye, Brightwell, Tifblue,
12 O'neal and Brigitta.

163 The process of picking fresh blueberries is done manually and begins by assigning a crew of collectors
1es in each sector of the garden (see Figure 4). The collectors walk through the orchard arranged in rows
165 Of approximately 100 meters in length, provided with a plastic box of 3.5 liters hung from the neck by a
16 harness. The harvesting process has a duration of 20 to 40 minutes depending on the experience of the
167 harvester and how much fruit is in the bushes. Once filled the plastic box, the collector goes to the first
1ee  storage center (place provided with shade to temporally store the boxes previous to delivery at the local
1es packing site). In the reception center, another worker increase the accounting of the number of boxes
170 harvested by the collector and records the time when it was received. Finally the collector is provided
i1 with an empty box to restart the picking process.
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Figure 3. Blueberry orchard in Yungay, Chile.
Figure 4. Picture of the blueberry orchard.
172 The boxes full of fruit are stored in this storage center awaiting for a truck with a trailer to take them

173 to the local packing site. Once arrived to the packing the net weight of fruit picked is recorded using an
17a  electronic scale. Then, the filled boxes are entered into the packing throughout a freezing tunnel to lower
175 the temperature of the berries. Inside the packing, the boxes are emptied over a classification table and the
17e  boxes are recycled to begin a new harvest cycle.

w7z 3.2. A Modular Distributed Monitoring System for the Harvesting Process: The “Smartbin”

178 The proposed system has was developed, using a harvest basket of 3.5L, which incorporated two
179 components:
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180 - A main device installed on one of its sides, which contains a SODAQ Autonomous microcontroller
11 card, real-time clock, temperature sensors and an inertial unit (IMU) to measure the vibrations of the
12 harvest basket and detect the shocks suffered by it. - A false base sustained with a load cell, to measure at
13 all times the weight carried by the basket.

184 The stand-alone SODAQ card uses an Atmel SAMD21]J18 processor, with 256kb of Flash memory,
1es 32kb of SRAM memory and a 32-bit processor running at 48Mhz. In addition, it has a socket for the use of
18 a micro SD card, which allows internal storage of the data. A real-time clock (DS1307) with the time and
17 date was added to this device, information that is attached to each captured data. The IMU used is based
s on the MPU-9250 chip with accelerometer, gyroscope and 3-axis magnetometer. The unit also has two
10 temperature sensors based on the digital device DS18B20, whose accuracy is 0.5°C. These temperature
10 sensors protrude like two tubes of the main device, glued to one of the internal walls of the harvest box
11 to measure the temperature of the berries at two heights, 6cm and 10cm from the base of the box (see
102 Figure 5). The load cell located in the false base of the box is connected to an analog / digital converter
103 HX711 which in turn is connected to the autonomous SODAQ device. The system was provided with a
1a  Li-lon battery of 2300mAh/3.7V, for its energy autonomy, which was estimated at 30 hours of continuous
195 Operation.

196 This main device works as a remote collection unit and as a data logger, transmitting wireless and
107 storing all the data collected in an SD Card installed in the Autonomous SODAQ card, with two types of
s records, one that is written every 100 ms with the measurements of the IMU, date and time, and another
100 that is written every 15 seconds with measurements of temperature, weight, voltage of the battery, date
200 and time. These time measurements are taken to identify faults in the system, and correlate the tests with
201 the events that occurred during the day.

Figure 5. conditioned basket to on line measure of weight, 2 temperatures and accelerations.
202 3.3. Data acquisition campaign

203 Data from the experimental campaign was acquired using 5 “Smartbins" in an experimental set up
20a carried out during one day in the middle of the harvest season of blueberries in the “El Boldo" orchard
205 (see Figure 3). Each one of the 5 “Smartbins” was used in two consecutive harvest cycles during the day of
206 the experiment. As a result, it was possible to record 10 complete harvesting cycles (each cycle finishes
20 with the bin returned in the hands of the picker after being emptied). The structure of the acquired data
208 set can be summarized as follows:

200 o Temp_1: Temperature measurement acquired every 15 seconds using a sensor that is located near
210 the bottom of the bin.
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211 o Temp_2: Temperature measurement acquired every 15 seconds using a sensor that is located near
212 one of the four the external edges of the bin.
213 e Accy: Acceleration measurement in x-axis acquired ten times per second with an IMU located inside
214 the bin.
215 e Accy: Acceleration measurement in y-axis acquired ten times per second with an IMU located inside
216 the bin.
217 o Acc,: Acceleration measurement in z-axis acquired ten times per second with an IMU located inside
218 the bin.
210 o Weight: Net weight of the “Smartbin" acquired every 15 seconds with sensor that is located at the
220 bottom of the bin.

2z In terms of nomenclature, and for all practical purposes, each harvesting cycle was labelled using the
222 following format: Nic;j, where i = 1,2,3,4,5 refers to the i bin and j = 1,2 indicates the number of the
223 recorded cycle for that specific bin.

224 Eight of these cycles Nl-c]-, where i = 2,3,4,5, j = 1,2 were used as training data, while two cycles
225 where used for validation purposes (Nic1 and Njcy, both corresponding to the 1% bin).

226 3.4. Proposed Methodology for Online Harvesting Stage Detection

227 The proposed methodology uses the Viterbi algorithm to perform inference of data sets and estimate
222 the most likely state trajectory in the harvesting process. Indeed, this case study allows to define a finite
220 number of possible “states" (each one associated with one stage of the harvesting procedure), making it a
230 perfect candidate for the implementation of inference schemes based on the assumption of HMMSs. The set
21 of observations O incorporate data from IMUs and temperature sensors. Although the entire process has
232 six “states” that can be identified (picking, waiting, transport (full bin), cooling, emptying, and transport
233 (empty bin)), only four of them are hereby considered. The latter, since solely the first 4 states are critical in
2a  terms of quantifying the potential damage to the fruit during the harvesting procedure (the “emptying"
235 state is fully automated, and afterwards the bin is empty). These states are:

236 1) “Picking"(51): The pickers, provided with a 3.5 liter plastic box hung around the neck by a harness,

237 cover the orchard prepared in rows approximately 100 meters long. Picking lasts 20 to 40 minutes
238 per box, depending on the picker’s experience and the volume of fruit on the shrubs. During this
230 stage it is possible to measure high energy vibration signals and high temperatures.

240 2) “Wait" (52): When the box is full, the picker goes to the storing center (shaded area), where he/she
241 delivers the box for counting. The full boxes remain at the warehouse waiting for the tractor-trailer
242 to take them to the local packing area.

243 3) “Transport" (full bin) (53): The tractor-trailer transports full boxes from the warehouse to the local
248 packing area.

245 4) “Cooling" (freezer tunnel) (S4): The fruit is admitted to packing via a conveyor table, where a
246 cooling system lowers its temperature using a freezing tunnel.

247 Considering all of the above, a HMM is trained for this case study using eight harvesting cycles

248 Nl-c]-, where i = 2,3,4,5, j = 1,2. Ground truth for the transition times between states in training (and
2e0  also validation) data was defined by incorporating information acquired from the weight sensor that is
20 located at the bottom of the “Smartbin". Weight sensor measurements allow to simplify the detection of
=1 state transitions because they help to determine the moment when the “Picking" stage is over (bin weight
22 measurements stabilize at a constant value, a condition that can be tested by a basic hypothesis testing
23 procedure), as well as the exact moment when the bin is emptied. Conditional to the latter transition
s times, it is possible to discriminate the “cooling" stage just by detecting sudden drops in temperature
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25 Measurements, while “wait" and “transport” stages can be identified since they differ significantly in terms
=6 Of the associated energy in the IMU signal.

287 The challenge behind the proposed method for state transition detection is to avoid the usage of
e weight measurements altogether (except, as in this case study, for purposes of determining ground truth
20 transition times in training data). The latter since it would be preferable and significantly cheaper to
260 eliminate this weight sensor from the original design of the “Smartbin". For this purpose, a HMM is
201 conceived to describe the transition between the stages of the harvesting process, where the observation
262 space is solely determined by the following sensor information:

1) Inertial Measurement Unit (IMU): data acquired by the IMU. A simple pre-processing algorithm is
implemented to complement this information with an average of the total energy in the vibration
signal every 15[s] over the time window containing the last 15 seconds of measures.

t
IMU_Energyy = Y accx(j)* + accy(j)* + acez(j)* )
j=t—14

2) Temperature Measurements: Besides the information provided by sensors Temp_1 and Temp_2, a
simple pre-processing algorithm is implemented to measure the difference in readings between both
temperature sensors.

Delta_T(t) = Temp_2(t) — Temp_1(t) (10)

263 Considering all of the above, and following the maximum likelihood estimation procedure explained
26 in [15] to determine the coefficients of state transition matrices in a HMM, it is possible to state that the
2es harvesting process can be characterized by the following matrices:

0.9153 0.0847 0.0000 0.0000
A— 0.0000 0.8169 0.1831 0.0000 (11)
~ 10.0000 0.0000 0.6966 0.3034

0.0000 0.0000 0.0000 1.0000

n:[1 00 0} 12)

2s  Where A is obtained by computing the expected residence time on each state in the training data set [15].
2z In this case, 77 is known since the HMM is always initialized in state 51 (“Picking"). The characterization
26s  Of the entire process using a HMM allows to use the Viterbi algorithm for state transition time detection
260 pUIpPOSES.

20 3.5. Proposed Methodology for Fruit Damage Indicator

a1 A natural byproduct associated with the implementation of the Viterbi algorithm for estimation of the
22 most likely state path is that it is also possible to detect start and end times for each of the different stages
2rs  of the berry harvesting process. These start and ending times become critical information to characterize
z7a  the potential damage accumulated during “picking", “waiting", and ‘transport" stages since during that
275 lapse the fruit in the bin is exposed to higher level of vibrations and elevated temperatures. Inspired on
e this fact, this research effort has proposed the following damage indicator to assess the potential damage

27 incurred by the fruit during the harvesting process:
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‘ 1 Ts4 Tsq
Damagelndicator = 105 <§) Temp_2; + ; IMU_Energy;) (13)

zze ' Where IMU_Energy is a variable that indicates the energy associated with the vibration signal recorded
2o by sensors in the bin during a 15[s] sliding window. Ts4 corresponds to the moment in which the Viterbi
200 algorithm detects a transition from states S3 to S4, measured in seconds. The temporal reference t = 0 is
ze1  established to be synchronized with the start of the “picking" stage.

282 The proposed indicator for potential fruit damage offers robustness against disturbances in estimates
203 Of transition times, since it solely depends on Ts4 for all practical purposes. Indeed, Ts4 determines the
2ea  start of the “cooling” stage and thus, it is expected to observe at that time simultaneous (and sudden)
2es  drops in readings of sensors Temp_1 and Temp_2, while the energy in the vibration signal should be small
2es compared to “picking" and “transport” stages. This evidence anticipates that errors in the estimate of Tsy4
2e7  should be negligible in comparison to the total time allotted for the harvesting cycle, and therefore the
2es  value of the propose damage indicator, which depends on the overall accumulation of stress on the fruit,
2s0  should not exhibit significant changes on its value.

200 4. Obtained Results in Experimental Campaign

201 Table 1 and Figures 6-15 show the results obtained when applying the proposed scheme for harvest
202 stage recognition and potential fruit damage assessment on actual field data from an experimental
203 campaign. Each figure consists of three graphs that help to understand the manner in which the proposed
204 algorithm interprets the acquired data. The first graph shows the performance exhibited by the Viterbi
20 algorithm in the detection of transitions between each one of the first 4 stages of the harvesting process:
206 “picking"”, “wait", ‘transport”, and “cooling". The second graph shows the energy of the IMU signal
207 (averaged over a 15[s] sliding window), and finally the third graph on each figure show the temperature
208 registered on the second temperature sensor inside the bin. Figures 6-15 are sorted in terms of the one that
200 Tepresents the most potential fruit damage to the one that is more innocuous. Given the structure of the
0 proposed damage indicator, both the time of exposure of the fruit at ambient temperature (principally at
so1  states 51-S3) and cumulative energy of vibration signals (principally at state S1) have critical influence on
sz the assessment of potential damage.

Table 1. Experimental campaign: Harvesting cycles ordered in terms of potential fruit damage.

Harvesting cycle (Njc;: bin;, cycle;) | Damage Index
Nscp 1.4762
Nocy 1.3710
Nicp 1.3386
N4C2 1.3017
N3C2 1.2905
Nycy 1.1239
N1C2 1.1119
Nscy 1.0218
Nucp 0.8002
N3C1 0.7484
303 Figure 6 illustrates a case where the potential fruit damage is the greatest. One of the reasons

s0a that explain this statement is the fact that in this cycle the fruit was exposed to relatively high ambient

o

s0s temperature for a lengthy lapse of time. Moreover, both during the “picking" and “transport” stages, the
« energy of the IMU accelerometer signal is significant, indicating that the fruit in the bin could have been

w
o
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shaken excessively. It is important to note that the Viterbi algorithm in this case fails to detect the transition
between states S1 and 52 (overall efficacy in detection in this data set is 89.918%). Although this issue
affects the tractability of the bin in the system, it does not have an impact of the assessment of the potential
fruit damage since the transitions to 54 (“cooling stage") is perfectly detected.

Data Sot N5.c1. Tost Acuracy =0.89918%
4
T I
g, ! J
& ; J
g
|
1000 200 3000 2000 5000 5000 7000 8000
Time ()
&
2 20 A
YWWAT I IS
o 7000 2000 3000 000 5000 5000 7000 3000
Time (5)
&
P NN
- \
N
7000 2000 3000 1000 5000 5000 7000 3000
Time (5)

Figure 6. Detection of berry harvesting stages. Data set Nsc;

Figures 7-8 illustrate a case where the potential fruit damage is significantly high. Although the same
concepts explained in the previous case also apply here, it is important to note that the energy associated
to the vibration signal is lower than in the case of Figure 6.Also, please note that the performance of the
Viterbi algorithm is high (overall efficacy in detection in these data sets is 99.396%), exhibiting a negligible
delay in the detection of the transition between S1 and 52 in data set Njcj, being the latter used for

as  validation purposes of the proposed approach.
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Figure 7. Detection of berry harvesting stages. Data set N,c;
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Figure 8. Detection of berry harvesting stages. Data set Njc;

Although temperature associated with the data shown in Figures 9 - 11 is higher than their

317

as  predecessors, the lapse of time where the fruit was exposed to ambient temperature is considerably
a0 smaller. In both cases, there is a small delay in the estimate of parameter Ts4, but the performance of the
s20  Viterbi algorithm is still beyond 98.95%.
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Figure 9. Detection of berry harvesting stages. Data set Nycy

MC States (14)

IMU Energy

Data Set N3.c2. Test Acuracy =0 98953%

4
l] = Ground Truth
, — E stimated
’ I
0 |
1000 2000 3000 4000 5000 6000 7000 8000
Time (s)
60
40
20
o M—ALWWMZ AL
1000 2000 3000 4000 5000 &l 7000 8000
Time (s)
500
400 P sl
300
200 \
100
1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

Figure 10. Detection of berry harvesting stages. Data set N3cy
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Figure 11. Detection of berry harvesting stages. Data set Nycy

Validation data set Njcp (Figure 12) is the one where the Viterbi algorithm exhibits the lowest
performance (overall efficacy in detection in these data sets is 84.667%). Nevertheless, even in this case, the
error associated with the estimate of parameter Tgy is 90[s], which represents 2% in a data set that records

s2a  4485(s] of operation.
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Figure 12. Detection of berry harvesting stages. Data set Njc

Last but not least, Figures 13 - 15 exhibit analogous performance in terms of the accuracy of the Viterbi
26 algorithm. Interestingly, in terms of potential fruit damage, the most innocuous data set corresponds to
2z one where the ambient temperature was low, and where the harvesting cycle lasted less than 4425(s].

325

Data Set N5.c2. Test Acuracy =0.98936%

s Ground Truth
' = Estimated

00 4000 5000 6
s)

-

MC States (1-4)

°

3

IMU Energy

500

8000

4000 5000 6000 7000

100
0 1000 2000 3000
Time (s)

Figure 13. Detection of berry harvesting stages. Data set N5cp
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Figure 14. Detection of berry harvesting stages. Data set Nyc;
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Figure 15. Detection of berry harvesting stages. Data set N3c;
:2s 5. Conclusions
320 This article proposes a monitoring system and a for berry harvesting solely based on the use of

30 temperature and vibration sensors. The monitoring system assumes a characterization of the process in
a1 terms of a Hidden Markov Model and uses the Viterbi algorithm to perform inference and estimate the
sz most likely state trajectory.

333 The obtained state trajectory estimate is then used to compute a potential damage indicator for the
s3¢  fruit in terms both of the registered temperature and vibration energy, with overall average efficacy in
;35 detection for validation data sets of 91.937%, while errors in the estimates of the moment at which the bin
a6 reaches the cooling stage were not larger than 2%, a fact that validates the proposed damage indicator as a
sz robust feature for characterization of the potential degradation in the quality of the fruit when used in
s conjunction with the Viterbi algorithm for purposes of estimating the value of Tsj.

330 More importantly, the proposed procedure proves to be equivalent in terms of the effectiveness in
a0 the characterization of the stages of the harvesting process to other alternatives found in the literature,
s but significantly more efficient since it does not require information about the weight of the bin in which
sz the fruit is collected to identify the different stages of the harvesting process and determine indicators
a3 that could help to assess if this harvesting process is being performed normally. It seems that the Viterbi
sas  algorithm is a complex solution for this problem but is inexpensive to include those procedures in the
ss  software running on the microprocessor of the “Smartbins", avoiding the need to measure weight and
sas  consequently disregarding the strain gauges and the mechanical parts needed to support them. The fact
a7 that it is possible to dispense the utilization of weight sensors in the design of “Smartbins", replacing it by
e more advanced signal processing tools, has a significant economic impact in terms of the penetration of
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20 these monitoring devices in the agricultural market as a right solution for some of the problems that the
ss0  industry has faced over these years
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